
Annotations are Relative

Peter Buneman
University of Edinburgh
opb@inf.ed.ac.uk

Egor V. Kostylev
University of Edinburgh

ekostyle@inf.ed.ac.uk

Stijn Vansummeren
Université Libre de Bruxelles

(ULB)
svsummer@ulb.ac.be

ABSTRACT
Most systems that have been developed for annotation of
data assume a two-level structure in which annotation is su-
perimposed on, and separate from, the data. However there
are many cases in which an annotation may itself be anno-
tated. For example threads in e-mail and newsgroups allow
the imposition of one comment on another; belief annota-
tions can be compounded; and valid time, regarded as an
annotation can be freely mixed with belief annotations (at
time t1, B1 believed that at time t2, B2 believed that . . . ).

In this paper we describe a hierarchical model of annota-
tion in which there is no absolute distinction between an-
notation and data. First, we introduce a term model for
annotations and, in order to express the fact that an an-
notation may apply to two or more data values with some
shared structure, we provide a simple schema for annotation
hierarchies. We then look at how queries can be applied to
such hierarchies; in particular we ask the usual question of
how annotations should propagate through queries. We take
the view that the query together with schema describes a
level in the hierarchy: everything below this level is treated
as data to which the query should be applied; everything
above it is annotation which should, according to certain
rules, be propagated with the query. We also examine the
representation of annotation hierarchies in conventional re-
lational structures and describe a technique for annotating
datalog programs.

Categories and Subject Descriptors
H.2.1 [Database Management]: Logical Design; H.2.4
[Database Management]: Systems—Relational databases;
F.m [Theory of Computation]: Miscellaneous

General Terms
Design, Theory

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
EDBT/ICDT ’13, March 18 - 22 2013, Genoa, Italy
Copyright 2013 ACM 978-1-4503-1598-2/13/03...$15.00.

Keywords
Annotation, provenance, terms

1. INTRODUCTION
Annotation of data is regarded as an essential part of the

process of maintaining a body of data. Several prototype
systems [5, 9, 12, 18] have been developed for annotation of
databases and Web data; annotation is an intrinsic process
in Wikis and Curated databases; and in RDF, some form
of annotation is now regarded as essential for describing va-
lidity or provenance [23]. As an acute example of this, a
great deal of RDF has been generated by straightforward
extraction from existing databases. In this process the time
of extraction may not be recorded, with the result that a
substantial amount of published RDF data is stale. With-
out completely restructuring the RDF to record time of ex-
traction, the only viable solution is to annotate the RDF
elements with valid time.

In this paper we ask the question: what distinguishes an-
notation from data? Typically, formal descriptions of an-
notation, such as the ones provided by the systems cited
above, describe a two level structure in which annotation
somehow sits on top of data. There are, however, certain
kinds of annotation that challenge this assumption. If we
take “belief” to be a form of annotation, that is “x believes
y” is an annotation on y, then “x believes that y believes z”
is surely an annotation on an annotation. Such chains of be-
lief have already been studied, for example, in [10]. Another
form of annotation is to be found in email threads. One can
either respond to a previously unanswered email, thereby
increasing the depth of a thread, or add to the answers to
an existing e-mail. In both cases we see a hierarchical struc-
ture, leading us to the conclusion that annotation is relative:
what serves as annotation in one context is data in another.

A hierarchical model of data and annotation. To il-
lustrate the idea that data and annotation are not seperable,
suppose that we have some identifier (e.g. a URI) p and that
we use Person(p) to indicate that p identifies a person. We
might now write Believes(x,Person(p)) to indicate the anno-
tation that x believes Person(p). Suppose also that we want
to describe a Height attribute. We could write Height(p, 32),
but this indicates that the height of the URI p is 32, and
it might be more accurate to write Height(Person(p), 32).
What is now the distinction between the Believes annota-
tion and the Height attribute? And why not assume that
Person(p) is already an annotation on p? By carrying this
to the extreme, everything beyond the atomic data values
(e.g., p and 32) can be viewed as an annotation.

177



RW : Id Name Weight VT Comm
123 “Joe” 70 {T1, T2} {C1}
123 “Joe” 90 {T3} {C2}

RH : Id Name Height VT Comm
123 “Joe” 180 {T2} {C1}
321 “Ann” 160 {T3} {C3}

R1 : Id Name Weight Height VT Comm
123 “Joe” 70 180 {T2} {C1}
123 “Joe” 90 180 {} {C1, C2}

R2 : Id Name VT Comm
123 “Joe” {T2} {C1, C2}

Figure 1: Tables and queries with valid time and
comment annotations

Some may find this extreme view of data as annotation
to be unattractive, and it is actually not required for the
development of our model. We give it here to illustrate that
the boundaries between data and annotation are not fixed.
It is interesting to note that the idea that data on the Web
is annotation, is not new. It was already described in the
early development of hypertext and the Web [3].

Let us carry the idea further and assume that we want
to use annotations to describe membership in a subclass
hierarchy. For example, we could write Student(Person(p))
and Employee(Person(p)) to describe that person p is also
both a student and an employee. The fact that p is a
teaching assistant (TA) is now described by the annotation
TA(Student(Person(p)),Employee(Person(p))). But is TA an-
notating two things or one? It is annotating two other anno-
tations but there is only one underlying Person. In order to
resolve this we need to introduce a formalism of annotation
schema that allows us to express sharing of subterms.

Our first step is therefore to develop a hierarchical model
of annotation in which annotations can be considered as
data, and conversely data can be considered as annotations.
Essentially, databases in our model will simply be sets of
terms drawn from a term algebra. The associated schema
formalism allows recursion as well as sharing of subterms.

Annotation propagation. Following both the theory and
the practice of annotation, one of the most important ques-
tions to answer in annotation models is how annotations
propagate through queries. Since, in our hierarchical an-
notation model, we no longer have an absolute notion of
annotation, we take the view that a query implicitly identi-
fies some level in an annotation hierarchy. The parts of the
hierarchy at that level and below are treated as data while
everything above that level is treated as annotation to be
propagated. We develop this view formally both for unions
of conjunctive queries and for datalog.

Before developing a propagation model for a hierarchical
model, let us briefly review how we expect annotations to
propagate in a relational model. Following existing propos-
als [4,7], consider the situation where annotations are sets of
atomic annotation values that are attached to tuples. There
exists two semantics of propagation for such annotations:
the lineage propagation semantics and the Boolean propa-
gation semantics. The first applies to annotations such as
comments, the second to annotations such as belief or valid
time. To illustrate these two semantics, consider the re-
lations RW and RH in Fig. 1. In both relations we treat

the first three columns as data while the last two columns
contain annotations represented as sets of annotation values.
Here, VT stands for valid time and Comm for comments, and
these annotations are completely independent of each other.
Consider the query Φ1 that computes the natural join of
RW and RH . The resulting relation R1 is given in Fig. 1.
Observe that to propagate valid time, it is natural to take
the intersection of the sets of valid times of the contributing
tuples (which is how the Boolean semantics propagates), but
for comments it is more natural to take the union (which is
how the lineage semantics propagates).

In our hierarchical model, annotations can be placed on
top of one another. In particular, suppose, for example,
that we want to allow comments to be placed on top of
the valid time annotations, how would the annotations then
propagate through queries? And suppose further that com-
ment annotations were themselves annotated with valid time
(which is not unreasonable), how would we represent and
propagate such a hierarchy? An attempt to deal with such
situations was made in [20], where combined annotations
were considered. However, this model suffers from the same
problems as other existing models of annotations—the dis-
tinction between data and annotations is given beforehand
and all the pieces of data should have an annotation from the
same fixed combination of domains. In particularly, it im-
plies that only hierarchies of fixed height can be represented
in this model. Our development overcomes these limitations
and generalizes both the lineage and Boolean annotation
propagation semantics of the flat relational model.

We should mention here that, for the relational case, the
lineage and Boolean semantics are special cases of the semir-
ing model of Green et al. [16]. They are in fact the seman-
tics that one obtains when applying the semiring model to
two natural semirings that interpret their domain as sets of
atomic annotation values. The question whether there is
a generalization of the general semiring model that works
for hierarchies is intriguing. As we will show, however, the
interaction between lineage and Boolean propagation in hi-
erarchical structures is already rather subtle. We therefore
focus on this interaction, and leave an investigation of the
general semiring model on hierarchies for future work.

Relational representation. While the hierarchical anno-
tation model allows us to naturally treat annotations as data
and vice versa, it has the disadvantage that many practical
applications use ordinary relational databases for storing an-
notations. We therefore provide a possible representation of
hierarchical annotations within the relational data model,
in which the annotation relationship is represented as an
inclusion dependency between two tables.

Contributions and paper organization. To summarize,
our contributions in this paper are the following.

(1) We develop a hierarchical model of annotation in which
both data and annotations are described as sets of terms that
conform to a schema of constraints for meaningful annota-
tions and sharing sub-terms (Sec. 2).

(2) We then develop the idea of querying hierarchical an-
notations (Sec. 3). The crucial idea is that the query, to-
gether with the data, describes what is to be treated as
data and what as annotation. Roughly speaking, anything
in the hierarchy that is mentioned by the query is treated
as data and anything above it is treated as annotation. The
rules for propagating annotations through the query, i.e. an-
notating the result of the query, are based on lineage and

178



Boolean semantics. We do this both for unions of conjunc-
tive queries and for datalog, and show that the complexity
of query answering does not differ from the complexity for
the usual relational databases.

(3) Finally, we provide a possible representation of anno-
tations within the relational data model in which the anno-
tation relationship is represented as an inclusion dependency
between two tables (Sec. 4).

We discuss related work in Sec. 5 and conclude in Sec. 6.

2. HIERARCHICAL ANNOTATION MODEL
Terms. We assume an infinite set V of domain variables
(which will range over data values); an infinite set X of
term variables (which will range over terms); and a set F
of symbols, all pairwise disjoint and disjoint from an infinite
domain of data values D. Each symbol F ∈ F has an asso-
ciated non-negative number Arity(F ) called the arity of F .
We refer to elements of V ∪ X simply as variables.

A term is an expression t generated by the grammar

t ::= d | v | x | F (t1, . . . , tn)

where d ranges over data values in D, v ranges over domain
variables, x ranges over term variables, F ranges over sym-
bols in F , and n = Arity(F ). We write T for the set of all
terms and Vars(t) for the set of all variables occurring in a
term t. A data term is a term that does not contain any
variables.

The height of a term t (denoted Height(t)) is the maxi-
mum depth of nesting of symbols from F in t. For example,
Height(F (H(x), d)) = 2 while Height(d) = 0, where d ∈ D.

A substitution over a set of variables X ⊆ V ∪ X is a
mapping π : X → T that assigns a data value π(v) ∈ D to
each domain variable v ∈ X ∩ V, and a term π(x) ∈ T to
each term variable x ∈ X ∩ X . If t is a term, we write π(t)
for the term obtained from t by simultaneous replacing each
variable x ∈ X that occurs in t by π(x). For example, if π =
{v1 7→ 5, x1 7→ F (H(x2)), x2 7→ 10}, then π(G(v1, x1, x3)) =
G(5, F (H(x2)), x3). We extend substitutions pointwise to
sets of terms, and hence given such a set T , write π(T ) for
the set {π(t) | t ∈ T}.

Instances and schemas. As usual, a term t′ is said to be a
subterm of a term t if t′ occurs somewhere in t. For example,
a, b, G(b), and F (G(b), a) are all subterms of F (G(b), a).

Note the intuition that when we annotate something the
annotation is“about”the entire term, including its subterms.
As such, we require instances to be closed under taking sub-
terms.

Definition 2.1. An (annotated) instance is a finite set
of data terms that is closed under the subterm relation.

As we will show in the end of this section, an (unanno-
tated) relational instance can be seen as an instance with
terms of height 1.

In order to rule out meaningless annotations and constrain
the manner in which annotations can be stacked upon one
another in an instance, we next define a simple notion of
annotation schema.

Definition 2.2. A constraint is a term in which there
are no multiple occurrences of the same term variable. An
(annotation) schema A is a finite set of constraints.

For example, F (x, v, v) and F (5, x, v) with x ∈ X and
v ∈ V are constraints, but F (x, x, v) is not.

A data term t conforms to a schemaA if for every subterm
t′ of t (including t itself), there is a substitution π such that
t′ ∈ π(A). An instance ∆ conforms to A if every term in ∆
conforms to A. We also say that ∆ is an instance over A in
that case. In what follows we write TD(A) for the set of all
data terms conforming to the schema A.

Again, we will see that an (unannotated) relational schema
can be easily representable as an annotation schema with
constraints of height 0 and 1.

The following examples illustrate the modelling power of
schemas and instances.

Example 2.3. Consider the simple annotation schema

A = { v, Person(v1, v2),
Weight(Person(v1, v2), v3),
Height(Person(v1, v2), v3) },

where all the variables are domain variables from V. The
information in the attributes Id,Name, Weight, and Height
in the relations RW and RH from Fig. 1 can be represented
by the annotated instance ∆ over A consisting of the data
terms

joe = Person(123, ”Joe”), Weight(joe, 70), Height(joe, 180),
ann = Person(321, ”Ann”), Weight(joe, 90), Height(ann, 160),

together with all the domain values occurring in these terms
(123,“Joe”, 180, etc.) Note that, for readability, we have
given names to some terms, e.g. Height(joe, 180) should be
read as Height(Person(123,“Joe”), 180).

We now want to annotate some pairs of Height and Weight
annotations with a body-mass index (or BMI, for short). For
example, we want to add to ∆ the term

BMI(Weight(joe, 180),Height(joe, 90), ”High”).

Since we only want to annotate such pairs when they apply
to the same person, we augment the schema A with the
following constraint:

BMI(Weight(Person(v1,v2),v3),Height(Person(v1,v2),v4),v5).

Note in particular that Weight and Height are required to
have the same person because of the repeated domain vari-
ables v1 and v2. �

We say that a schema is non-recursive if it does not con-
tain any term variables; otherwise, it is recursive. The
schema from Ex. 2.3 is non-recursive. Any instance of a
non-recursive schema A contains only data terms of height
at most max{Height(c) | c ∈ A}. Annotations cannot be
“stacked” to arbitrary depths in non-recursive schemas.

Example 2.4. To give an example of a recursive schema
in which annotations can be arbitrarily deeply stacked, we
add the following constraints to the schema A of Ex. 2.3:

Comm(x1, v), VT(Comm(x1, x2), v),
VT(Weight(x1, x2), v), VT(Height(x1, x2), v).

Here, x1, x2 are term variables and v is a domain variable.
Intuitively, Comm(t, C) indicates that there is a comment
C on term t, where we assume for simplicity that comment
values belong to the general domain D. Note that Comm an-
notations are completely generic, they are applicable to any

179



term, including those that contain comments themselves.
In turn, VT(t, T ) indicates that the fact t was valid at time
T . By the schema, this annotation is applicable to height,
weight and comments, but not to valid time itself or per-
sons. By adding the following data terms to the instance
of Ex. 2.3 we complete a representation of the information
from the relations RW and RH from Fig. 1:

VT(Weight(joe, 70), T1), VT(Weight(joe, 70), T2),
VT(Weight(joe, 90), T3),
VT(Height(joe, 180), T2), VT(Height(ann, 160), T3),
Comm(Weight(joe, 70), C1), Comm(Weight(joe, 90), C2),
Comm(Height(joe, 180), C1), Comm(Height(ann, 160), C3),

(and the data values T1, C1, etc.) Also, we may put some
valid times “on top” of comments, in the spirit of dependent
annotations of [20]:

VT(Comm(Weight(joe, 70), C1), T3),
VT(Comm(Height(joe, 180), C1), T4). �

Reasoning with schemas. In should be noted that, from
a practical point of view, it can be rather costly to store an-
notated instances as subterm-closed sets of terms. Indeed,
one can always reconstruct an instance ∆ from the set of its
maximal terms (i.e. terms that are only subterms of them-
selves in ∆) by taking the subterm closure. We call the
straightforward representation of an annotated instance ∆
complete and a representation as a non-closed set of terms,
whose closure yield ∆, incomplete. Thus the first important
problem is to check whether a term is in the subterm clo-
sure of a set of terms, which means checking whether a term
is a subterm of another one. This can easily be done in P
(polynomial time).

Two other reasoning problems concerning schemas, in-
stances, and representations of instances also naturally arise.
The first is to check that an instance conforms to an anno-
tation schema. The second is to check that a schema A is
consistent, i.e. that there exists an instance ∆ conforming
to A, such that for every constraint α from A there exists
a data term t ∈ ∆ and a substitution π such that π(α) = t.
The following proposition observes that both problems have
efficient decision procedures.

Proposition 2.5. The following two problems can be
decided in P:

1. checking that a complete or incomplete representation
of an instance conforms to an annotation schema A;

2. checking that an annotation schema A is consistent.

Note on the expressiveness of schemas. A limitation of
our notion of schema is that we make a rather awkward dis-
tinction between domain and term variables: sharing can
only be specified by repeating domain variables from V,
but not term variables from X . This restriction may seem
ad hoc. It is well-known, however, that more expressive
formalisms for describing term instances that do support
sharing of term variables, makes certain decision problems
for schemas, such as checking consistency, undecidable [6,
Chapter 4]. In the present paper therefore, we have opted
for the above restricted schema formalism.

Annotations are relative. As already mentioned in the
introduction, we can look at a term like F (G(d), a) from two
viewpoints:

• as a normal, standalone piece of data;

• as annotated data, which can be read either as “F an-
notates G(d) with a” or as “F annotates a with G(d)”.

Both viewpoints are reasonable in different circumstances:
in Sec. 3 we will treat the term as ordinary data when we
want to query nested terms; and we will treat it as annota-
tion when want to propagate annotations through queries.

To formalize this approach, fix � ∈ X to be a distin-
guished term variable. A (data) context is a term from T in
which � occurs exactly once, and no other variable occurs.
For example F (G(�), d) is a context, but F (G(�),�) and
F (G(�), x) with x ∈ V ∪ X are not.

Definition 2.6. Given an instance ∆ and a term t, we
say that t is annotated in ∆ by the set of data contexts

A∆(t) = {c | ∃t′ ∈ ∆ : {� 7→ t}(c) = t′}.

Note, that A∆(t) = ∅ iff t 6∈ ∆. Moreover, if t ∈ ∆, then
A∆(t) always contains the trivial context �. Also, since ∆
is closed under taking subterms, A∆(t) is closed under tak-
ing subcontexts (i.e. closed under taking subterms that are
themselves data contexts). In what follows, we write H for
the set of all finite subcontext-closed sets of data contexts.

Example 2.7. In the instance ∆ from Ex. 2.4 the annota-
tion A∆(Weight(joe, 70)) consists of the contexts VT(�, T1),
VT(�, T2), Comm(�, C1), VT(Comm(�, C1), T3), and �. �

Correspondence to the relational model. With the
definition of schemas and instances given above, schemas
that contain only constraints of height 1 without data values,
term variables, and repeating data variables (and a techni-
cal constraint v), are simply relational database schemas.
The instances conforming to such schemas are isomorphic
to normal relational instances (except that they also con-
tain the data values mentioned in the tuples). For example,
the annotation schema

{ RW (v1, v2, v3), RH(v4, v5, v6), v }

corresponds to the relational schema from Fig. 1 (disregard-
ing all the annotations), and the conforming instance con-
tains, e.g. the term RW (123, ”Joe”, 70).

In existing annotation models for relational databases, an-
notations are often assumed to be simply sets of atomic an-
notation values that are attached to tuples [4, 7]. We call
such sets of atomic annotation values simple annotations,
to contrast them with richer models in which annotations
are modeled as bags rather than sets, or in which annota-
tions are assumed to have specific operations on their do-
main (cf. the semiring approach to provenance) other than
the set-theoretic ones. The annotations in tables RW and
RH in Fig. 1 are examples of simple annotations with sets
of valid times and sets of comments.

To represent databases with simple annotations we just
need to augment the schema with an auxiliary unary con-
straint Atomic(v) to store atomic annotation values in the
instance and a generic constraint, e.g. Annot(x,Atomic(v))
to store correspondence between tuples and atomic anno-
tation values. For simplicity, in the rest of the paper we
consider the case where the set of all atomic annotation val-
ues coincides with D. In this case we can omit the unary

180



constraint and simplify Annot(x,Atomic(v)) to Annot(x, v).
We call this representation of annotated relational databases
the term representation.

The hierarchical annotation model is a thus a generaliza-
tion of the standard relational model as well as a model of
relational databases with simple annotations.

3. QUERYING AND PROPAGATING HIER-
ARCHICAL ANNOTATIONS

In this section we study the propagation of hierarchical
annotations through unions of conjunctive queries and dat-
alog programs. We begin by defining (unions of) conjunctive
queries and their normal semantics in Sec. 3.1. We describe
existing semantics of propagation of simple annotations in
the relational case in Sec. 3.2 and generalize it to hierarchical
annotations in Sec. 3.3. We consider datalog in Sec. 3.4.

3.1 Term Conjunctive Queries
Conjunctive queries on hierarchical instances are defined

as for conjunctive queries in the relational model, except
that now they operate with terms in the body.

Definition 3.1. A term conjunctive query (or TCQ, for
short) is a rule ψ of the form

F (x)← τ1 ∧ . . . ∧ τk,

where τ1, . . . , τk are terms; x = x1, . . . , xn is a tuple of dis-
tinct variables such that {x1, . . . , xn} ⊆ Vars(τ1) ∪ . . . ∪
Vars(τk), and F is a symbol from F of arity n.

We call the term F (x) on the left-hand side of ψ the head
of ψ. We call the set of all terms {τ1, . . . , τk} on the right-
hand side of ψ the body of ψ, and denote this by Body(ψ).
Finally, we write Vars(ψ) for the set of all variables that
occur in ψ.

Definition 3.2. Let ∆ be an instance over an annotation
shema A. An embedding of a TCQ ψ of the form F (x) ←
τ1 ∧ . . . ∧ τk into ∆ is a substitution π over Vars(ψ) such
that that π(Body(ψ)) ⊆ ∆. The result of evaluating ψ over
∆ is the set of terms

ψ(∆) := {π(F (x)) | π is an embedding of ψ into ∆}.

As the following example shows, the result of a TCQ need
not to be closed under subterms, and is therefore not always
an instance.

Example 3.3. Let ψ be the TCQ

WeightAndHeight(x)←Weight(x, y1) ∧ Height(x, y2)

that computes the set of persons that have both a Weight
and a Height. The result of ψ over the instance ∆ from
Ex. 2.3 contains a single term

WeightAndHeight(joe). �

In what follows it will be convenient to have the answer
to a TCQ to also be an instance. We therefore define ∆ψ to
be the union of ∆ and ψ(∆). This set is always an instance.

Definition 3.4. A union of TCQs (or TUCQ, for short)
is a finite set Ψ of TCQs that all have the same head. We
write Vars(Ψ) for the set of all variables occurring in TCQs

in Ψ. The result Ψ(∆) of a TUCQ Ψ = {ψ1, . . . , ψm} on an
instance ∆ over an annotation schema A is defined as

Ψ(∆) := ψ1(∆) ∪ . . . ∪ ψm(∆).

As for TCQs, we write ∆Ψ for ∆ ∪Ψ(∆).
Every TCQ can be seen as a TUCQ of just one disjunct.

Hence in what follows we usually state properties only for
TUCQs and, if it is not explicitly stated otherwise, they hold
for TCQs as well.

Note, that if an annotation schema represents a relational
database schema, then TCQs and TUCQs with only terms of
height 1 in the body are just standard relational conjunctive
queries and unions of conjunctive queries (or, shortly, RCQs
and RUCQs, correspondingly).

Though TUCQs generalize RUCQs, next we will see that
the complexity of query evaluation does not increase when
moving from querying relational databases to querying in
the hierarchical annotation model. It should be seen as a
sanity check for querying hierarchical annotations.

An algorithm for query evaluation depends on the repre-
sentation of the input. It is straightforward to show that
both combined and data complexity of checking whether a
data term t is in the answer to a TUCQ Ψ over an annotated
instance ∆ is the same as for usual relational databases: NP-
complete and in LOGSPACE (in AC0), respectively, if we
are given a complete representation of ∆. It is just a lit-
tle more elaborate to show, using, e.g. the results of [19] on
composition-free queries on trees, that these complexities do
not change if the representation is incomplete.

Proposition 3.5. Given a TUCQ Ψ, a complete or in-
complete representation of an annotated instance ∆, and a
term t, checking whether t ∈ ∆Ψ is NP-complete. It is in
LOGSPACE if Ψ is fixed.

3.2 Lineage and Boolean Semantics of Simple
Annotation Propagation

Following both the theory and the practice of annotation,
one of the most important questions to answer in annota-
tion models is how annotations propagate through queries.
A general theory of such propagation is given by the semir-
ing model of Green et al. [16]. In this model annotations
should form a (commutative) semiring which is a structure
〈K,+,×, 0〉 with a domain of annotations K, binary commu-
tative and associative operations + and ×, such that × dis-
tributes over +, and a neutral element 0 ∈ K for +, i.e. such
an element that k + 0 = k holds for every k ∈ K.1 Every
database tuple t is associated to an element α(t) ∈ K (its an-
notation). The neutral annotation 0 corresponds to the fact
that the tuple “is not” in the database, i.e. in this model
all possible tuples are annotated. Queries cannot inspect
the annotations, and as such there is a the distinction be-
tween data and annotations. During querying, annotations
propagate automatically according to the semiring opera-
tions: + corresponds to union and projection on tuples and
× corresponds to join. Using our notation, the semiring se-
mantics is formally defined as follows. Given an RCQ φ of
the form R(x)← R1(y1)∧ . . .∧Rk(yk) and a term instance
∆ that represents a relational database, each output tuple
R(π(x)) with π an embedding of φ to ∆ is associated to the

1Usual definitions of an annotation commutative semiring
also include a neutral element for ×, though this is not nec-
essary for the exposition that follows.

181



annotation a =
∑
π′
∏

1≤i≤k α(R(π′(yi))), where π′ ranges

over all embeddings of φ to ∆ such that π′(x) = π(x) and
α(R(π′(yi))) is the annotation of the tuple R(π′(yi)) in ∆.

Our aim is to generalize such propagation of annotations
to the hierarchical model in a way that the boundary be-
tween data and annotations is not fixed, but is defined dy-
namically by the query. Note, however, that in our model
atomic annotation values come from the general domain D
and we do not assume any specific (semiring) operations on
D. Moreover, recall from Def. 2.6 that we consider a hier-
archical term t to be annotated by the set of data contexts
A∆(t) each of which occurs “above” t in the instance ∆.

Hence, such a generalization makes sense only for the cases
where the semiring model is applied to semirings whose do-
main values are also sets (of atomic annotation values) such
that α(t) is a set, for every database tuple t. In other words,
such a generalization makes sense only for the setting of
relational databases with simple annotations introduced in
Sec. 2. Essentially, there are two such cases, and we devote
this subsection to their brief description. We describe the
generalization of these semantics to the hierarchical model
in Sec. 3.3.

Let A be an annotation schema that represents the rela-
tional schema with simple annotations as described in the
end of Sec. 2. It contains a set of constraints of height 1 and
one generic constraint Annot(x, v) for annotations. Let φ be
a RCQ of the form R(x) ← R1(y1) ∧ . . . ∧ Rk(yk) and let
∆ be a term instance that represents a relational database
with simple annotations.

The first semantics of propagation of simple annotations is
called lineage [7]. A good example of annotations with this
propagation semantics are comment annotations. Doubt an-
notations (the converse of belief annotations) behave in the
same way. In this case the annotated result of φ on ∆ con-
tains not only the term R(π(x)) for every embedding π of φ
to ∆, but also the set of terms

{Annot(R(π(x)), a) |
∃i, 1 ≤ i ≤ k, Annot(Ri(π(yi)), a) ∈ ∆}.

Hence, a tuple in the annotated result has an atomic anno-
tation iff at least one of the source tuples has this annotation
for some embedding which gives this tuple on free variables.
The annotated result of a RUCQ over lineage semantics is
a union of the results for composing RCQs.

In the semiring model, the lineage semantics corresponds
to the setting where each database tuple t is associated with
the annotation set α(t) = {a | Annot(R(π(x)), a) ∈ ∆}
and where propagation is done using the lineage semiring〈
Pfin(D) ∪ {⊥},∪+,∪×,⊥

〉
. Here, Pfin(D) is the set of all

finite subsets of D, ⊥ is an extra element not in Pfin(D),
and the operations ∪+ and ∪× coincide with each other and
the usual set union ∪ on elements of Pfin(D), while for any
A ∈ Pfin(D) ∪ {⊥} we have ⊥ ∪+ A = A ∪+ ⊥ = A and
⊥ ∪× A = A ∪× ⊥ = ⊥ [4].

Note that ∅ here represents the fact that a tuple t exists
in the database, but is not annotated with any atomic an-
notation value (i.e. A∆(t) = {�} in the term representation
∆ of the database), and ⊥ represents the fact that the tuple
does not exist in the database (i.e. has A∆(t) = ∅).

The second semantics of propagation of simple annota-
tions we consider is Boolean, which models the behaviour of
valid time stamps, beliefs, etc. In this case the annotated re-

sult of φ on ∆ besides the term R(π(x)) for every embedding
π of φ to ∆, contains the set of terms

{Annot(R(π(x)), a) |
∀i, 1 ≤ i ≤ k, Annot(Ri(π(yi)), a) ∈ ∆}.

Essentially, it means that a tuple in the result has an atomic
annotation iff all source tuples have this annotation for some
embedding which gives this tuple on free variables. The
Boolean semantics of RUCQs is the same as for lineage.

In the semiring model, the Boolean semantics corresponds
again to the setting where each database tuple t is associated
to the annotation set α(t) = {a | Annot(R(π(x)), a) ∈ ∆}
and where propagation is done using Boolean algebra2 semir-
ing 〈Pfin(D) ∪ {⊥},∪,∩,⊥〉. The operations ∪ and ∩ are
usual set-theoretic union and intersection on Pfin(D) and
are extended to ⊥ and any A ∈ Pfin(D) as in the lineage
semiring: ⊥ ∪ A = A ∪ ⊥ = A, ⊥ ∩ A = A ∩ ⊥ = ⊥. Note,
that this definition differs from the standard algebraic defi-
nition of Boolean algebra, since the latter does not have ⊥
and uses ∅ as a neutral element. We introduce this devia-
tion for the same reason as it is used in the lineage semiring:
⊥ represents the fact that the tuple in not present, while
∅ annotation represents the fact that the tuple is present,
but has no annotation. However, we still call this semiring
Boolean algebra, even if it is not in the algebraic sense.

The following example illustrates both semantics.

Example 3.6. Consider the term representations of two
annotated relational instances obtained from the relations
RW and RH in Fig. 1 by disregarding one of annotation
attributes. The first one has only VT simple annotations,
which has Boolean semantics, and the second – only Comm,
which has lineage semantics. Then it is readily verified that
the annotated results of the RCQ Φ1 of the form

R1(x, y, z, u)← RW (x, y, z) ∧RH(x, y, u)

on these two instances are (the term representation of) the
relation R1 in Fig. 1 (in the VT and Comm columns, respec-
tively).

Now consider the RCQ Φ2 of the form

R2(x, y)← RW (x, y, z) ∧RH(x, y, u)

that, like Φ1, computes the natural join of RW and RH , but
also projects on Id and Name. Note, that this query is just
a reformulation of the TCQ ψ from Ex. 3.3. The annotated
results are given in the relation R2 in Fig. 1. �

3.3 Propagating of Annotations through Term
Conjunctive Queries

We now turn to the automatic propagation of hierarchi-
cal annotations through TUCQs. The crucial idea is that
annotations are distinguished from data not statically, as is
the case in the relational semiring models [16, 20], but dy-
namically, depending on the query under consideration and,
moreover, the particular embedding from the query into the
instance. In other words, the image of the body of the query
under the embedding defines the data that is queried, and
everything “above” the image is considered as annotations
to be propagated automatically.

2Not to be confused with Boolean provenance polynomials
semiring from [14], which models not simple annotations.

182



Since, as the previous subsection illustrates, we may want
to have different propagation semantics for different types of
annotation, we need the concept of a propagation schema.

Definition 3.7. A propagation schema P is a partition
of the set {(F, i) | F ∈ F , 1 ≤ i ≤ Arity(F )} into two disjoint
sets L and B.

Intuitively, a pair (F, i) is in L if F behaves like lineage
semantics in the case when the i’th argument of F is consid-
ered as data, but F itself with its other arguments, as well as
everything “above”, is considered as annotation. Similarly,
(F, i) is in B if F has Boolean semantics in such a case.

Example 3.8. To model the propagation of comments
and valid time as illustrated in Fig. 1 in the introduction, we
fix the propagation schema P where (Comm, 1) belongs to
L and the (VT, 1) – to B. For completeness, all other pairs
belong to B. �

To ease notation in what follows, we assume P to be ar-
bitrarily fixed for the rest of this paper.

Recall from Def. 2.6 that we take a term t in an instance
∆ to be annotated by the set of data contexts A∆(t), and
that we write H for the set of all finite subcontext-closed set
of data contexts. Since we are going to propagate such anno-
tations through queries we need to define two operations on
H. One should correspond to union and projection, and an-
other to join. Similarly to the relational case, we would like
this propagation to be invariant to standard rearrangement
of queries, e.g. swapping two conjuncts, so we also need to
show that H with these operations forms a semiring ([16]).

The first operation, corresponding to union and projec-
tion, is just a usual union of sets of contexts from H. By a
naive definition of the second operation, which corresponds
to join, one would intersect sets of contexts on levels of an-
notations with Boolean semantics (i.e. with symbols from B
group) and union such sets on levels with lineage semantics
(i.e. with symbols from L). However, we opt to a more elab-
orate definition, which is justified by the following example.

Example 3.9. Let us reconsider the TCQ ψ of the form

WeightAndHeight(x)←Weight(x, y1) ∧ Height(x, y2)

from Ex. 3.3 as well as the instance ∆ from Ex. 2.4 and
the propagation schema P of Ex. 3.8. The (usual) answer to
this query is WeightAndHeight(joe). According to the lineage
and Boolean semantics above, the annotated answer to this
query should also contain the following data terms on the
first level of annotations:

VT(WeightAndHeight(joe), T2),
Comm(WeightAndHeight(joe), C1),
Comm(WeightAndHeight(joe), C2).

Note that, since (VT, 1) ∈ B, the set of valid time anno-
tations of joe’s height (namely {T2}) and weight (namely
{T1, T2, T3}), are intersected when generating the valid time
annotation for WeightAndHeight(joe). Similarly, the set of
comment annotations of joe’s height (namely {C1}) and
weight (namely {C1, C2}) are united since (Comm, 1) ∈ L.

By the naive definition of the second operation described
above, the annotated answer should not contain any terms
of second level of annotations. In particular, the valid time
annotation sets {T3} and {T4} would intersect for the term

Comm(WeightAndHeight(joe), C1) and give ∅, since (VT, 1) ∈
B. However, this result is unsatisfactory, since there is no
reason why we should lose valid times of the comment C1.
Hence, the following definition of the second operation also
gives the terms in the annotated answer to ψ:

VT(Comm(WeightAndHeight(joe), C1), T3),
VT(Comm(WeightAndHeight(joe), C1), T4). �

The formalization of the intuition from this example re-
quires the following auxiliary definitions.

Definition 3.10. Given a context c, consider the directed
path from its root to the � leaf. If all the pairs (F, i) along
this path, where F is the symbol in the node and i is the
number of the sub-tree containing �, are in B, then we call
this context Boolean.

Note in particular that the context � is always Boolean.

Example 3.11. By the propagation schema from Ex. 3.8,
the context VT(�, T1) is Boolean, but Comm(�, C1) and
VT(Comm(�, C1), T3) are not. �

Note that for every context c there exist unique contexts
c′ and c′′ such that c = {� 7→ c′′}(c′) and

1. c′ is either the trivial context � or has a pair from L
just above �;

2. c′′ is Boolean.

We write this fact as c = c′ 〈c′′〉.

Example 3.12. For the contexts from Ex. 3.11 we have

VT(�, T1) = � 〈VT(�, T1)〉 ,
VT(Comm(�, C1), T3) = VT(Comm(�, C1), T3) 〈�〉 ,
VT(Comm(VT(�, T1), C1), T3) =

VT(Comm(�, C1), T3) 〈VT(�, T1)〉 . �

Definition 3.13. Given A1, A2 ∈ H we define

A1 uA2 = {c | c ∈ A1 ∪A2, c = c′
〈
c′′
〉
, and c′′ ∈ A1 ∩A2}.

The idea behind this definition comes from the intuition
given in Ex. 3.9. Indeed, the valid time annotations of the
data form Boolean contexts, so we should take their inter-
section for join. The comment annotations of the data form
contexts Comm(�, C) 〈�〉, so we should take their union.
The valid time annotations of the comments (as for any an-
notations “above” comments, no matter which group their
symbol belongs to) form contexts VT(Comm(�, C), T ) 〈�〉,
so we should take their union.

It is readily verified that, since A1 and A2 are closed under
subcontexts, so is A1 u A2. In other words, u is a binary
operation on H.

Proposition 3.14. The structure 〈H,∪,u, ∅〉 is a com-
mutative semiring with idempotent ∪ and u.

We call 〈H,∪,u, ∅〉 the semiring of hierarchical annota-
tions (relative to P), or simply the hierarchical semiring.

Finally, we are ready to give an annotation semantics for
TCQs and TUCQs over annotated instances.

183



Definition 3.15. The annotated result ψ+(∆) of a TCQ
ψ of the form F (x)← τ1∧. . .∧τk on an instance ∆ is defined
as the set of terms

{{� 7→ π(F (x)}(c) | π is an embedding of ψ into ∆,

c ∈ A∆(π(τ1)) u . . . uA∆(π(τk))}.

The annotated result Ψ+(∆) of a TUCQ Ψ = {ψ1, . . . , ψm}
on ∆ is defined as ψ+

1 (∆) ∪ · · · ∪ ψ+
m(∆).

We write ∆+
ψ for the set ∆ ∪ ψ+(∆) and ∆+

Ψ for the set

∆ ∪ Ψ+(∆). As for the non-annotated case, these sets are
subterm-closed, i.e. instances.

It is important to note that, since � ∈ A∆(t) for every
t in ∆, we always have � ∈ A∆(π(τ1)) u . . . u A∆(π(τk)).
It readily follows that ∆Ψ ⊆ ∆+

Ψ, i.e. the annotated result
of any TUCQ contains all the data terms from the usual
result. However, it contains also higher level annotating
terms which have been automatically propagated through
the TUCQ according to the propagation schema.

The fact that the hierarchical semiring is an idempotent
semiring justifies the correctness of the definition of anno-
tated result of a query, in the sense that such a result does
not depend on the order of terms in TCQs, order of TCQs in
TUCQs, elimination of duplicated terms in TCQs, and other
equivalent query transformations (see the details in [16]).

The definition above generalizes the lineage and Boolean
semantics of relational annotated databases. Also, it con-
forms to the subtlety of Ex. 3.9, where comments were con-
sidered as annotations and their valid times unioned for the
join in the query. In the following example comments are
considered as data and their valid time annotations are in-
tersected for a join. As the title of this paper suggests, we
are treating valid time as annotations relative to comment
annotations.

Example 3.16. Consider the TCQ ψ′ of the form

WHComm(x)← Comm(Weight(y1, y2), x) ∧
Comm(Height(y3, y4), x),

which asks for all comments used for both weight and height.
The query ψ′ under annotation semantics augments the in-
stance ∆ from Ex. 2.3 and 2.4 with the term WHComm(C1).
Note, that the augmented instance ∆+

ψ′ contains none of the

terms VT(WHComm(C1), T3) and VT(WHComm(C1), T4),
since in this case these time stamps are in such a position in
the hierarchical annotation of the weight comment C1, that
their monadic sets should be intersected. �

At the end of this section we address the complexity of
annotated query answering. It turns out that it is the same
as for usual semantics.

Proposition 3.17. Given a complete representation of
an annotated instance ∆, a TUCQ Ψ and a data term t, it is
NP -complete to check whether t ∈ ∆+

Ψ. It is in LOGSPACE
if Ψ is fixed. The complexity does not change if ∆ is given
in incomplete representation.

3.4 Annotating Datalog Programs
We next move to annotation semantics for datalog pro-

grams over hierarchical annotations, which we motivate by
means of the following example.

Example 3.18. Consider the annotation schema A that
contains, among other constraints, the constraints

Believe(Person(v), x) and Trust(Person(v1),Person(v2)),

where v,v1, and v2 are tuples of distinct domain variables
of the size of Arity(Person). The following rule looks as a
TCQ except that we want to evaluate it recursively, as a
relational datalog rule:

Believe(x1, x2)← Trust(x1, y) ∧ Believe(y, x2). �

We would like to adapt our approach of propagating hier-
archical annotations to the setting of recursive positive dat-
alog programs to deal with rules like in this example. We
take a simplified approach and do not distinguish between
intensional and extensional databases. Recall that TD(A) is
the set of all data terms conforming to the schema A.

Definition 3.19. Let A be an annotation schema. A
(positive) term datalog program (TDP for short) Π is a fi-
nite set of TCQs. The immediate consequence of Π on an
instance ∆ conforming to A is the instance

∆Π,1 := ∆ ∪
⋃
ψ∈Π

(ψ(∆) ∩ TD(A)).

The result ∆Π of Π on ∆ is the least fixpoint of the sequence

∆Π,0 ⊆ ∆Π,1 ⊆ ∆Π,2 ⊆ . . .

where ∆Π,0 = ∆ and ∆Π,N+1 = (∆Π,N )Π,1 for N > 1.

Sometimes TCQs in TDPs are called rules.
Note that given a TCQ ψ and the TDP Π = {ψ}, the

sets ∆ψ and ∆Π,1 may be different. Indeed, the immedi-
ate consequence ∆Π,1 depends on the annotation schema A
and contains only those terms from ∆ψ that conform to A.
Hence, both the immediate consequence and the result of Π
on ∆ are instances, which conform to A.

The least fixpoint of the above sequence is guaranteed to
be finite, since we only allow heads of the form F (x) in rules.
Had we allowed arbitrary terms in the heads, a finite fixpoint
is not guaranteed to exist, and moreover, deciding whether
a TDP is safe, i.e. has a finite fixpoint on every input, is un-
decidable [21]. For that reason, we have restricted ourselves
to TCQ rules with heads of the form F (x).

The semantics of term datalog programs which propagate
annotations can now be defined as follows.

Definition 3.20. Let A be an annotation schema, Π be
a TDP, and ∆ be an instance over A. The annotated imme-
diate consequence of Π on ∆ is the instance

∆+
Π,1 := ∆ ∪

⋃
ψ∈Π

(ψ+(∆) ∩ TD(A)).

The annotated result ∆+
Π of Π on ∆ relative to A is the least

fixpoint of the sequence

∆+
Π,0 ⊆ ∆+

Π,1 ⊆ ∆+
Π,2 ⊆ . . .

where ∆+
Π,0 = ∆ and ∆+

Π,N+1 = (∆+
Π,N )+

Π,1 for N > 1.

As with the usual case, it holds that ∆+
Π,1 ⊆ ∆+

ψ for a

TCQ ψ and TDP Π = {ψ}, but the inclusion may be strict.
We already mentioned that, since the heads of TCQ rules

are restricted, a TDP always has a finite least fixpoint under
the normal semantics. The next proposition says that this
fact is also true for the annotation semantics.

184



Proposition 3.21. Given an annotation schema A, for
any TDP Π and any annotated instance ∆ over A there
exists a number N0 ≥ 0 such that ∆+

Π,N0+1 = ∆+
Π,N0

.

This proposition and the notes above guarantees that the
annotated result ∆+

Π of a TDP Π on an instance ∆ conform-
ing to the schema A, also conforms to A.

Since the hierarchical semiring is idempotent, the defini-
tion of annotated result of a TDP is correct (in the sense
that the result is invariant under the usual query transfor-
mations), and, by the results of [16], this semiring can be
used as an annotation domain for relational positive datalog
programs.

Due to the restriction on heads of TCQ rules, both the
combined and data complexity of the evaluation problem is
the same as for usual relational positive datalog ([17,22]).

Proposition 3.22. Checking whether t ∈ ∆+
Π for a TDP

Π, a complete or incomplete instance ∆, and a data term t
is EXP-complete. It is P-complete if Π is fixed.

Apart from computing recursive answers, the main differ-
ence between term datalog programs and (unions of) term
conjunctive queries is that datalog programs are always guar-
anteed to return instances conforming to A. This is useful
in scenarios such as the one in the following example.

Example 3.23. Consider the annotation schema A from
Ex. 2.4 augmented with the constraints

Bike(v1, v2) and Weight(Bike(v1, v2), v3),

where the first parameter of Bike is the ID of this bike and
the second one is the ID of the owner of this bike. If the
annotated instance ∆ from Ex. 2.4 is augmented with the
data terms

Bike(222, 123) and Weight(Bike(222, 123), 70),

then the annotated result of the TCQ ψ4 of the form

BOwner(x1, x2)← Bike(x1, y) ∧ Person(y, x2),

which asks for names of bike owners, contains the terms

BOwner(222, ”Joe”) and Weight(BOwner(222, ”Joe”), 70),

i.e. it propagates weight annotation, no matter to which
group the pair (Weight, 1) belongs. Such a propagation is
unsatisfactory in this case because these are really com-
pletely different weights. To deal with this we can disallow,
in A, that a Weight annotation occurs above BOwner, and
consider the TCQ ψ4 as a TDP of just one TCQ. Then as
desired, the annotated result of this TDP does not contain
the Weight(BOwner(222, ”Joe”), 70), since this term does not
conform to the schema. �

4. RELATIONAL REPRESENTATION FOR
HIERARCHICAL ANNOTATIONS

In this section we consider a translation from our term
model into the relational model. Since we do not bound the
height of terms beforehand, the potential number of rela-
tions in the resulting representation can be infinite. How-
ever, since we consider only finite term instances, we can
always find a finite set of relations which we need to store
and manipulate a given instance. That is why w.l.o.g. we
consider infinite relational schemas and queries here.

4.1 Representation of the Model
We start with some auxiliary definitions. A constraint α is

simple if it does not contain variables from X (i.e. variables
which range over terms). Note that every subterm α′ of a
simple constraint α is again a simple constraint. We call α′

a sub-constraint of α.
The set Simple(A) of simple constraints induced by an

annotation schema A is the smallest set satisfying:

- all simple constraints in A are in Simple(A);

- if α is a constraint in A and π is a substitution from
Vars(α)∩X to Simple(A) then π(α) is also in Simple(A).

Intuitively, Simple(A) is the recursive unwinding of A into
a (possibly infinite) set of simple constraints. Clearly, an
instance ∆ conforms to A iff it conforms to Simple(A).

A simple constraint α1 is unifiable to a simple constraint
α2 if there exists a mapping on the domain variables π : V →
V such that π(α1) = α2. For example, F (v1, v2) is unifiable
to F (v3, v3), but F (v3, v3) is not unifiable to F (v1, v2). We
write α1 � α2 to indicate that α1 is unifiable to α2, and
α1 ' α2 to indicate that both α1 � α2 and α2 � α1. A
simple constraint α from Simple(A) is maximal in Simple(A)
if for every α′ ∈ Simple(A) with α′ � α it holds that α′ ' α.

We will consider maximal simple constraints up to renam-
ing of variables V. To this end we fix for every annotation
schema A an arbitrary set of simple constraints SA such
that for every maximal constraint α in Simple(A) there ex-
ists exactly one α′ ∈ SA such that α ' α′. As an exception,
it will be convenient not to consider trivial constraints v ∈ V
to be elements of SA (since these constraints corresponds to
the domain). In addition, we fix some order on variables
(strictly speaking, on positions of variables) in every max-
imal simple constraint α and denote the resulting tuple of
variables by vα.

The set SA can still be seen as a representation of the
annotation schema A, since an instance ∆ conforms to A
iff it conforms to SA. Note that SA may be infinite if A
is recursive. If, however, we fix the maximal height of a
maximal simple constraint, it becomes finite. The relational
representation of an annotation schema is based on these
observations.

Recall that a relational schema is a schema that contains
only a technical constraint v and constraints of height 1
(called relations) without data values, term variables, and
repeating data variables. A relational instance is an instance
which conforms a relational schema. In what follows we
do not mention the constraint v in relational schemas and
domain values in relational instances, but always assume
their presence.

Definition 4.1. A (possibly infinite) relational schema
R[A] is a relational representation of an annotation schema
A if it contains a relation name R[α] for every maximal
simple constraint from SA. The arity of the relation R[α] is
the size of the tuple of variables vα.

The sub-schema Rh[A] of R[A] is an h-height bounded
relational representation of A for some h > 0, if it consists
of all relations R[α] for which Height(α) ≤ h.

Clearly, h-height bounded relational representations are
always finite, but may contain exponential number of rela-
tions in the number of constraints in the annotation schema
A (and in the number h).

185



Example 4.2. In our running example, the constraints
for Person, Weight, Height, and BMI are maximal simple,
so have corresponding relations in R[A]. The last of them
has arity 5, since the constraint has 7 occurrences of 5 dif-
ferent variables. Each of the constraints for VT has a sin-
gle maximal simple constraint and a corresponding relation.
The constraint for Comm is recursive, so it generates infi-
nite number of maximal simple constraints and, hence, also
relations. �

Every maximal simple constraint α from SA identifies a
set of data terms that conform to α in an annotated instance
∆ over A. Also, every data term in the instance conforms
to a maximal simple constraint from SA. It is possible that
a data term conforms to two different maximal simple con-
straints: e.g. the term F (d, d, d) conforms to both of the
constraints (which are also maximal simple ones) of the an-
notation schema {F (v1, v1, v2), F (v1, v2, v2)}. However, this
situation is hardly frequent in any real settings and also does
not harm the following exposition.

Definition 4.3. Given an annotated instance ∆ over an
annotation schema A, a relational instance I[∆] over the
relational schema R[A] is a relational representation of ∆ if
for every data term t from ∆, which is not an element of the
domain D, and every maximal simple constraint α from SA,
which is conformed by t by the mapping π (i.e. t = π(α)),
the instance I[∆] contains the tuple d[t] = π(vα) in the
relation R[α].

The relational sub-instance Ih[∆] of I[∆] which consists
of all the tuples in relations of the schema Rh[A] is called a
h-height bounded relational representation of ∆.

By the observation above, a data term can have several
corresponding tuples in the relational representation of an
annotated instance. So, if the annotation schema is fixed, a
h-height bounded relational representation of a term anno-
tated instance can contain non-linear (but polynomial) num-
ber of tuples in the size of the annotated instance. However,
as mentioned before, such a blowup is not realistic.

Example 4.4. The relational representation I[∆] of the
annotated instance ∆ from Ex. 2.3 and 2.4 contains, e.g. the
facts R[VT(Weight(Person(v1, v2), v3), v4)](123, ”Joe”, 70, T2)
andR[α](123, ”Joe”, 90, 160, ”High”), where α is the constraint
for BMI. �

The following proposition shows that under the above rep-
resentation of annotated instances as relational instances,
annotations are represented by means of full inclusion de-
pendencies. Recall that a full inclusion dependency σ (or
fid) over a relational schema R is an expression of the form

R(u)→ R′(u′),

where R and R′ are relational names from R, u is a tuple
of distinct variables and u′ is a tuple of variables from u. A
relational instance I satisfies a fid σ iff for every mapping
π : u → D it holds that π(R(u)) ∈ I implies π(R′(u′)) ∈ I.
A set of fids is acyclic if it does not contain a chain of fids
R(u)→ R1(u1), R1(u′1)→ R2(u2), . . . , Rn(u′n)→ R(u′).

Proposition 4.5. Let A be an annotation schema and ∆
an annotated instance over this schema.

1. Let α1 and α2 be distinct maximal simple constraints
from SA for which there exist a sub-constraint α′1 of
α1 and a mapping π : V → V such that π(α2) = α′1.
Then the full inclusion dependency

R[α1](vα1)→ R[α2](π(vα2))

holds in I[∆].

2. The set of all these fids is acyclic.

Moreover, given an annotated schema A, if some fid holds
in the relational representation of every annotated instance
∆ over A, then this fid is implied by the set of fids described
in this proposition. Using these facts, one may consider yet
another representation of an annotation schema A, which
we call fid representation. This is also a (possibly infinite)
relational schema, which is isomorphic to R[A], but instead
of an explicit correspondence between maximal simple con-
straints and relations’ names, it contains a set of fids (and
the relations are “anonimized”).

There are several questions that arise about fid representa-
tions. The first important problem is to understand whether
a relational schema with a set of fids indeed has an anno-
tation schema to represent as a fid representation. It is not
that difficult to check that for any relational schema and any
acyclic set of fids over this schema there exists an annotation
schema that is represented by the relational schema and the
set of fids. Acyclicity can be checked in linear time.

Another problem is to recover an annotation schema from
its fid representation. However, several annotation schemas
may have the same fid representation. Indeed, if we have
four relations R1, R2, R3, and R4 with two fids R1 → R2 and
R3 → R4, nothing tells us whether the anonimized maximal
simple constraints of the relations, isomorphic to R1 and
R3 have the same symbol in the head or different. Hence,
full unambiguous recovering is not possible. However, it
might be important just to understand whether a relation
annotates another relation. In this case of course we do not
need to consider the whole (possibly infinite) set of fids, but
just the finite part of it which involves these relations and
relations “below” them (recall that the set of fids is acyclic).
The corresponding true-false question is the following.

Input: a (finite) relational schema R, a set of fids Σ over
it, and two relation names R1 and R2 from R.

Question: is it true that for any annotation schema A with
a fid representation (R′,Σ′) such that R is a sub-schema of
R′ and Σ is a subset of Σ′, it holds that for relations R[α1]
and R[α2] from R[A], which are the isomorphic images of
R1 and R2, it holds that α1 is a sub-constraint of α2?

It turns out, that this problem is equivalent to the implica-
tion problem for a set of fids, i.e. the problem of deciding
whether a set of fids implies another fid. The following the-
orem says that, somehow counterintuitive, this problem is
intractable. With author’s permission, we refer this theo-
rem to a personal communication.

Theorem 4.6 ([11]). Implication problem for an acyclic
set of full inclusion dependencies is NP-complete.

An immediate corollary is that even if the relational rep-
resentation of an annotation schema is finite, its fid repre-
sentation can be exponentially more succinct.

Similarly to the term instances themselves, relational and
fid representations can be either complete or incomplete. In

186



the following section this will be important for algorithms of
of evaluation of queries over usual and annotation semantics.

4.2 Representation of Term Queries
Next we show that it is possible to represent term UCQs

over annotated instances as sets of relational UCQs over re-
lational representations of these instances, first for the usual
and then for the annotation semantics.

Let Θ be a set of RUCQs. Denote IΘ the relational in-
stance I enriched with Φ(I), for every Φ ∈ Θ.

Proposition 4.7. Let A be an annotation schema and let
Ψ be a TUCQ. Let F (x) be the unique head of the TCQs in
Ψ. There exists a (possibly infinite) set of (possibly infinite)
RUCQs Θ[Ψ] over the relational schema R[A∪{F (x)}], such
that for every annotated instance ∆ over A, every data term
t, and every maximal simple constraint α from SA to which
t conforms, the following is equivalent

- t ∈ ∆Ψ,

- R[α](d[t]) ∈ I[∆]Θ[Ψ].

The construction of Θ[Ψ] is similar in spirit to the con-
struction used to simulate nested relational algebra expres-
sions by means of flat relational algebra expressions [8]. The
main difference is because annotation schemas, in contrast
to nested relational schemas, support sharing of subterms
as well as recursion, and because, in contrast to nested re-
lational algebra queries, TUCQS can be applied to anno-
tated instances of unbounded height. Hence, the set Θ[Ψ]
of RUCQs has the following peculiarities:

1. it can be infinite,

2. its RUCQs can contain infinite sets of RCQs,

3. its RUCQs may have different relations in the heads.

The possible infinities of the first two items is clearly a
disadvantage of such a representation. While this cannot be
avoided in general, the following proposition shows that if we
limit input annotated instances by some bounded maximal
height h then we can obtain a finite representation by means
of a finite set of finite RUCQs.

Proposition 4.8. Let A be an annotation schema and
let Ψ be a TUCQ. Let F (x) be the unique head of the TCQs
in Ψ and let h be a positive number. There exists a finite set
of finite RUCQs Θh[Ψ] over the relational schema Rh[A ∪
{F (x)}], such that for every annotated instance ∆ over A
containing only data terms of height at most h, every data
term t, and every maximal simple constraint α from SA to
which t conforms, the following is equivalent

- t ∈ ∆Ψ,

- R[α](d[t]) ∈ Ih[∆]Θh[Ψ].

Having this restriction, we can talk about complexity of
evaluation of representations of TUCQs. Since the represen-
tation Θh[Ψ] may have several RUCQs with different num-
bers of free variables and different heads, it is a reasonable
assumption that an input of a decision problem includes the
particular RUCQ in Θh[Ψ] for which we check whether it
has a tuple d in the result over a relational instance Ih[∆].
But this implies that if the instance is complete then our

decision problem is just a standard UCQ answering prob-
lem over relational databases, no matter whether we have
relational or fid representation of the annotation schema. It
is a little bit more interesting if our instance is incomplete,
i.e. we need to answer UCQs with respect to fids. However,
the following proposition says that the complexity does not
change for incomplete fid representations. The immediate
corollary is that it is still the same for incomplete relational
representations.

Proposition 4.9. Let I be a (finite) relational instance
over some (finite) relational schema, Σ be a set of fids, Φ
be an RUCQ, and d be a tuple. Then checking whether
RΦ(d) ∈ I′Φ holds for any relational instance I′, such that
I ⊆ I′ and I′ satisfies all fids in Σ, is NP-complete. It is in
P if Σ and Φ are fixed.

Completely analogous to Prop. 4.7 and 4.8 the following
proposition shows that it is also possible to represent the
annotation semantics of TUCQs by means of sets of RUCQs.
Given a symbol F of arity n denote AF the extension of
an annotation schema A by the constraints obtained from
constraints in A by replacement of every possible subterm
by F (x), where x is a tuple of term variables from X .

Proposition 4.10. Let A be an annotation schema and
let Ψ be a TUCQ. Let F (x) be the unique head of the TCQs
in Ψ.
1. There exists a (possibly infinite) set of (possibly infinite)
RUCQs Θ+[Ψ] over the relational schema R[AF ] such that
for each annotated instance ∆, data term t, and maximal
simple constraint α from SA, which t conforms, the following
is equivalent

- t ∈ ∆+
Ψ,

- R[α](d[t]) ∈ I[∆]Θ+[Ψ].

2. For each positive number h there exists a finite set of
finite RUCQs Θ+,h[Ψ] over the relational schema Rh[AF ]
such that for every annotated instance ∆ conforming to A
containing only terms height at most h, every data term t,
and every maximal simple constraint α to which t conforms,
the following is equivalent

- t ∈ ∆+
Ψ,

- R[α](d[t]) ∈ Ih[∆]Θ+,h[Ψ].

As a corollary, query answering over finite representations
Θ+,h[Ψ] of the annotation semantics of TUCQs has the same
complexity as for the non-propagating case.

It should be noted that representation of TDPS in terms
of relational datalog programs similar to Prop. 4.7, 4.8, and
4.10 is also possible. We forgo the formal proposition due to
the technicality and lack of space.

5. RELATED WORK
There is a huge literature on specific kinds of annotation,

especially the literature on temporal and belief databases,
and what we have presented in this paper in no sense sub-
sumes this work. The first attempt to find a uniform treat-
ment of annotation was the provenance semirings of [16],
which has been highly influential and has been extended [1,
2,13,15] to deal with update, aggregation, and negation, as

187



well as well as stimulating some practical prototypes. A re-
lated, and somewhat more complicated formalism has been
developed for RDF/S [23]. The observation that two or
more annotations could interact was made in [20], but it still
makes a two-level distinction between data and annotation.

As observed in Sec. 4 there is a close relationship between
our translation to relational model and the translation in
the work [8] on nested relations or complex objects. How-
ever, in the complex object model, sets and tuples can be
freely combined. In the annotation model we have one top-
level, heterogenous, set. What it means to annotate a set is
interesting, but future work.

6. CONCLUSIONS
We have argued that there is no sharp distinction be-

tween annotation and data, and we have formulated a gen-
eral model of hierarchical annotation in which what is data
and what is annotation depends on both the data and the
query that is being applied to the data. We have described a
hierarchical term model of annotation that allows for shared
substructures. We have described a query language for this
model and shown how annotations propagate through queries.
We have shown how to “flatten” hierarchical schemas into
possibly infinite systems of full inclusion dependencies and
translate queries on terms into relational queries accordingly.

However, we feel that we have only scratched the surface
of this general problem, and there are several interesting
open problems concerning this treatment of annotation.

1. As already observed in Sec. 2, in Def. 2.2 of an annotation
schema we made a rather awkward distinction between term
and domain variables to keep several decision problems as-
sociated with annotation schemas (e.g. such as consistency)
tractable. But there are cases in which one would like to
express the sharing of arbitrary terms. For this reason, al-
ternative models of constraints should be developed.

2. In our formalization of term datalog programs we did
not look at one property of annotation, which is that one
might require that adding an annotation to some set of data
does not cause that set to change (though it might cause
the inference of new annotations). This is a “not influence”
relationship between data and annotation that should be
captured in any model of annotation.

3. If we really adopt the philosophy that all data is anno-
tation, we now need to account for other familiar properties
of data in the annotation schema. The interaction of anno-
tations, partly studied in [20] needs to be carried further.
For example, suppose we take Height as an annotation and
have terms like Height(joe, 180) and we also treat Student as
an annotation so that we have Student(joe) one might argue
that, according to some rule of inheritance or subclassing
that one should also have Height(Student(joe), 180). Can
one extend annotation schemas to embrace the conventional
constructs of database schemas, or is this going too far?

Acknowledgements. We are indebted to Jan Van den
Bussche who contributed greatly to the ideas in this paper
and to Floris Geerts for his proof of Thm. 4.6.

7. REFERENCES
[1] Y. Amsterdamer, D. Deutch, and V. Tannen. On the

limitations of provenance for queries with difference. CoRR
abs/1105.2255, 2011.

[2] Y. Amsterdamer, D. Deutch, and V. Tannen. Provenance
for aggregate queries. PODS 2011, 153–164.

[3] T. Berners-Lee. Multiuser considerations.
http://www.w3.org/DesignIssues/Multiuser.html.

[4] P. Buneman, S. Khanna, and W. Tan. Why and Where: A
Characterization of Data Provenance. ICDT 2001 2001,
LNCS 1973, 316–330. Springer.

[5] L. Chiticariu, W.-C. Tan, and G. Vijayvargiya. DBNotes: a
post-it system for relational databases based on provenance.
Proceedings of SIGMOD ’05 2005, 942–944. ACM.
doi:http://doi.acm.org/10.1145/1066157.1066296.

[6] H. Comon, M. Dauchet, R. Gilleron, C. Löding,
F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi. Tree
Automata Techniques and Applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 2007. release
October, 12th 2007.

[7] Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage of
view data in a warehousing environment. ACM Trans.
Database Syst. 25, 179–227, June 2000.
doi:http://doi.acm.org/10.1145/357775.357777.

[8] J. V. den Bussche. Simulation of the nested relational
algebra by the flat relational algebra, with an application
to the complexity of evaluating powerset algebra
expressions. Theor. Comput. Sci., 363–377, 2001.

[9] R. D. Dowell, R. M. Jokerst, A. Day, S. R. Eddy, and
L. Stein. The Distributed Annotation System. BMC
Bioinformatics 2, p. 7, 2001.

[10] W. Gatterbauer, M. Balazinska, N. Khoussainova, and
D. Suciu. Believe it or not: adding belief annotations to
databases. Proc. VLDB Endow. 2(1), 1–12, Aug. 2009.

[11] F. Geerts. Personal communication, 2010.
[12] F. Geerts, A. Kementsietsidis, and D. Milano.

MONDRIAN: Annotating and Querying Databases through
Colors and Blocks. Proceedings of ICDE’06 2006, p. 82.
IEEE Computer Society. doi:10.1109/ICDE.2006.102.

[13] F. Geerts and A. Poggi. On database query languages for
K-relations. J. Applied Logic 8(2), 173–185, 2010.

[14] T. J. Green. Containment of conjunctive queries on
annotated relations. Theory of Computing Systems 49(2),
429–459, 2011. doi:10.1007/s00224-011-9327-6.

[15] T. J. Green, G. Karvounarakis, Z. G. Ives, and V. Tannen.
Update exchange with mappings and provenance.
VLDB 2007, 675–686.

[16] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance
semirings. Proceedings of PODS ’07 2007, 31–40. ACM.
doi:http://doi.acm.org/10.1145/1265530.1265535.

[17] N. Immerman. Relational queries computable in polynomial
time. Information and Control 68, 86–104, 1986.

[18] J. Kahan, M.-R. Koivunen, E. Prud’hommeaux, and R. R.
Swick. Annotea: an open RDF infrastructure for shared
web annotations. Computer Networks 39(5), 589–608, 2002.

[19] C. Koch. On the complexity of nonrecursive XQuery and
functional query languages on complex values. ACM Trans.
Database Syst. 31(4), 1215–1256, 2006.
doi:10.1145/1189769.1189771.

[20] E. V. Kostylev and P. Buneman. Combining dependent
annotations for relational algebra. Proceedings of ICDT
’12 2012, 196–207. ACM. doi:10.1145/2274576.2274597.

[21] O. Shmueli. Decidability and expressiveness aspects of logic
queries. Proceedings of PODS 87 1987, 237–249. ACM.
doi:10.1145/28659.28685.

[22] M. Y. Vardi. The complexity of relational query languages
(extended abstract). Proceedings of STOC ’82 1982,
137–146. ACM. doi:10.1145/800070.802186.

[23] A. Zimmermann, N. Lopes, A. Polleres, and U. Straccia. A
general framework for representing, reasoning and querying
with annotated semantic web data. Web Semantics:
Science, Services and Agents on the World Wide Web
11(0), 72–95, 2012. doi:10.1016/j.websem.2011.08.006.

188

http://www.w3.org/DesignIssues/Multiuser.html
http://dx.doi.org/http://doi.acm.org/10.1145/1066157.1066296
http://www.grappa.univ-lille3.fr/tata
http://doi.acm.org/10.1145/357775.357777
http://doi.acm.org/10.1145/357775.357777
http://dx.doi.org/http://doi.acm.org/10.1145/357775.357777
http://dl.acm.org/citation.cfm?id=1687627.1687629
http://dl.acm.org/citation.cfm?id=1687627.1687629
http://dx.doi.org/10.1109/ICDE.2006.102
http://dx.doi.org/10.1109/ICDE.2006.102
http://dx.doi.org/10.1109/ICDE.2006.102
http://dx.doi.org/10.1007/s00224-011-9327-6
http://dx.doi.org/http://doi.acm.org/10.1145/1265530.1265535
http://doi.acm.org/10.1145/1189769.1189771
http://doi.acm.org/10.1145/1189769.1189771
http://dx.doi.org/10.1145/1189769.1189771
http://doi.acm.org/10.1145/2274576.2274597
http://doi.acm.org/10.1145/2274576.2274597
http://dx.doi.org/10.1145/2274576.2274597
http://doi.acm.org/10.1145/28659.28685
http://doi.acm.org/10.1145/28659.28685
http://dx.doi.org/10.1145/28659.28685
http://doi.acm.org/10.1145/800070.802186
http://doi.acm.org/10.1145/800070.802186
http://dx.doi.org/10.1145/800070.802186
http://www.sciencedirect.com/science/article/pii/S1570826811000771
http://www.sciencedirect.com/science/article/pii/S1570826811000771
http://www.sciencedirect.com/science/article/pii/S1570826811000771
http://dx.doi.org/10.1016/j.websem.2011.08.006



