
Structural Tractability of Counting of Solutions to
Conjunctive Queries

Arnaud Durand
∗

IMJ UMR 7586 - Logique
Université Paris Diderot
F-75205 Paris, France

durand@logique.jussieu.fr

Stefan Mengel
†

Institute of Mathematics
University of Paderborn

D-33098 Paderborn, Germany
smengel@mail.uni-paderborn.de

ABSTRACT
In this paper we explore the problem of counting solutions
to conjunctive queries. We consider a parameter called the
quantified star size of a formula ϕ which measures how the
free variables are spread in ϕ. We show that for conjunctive
queries that admit nice decomposition properties (such as
being of bounded treewidth or generalized hypertree width)
bounded quantified star size exactly characterizes the classes
of queries for which counting the number of solutions is
tractable. This also allows us to fully characterize the con-
junctive queries for which counting the solutions is tractable
in the case of bounded arity. To illustrate the applicability
of our results, we also show that computing the quantified
star size of a formula is possible in time nO(k) for queries
of generalized hypertree width k. Furthermore, quantified
star size is even fixed parameter tractable parameterized
by some other width measures, while it is W[1]-hard for
generalized hypertree width and thus unlikely to be fixed
parameter tractable. We finally show how to compute an ap-
proximation of quantified star size in polynomial time where
the approximation ratio depends on the width of the input.

Categories and Subject Descriptors
H.2.4 [Database Management]: Languages—Query lan-
guages; F.1.3 [Computation by Abstract Devices]: Com-
plexity measures and classes; G.2.2 [Discrete Mathemat-
ics]: Graph Theory—Hypergraphs

∗Partially supported by ANR-11-IS02-0003, project ALCO-
CLAN
†Partially supported by DFG grants BU 1371/2-2 and BU
1371/3-1. Furthermore, the research leading to these results
has received funding from the [European Community’s] Sev-
enth Framework Programme [FP7/2007-2013] under grant
agreement n◦ 238381

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT/ICDT ’13, March 18 - 22 2013, Genoa, Italy
Copyright 2013 ACM 978-1-4503-1598-2/13/03 ...$15.00.

General Terms
Theory

Keywords
conjunctive queries, counting complexity, hypergraph decom-
position techniques

1. INTRODUCTION
Conjunctive queries (CQs) are a fundamental class of logi-

cal queries that consist of evaluating an existential conjunc-
tive first-order formula over a finite structure. They admit
a number of equivalent formulations for example as select-
project-join queries in database theory or as homomorphism
problems in constraint satisfaction and thus have been exten-
sively studied in various contexts. Deciding if a Boolean CQ
is true or not on a structure is well known to be NP-complete,
so the main interest of study has been to identify tractable
subclasses, so-called “islands of tractability”, where the deci-
sion question is tractable, i.e. can be solved in polynomial
time.

One main direction in finding tractable classes of CQs has
been imposing structural restrictions on the formula of the
query – more exactly on the hypergraph associated to it –
while the database is assumed to be arbitrary. In a seminal
paper Yannakakis [25] proved that if the formula is acyclic,
then the Boolean CQ question becomes tractable. The main
idea behind structural restrictions is to extend this result by
generalizing it to “nearly acyclic” queries. This has lead to
many different decompositions for graphs and hypergraphs
and associated width measures (see e.g. [13, 8, 23]). The com-
mon approach for these decompositions is to group together
vertices or edges (of the graphs or hypergraphs) into clusters
of some fixed constant size and to arrange these clusters into
a tree. The resulting width measures are often sought to
have two desirable properties:

• For every k the class of queries of width k should
be tractable, i.e. Boolean CQ should be solvable in
polynomial time.

• Given an instance it should be possible to decide if
there is a decomposition of width k and construct one
if it exists.

While decomposition techniques without the first property
do not make any sense in the context of CQs, the second
property is sometimes relaxed. For some decomposition

81

techniques one does not actually need the decomposition
to solve the Boolean query problem [6], a promise of the
existence is enough. For other decompositions one only knows
approximation algorithms that construct decompositions of
width that is near the optimal width, which is enough to
guarantee tractability of Boolean CQ [22, 1].

More recently there has also been interest in enumerat-
ing all solutions to CQs and in the corresponding counting
question. For enumeration of the query answers it turns out
that the picture is less clear than for decision [2, 4, 16]. Also
the situation for counting is more subtle: For quantifier free
queries – which correspond to queries without projections
in the database perspective – most commonly considered
structural restrictions yield tractable counting problems (see,
e.g. [24]). While this is nice it is not fully satisfying, be-
cause quantifiers/projections are very natural and essential
in database queries. While introducing projections does not
make any difference for the complexity of Boolean CQ, the
situation for the associated counting problem, denoted #CQ,
is dramatically different. In [24] it is shown that even one
single existentially quantified variable is enough to make
counting answers to CQs #P-hard even when the struc-
ture of the query is a tree (which implies width 1 for all
commonly considered decomposition techniques). This un-
derlines the gain of expressive power obtained by existential
quantification in the context of counting. It also follows that
the decomposition techniques used for Boolean CQ are not
enough to guarantee tractability for counting.

In a previous paper [10] the authors of this paper have
proposed a way out of this dilemma for counting by intro-
ducing a parameter called quantified star size for acyclic
conjunctive queries (ACQs). This parameter measures how
the free variables are spread in the formula. We represented
a query formula ϕ(x) with a list x of free variables, by ex-
tending the hypergraph H = (V,E) associated to ϕ(x) with
a set S ⊆ V . Then the quantified star size is the size of a
maximum independent set consisting of vertices from the set
S in some specified subhypergraphs of H. It turns out that
this measure precisely characterizes the tractable subclasses
of ACQs. The main result is that (under the widely believed
assumption FPT 6= #W[1] from parameterized complexity)
solutions to a class of ACQs can be counted in polynomial
time if and only if the queries in the class are of bounded
quantified star size.

Overview of the results

Counting solutions to queries. In this paper we extend
the results of [10] from acyclic queries to commonly consid-
ered decomposition techniques. To do so we generalize the
notion of quantified star size from acyclic queries to general
conjunctive queries. We show that every class of CQs that
allows efficient counting must be of bounded quantified star
size – again under the same assumption from parameterized
complexity. We then go on showing that for all decomposition
techniques for CQs commonly considered in the literature
combining them with bounded quantified star size leads to
tractable counting problems. The key feature that makes
this result work is the organization of atoms into a tree of
clusters that is prominent in all decomposition methods for
CQs known so far. Combining the results above we get an
exact characterization of the classes of tractable CQ counting
problems for commonly considered decomposition techniques.

Let us illustrate these results for the example of generalized
hypertree decomposition [13], which is one of the most gen-
eral decomposition methods and one of the most studied
too [13, 15, 23]. We have that, under the assumption that
FPT 6= #W[1], for any (recursively enumerable) class C
of hypergraphs of bounded generalized hypertreewidth the
following statements are equivalent:

• #CQ for instances in C can be solved in polynomial
time

• C is of bounded quantified star size.

In our considerations, the arity of atoms of queries is not
a priori bounded. In this setting, there is no known ultimate
measure resulting from a decomposition method that fully
characterizes tractability even for Boolean CQ. This explains
why our characterizations are stated for each decomposition
method. For bounded arity however, the situation is different.
It is well known that being of bounded treewidth completely
characterizes tractability for decision [19, 17] and counting [9]
for CSP (corresponding to quantifier free conjunctive queries
in this setting). Combining [19, 17] and our results from
above we derive a complete characterization of tractability
for #CQ in terms of tree width and quantified star size for
the bounded arity case.

Note that our results are for counting with set semantics,
i.e. we count each solution only once. Counting for bag
semantics in which multiple occurences of identical tuples
are counted has already been essentially solved in [24].

Discovering quantified star size. To exploit tractability
results of the above kind it is helpful if the membership in
a tractable class can be decided efficiently, i.e. in our case
if computing the quantified star size is also tractable. In
the second part of the paper, we turn to these “discovery
problems” of determining the quantified star size of queries.

In [10] it is shown that quantified star size of acyclic CQs
can be determined in polynomial time. Since star size is
equivalent to independent sets, we cannot expect this to
be true on more general queries anymore. Fortunately, it
turns out that for queries of generalized hypertree width
k, there is a nk algorithm that computes the quantified
star size. We show that this is in a sense optimal, because
under the assumption FPT 6= W[1] there is no efficient
(fixed paramater tractable in k) algorithm computing the
quantified star size for queries parameterized by generalized
hypertree width.

Still some natural decomposition methods admit fixed pa-
rameter discovery algorithms. We prove that this is the case
for the class of CQ having bounded hingetree width (see [8]).
This result is interesting on his own from a hypergraph algo-
rithms perspective. Because of the connection between star
size and maximum independent set, it provides a new class
of hypergraphs for which computing the maximum indepen-
dent set is FPT. Note that the preceding hardness result
shows that fixed parameterized tractability of this problem
is unlikely for other hypergraph decomposition techniques.

We then turn our attention to star size approximation.
We show that there is a polynomial time approximation
algorithm with ratio k that given a decomposition of width k
runs in time independent of k.

Summing these results up, quantified star size does not
only imply tractable counting if combined with well known

82

decomposition techniques, but in case the decomposition is
given or can be efficiently computed (hypertreewidth, hinge-
tree width) or approximated (generalized hypertreewidth),
then computing quantified star size is itself tractable.

Finally, we investigate the problem of counting solution
and computing quantified star size for queries of bounded
fractional hypertree width [18, 22]. This decomposition
method is of a somewhat different nature than the ones
studied before so we treat it individually. We again prove that
counting is tractable in this setting and that the discovery

problem can be decided in O(nk
O(1)

) i.e. with a slightly bigger
dependency in k than before.

2. PRELIMINARIES

Conjunctive queries. We assume the reader to be familiar
with the basics of (first order) logic (see [21]). We assume all
formulas to be in prenex form. If φ is a first order formula,
var(φ) denotes the set of its variables, free(φ) ⊆ var(φ) the
set of its free variables and atom(φ) the set of its atomic
formulas. Let x = x1, ..., xk, we denote φ(x) the formula
with free variables x. If φ is such that free(φ) = var(φ) then
φ is said to be quantifier-free. The Boolean query problem
Φ = (A, φ) associated to a formula φ(x) and a structure A,
asks whether the set

φ(A) = {a : (A,a) |= φ(x)}

called the query result is empty or not. The (general)
query problem consists of computing the set φ(A), while
the corresponding counting problem is computing the size
of φ(A), denoted by |φ(A)|. We call two instances Φ =
(A, φ),Φ′ = (A′, φ′) solution equivalent, if free(φ) = free(φ′)
and φ(A) = φ′(A′). When φ is a {∃,∧}-first order formula
the boolean query problem is known as the Conjunctive
Query Problem, CQ for short. It is well known that the the
Boolean CQ problem is NP-complete. We denote by #CQ
the associated counting problem: given a query instance
Φ = (A, φ), return |φ(A)|.

Any a ∈ φ(A) will be alternatively seen as an assignment
a : free(φ) → D or as a tuple of dimension |free(φ)|. Two
assignments a and a′ are compatible (symbol: a ∼ a′) if they
agree on their common variables.

Definition 2.1. Let φ(x,y), ψ(y, z) be two conjunctive
queries with x ∩ z = ∅ and let A,A′ be two finite struc-
tures. The the natural join of φ and ψ is φ(A) ./ ψ(A′) :=
{(a,b, c) : (a,b) ∈ φ(A) and (b, c) ∈ ψ(A′)}

When A = A′, φ(R) ./ ψ(A) is simply [φ ∧ ψ](A).

Query size and Model of computation. The underlying
model of computation for our algorithms will be the RAM
model with unit costs. We assume the relations of a con-
junctive query to be encoded by listing their tuples. For a
relation R let arity(R) denote the arity of R and |R| the
number of tuples in R. Then the size of an encoding of R is
‖R‖ := Θ(arity(R) · |R|). For a vocabulary τ let |τ | be the
number of predicate symbols. Finally, let |D| be the size of a
domain D. Then encoding a structure A over the vocabulary
τ with domain D takes space ‖A‖ := |τ |+ |D|+

∑
R∈τ ‖R

A‖.
Furthermore, it takes space ‖φ‖ := Θ(

∑
P∈atom(φ) arity(P))

to encode a formula φ. The size of an encoding of a CQ
instance Φ = (φ,A) is then ‖Φ‖ := ‖φ‖+ ‖A‖.

For a detailed discussion and justification of these conven-
tions see [11, Section 2.3]

Parameterized complexity. This section is a very short
introduction to some notions from parameterized complexity
used in the remainder of this paper (for more details see [12]).

A parameterized decision problem over an alphabet Σ is
a language L ⊆ Σ∗ together with a computable parameter-
ization κ : Σ∗ → N. The problem (L, κ) is said to be fixed
parameter tractable, or (L, κ) ∈ FPT, if there is a com-
putable function f : N→ N such that there is an algorithm
that decides for x ∈ Σ∗ in time f(κ(x))|x|O(1) if x is in L.

Let (L, κ) and (L′, κ′) be two parameterized decision prob-
lems over the alphabets Σ resp. Π. A parameterized many-
one reduction from (L, κ) to (L′, κ′) is a function r : Σ∗ → Π∗

such that for all x ∈ Σ∗:

• x ∈ L⇔ r(x) ∈ L′,

• r(x) can be computed in time f(κ(x))|x|c for a com-
putable function f and a constant c, and

• κ′(r(x)) ≤ g(κ(x)) for a computable function g.

It is easy to see that FPT is closed under parameterized
many-one reductions.

Let p-Clique be the problem of deciding on an input (G, k)
whereG is a graph and k and integer, ifG has a k-clique. Here
the parameterization κ is simply defined by κ(G, k) := k. The
class W[1] consists of all parameterized problems that are
parameterized many-one reducible to p-Clique. A problem
(L, κ) is called W[1]-hard, if there is a parameterized many-
one reduction from p-Clique to (L, κ).

It is widely believed that FPT 6= W[1] and thus in par-
ticular p-Clique and all W[1]-hard problems are not fixed
parameter tractable.

Parameterized counting complexity theory is developed
similarly to decision complexity. A parameterized counting
problem is a function F : Σ∗ × N → N, for an alphabet Σ.
Let (x, k) ∈ Σ∗ × N, then we call x the input of F and k
the parameter. A parameterized counting problem F is fixed
parameter tractable, or F ∈ FPT, if there is an algorithm
computing F (x, k) in time f(k)·|x|c for a computable function
f : N→ N and a constant c ∈ N.

Let F : Σ∗ × N→ N and G : Π∗ × N→ N be two parame-
terized counting problems. A parameterized parsimonious
reduction from F to G is an algorithm that computes for
every instance (x, k) of F an instance (y, l) of G in time
f(k) · |x|c such that l ≤ g(k) and F (x, k) = G(y, l) for com-
putable functions f, g : N → N and a constant c ∈ N. A
parameterized T -reduction from F to G is an algorithm with
an oracle for G that solves any instance (x, k) of F in time
f(k) · |x|c in such a way that for all oracle queries the in-
stances (y, l) satisfy l ≤ g(k) for computable functions f, g
and a constant c ∈ N.

Let p-#Clique be the problem of counting k-cliques in
a graph where k is the parameter and the graph is the
input. A parameterized problem F is in #W[1] if there is a
parameterized parsimonious reduction from F to p-#Clique.
F is #W[1]-hard, if there is a parameterized T -reduction
from p-#Clique to F . As usual, F is #W[1]-complete if it
is in #W[1] and hard for it, too.

Again, it is widely believed that there are problems in
#W[1] (in particular the complete problems) that are not

83

u5

u1

u2

u3

u4 u6

u7

u8

v1

v2

v3

v4 v5

v6

v7

v8

v9

Figure 1: The hypergraph associated to the for-
mula φ of Example 2.2.

fixed parameter tractable. Thus, from showing that a prob-
lem F is #W[1]-hard it follows that F can be assumed to
be not fixed parameter tractable.

Hypergraph decompositions. In this section we present
some well known hypergraph decompositions methods. For
more details and more decomposition techniques see e.g. [8,
13, 23].

A (finite) hypergraph H is a pair (V,E) where V is a finite
set and E ⊆ P(V). We associate a hypergraph H = (V,E) to
a formula φ (the canonical structure describing φ) by setting
V := var(φ) and E := {var(a) | a ∈ atom(φ)}.

Example 2.2. Consider the formula

φ := ∃u1∃u2∃u3∃u4∃u5∃u6∃u7∃u8

P1(v1, u1) ∧ P2(v2, u1, u2) ∧ P3(v2, v4, u2, u3)

∧P4(v3, v4, v5, u3, u4, u5) ∧ P5(v4, v5, v6, v8)

∧P6(v7, v8, u5, u6) ∧ P2(v6, v9, u7) ∧ P2(v8, v9, u8)

The associated hypergraph is illustrated in Figure 1.

An independent set I in H is a set of vertices I ⊆ V such
that no two of them lie in one edge together. An edge cover
C of H is an edge set E′ ⊆ E such that

⋃
e∈E′ e = V .

Definition 2.3. A generalized hypertree decomposition
of a hypergraph H = (V,E) is a triple (T , (λt)t∈T , (χt)t∈T)
where T = (T, F) is a rooted tree and λt ⊆ E and χt ⊆ V
for every t ∈ T satisfying the following properties:

1. For every v ∈ V the set {t ∈ T | v ∈ χt} induces a
subtree of T .

2. For every e ∈ E there is a t ∈ T such that e ⊆ χt.

3. For every t ∈ T we have χt ⊆
⋃
e∈λt

e.

The first property is called the connectedness condition. The
sets χt are called blocks or bags of the decomposition, while
the sets λt are called the guards of the decomposition. A pair
(λt, χt) is called guarded block.

The width of a decomposition (T , (λt)t∈T , (χt)t∈T) is de-
fined as maxt∈T (|λt|). The generalized hypertree width of H
is the minimum width over all generalized hypertree decom-
positions of H.

{v3, v4, v5, u3, u4, u5}
{v4, v5, v6, v8},
{v7, v8, u5, u6}

v3, v4, v5, v6, v7,
v8, u3, u4, u5, u6

{v1, u1}, {v2, u1, u2},
{v2, v4, u2, u3}

v1, v2, v4, u1, u2, u3

{v4, v5, v6, v8},
{v6, v9, u7},
{v8, v9, u8}

v4, v5, v6, v8, v9,
u7, u8

Figure 2: A generalized hypertree decomposition of
width 3 for the hypergraph from Figure 1. The
boxes are the guarded blocks. In the upper parts
the guards are given while the lower parts show the
blocks.

We sometimes identify a guarded block (λt, χt) with the
vertex t.

Example 2.4. Figure 2 shows a generalized hypertree de-
composition of width 3 for the hypergraph from Figure 1.

Definition 2.5. A hypergraph is acyclic if it has gener-
alized hypertree width 1. In this case, the decomposition
restricted to its blocks is called a join tree.

Let us fix some notation: For an edge set λ ⊆ E we
use the shorthand

⋃
λ :=

⋃
e∈λ e. For a decomposition

(T , (λt)t∈T , (χt)t∈T) we write Tt for the subtree of T that
has t as its root. We also write χ(Tt) :=

⋃
t′∈V (Tt) χt′ .

Definition 2.6. A generalized hypertree decomposition is
called hingetree decomposition1 if it satisfies the following
conditions:

4. For each pair t1, t2 ∈ T with t1 6= t2 there are edges
e1 ∈ λt1 and e2 ∈ λt2 such that χt1 ∩ χt2 ⊆ e1 ∩ e2.

5. For each t ∈ T we have
⋃
λt = χt.

6. For each e ∈ E there is a t ∈ T such that e ∈ λt.

Hingetree width (also called degree of cyclicity) is defined
analogously to generalized hypertree width.

Example 2.7. The decomposition from Figure 2 is also a
hingetree decomposition.

Definition 2.8. The primal graph of a hypergraph H =
(V,E) is the graph HP = (V,Ep) with Ep := {uv ∈

(
V
2

)
|

∃e ∈ E : u, v ∈ E}.

Definition 2.9. A tree decomposition of a hypergraph H
is a generalized hypertree decomposition of its primal graph
HP . The width of a tree decomposition is the size of its
biggest bag minus 1. The treewidth of H is the minimum
width over all tree decompositions of H.
1Note that this is not the original definition from [20] but
an alternative, equivalent definition from [8].

84

For all decompositions defined above we define the width of
a CQ-instance to be the width of the associated hypergraph.

We now recall some known results on the various decom-
position methods.

Lemma 2.10. a) (see e.g. [8]) For all of the width mea-
sures defined above Boolean CQ-instances of width k
can be solved in time ‖Φ‖p(k) for a polynomial p.

b) ([20]) There is an algorithm that given a hypergraph
H = (V,E) computes a minimum width hingetree de-

composition in time |V |O(1).

c) ([3])Computing minimum width tree decompositions is
fixed parameter tractable parameterized by the treewidth.

d) ([1, 14]) There is an algorithm that given a hypergraph
H = (V,E) of generalized hypertree width k constructs
a generalized hypertree decomposition of width O(k)

of H in time |V |O(k).

Definition 2.11. Let H = (V,E) be a hypergraph and
V ′ ⊆ V . The induced subhypergraph H[V ′] of H is the
hypergraph H[V ′] = (V ′, {e ∩ V ′ | e ∈ E, e ∩ V ′ 6= ∅}).

Let x, y ∈ V , a path between x and y is a sequence of
vertices x = v1, ..., vk = y such that for each i ∈ [k − 1] there
is an edge ei ∈ E with vi, vi+1 ∈ ei.

A (connected) component of H is the induced subhypergraph
H[V ′] for a maximal vertex set V ′ such that for each pair
x, y ∈ V ′ there is a path between x and y in H.

Observation 2.12. Let β be any decomposition technique
defined in this section. Let H = (V,E) be a hypergraph of
β-width k. Then for every V ′ ⊆ V the induced subhypergraph
H[V ′] has β-width at most k.

Proof. Let (T , (λt)t∈T , (χt)tinT) be a β-decomposition
of H of width k. For each guarded block (λt, χt) compute a
guarded block (λ′t, χ

′
t) with χt := χt ∩ V ′ and λt := {e∩ V ′ |

e ∈ λ}. It is easy to check that (T , (λ′t)t∈T , (χ′t)tinT) is a
β-decomposition of width at most k.

3. QUANTIFIED-STAR SIZE
In this section we generalize quantified star size which was

introduced in [10] for acyclic conjunctive queries to general
conjunctive queries.

Definition 3.1. Let H = (V,E) be a hypergraph and
S ⊆ V . Let C be the vertex set of a connected component of
H[V −S]. Let EC be the set of hyperedges {e ∈ E | e∩C 6= ∅}
and V ′ :=

⋃
e∈EC

e. Then H[V ′] is called an S-component
of H.

Definition 3.2. Let H = (V,E) be a hypergraph. For
a set S ⊆ V the S-star size of H is the maximum size of
an independent set consisting only of vertices in S in an
S-component of H. We say that this independent set forms
the S-star.

Example 3.3. Take S = {v1, ..., v9} in the hypergraph of
Figure 1. It has three S-components with respective edge lists:

1. {v1, u1}, {v2, u1, u2}, {v2, v4, u2, u3}, {v7, v8, u5, u6},
{v4, v5, v6, v8}, {v3, v4, v5, u3, u4, u5}, {v8}

2. {v8, v9, u8}, {v8}

3. {v6, v9, u7}, {v6}

The S-star size i.e. the size of a maximum independent of
S-vertices in a S-component is 4. The set {v1, v2, v3, v7}
forms an S-star (there are several other possibilities).

It is easy to see that for acyclic hypergraphs this definition
of S-star size coincides with the definition in [10] which was
only defined for acyclic hypergraphs.

Definition 3.4. An S-hypergraph is a pair (H, S) where
H = (V,E) is a hypergraph and S ⊆ V . To each formula φ we
associate an S-hypergraph (H, S) where H is the hypergraph
associated to φ and S := free(φ). The quantified star size of
a CQ instance Φ = (A, φ) is the S-star size of (H, S).

Let Gstar be the class of S-hypergraphs (Hn, Sn), n ∈ N,
where Hn is a star graph and Sn consists of its leaves. More
precisely, Hn = (Vn, En), Sn are defined as

• Vn = {z, y1,, yn},

• En = {{z, yi} | i = 1, ..., n},

• Sn = {y1,, yn}.

We will use the following lemma from [10].

Lemma 3.5 ([10]). #CQ is #W[1]-hard restricted to
instances that have S-hypergraphs in Gstar parameterized by
the size of the stars.

4. THE COMPLEXITY OF COUNTING
In this section we show that the decomposition techniques

introduced in Section 2 lead to efficient counting when com-
bined with bounded quantified star size. Furthermore, we
show that bounded quantified star size is necessary for effi-
cient counting under standard assumptions.

Theorem 4.1. There is an algorithm that given a #CQ-
instance Φ = (A, φ) of quantified starsize ` and a generalized
hypertree decomposition Ξ = (T , (λt)t∈T , (χt)t∈T) of Φ of

width k counts the solutions of φ in time ‖Φ‖p(k,`) for a fixed
polynomial p.

In the proof we will use the following lemma from [10].

Lemma 4.2. For acyclic hypergraphs the size of a maxi-
mum independent set and a minimum edge cover coincide.
Moreover, there is a polynomial time algorithm that given
an acyclic hypergraph H computes a maximum independent
set I and a minimum edge cover E∗ of H.

Proof of Theorem 4.1. Given Φ = (A, φ), we construct
a solution equivalent instance Φ′′ in two steps which is of
generalized hypertree width k, too, and has a quantifier free
formula.

Let H = (V,E) be the hypergraph of φ. Let V1, . . . , Vm
be the vertex sets of the components of H[V − S] and let
V ′1 , . . . , V

′
m be the vertex sets of the S-components of H.

Clearly, Vi ⊆ V ′i and V ′i − Vi = V ′i ∩ S =: Si. Let Φi be the
#CQ-instance whose formula φi is obtained by restricting
all atoms of φ to the variables in V ′i and whose structure
Ai is obtained by projecting all relations of A accordingly.
The associated hypergraph of φi is H[V ′i] and H[V ′i] has a
generalized hypertree decomposition Ξi of width at most k
with tree a Ti that is a subtree of T (see Observation 2.12).

85

For each Φi we construct a new #CQ-instance Φ′i =
(A′i, φ′i) as follows. For each guarded block b = (λ, χ) ∈ Ξi we
construct a new atomic formula ϕb in the variables χ. The
associated relation is given by πχ(./φ∈atom(Φi) : var(φ)⊆

⋃
λ φ)

i.e. by taking the natural join of all relations whose variables
are guarded in the guarded block and projecting on χ. The
formula φ′i for Φ′i is obtained as the conjunction of all ϕb.
The decomposition Ξi has width at most k so this can be
done in time ‖Φ‖O(k). Obviously, Φi and Φ′i are solution
equivalent. Furthermore φ′i is acyclic, because it has a de-
composition with tree Ti, the same blocks as Ξi and width
1. Let Hi be the associated hypergraph of φ′i, then Hi has
only one single Si-component, because all the vertices in Vi
are connected in H and thus also in Hi. Also the Si-star
size of Hi is at most `. To see this consider two independent
vertices u, v in Hi. The edges of Hi are equal to the blocks
of Ξi, so u and v do not appear in a common block in Ξi.
But then u and v cannot appear in one common block in Ξ,
because of T being a tree and the connectedness condition.
So u and v are independent in H, too, and thus every inde-
pendent set in Hi is also independent in H. So Hi indeed
has Si-star size at most `. Thus the vertices in Si can be
covered by at most ` edges e1, . . . , e` in Hi which we can
compute in polynomial time by Lemma 4.2. Let α1, . . . , α`
be the corresponding atoms. We again construct a new
atomic formula φ′′i in the variables Si only and an associated
relation A′′i as follows: For each combination t1, . . . , t` of
tuples in α1(A′i), . . . , α`(A′i) fix the free variables in φ′i to the
constants prescribed by the tuples t1, . . . , t` if these do not
contradict. If the resulting CQ instance has a solution, add
the projection of t1 .// t` on Si to the relation A′′i of
φ′′i . By construction Φ′i and (A′′i , ϕ′′i) are solution equivalent.
Observe that the instances to be solved in this construction
are tractable [25], so all of this can be done in time ‖Φi‖p(k,`)
for a polynomial p′.

We now eliminate all quantified variables in the original
formula φ. To do so we add the atom φ′′i for i ∈ [m] and
delete all atoms that contain any quantified variable, i.e. we
delete each φ′i. Add the A′′i to the structure A and call the
resulting #CQ instance Φ′′ = (A′′, φ′′). Because (A′′i , φ′′i) is
solution equivalent to Φ′i, we have that Φ and Φ′′ are solution
equivalent, too. We construct a guarded decomposition of
φ′′ by doing the following: For each guarded block (λ, χ) of
Ξ with χ ∩ Vi 6= ∅ we construct a guarded block (λ′, χ′) by
deleting all edges e with e ∩ Vi 6= ∅ from λ and adding the
edge Si for φ′′i . Furthermore we set χ′ = (χ− Vi) ∪ Si. It is
easy to see that the result is indeed a generalized hypertree
decomposition of φ′′ of width at most k.

With standard techniques (see e.g. [8]) we construct in
polynomial time a quantifier free acyclic #CQ-instance that
is solution equivalent to Φ′′. Its solutions and thus those of
Φ can then be counted with the algorithm in [24] or [10].

We now show that bounded quantified star size is neces-
sary for efficient counting no matter which other structural
restrictions we put on S-hypergraphs.

Lemma 4.3. Let G be a recursively enumerable class of
S-hypergraphs such that #CQ for all instances whose S-
hypergraph is in G is fixed parameter tractable parameterized
by the size of the formulas. Then G has bounded S-star size
or #W[1] = FPT.

Proof sketch. The proof is a generalization of the re-
spective proof in [10]: We show that if the S-star size of G

is not bounded, then there is an FPT algorithm for #CQ on
Gstar, the class of stars with a single quantified variable in
the center. As this problem is #W[1]-hard by Lemma 3.5,
it follows that #W[1] = FPT.

So assume that #CQ is tractable on G and G has un-
bounded S-star size. We will construct a fixed parame-
ter algorithm for #CQ on Gstar. So let Φ = (A, ϕ) be
an instance of this latter problem, i.e. Φ has the formula
ϕ := ∃z

∧k
i=1Ei(yi, z). Let the domain of A be D. Be-

cause G is recursively enumerable and of unbounded S-star
size, there is a computable function g : N→ N such that for
k ∈ N one can compute (H, S) ∈ G with S-star size at least
k in time g(k). We will embed Φ into H to construct an

#CQ-instance Φ′ = (A′, ψ) of size g(k)nO(1) where n is the
size of Φ. Furthermore, ψ will have the S-hypergraph H and
A′ the same domain D as A. For convenience, Φ′ will be
built on a language containing one distinct relation symbol
for each hyperedges in H.

Let H′ be the S-component of H that contains k inde-
pendent vertices in the respective primal component. Call
these vertices s1, . . . sk. We may assume that the si are also
computed in time g(k) during the construction of H. Observe
that there must be a vertex v that is connected to each of the
si by a path Pi such that the only vertex in Pi that is in S
is si, because all the si lie in the same S-component. We
now construct a #CQ instance Φ′ that has the associated
S-hypergraph H.

All vertices that do not lie on any Pi are forced to a dummy
value d in a straightforward way by all their constraints. All
vertices on the Pi that are no sj may take arbitrary but equal
values in D. This is possible, because they are all connected
to the common vertex v by paths. Let vi be the predecessor
of si on Pi. For all constraints that contain vi and si we allow
for them exactly the combinations allowed by the relation
of EAi . Observe that there is no edge that contains more
than one of the si by definition, so each constraint has at
most |D|2 tuples.

Clearly, Φ and Φ′ have the same number of solutions.
Furthermore, we have |ψ| ≤ g(k) and Φ′ can be constructed in
time at most g(k)‖Φ‖2, because H has size at most g(k) and
the size of the relations for the constraints is bounded by |D|2.
But by assumption the solutions of Φ′ can be counted in time
h(|ψ|)‖Φ′‖c for a constant c and a computable function h.

Thus the solutions of Φ can be counted in time h(g(k))‖Φ‖c
′

for a constant c′ which completes the proof.

With Theorem 4.1 and Lemma 4.3 we have a solid un-
derstanding of the complexity of #CQ for structural classes
that can be characterized by restrictions of generalized hy-
pertree width. For each decomposition method with what
Cohen et al. [8] call the “tractable construction” property, i.e.
there must be a way to construct a decomposition efficiently,
quantified star size is essentially the only parameterization
that makes counting tractable. For the definitions of decom-
position techniques not defined in this paper see [13].

Corollary 4.4. Let β be one of the following decomposi-
tion techniques: biconnected component, cycle-cutset, cycle-
hypercutset, hinge-tree, hypertree, or generalized hypertree
decomposition. Let furthermore G be a recursively enumerable
class of S-hypergraphs of bounded β-width. Then counting
solutions to all #CQ-instances whose associated hypergraph
is in G is tractable if and only if C is of bounded S-star size
(assuming FPT 6= #W[1]).

86

5. AN OPTIMAL RESULT FOR BOUNDED
ARITY

In this section we show that for bounded arity #CQ we can
exactly characterize which classes of instances allow polyno-
mial time counting. This result is derived by combining the
results of the preceding sections and the following theorem
from [19] that we rephrase in our slighlty different wording.

Theorem 5.1 ([19]). Let G be a recursively enumerable
class of hypergraphs of bounded arity. Assume FPT 6= W[1].
Then the following three statements are equivalent:

• Boolean CQ for all instances with hypergraphs in G can
be decided in polynomial time.

• Boolean CQ for all instances with hypergraphs in G is
fixed parameter tractable parameterized by the size of
the formulas.

• The hypergraphs in G are of bounded treewidth.

Theorem 5.1 is originally stated to be true even for every
fixed vocabulary. It has been generalized to any recursively
enumerable class of conjunctive formulas [17]. In this context,
a characterization of tractability for counting solutions of
quantifier-free conjunctive queries is given in [9] in almost the
same terms as Theorem 5.1 but with the weaker assumption
that FPT 6= #W[1]. We show here a complete character-
ization of tractability for counting for general conjunctive
queries. Not too surprisingly, tractability depends on both
treewidth and star size of the underlying hypergraph.

Theorem 5.2. Let G be a recursively enumerable class of
S-hypergraphs of bounded arity. Assume that W[1] 6= FPT.
Then the following statements are equivalent:

1. #CQ for all instances whose S-hypergraph is in G is
solvable in polynomial time.

2. #CQ for all instances whose S-hypergraph is in G is
fixed parameter tractable parameterized by the size of
the formulas.

3. There is a constant c such that for each S-hypergraph
(H, S) in G the treewidth of H and the S-star size are
at most c.

Proof. The direction 1 → 2 is trivial. Furthermore, 3 →
1 follows directly from Theorem 4.1. So it remains only to
show 2 → 3.

So assume that there is a recursively enumerable class G
of S-hypergraphs such that counting solutions to #CQ-
instances whose S-hypergraph are in G is fixed parameter
tractable but 3 is not satisfied by G . From Lemma 4.3 we
know that the S-starsize of G must be bounded, so it follows
that the treewidth of G must be unbounded.

We construct a class G ′ of hypergraphs by doing the
following: For each S-hypergraph (H, S) in G we add H
to G ′. Clearly G ′ is recursively enumerable and of unbounded
treewidth. We will show that Boolean CQ for all instances
whose hypergraphs are in G ′ is fixed parameter tractable
parameterized by the size of the formula. This leads to a
contradiction with Theorem 5.1.

Because G is recursively enumerable, there is an algorithm
that that for each H in G ′ constructs an S-hypergraph (H, S)
in G that has lead to the addition ofH to G ′. For example one

can simply enumerate all S-hypergraphs in G until finding
such a (H, S). Let f(H) be the number of steps the algorithm
needs on input H. The function f(H) is well defined and
computable. We then define g : N → N by setting g(k) :=
maxH(f(H)), where the maximum is over all hypergraphs H
of size k in G ′. Clearly, g is again well defined and computable.
Thus for each H in G ′ we can compute in time g(|H|) an
S-hypergraph (H, S) in G .

Now let Φ = (A, φ) be a CQ-instance with hypergraph
H in G ′. To solve it we first compute (H, S) as above and
construct a #CQ-instance Ψ = (A, ψ) with (H, S) as asso-
ciated S-hypergraph for ψ by adding existential quantifiers
for all variables not in S. Obviously Φ has solutions if and
only if Ψ has any. But by assumption the solutions of Ψ can
be counted in time h(|ψ|)‖Ψ‖O(1) for some computable func-

tion h, so Φ can be decided in time (g(|φ|) + h(|φ|))‖Φ‖O(1)

and thus is fixed parameter tractable. This is the desired
contradiction to Theorem 5.1.

Remark 5.3. Note that our characterization relies on the
underlying hypergraph structures of the query. In [17, 9],
the corresponding characterizations are stronger in the sense
that they are true for any recursively enumerable class of
conjunctive formulas. Also these results and the one from [19]
can be proved for every fixed vocabulary, while our proofs of
the Lemmas 3.5 and 4.3 and thus also Theorem 5.2 rely on the
fact that we can choose our vocabulary in the construction. It
remains an open question whether our result can be improved
similarly to the others.

Also, the result in [9] (for quantifier free #CQ) is proved
under the weaker assumption #W[1] 6= FPT. Showing the
same equivalent result for general #CQ seems to be hard
since our case also contains decision problems (e.g. #CQ
with no free variables).

6. COMPUTING STAR SIZE
In this section we consider the problem of computing the

quantified star size of bounded width instances. Observe
that the computation of quantified star size is not strictly
necessary. The algorithm of Theorem 4.1 does not need
to find S-stars for graphs of width k but only for acyclic
hypergraphs, which is easy by Lemma 4.2. Still it is of course
desirable to know the quantified star size of an instance
before applying the counting algorithm, because quantified
star size has an exponential influence on the runtime. We
show that for all decomposition techniques considered in
this paper the quantified star size can be computed rather
efficiently, roughly in |V |O(k) where k is the width of the
input. For small values of k, this bound is reasonable. We
then proceed by showing that, on the one hand, for some
decomposition measures such as treewidth or hingetree, the
computation of quantified star size is even fixed parameter
tractable parameterized by the width. On the other hand,
we show that for decomposition measures above hypertree
width it is unlikely that fixed parameter tractability can be
obtained (under standard assumptions).

Instead of tackling quantified star size directly, we consider
the combinatorially less complicated notion of independent
sets, which is justified by the following observation:

Observation 6.1. Let β be any decomposition technique
considered in this paper. Then for every k ∈ N computing the
S-starsize of S-hypergraphs of β-width at most k polynomial

87

time Turing-reduces to computing the size of a maximum
independent set for hypergraphs of β-width at most k. Fur-
thermore, there is a polynomial time many one reduction
from computing the size of a maximum independent set in
hypergraphs of β-width at most k to computing the S-star
size of hypergraphs of β-width at most k + 1.

Proof. By definition computing S-starsize reduces to
the computation of independent sets of S-components. S-
components are induced subhypergraphs, so we get the first
direction form Observation 2.12.

For the other direction let H = (V,E) be a hypergraph
for which we want to compute the size of a maximum inde-
pendent set. Let x 6∈ V . We construct the hypergraph H′ of
vertex set V ′ = V ∪ {x} and edge set E′ = {e ∪ {x} | e ∈ E}
and set S := V . The hypergraph is one single S-component,
because x is in every edge. Furthermore, the S-starsize of
H′ is obviously the size of a maximum independent set in
H. It is easy to see that the construction increases the
treewidth of the hypergraph by at most 1 and does not in-
crease the β-width for all other decomposition considered
here at all.

Because of Observation 6.1 we will not talk about S-star
size in this section anymore but instead formulate everything
with independent sets.

6.1 Exact computation

Proposition 6.2. There is an algorithm that given a hy-
pergraph H = (V,E) and a generalized hypertree decomposi-
tion Ξ = (T , (λt)t∈T , (χt)t∈T) of H of width k computes a

maximum independent set of H in time k|V |O(k).

Proof. We apply dynamic programming along the de-
composition. Let b = (λ, χ) be a guarded block of T . Let Tb
be the subtree of T with b as its root. We set Vb := χ(Tb).
Observe that I ⊆ Vb is independent in H if and only if it is
independent in H[Vb] so we do not differentiate between the
two notions. For each independent set σ ⊆ χ we will compute
an independent set Ib,σ ⊆ Vb that is maximum under the
independent sets containing exactly the vertices σ from χ.
Observe that because λ contains at most k edges that cover
χ we have to compute at most knk independent sets Ib,σ for
each b.

If b is a leaf of T , the construction of the Ib,σ is straight-

forward and can certainly be done in time k|V |O(k).
Let now b = (λ, χ) be an inner vertex of T with children

b1, . . . , br. For each independent set σ ⊆ χ we do the follow-
ing: Let bi = (λi, χi), then let σi be an independent set of
χi such that σ ∩ χ ∩ χi = σi ∩ χ ∩ χi and |Ibi,σi | is maximal.
We claim that we can set Ib,σ := σ ∪ Ib1,σ1 ∪ . . . ∪ Ibr,σr .

We first show that Ib,σ defined this way is independent.
Assume this is not true, then Ib,σ contains x, y that are in one
common edge e in H[Vb]. But then x, y do not lie both in χ,
because Ib,σ ∩χ = σ and σ is independent. By induction x, y
do not lie in one Vbi either. Assume that x ∈ χ and y ∈ Vbi
for some i. Then certainly x /∈ Vbi and y /∈ χ. But the edge
e must lie in one guard λ′ such that the corresponding block
χ′ contains e. Because of the connectivity condition for y
the guarded block (λ′, χ′) must lie in the subtree with root
bi, which contradicts x ∈ e. Finally, assume that x ∈ Vbi
and y ∈ Vbj for i 6= j and x, y /∈ χ. Then x and y cannot be
adjacent because of the connectivity condition. This shows
that Ib,σ is indeed independent.

Now assume that Ib,σ is not of maximum size and let
J ⊆ Vb be an independent set with |J | > |Ib,σ| and J ∩χ = σ.
Because J and Ib,σ are fixed to σ on χ there must be a bi
such that |J ∩ Vbi | > |Ibi,σi |. This contradicts the choice of
σi. So Ib,σ is indeed of maximum size.

Because each block has at most k|V |k independent sets,

all computations can be done in time k|V |O(k).

6.2 Parameterized complexity
While the algorithm in the last section is nice in that it

is a polynomial time algorithm for fixed k, it is somewhat
unsatisfying for some decomposition techniques: If we can
compute the composition quickly, we would ideally want to
be able to compute the star size efficiently, too. Naturally we
cannot expect a polynomial time algorithm independent of k,
because independent set is NP-complete, but we can hope for
at least fixed parameter tractability with respect to k. We will
show that this is indeed possible for some width measures, in
particular tree decompositions and hingetree decompositions.
On the other hand we show that this can likely not be
extended to more general decomposition techniques, because
independent set parameterized by hypertree width is W[1]-
hard.

Proposition 6.3. Given a hypergraph H computing a
maximum independent set in H is fixed parameter tractable
parameterized by the treewidth of H.

This can be seen either by applying Courcelle’s Theorem
of by straightforward dynamic programming. Interestingly,
one can show the same result also for bounded hingetree
width, which is a decomposition technique in which the
bags are of unbounded size. This unbounded size makes the
dynamic programming in the proof far more involved than
for treewidth.

Proposition 6.4. Given a hypergraph H computing a
maximum independent set in H is fixed parameter tractable
parameterized by the hingetree width of H.

Proof. First observe that minimum width hingetree de-
compositions can be computed in polynomial time [20], so
we simply assume that a decomposition is given in the rest
of the proof.

The proof has some similarity with that of Proposition 6.2,
so we use some notation from there. For guarded block (λ, χ)
we will again compute maximum independent sets containing
prescribed vertices. The difference is, that we can take these
prescribed sets to be of size 1: because of the hingetree
condition, only one vertex of a block may be reused in any
independent set in the parent. The second idea is that we
can use equivalence classes of vertices in the computations
of independent sets in the considered guarded blocks, which
limits the number of independent sets we have to consider.
We now describe the computation in detail.

Let Ξ = (T , (λt)t∈T , (χt)t∈T) be a hingetree decomposi-
tion of H of width k. Let b = (λ, χ) be a guarded block
of Ξ and let b′ = (λ′, χ′) be its parent. As before, let Tb
be the subtree of T with b as its root and Vb := χ(Tb). Set
Hb := (Vb, Eb) with Eb :=

⋃
λ∗ with the union being over

all guarded blocks in Tb. The main idea is to iteratively
compute, for all vertices v ∈ χ′ ∩χ, a maximum independent
set Jv,b in Hb = (Vb, Eb) containing v. Furthermore, we also
compute an independent set J∅,b that contains no vertices

88

of χ′ ∩ χ. Note that, since χ ⊆
⋃
e∈λ e, there are no isolated

vertices in χ and the size of a maximum independent set is
bounded by k in each block.

For a node b = (λ, χ), we organize the vertices in χ into
at most 2k equivalence classes by defining v and u to be
equivalent if they lie in the same subset of edges of λ. The
equivalence class of v is denoted by c(v). For each class, a
representant is fixed. We denote by v̄, the representant of
the equivalence class of v and by χ̄ ⊆ χ, the restriction of χ
on these at most 2k representants.

Let first b be a leaf. We first compute independent sets
on χ̄. Observe that the independent sets are invariant under
the choice of representants. For each equivalence class c(v),
we compute Jv̄,b ⊆ χ̄ as a maximum independent set con-
taining v̄. Computing the classes and a choice of maximum

independent sets containing each v̄ can be done in time k2k
2

because independent sets cannot be bigger than k. Clearly,
Jv,b, a maximum independent set containing v, can be easily
computed from the set Jv̄,b. Thus, one can compute all the

Jv,b in time k2k
2

n. The computation of J∅,b can be done
on representants, too, by simply excluding the vertices from
χ′ ∩ χ.

Let b now be an inner vertex and b1, b2, ..., bm be its children
with bi = (λi, χi), i ∈ [m]. We again consider equivalence
classes on χ. Fix v ∈ χ and compute the list Lv̄,b of all
independent sets σ ⊆ χ̄ containing v̄. Fix now σ ∈ Lv̄,b. We
first compute a set Jσv,b as a maximum independent set of Hb
containing v and whose vertices in χ have the representants
σ. We will distinguish for a given vertex ū ∈ σ if it is the
representant of a vertex belonging to the block of some (or
several) children of b or if it represents vertices of χ\(

⋃m
i=1 χi)

only. Therefore we partition σ into σ′, σ′′ accordingly:

• σ := σ′ ∪ σ′′

• σ′ := χ̄ ∩ {ū | u ∈
⋃m
i=1 χi}.

• σ′′ := χ̄\{ū | u ∈
⋃m
i=1 χi}

Set σ′ := {ū1, ..., ūh} with h ≤ m. Let us examine the
consequences of T being a hingetree decomposition. We have
that, for all i ∈ [m], there exists ei ∈ λ, such that χ∩χi ⊆ ei.
Thus, since σ is an independent set in χ̄ ⊆ χ, at most one
vertex in σ′ is a representant of a vertex in χi. Thus

∀u 6= u′ ∈ σ : χi ∩ c(u) = ∅ ∨ χi ∩ c(u′) = ∅. (1)

We denote by Si = {j | c(ui) ∩ χj 6= ∅} and by S =
[m]\

⋃
Si. By (1) the sets S1, ..., Sh, S form a partition

of [m]. To construct Jσv,b, we now determine for each i ≤ h,
which vertex u of c(ui) can contribute the most, by taking
the union of all the maximum independent sets Ju,bj , j ∈ Si,
it induces at the level of the children of b.

For each fixed u ∈ c(ui), let

Ii,u = {u} ∪
⋃
j∈Si

Ju,bj ,

where we set Ju,bj := J∅,bj if u /∈ χj . Let then Ii = Ii,u for
some u ∈ c(ui) for which the size of Ii,u is maximal.

The set Jσv,b is now obtained as follows depending on
whether v̄ ∈ σ′′ or v̄ ∈ σ′. If v̄ ∈ σ′′, we claim that Jσv,b can
be chosen as

Jσv,b := {v} ∪ (σ′′\{v̄}) ∪
h⋃
i=1

Ii ∪
⋃
i∈S

J∅,bi .

If v̄ ∈ σ′, say v̄ = u1, we claim that Jσv,b can be chosen as

Jσv,b := σ′′∪
⋃

j∈S1:v∈χj

Jv,bj ∪
⋃

j∈S1:v/∈χj

J∅,bj ∪
h⋃
i=2

Ii∪
⋃
i∈S

J∅,bi .

The set Jv,b is taken as one of the sets Jσv,b of maximal size
for a σ ∈ Lv,b. To compute J∅,b, the arguments are similar.

We first show that all Jv,b are indeed independent sets
in Hb. Clearly, it is enough to prove this for any Jσv,b. There
will be no reason to distinguish whether v̄ ∈ σ′′ or v̄ ∈ σ′,
because our arguments will apply to all Jσv,b independent
of the choice of a distinguished element v. We will make
extensive use of the two following facts.

• Let j, j′ ∈ [m] and I ⊆ Vbj , I
′ ⊆ Vbj′ independent

sets of Hbj and Hb′j respectively. By the connectivity

condition for tree decomposition we have

I ∩ I ′ ⊆ χj ∩ χj′ ∩ χ.

This permits to investigate the intersection of two in-
dependent sets I, I ′ by looking at their restriction on
χ.

• Let now I ⊆ Vbj be an independent set of Hbj . Then,
I remains an independent set in Hb. Indeed, suppose
there is a e ∈ Eb\Ebj containing two vertices y1, y2 ∈ I.
Since all edges must belong to a guard, there exists a
node b∗ = (λ∗, χ∗) such that e ∈ λ∗. Then, since in
a hingetree decomposition we have χ∗ =

⋃
λ∗, then

{y1, y2} ⊆ e ⊆ χ∗. But then, by the connectivity
condition it follows that {y1, y2} ⊆ χ. Hence, by the
intersection property of hingetree decomposition, there
exists ej ∈ χj such that

{y1, y2} ⊆ χ ∩ χj ∩ ej

which implies that y1 and y2 are adjacent in Hbj . Con-
tradiction.

We now start the proof that Jσv,b is independent incremen-
tally. Let i ∈ [h], u ∈ c(ui) and j ∈ Si and consider the
set I := Ju,bj . By induction, the set I is independent in
Hbj . By the hingetree condition, there exists ej ∈ λj such
that χ ∩ χj ⊆ ej . By the connectivity condition, this implies
χ ∩ I ⊆ ej . Then, since I is an independent set, no two
vertices of χ can belong to I i.e. |χ∩I| ≤ 1. The connectivity
condition also implies that, for j′ 6= j, Vbj′ ∩I ⊆ χ∩χj , hence

|Vbj′ ∩ I| ≤ 1 and I is an independent set of Hb. Finally, the

set Ii =
⋃
j∈Si

Ju,bj is also an independent set of Hb, since

for any distinct j, j′ ∈ Si:

Ju,bj ∩ Ju,bj′ ⊆ χj ∩ χj′ ∩ χ ⊆ ej .

Hence Ju,bj ∩ Ju,bj′ contains at most one vertex (which is

in χ and could then only be u).
Let now i, i′ ∈ [m] be distinct. By the arguments above,

Ii (resp. Ii′) contains at most one element u (resp. u′) such
that u ∈ c(ui) (resp. u′ ∈ c(ui′)). By Equation 1, we have
that the two classes are distinct and that ui 6= ui′ . But
ui, ui′ ∈ σ and σ is independent in χ. Hence, ui, ui′ cannot
be adjacent in Hb. Consequently,

h⋃
i=1

Ii

89

is an independent set in Hb.
Let j ∈ S. J∅,bj is independent in Hbj and J∅,bj ⊆ Vbj\χ.

Hence, J∅,bj is independent in Hb. This also implies that,

given j′ ∈ [m] distinct from j, J∅,bj ∩ Vbj′ = ∅. Thus,

h⋃
i=1

Ii ∪
⋃
i∈S

J∅,bi .

is independent in Hb.
Finally, by construction, for all i ∈ [h], Ii ∩ χ = {u} with

ū = ūi ∈ σ′. Also σ = σ′ ∪ σ′′ is independent in χ hence
in Hb. No vertices y1 ∈ Ii and y2 ∈ σ′′ can be adjacent
because, again, this would imply that {y1, y2} ⊆ χ and
contradict the fact that ȳ1, ȳ2 are independent in σ. Thus
Jσv,b is independent.

We now prove that Jv,b is of maximum size. Observe that
it suffices to show this again for each Jσv,b. Each maximum
independent set J of Hb that contains v and whose vertices
in χ have exactly the representants σ can be expressed as
τ ∪ J1 ∪ J2 ∪ ... ∪ Jm. Here τ ⊆ χ is an independent set of b
containing v and whose representants are σ. Furthermore,
Ji is an independent set of Hb that contains only vertices of
Vbi . The set Ji may only contain one vertex ui from χ ∩ χi.
But then exchanging Ji for Jui,bi may only increase the size
of the independent set, so we can assume that I has the form
τ ∪ Ju1,bi ∪ Ju2,b2 ∪ . . . ∪ Jum,bm where ui may also stand
for ∅.

Assume now that Jσv,b is not maximum, i.e. there is an
independent set J containing v whose vertices in χ have the
representants σ and J is bigger than Jσv,b. Then one of four
following things must happen:

• There is an i such that v ∈ χi and J ∩ Vbi is bigger
than Jv,bi . But this case cannot occur by induction.

• v = u1 and there is a j ∈ S1 such that v /∈ χj and
|J ∩ Vbj | > |J∅,bj |. By induction we know that J∅,bj
is optimal under all independent sets of Hbj not con-
taining any vertex of χj ∩ χ, so there must be a vertex
u ∈ J ∩ χ ∩ χj . Since J is independent, v and u share
no edge in λ and then v̄ 6= ū. Since j ∈ S1, it holds
that c(v) ∩ χj 6= ∅ and by Equation 1, c(u) ∩ χj = ∅.
Contradiction.

• There is an i ∈ S such that J ∩ Vbi is bigger than
J∅,bi . But from i ∈ S it follows by definition that
χ ∩ χi ∩ J = ∅, so this case can not occur by induction,
either.

• There is an i ∈ [h] such that |J ∩ (
⋃
j∈Si

Vj)| > |Ii|.
We claim that (

⋃
j∈Si

χj) ∩ χ ∩ J contains only one
vertex. Assume there are two such vertices x and y.
By definition, x̄, ȳ ∈ τ̄ . Since J is independent, x̄
and ȳ are not adjacent in χ̄ and x̄ 6= ȳ. At least one
of these, say y, must be in c(ui), because ūi ∈ τ̄ by
definition. Let x ∈ Vj′ with j′ ∈ Si, then there is a
vertex w ∈ c(ui) = c(y) in χj′ ∩ χ ⊆ ej by definition
of Si. But then x̄ and ȳ are adjacent in χ̄ which is a
contradiction.

So there is exactly one vertex u in (
⋃
j∈Si

χj) ∩ χ ∩ J .

But then |J ∩ (
⋃
j∈Si

Vj)| > Ii,u. Thus either there

must be a j ∈ Si with u ∈ Vj such that |J ∩ Vj | >
|Ju,bj | or there must be a j ∈ Si with u /∈ Vj such

that |J ∩ Vj | > |J∅,bj |. The former clearly contradicts
the optimality of Ju,bj , while the latter leads to a
contradiction completely analogously to the second
item above.

Because only k2k
2

n2 sets have to be considered for each
guarded block, this results in an algorithm with runtime

k2k
2

|V |O(1).

Lemma 6.5. Computing maximum independent sets on
hypergraphs is W[1]-hard parameterized by generalized hy-
pertree width.

Proof. We will show a reduction from p-IndependentSet
which is the following problem: Given a graph G and an
integer k which is the parameter, decide if G has an indepen-
dent set of size k. Because p-IndependentSet is well known
to be W[1]-hard, this suffices to establish W[1]-hardness of
independent set parameterized by hypertree width.

So let G = (V,E) be a graph and let k be a positive
integer. We construct a hypergraph H = (V ′, E′) in the
following way: For each vertex v the hypergraph H has
k vertices v1, . . . , vk. For i = 1, . . . , k we have an edge
Vi := {vi | v ∈ V } in E′. Furthermore, for each v ∈ V we
add an edge Hv := {vi | i ∈ [k]}. Finally we add the edge
sets Eij := {viuj | uv ∈ E} for i, j ∈ [k]. H has no other
vertices or edges. The construction is illustrated in Figure 3.

We claim that G has an independent set of size k if and
only if H has an independent set of size k. Indeed, if G
has an independent set v1, . . . , vk, then v1

1 , . . . v
k
k is easily

seen to be an independent set of size k in H. Now assume
that H has an independent set I of size k. Then for each
v ∈ I we can choose a vertex π(v) ∈ V such that v ∈ Hπ(v).
Furthermore for distinct v, u ∈ I the corresponding vertices
π(v), π(u) have to be distinct, too, so π(I) ⊆ V has size k.
Finally, we claim that π(I) is independent in G. Assume
this is not true, then there are vertices π(v), π(u) such that
π(v)π(u) ∈ E. But then vu ∈ E′ by construction which is a
contradiction. So, indeed G has an independent set of size k
if and only if H has one.

We now show that H has generalized hypertree width at
most k by constructing a generalized hypertree decomposi-
tion (T , (λt)t∈T , (χt)t∈T) of H of width k. The tree T only
consists of one single vertex v, the block of v is χv := V ′ and
the guard is λt := {V1, . . . , Vk}. It is easily seen that this is
indeed a hypertree decomposition of width k.

Observing that the construction of H from G can be done
in time polynomial in |V | and k completes the proof.

6.3 Approximation
We have seen that computing maximum independent sets

of hypergraphs with decompositions of width k can be done
in polynomial time for fixed width k and that for some de-
compositions it is even fixed parameter tractable with respect
to k. Still, the exponential influence of k is troubling. In
this section we will show that we can get rid of it if we are
willing to sacrifice the optimality of the solution. We give
a k-approximation algorithm for computing maximum inde-
pendent sets of graphs with generalized hypertree width k
assuming that a decomposition is given. We start by formu-
lating a lemma.

Lemma 6.6. Let H be a hypergraph with a generalized
hypertree decomposition Ξ = (T , (λt)t∈T , (χt)t∈T) of width k.

90

Ha Hb Hc Hd He Hf

V1

V2

V3

V4

b

c d

ef

a

Figure 3: We illustrate the construction for Lemma 6.5 by an example. A graph G on the left with the
associated hypergraph H for k = 4 on the right. To keep the illustration more transparent the edge sets Eij
are not shown except for E1,2 and E2,1.

Let H′ = (V,E′) where E′ := {χt | t ∈ T}. Let ` be the size
of a maximum independent set in H and let `′ be the size of
a maximum independent set in H′. Then

`

k
≤ `′ ≤ `.

Before we prove Lemma 6.6 we will show how to get the
approximation algorithm from it.

Observation 6.7. Every independent set of H′ is also an
independent set of H.

Proof. Each pair of independent vertices x, y in H′ is
by definition only in different blocks χt in H. For each
edge e ∈ E there must by definition of generalized hypertree
decompositions be a block χ such than e ⊆ χ. Thus no edge
e ∈ E can contain both x and y, so x and y are independent
in H, too.

Corollary 6.8. There is a polynomial time algorithm
that given a hypergraph H and a generalized hypertree de-
composition of width k computes an independent set of size `
of H such that |I| ≥ `

k
where ` is the size of a maximum

independent set of H.

Proof. Observe that H′ is acyclic. With Lemma 4.2
we compute a maximum independent set I of H′ whose
size by Lemma 6.6 only differs by a factor 1

k
from `. By

Observation 6.7 we have that I is also an independent set
of H.

Proof of Lemma 6.6. The second inequality follows di-
rectly from Observation 6.7.

For the first inequality consider a maximum independent
set I of H. Observe that a set I ′ is an independent set of H′
if and only if it is an independent set of its primal graph H′P ,
so it suffices to show the same result for H′P .

Claim 1. H′P [I] has treewidth at most k − 1.

Proof. We construct a tree decomposition from Ξ. To
do so consider Ξ[I] which for each guarded block (λ, χ) of Ξ
contains (λ′, χ′) where λ′ := {e ∩ I | e ∈ λ, e ∩ I 6= ∅} and
χ′ := χ ∩ I. The set I is independent, so each guard of
Ξ ′[I] is a set of singletons and if follows |χ′| ≤ |λ′| for each
guarded block (λ′, χ′).

Let T [I] be the tree of Ξ[I] induced by T in the obvious
way. Then the blocks χ′ = χ∩ I still fulfill the connectedness

condition. Furthermore, for each edge uv in H′[I] there is
a guarded block (λ′, χ′) such that u, v ∈ χ′. Thus Ξ[I] is a
tree decomposition of H′P [I]. But we have that |χ′| ≤ |λ′| ≤
|λ| ≤ k and thus the tree decomposition is of width at most
k − 1.

Claim 2. H′P [I] has an independent set I ′ of size at

least |I|
k

.

Proof. From Claim 1 it follows that H′[I] and all of its
subgraphs have a vertex of degree at most k (see e.g. [12,
p. 265]). We construct I ′ iteratively by choosing a vertex of
minimum degree and deleting it and its neighbors from the
graph. In each round we delete at most k vertices, so we can

choose a vertex in at least |I|
k

rounds. Obviously the chosen
vertices are independent.

Every independent set of HP [I] is also an independent set
of HP which completes the proof.

7. FRACTIONAL HYPERTREE WIDTH
In this section we extend the main results of the paper to

fractional hypertree width, which is the most general known
notion that leads to tractable Boolean CQ [18]. In particular
it is strictly more general than generalized hypertree width.

Definition 7.1. Let H = (V,E) be a hypergraph. A
fractional edge cover of a vertex set S ⊆ V is a map-
ping ψ : E → [0, 1] such that for every v ∈ V we have∑
e∈E:v∈e ψ(e) ≥ 1. The weight of ψ is

∑
e∈E ψ(e). The

fractional edge cover number of S, denoted by ρ∗H(S) is the
minimum weight taken over all fractional edge covers of S.

A fractional hypertree decomposition of H is a triple
(T , (χt)t∈T , (ψt)t∈T) where T = (T, F) is a tree, and χt ⊆ V
and ψt is a fractional edge cover of χt for every t ∈ T
satisfying the following properties:

1. For every v ∈ V the set {t ∈ T | v ∈ χt} induces a
subtree of T .

2. For every e ∈ E there is a t ∈ T such that e ⊆ χt.

The width of a fractional hypertree decomposition (T , (χt)t∈T ,
(ψt)tinT) is maxt∈T (ρ∗H(χt)). The fractional hypertree width
of H is the minimum width over all fractional hypertree
decompositions of H.

91

We first formulate a version of Theorem 4.1 for fractional
hypertree width.

Theorem 7.2. There is an algorithm that given a #CQ-
instance Φ of quantified starsize ` and fractional hypertree
width k counts the solutions of Φ in time ‖Φ‖p(k,`) for a
polynomial p.

Also S-star size or equivalently independent sets of bounded
fractional hypertree width hypergraphs can be computed ef-
ficiently.

Lemma 7.3. There is an algorithm that given a hypergraph
H = (V,E) of fractional hypertree width at most k computes

a maximum independent set of H in time |H|k
O(1)

.

8. CONCLUSION
The results of this paper give a clear picture of tractability

for counting solutions of conjunctive queries for structural
classes that are known to have tractable decision problems.
Essentially counting is tractable if and only if these classes are
combined with quantified star size. So to find more general
structural classes that allow tractable counting, progress for
the corresponding decision question appears to be necessary.

Another way of generalizing the results of this paper would
be extending the logic that the queries can be formulated in.
Just recently Chen and Dalmau [7] have characterized the
tractable classes of bounded arity QCSP which is essentially
a version of CQ in which also universal quantifiers are allowed.
They do this by introducing a new width measure for first
order {∀,∃,∧}-formulas. We conjecture that their width
measure also characterizes the tractable cases for #QCSP,
i.e. tractable decision and counting coincide here. It would
be interesting to see how far this can be pushed for the case
of unbounded arity.

Another extension appears in a recent paper by Chen [5]
where he considers existential formulas that may use conjunc-
tion and disjunction. This is particularly interesting, because
it corresponds to the classical select-project-join queries with
union that play an important role in database theory. One
may wonder if Chen’s results may be extended to counting,
too.

Acknowledgements. The authors are grateful for the very
helpful feedback on this paper they got from the reviewers.

9. REFERENCES
[1] I. Adler, G. Gottlob, and G. Grohe. Hypertree width

and related hypergraph invariants. Eur. J. Comb.,
28(8):2167–2181, 2007.

[2] G. Bagan, A. Durand, and G. Grandjean. On Acyclic
Conjunctive Queries and Constant Delay Enumeration.
In CSL’07, 16th Annual Conference of the EACSL,
volume 4646 of LNCS, pages 208–222. Springer, 2007.

[3] H. Bodlaender. A linear time algorithm for finding
tree-decompositions of small treewidth. In Proceedings
of the twenty-fifth annual ACM symposium on Theory
of computing, pages 226–234. ACM, 1993.

[4] A. Bulatov, V. Dalmau, M. Grohe, and D. Marx.
Enumerating homomorphisms. J. Comput. Syst. Sci.,
78(2):638–650, 2012.

[5] H. Chen. On the Complexity of Existential Positive
Queries. ArXiv e-prints, June 2012.

[6] H. Chen and V. Dalmau. Beyond Hypertree Width:
Decomposition Methods Without Decompositions. In
11th International Conference Principles and Practice
of Constraint Programming, CP ’05, pages 167–181,
2005.

[7] H. Chen and V. Dalmau. Decomposing quantified
conjunctive (or disjunctive) formulas. LICS, 2012.

[8] D. Cohen, P. Jeavons, and M. Gyssens. A unified
theory of structural tractability for constraint
satisfaction problems. Journal of Computer and System
Sciences, 74(5):721 – 743, 2008.

[9] V. Dalmau and P. Jonsson. The complexity of counting
homomorphisms seen from the other side. Theor.
Comput. Sci., 329(1-3):315–323, 2004.

[10] A. Durand and S. Mengel. The Complexity of Weighted
Counting for Acyclic Conjunctive Queries. Arxiv
preprint arXiv:1110.4201, 2011.

[11] J. Flum, M. Frick, and M. Grohe. Query Evaluation via
Tree-Decompositions. J. ACM, 49(6):716–752, 2002.

[12] J. Flum and M. Grohe. Parameterized Complexity
Theory. Springer-Verlag New York Inc, 2006.

[13] G. Gottlob, N. Leone, and F. Scarcello. A comparison
of structural CSP decomposition methods. Artif. Intell.,
124(2):243–282, 2000.

[14] G. Gottlob, N. Leone, and F. Scarcello. Hypertree
decompositions and tractable queries. J. Comput. Syst.
Sci., 64(3):579–627, 2002.

[15] G. Gottlob, Z. Miklós, and T. Schwentick. Generalized
Hypertree Decompositions: NP-Hardness and Tractable
Variants. J. ACM, 56(6), 2009.

[16] G. Greco and F. Scarcello. Structural Tractability of
Enumerating CSP Solutions. In Proceedings of the 16th
International Conference on Principles and Practice of
Constraint Programming, CP ’10, pages 236–251, 2010.

[17] M. Grohe. The complexity of homomorphism and
constraint satisfaction problems seen from the other
side. J. ACM, 54(1), 2007.

[18] M. Grohe and D. Marx. Constraint Solving via
Fractional Edge Covers. In 17th annual ACM-SIAM
symposium on Discrete algorithm, SODA ’06, pages
289–298, New York, NY, USA, 2006. ACM.

[19] M. Grohe, T. Schwentick, and L. Segoufin. When is the
evaluation of conjunctive queries tractable? In
Proceedings of the thirty-third annual ACM symposium
on Theory of computing, pages 657–666. ACM, 2001.

[20] M. Gyssens, P. Jeavons, and D. Cohen. Decomposing
Constraint Satisfaction Problems Using Database
Techniques. Artif. Intell., 66(1):57–89, 1994.

[21] L. Libkin. Elements of Finite Model Theory. EATCS
Series. Springer, 2004.

[22] D. Marx. Approximating fractional hypertree width.
ACM Trans. Algorithms, 6(2):29:1–29:17, Apr. 2010.

[23] Z. Miklós. Understanding Tractable Decompositions for
Constraint Satisfaction. PhD thesis, University of
Oxford, 2008.

[24] R. Pichler and A. Skritek. Tractable Counting of the
Answers to Conjunctive Queries. In AMW, 2011.

[25] M. Yannakakis. Algorithms for Acyclic Database
Schemes. In VLDB, pages 82–94, 1981.

92

