
Private Decayed Predicate Sums on Streams

Jean Bolot
Technicolor

jean.bolot@technicolor.com

Nadia Fawaz
Technicolor

nadia.fawaz@technicolor.com

S. Muthukrishnan
Rutgers University

muthu@cs.rutgers.edu

Aleksandar Nikolov
Rutgers University

anikolov@cs.rutgers.edu

Nina Taft
Technicolor

nina.taft@technicolor.com

ABSTRACT
In many monitoring applications, recent data is more im-
portant than distant data. How does this affect privacy of
data analysis? We study a general class of data analyses —
predicate sums — in this context.

Formally, we study the problem of estimating predicate
sums privately, for sliding windows and other decay models.
While we require accuracy in analysis with respect to the
decayed sums, we still want differential privacy for the en-
tire past. This is challenging because window sums are not
monotonic or even near-monotonic as the problems studied
previously [DPNR10].

We present accurate ε-differentially private algorithms for
decayed sums. For window and exponential decay sums, our
algorithms are accurate up to additive 1/ε and polylog terms
in the range of the computed function; for polynomial decay
sums which are technically more challenging because partial
solutions do not compose easily, our algorithms incur addi-
tional relative error. Our algorithm for polynomial decay
sums generalizes to arbitrary decay sum functions. The al-
gorithm crucially relies on our solution for the window sum
problem as a subroutine. Further, we show lower bounds,
tight within polylog factors and tight with respect to the
dependence on the probability of error. Our results are ob-
tained via a natural dyadic tree we maintain, but the crux
is we treat the tree data structure in non-uniform manner.

We also extend our study and consider the“dual”question
of maintaining conventional running sums on the entire data
thus far, but when privacy constraints expire with time. We
define a new model of privacy with expiration and consider
the problems of designing accurate running sum and linear
map algorithms in this model. Now the goal is to design
algorithms whose accuracy guarantees scale with the size of
the privacy window. We reduce running sum with a privacy
window W to window sum without privacy expiration,and
characterize the accuracy of output perturbation for general
linear maps with privacy window W .

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
EDBT/ICDT ’13, March 18 – 22 2013, Genoa, Italy
Copyright 2013 ACM 978-1-4503-1598-2/13/03 ...$15.00.

Categories and Subject Descriptors
K.4.1 [Computers and Society]: Privacy; H.2.8 [Data-
base Applications]: Statistical Databases

General Terms
Algorithms, Security, Theory

Keywords
Differential Privacy, Continual Privacy, Decayed Sums, On-
line Algorithms

1. INTRODUCTION
Any nontrivial physical, hardware or software system has

a dashboard continually observing the system variables, and
updating various measurements. In such applications, data
arrives over time, and we need to continually output the
result of some analysis f for each time instant j on all data
seen thus far. This challenges privacy of analysis because the
same function is computed on several deltas of the data and
the collection of these function values can potentially leak
information. Recently, the notion of differential privacy was
adopted to address this challenge [DPNR10, CSS10a], and
we extend that study.

[DPNR10, CSS10a] identified the problem of computing
the running sum of a series of 0/1 updates as an important
technical primitive, formulated differential privacy of com-
puting these running sums, and presented upper and lower
bounds on accuracy of ε-differentially private algorithms for
computing running sums. They showed that an additive ac-
curacy of O(1

ε
log2 T) for all running sum values with con-

stant probability is possible, and that Ω(log T) additive error
was necessary to answer privately all running sum queries
for all time steps j ∈ [1, T].

Power of Running Sums. The sums problem captures
many analyses by applying a suitable predicate to the data
items that map them to 0/1. For example, at time j, say
data item Dj = (uj ,mj) is the user ID uj and the name of
the moviemj watched in an online service by uj at that time.
A natural predicate is Pm(Dj) = 1 if mj = m and 0 other-
wise; the running sum with this predicate counts the number
of user IDs that watched a particular film m. Another nat-
ural predicate is Pu(Dj) = 1 if uj = u and 0 otherwise;
this running sum counts the number of movies watched by
a user u. The predicates can be different for different items.
E.g., Pj,u(Dj) = 1 if uj = u and j ∈ [9, 17] will filter movies
watched by user u during business hours 9 AM to 5 PM.

284

Even more generally, P may be a machine learning based
classification routine such as whether a click by any user
from a certain IP address on an Internet ad is a spam or
not, and the running sum will count the total number of
spam clicks from the given IP address. �

Our point of departure from prior work is two fold.

• (Primal: Decayed sums) In reality, monitoring applica-
tions emphasize recent data more than data long past,
as recent events are more relevant to the statistics be-
ing monitored. For example, monitoring applications
typically consider a “window”’ of continual observa-
tions such as, last T time units, or last W updates.
More generally, they discount items based on how far
they are in the past, and analyze decayed data. The
commonly useful decay models are exponential and
polynomial decays [DGIM02, CS03]. We study con-
tinual privacy of such decayed sum analyses. Notice
that privacy guarantees need to be with respect to the
entire data of the past, but accuracy needs to be with
respect to the window, or decayed sum.

• (Dual: Decayed privacy) We address the dual problem
when privacy concerns for events in the distant past
get relaxed. We present an extension of the definition
of differential privacy under continual observation that
models situations in which knowledge of whether an
event occurred is considered sensitive information only
for relatively current events. The relaxation of privacy
guarantees can be sharp — no privacy constraints are
put on events that occurred more than W time steps
in the past — or smooth, similarly to the data decay
models above. We term our extension of differential
privacy “privacy with expiration”.

Our results are as follows.

Decayed Sum Results. At each time step i the algo-
rithm receives a bit xi; at each time step j, the algorithm is
required to report an approximation F̂ (x1, . . . , xj) to a func-
tion F (x1, . . . , xj), and the entire sequence of values output
thus far needs to be ε-differentially private. We use the no-
tion of (δ, γ)-utility, satisfied by algorithms that at any time

step j output a value F̂ (x1, . . . , xj) which is within δ abso-
lute error from F (x1, . . . , xj) with probability 1− γ. Below
we summarize our results for sufficiently small γ (results for
larger γ can be found in the body of the paper):

• (Window Sum) The window sum problem with window

size W requires estimating Fw(j,W) =
∑j
i=j−W+1 xi

for each j. Further, the whole sequence Fw of outputs,
for all j, should be ε-differentially private.

We present an algorithm that achieves (δ, γ)-utility for
δ = O(1

ε
logW log 1

γ
) (in the regime logW ≤ log 1

γ
).

While a window sum can be reduced to computing
the difference of two running sums, existing running
sum algorithms [DPNR10, CSS10a] achieve error δ =
Θ(1

ε
log T log 1

γ
), which can be much larger than the

range W of Fw, and therefore, as bad as the trivial
algorithm that outputs a fixed value independently of
the input.

We also present a lower bound of Ω(min{W/2, 1
ε

log 1
γ
}).

Note that the dependence on the error probability γ

is optimal. This lower bound generalizes a previous
lower for the running sum problem [DPNR10].

• (Exponential Decay) The exponential decay sum prob-

lem is to estimate Fe(j, α) =
∑j
i=1 xiα

j−i accurately,
while the whole sequence Fe of outputs, for all j, should
be ε-differentially private.

We present an algorithm that achieves (δ, γ)-utility
with δ = O(1

ε
log α

1−α log 1
γ

). We also present a lower

bound of Ω
(

min
{

α
1−α ,

log(1/γ)
ε

})
. Once again, the

dependence on the error probability γ is optimal. Un-
like Fw, Fe at each time step depends on the entire se-
quence of updates; nevertheless, our algorithm achieves
bounded error, polylogarithmic in the range of Fe.

• (Polynomial Decay and Other Decay Functions) The
polynomial decay sum problem is to estimate Fp(j, c) =∑j
i=1

xi
(j−i+1)c

accurately, while the whole sequence Fp
of outputs, for all j, should be ε-differentially private.
In general, one can also consider other decay sum func-
tions

∑j
i=1 xig(j − i).

We present an algorithm that for each j returns (1 ±
β)Fp(j, c)±

(
1
cβ2 log 1

1−β

)
log 1

γ
with probability 1−γ.

We also present a lower bound of Ω
(

1− εc−1

logc−1(1/γ)

)
against purely additive error. The polynomial decay
problem presents a greater challenge than window sums
or exponential decay since there is no direct way to
combine a polynomial decay sum over an interval [a, b]
and [b, c] into a polynomial decay sum over [a, c]. We
develop a general technique that works on a large class
of decay sum functions (including polynomial decay)
and reduces the problem of estimating the decay sum
to keeping multiple window sums in parallel. The tech-
nique results in a bi-criteria approximation, because of
which our lower and upper bounds are incomparable
for this problem.

In comparison with the simple randomized response strat-
egy [War65] (i.e. with probability 1/2 − ε/2 change update
xi to 1− xi and keep exact statistics of the changed input),
our algorithms achieve exponentially smaller additive error:
randomized response leads to estimators with standard de-
viation proportional to the “energy” of the decay function,
while our estimators have standard deviation polylogarith-
mic in the energy. Technically,

• our algorithms keep dyadic tree data structures as is
natural and also used in [DPNR10, CSS10a] and else-
where. However, in order to provide estimates with
error polylogarithmic in the range of the decay func-
tion, we need to treat the dyadic tree data structure
in non-uniform manner: either adding different noise
at different nodes, or weighing the contribution of an
update to different nodes differently, which is our tech-
nical contribution;
• we derive all our lower bounds from a common frame-

work, based on standard packing arguments. We ex-
tend prior work in two ways: the lower bounds apply
to decay sum problems that have not been considered
before, and they apply against the weaker (δ, γ)-utility
guarantee (rather than requiring that all queries are
accurate, as in [DPNR10]).

285

Privacy with Expiration. Intuitively, differential privacy
guarantees that the output of an algorithm is almost un-
changed in distribution no matter if any sensitive event took
place or not. In the case of privacy under continual obser-
vation, we insist that this guarantee holds at each time step
for all outputs produced up to that time step. To extend
differential privacy so that we can model expiring privacy
concerns, we require that the output of the monitoring algo-
rithm is almost unchanged in distribution no matter if any
recent sensitive event took place or not. We model the no-
tion of recent by imposing a sliding window on the privacy
guarantees of events.1

Trivially, any ε-differentially private algorithm also satis-
fies the requirements of privacy with expiration. However, it
is an interesting question whether the relaxed privacy guar-
antees allow for higher accuracy. Older updates which are
no longer considered sensitive may be used “in the clear”;
however, as the newer updates must maintain their privacy
continuously, it is not immediately obvious how to use the
older updates to improve accuracy. Since the problems of
maintaining decayed sums and maintaining a running sum
under decaying privacy constraints are morally dual to each
other, it is natural to ask whether they have the same er-
ror complexity. We provide a positive answer when privacy
concerns expire according to a sharp threshold: the running
sum problem under differential privacy with expiration win-
dow W can be reduced to the problem of computing window
sums with window size W under differential privacy with-
out expiration. The reduction preserves accuracy exactly.
Therefore, using our result for window sums, we get an al-
gorithm for running sums with privacy expiration window
W which adds error polylogarithmic in W rather than the
size of the full input.

Another natural question is how the error complexity of
general classes of functions changes when we expire privacy.
In addition to running sums, we consider the general prob-
lem of computing linear transformations of the input online.
Formally, at each time step the algorithm is required to ap-
proximate an inner product 〈ai,xi〉, where xi is the input
up to time i. Again, we require privacy only with respect to
the last W time updates. We characterize the error achiev-
able by output perturbation under privacy with expiration.
Once again, the error scales with W rather than the full
input size, showing that expiring privacy constraints allows
for better accuracy guarantees.

A summary of accuracy guarantees for running sum when
either the relevance of updates or privacy concerns are de-
cayed with time is presented in Table 1.

2. DISCUSSION OF PRIOR WORK
The problem of tracking statistics on dynamic data while

preserving privacy under continual observation is introduced
in [DPNR10] (a preliminary version was presented in an in-
vited talk by Dwork [Dwo10]). In [DPNR10], an algorithm
private under continual observation is presented for the run-
ning sum problem. For any fixed time step, their algorithm
achieves additive error of O(1

ε
log1.5 T) with constant prob-

ability, where T is an upper bound on the maximum size
of the input, known to the algorithm. Independently,
[CSS10a] presented a continually private algorithm for the

1One may also relax privacy guarantees of old events in a
smooth way, and our definition allows for such modifications.

running sum problem that at any step j, guarantees an ad-
ditive error of O(1

ε
log1.5 j) with constant probability. This

matches [DPNR10], while not knowing T .
The algorithm of [CSS10a] is related to our work: our

algorithm for window sum reduces to their algorithm for
running sum when the size of the window coincides with
the size of the input. However, if their algorithm or the
algorithm in [DPNR10, CSS10b] is used directly to compute
window sums, then the error at time j will be on the order
of log1.5 j and for large j will overcome the window size.
Further, algorithms in [CSS10a, DPNR10, CSS10b] do not
work for decayed sums.

[DPNR10] shows how to transform a private streaming al-
gorithm that satisfies a monotonicity property to a private,
continual algorithm. However, accurate decayed sum es-
timators do not have the monotonicity property, and the
general transformation cannot be used.

3. NOTATION AND PRELIMINARIES
Online Data Model We consider online problems with
binary input: at each time step i the algorithm receives
input xi ∈ [a, b]; and is required to report an approximation

F̂ (x1, . . . , xi) to a function F (x1, . . . , xi). We present our
upper bounds for a = 0, b = 1. For general a, b, our absolute
error bounds scale linearly in b− a.

Decayed Sum Problems The functions F we are inter-
ested in approximating are decayed sum functions. Con-
sider a non-increasing function g : N→ R+ such that g(0) =
1. The decayed sum induced by g is the function F (j) =

F (x1, . . . , xj) =
∑j
i=1 xig(j − i). I.e., F is the convolution

of the input and a non-increasing function g. The decayed
sum problems we consider are defined below

• when g(i) = 1 ∀i, the running sum problem (consid-

ered in [CSS10a, Dwo10, DPNR10]): Fs(j) =
∑j
i=1 xi.

• when g(i) = 1{i<W}, the window sum problem (with

window size W): Fw(j,W) =
∑j
i=j−W+1 xi. To sim-

plify notation, in the above definition we assume that
xi = 0 for all i ≤ 0.

• when g(i) = αi (α < 1), the exponential decay sum

problem: Fe(j, α) =
∑j
i=1 xiα

j−i.

• when g(i) = (i + 1)−c (c > 1), the polynomial decay

sum problem: Fp(j, c) =
∑j
i=1

xi
(j−i+1)c

.

The last three problems have not been considered in the
differential privacy literature before, and specifically not in
the continual observation model. The problems of keeping
event counts and other statistics over windows [DGIM02]
and keeping decayed (in particular exponential and polyno-
mial decay) sums [CS03] have been studied in the field of
small space streaming algorithms.

Differential Privacy We use the standard definition of dif-
ferential privacy, applied to the online data model:

Definition 1 ([DMNS06, DPNR10]). Let A be a ran-
domized online algorithm that at time step j outputs the real
value F̂ (x1, . . . , xj). A satisfies ε-differential privacy if for
all T ∈ Z, for all measurable subsets S ⊆ RT , all possible

286

Running Sum Decaying Relevance Expiring Privacy

ε-Differential Privacy whole input x whole input x sliding window Wp of ε
(δ, γ)-Accuracy whole input x sliding window W of x whole input x
UB δ Output Pert. Θ(1

ε
T√
γ

) Θ(1
ε
W√
γ

) O(1
ε
Wp log 1

γ
)

UB δ Input Pert. Θ(1
ε

√
T log 1

γ
) Θ(1

ε

√
W log 1

γ
) O(1

ε

√
Wp log 1

γ
)

UB δ Diadic Tree Θ(1
ε

log1.5 T log 1
γ

) O(1
ε

log1.5W log 1
γ

) O(1
ε

log1.5W log 1
γ

)

LB δ Ω(log T log 1
γ

) Ω(min{W/2, 1
ε

log 1
γ
})

Table 1: Comparing accuracy guarantees for running sums when data relevance or privacy concerns decay
with time.

inputs x1, . . . , xT , all j and all x′j ∈ [0, 1] (where probability
is over the coin throws of A)

Pr[(F̂ (x1, . . . ,xj , . . . , xk))Tk=1 ∈ S]

≤ eεPr[(F̂ (x1, . . . , x
′
j , . . . , xk))Tk=1 ∈ S].

This is the standard definition of differential privacy as pro-
posed by Dwork et al. [DMNS06], but with the modification
that the algorithm receives the input online and produces
output at every step, and the whole sequence of outputs is
available to an adversary. This model of privacy for online
algorithms operating on time series data, termed privacy
under continual observation, was introduced by [DPNR10],
with preliminary results presented in [Dwo10].

We use the following basic facts about differential pri-
vacy. The first theorem gives a simple way to achieve differ-
ential privacy for algorithms with numerical output, based
on adding random noise scaled according to the sensitivity
of the statistic being computed. The second fact is that
composing multiple privacy mechanisms results in smooth
privacy loss.

Theorem 1 ([DMNS06]). For a function F : [a, b]T →
Rd, let the sensitivity of F , SF be the smallest real number
that satisfies ∀x1, . . . , xT , ∀j ∈ [T], ∀x′j ∈ [a, b] :

‖F (x1, . . . , xj , . . . , xT)− F (x1, . . . , x
′
j , . . . , xT)‖1 ≤ SF

Then an algorithm that outputs F̂ (x1, . . . , xT) = F (x1, . . . , xT)+
Lap(SF /ε)

d satisfies ε-differential privacy, where Lap(λ)d

is a sample of d independent Laplace random variables with
mean 0 and scale parameter λ.

Theorem 2 ([DMNS06]). Let algorithm A1 satisfy ε1-
differential privacy and algorithm A2 satisfy ε2-differential
privacy. Then an algorithm A that on input x = {x1, . . . , xT }
outputs A(A1(x),A2(x)) satisfies (ε1 + ε2)-differential pri-
vacy.

Utility We adopt the following, commonly used notion of
utility:

Definition 2. Let A be a randomized online algorithm
that at time step j outputs F̂ (x1, . . . , xj) ∈ R. Then, A
achieves (δ, γ)-utility with respect to a function F , if for all

j, Pr[|F̂ (x1, . . . , xj)− F (x1, . . . , xj)| > δ] < γ.

Dyadic Tree Datastructure We repeatedly use the fol-
lowing dyadic tree data structure which is common in al-
gorithmics. This data structure is a balanced augmented

search tree and variants of it are common in much algorith-
mic work.

Let T (L,U) be a complete binary tree of height h =
log(U−L+1)+1 (assuming, for simplicity, that U−L+1 is
a power of 2). The leaves of the tree are indexed by the inte-
gers L,L+ 1, . . . , U , and if two sibling nodes are indexed by
the intervals [l1, u1] and [l2 = u1 + 1, u2], then their parent
is indexed by [l1, u2]. Note that at level k of the tree (the
leaves being at level 1), the indexing intervals have the form
[L + (i − 1)2k−1, L + i2k−1 − 1] for i ∈ [1, 2h−k]. We call a
node whose indexing interval precedes its sibling’s indexing
interval a left node; the sibling of a left node is a right node.
With each node we associate a variable: for the node in-
dexed by [l, u], the associated variable is denoted clu. Given
a tree T = T (L,U) and a prefix interval [L, u], we define
function s(u, T) recursively:

• if [L, u] indexes a node in T , then s(u, T) = cLu;
• otherwise, let u′ be the largest integer less than u such

that [L, u′] indexes some node in T ; equivalently, u′ is
the largest integer less than u that can be written as
u′ = L+ 2k−1 − 1. Let T ′ be the subtree of T rooted
at the sibling of [L, u′] (indexed by [u′+ 1, u′+ 2k−1]);
then s(u, T) = cLu′ + s(u, T ′).

The following lemma is essential to our analysis and can
be easily proved by induction.

Lemma 1. There exist r ≤ dlog(u − L + 1)e integers u1,
. . . , ur = u such that s(u, T) = cLu1 +

∑r−1
k=1 cuk+1,uk+1 .

Furthermore, all nodes indexed by [uk+1, uk+1] are left nodes
in T , and each node is in a different level of T .

Proof. The integers u1, . . . , ur are given directly by the
recursive definition of s(u, T). To bound r, consider that
at each step in the recursion, unless [L, u] indexes a node
in T , the tree T ′ has at most half the number of leaves of
the smallest subtree of T that contains u as a leaf. Initially
the smallest subtree that contains u as a leaf has number
of leaves equal to the smallest power of 2 greater than or
equal to u − L + 1, i.e. the number of leaves initially is
2dlog(u−L+1)e. The recursion stops when we reach a tree
with only a single node, and, therefore, we make at most
dlog(u− L+ 1)e recursive calls. The bound on r follows.

The condition that all nodes are left siblings follows from
the fact each node is indexed by an interval that contains
the leftmost leaf of the current subtree.

Finally, notice that the only way to pick two nodes on
the same level is if after picking u′, in the next step of the
recursion we pick the root of T ′. However, in this case we
would have picked the parent of [L, u′] instead of [L, u′], a
contradiction.

287

Figure 1: Dyadic tree data structure. In this example, u = L+ 5 is shown in a blue node, u′ = L+ 3, and the
prefix sum s(u, T) = cL,L+3 + cL+4,L+5 is obtained by adding the counters at the two green nodes [L,L+ 3] and
[L+ 4, L+ 5].

Chernoff Bound for Laplace Variables We will use the
following Chernoff bound for sums of independent Laplace
random variables.

Lemma 2. Let s1, . . . , sn be independent Laplace random
variables such that si ∼ Lap(bi). Denote S =

∑n
i=1 si and

σ =
√

2
∑n
i=1 b

2
i . Then, for all λ < mini

0.75
bi

, we have

Pr[|S| ≥ tσ] ≤ 2 exp(0.75λ2σ2 − λtσ).

Proof. We use the standard technique of bounding the
moment generating function of S and applying Markov’s
inequality. Details follow.

Since the distribution of S is symmetric, we have Pr[|S| ≥
tσ] = 2Pr[S ≥ tσ]. For any λ, we have:

Pr[S ≥ tσ] = Pr[eλS ≥ eλtσ]

≤ E[eλS]

eλtσ
=

∏n
i=1 E[eλsi]

eλtσ
(1)

For λ < 1/bi, the moment generating function of the Laplace
random variable si is E[eλsi] = 1/(1 − λ2b2i). Assuming
λbi ≤ .75, we have

E[eλsi] =
1

1− λ2b2i
< exp(

3

2
λ2b2i).

Substituting into (1), we get

Pr[S ≥ tσ] ≤ exp(
3

2
λ2

n∑
i=1

b2i − λtσ),

as desired.

4. UPPER BOUNDS

4.1 Window Sum
A key observation for computing window sums with er-

ror polylogarithmically bounded in W is that, unlike with
running sum, only the lowest logW + 1 layers of the dyadic
tree are necessary to compute window sum. However, if we
keep a dyadic tree for every window of size W , each up-
date will contribute to more than W variables, resulting in
data structures with large sensitivity, which, for differential
privacy, translates into more noise. Our main idea is that
instead of keeping a dyadic tree for every window, we can

Algorithm 1 WindowsSum

For k ≥ 1, define Tk = T ((k − 1)W + 1, kW), with all clu
initialized to Lap((logW + 1)/ε).
for all inputs xi do

add xi to all clu in Tdi/We such that i ∈ [l, u].

output: F̂w(i,W) = s((k−1)W, Tk−1)−s(i−W, Tk−1)+
s(i, Tk), where k = di/W e.

end for

divide the input into blocks of size W , and view the windows
that span two blocks as the union of a suffix and a prefix of
two blocks.

The algorithm WindowSum is shown as Algorithm 1. In
the remainder of this section we assume that W is an exact
power of 2.

Theorem 3. WindowSum satisfies ε-differential privacy,
and achieves (δ, γ)-utility with

δ =

{
O(1

ε
log1.5W log0.5 1

γ
), logW ≥ log 1

γ

O(1
ε

logW log 1
γ

), logW < log 1
γ

Furthermore, WindowSum can be implemented to use O(W)
words of space and to run in O(logW) time per update.

Proof. Privacy. Observe that any variable clu used to
compute F̂w(j,W) satisfies l ≤ u ≤ j. Therefore, the coun-

ters clu that contribute to F̂w(j,W) will not be updated after

time step j and F̂w(j,W) will be identically distributed if it
is computed at any time step T ≥ j, so for the analysis we
can assume that all outputs are produced at time step T .
Next we fix T and argue that WindowSum is ε-differentially
private for inputs of size T . Since the choice of T is arbitrary,
privacy for all T follows. For this purpose, let c(x) be the
vector of the values of all variables (in an arbitrary order)
clu such that u ≤ T when the input is x = (x1, . . . , xT).
Let also c0(x) be c(x) with the initializing Laplace noise
removed. Since each xj contributes to exactly logW + 1
variables clu

∀j ∈ [T], ∀x′j ∈ [0, 1] :

‖c0(x1, . . . , xj , . . . , xT)− c0(x1, . . . , x′j , . . . , xT)‖1
≤ logW + 1.

288

Differential privacy of c(x) follows from above and Theo-
rem 1. Since the sequence of outputs of WindowSum up to
time step T is a deterministic function of c(x), privacy of
WindowSum follows.

Accuracy. It is easy to see that EF̂w(j,W) = Fw(j,W).
By Lemma 1, for each k and each u, s(u, Tk) is the sum of at
most logW random variables, each with variance 2(logW +

1)2/ε2. Therefore, the standard deviation σ of F̂w(j,W) is
O(log1.5W/ε).

We consider two cases. For the first case, let t = 2
√

ln(1/γ)
and λ = φ t

σ
for a constant φ to be determined later. By

Lemma 2, as long as λ < 0.75ε/(logW + 1), we have that

Pr[|F̂w(j,W) − Fw(j,W)| > C
√

log(1/γ)σ] < γ for some
fixed constant C that depends on φ. A calculation shows
that as long as logW ≥ log(1/γ), the minimum value of φ
such that the constraint on λ holds can be bounded below
by a constant. This completes the analysis of the first case.

For the second case, when logW < log(1/γ), we set the
following parameters: η = logln(1/γ) lnW (notice that η <

1); t = C′ ln(1/γ)√
lnW

, and λ = tη/(2−η)

σ
= C′η/(2−η)

√
lnW

σ
, where

C′ is a constant chosen so that λ < 0.75ε/(logW + 1) holds.
Applying Lemma 2, we have that for a value C that depends
on C′, Pr[S ≥ C 1

ε
log(1/γ) logW] ≤ exp(Ω(t2/(2−η))) =

exp(−Ω(ln 1/γ)).
For the running time and space complexity analysis, notice

that each update requires accessing O(logW) nodes, and
that only the last two dyadic trees need to be stored.

We can also show that we can approximate window sums
simultaneously for all window sizes and preserve privacy un-
der continual observation. Our approximation is different
for different window sizes W , and for any particular W , it is
almost the same as that of Theorem 3. Details can be found
in Appendix 4.2.

4.2 Window Sum Simultaneously for all W
Here we give an algorithm that works simultaneously for

all window sizes. Our main observation is that if for window
size W we divide the input into blocks of size W ′ ∈ [W, 2W]
instead of exactly W as in WindowSum, then we can store
all necessary dyadic tree data structures as subtrees of a
single dyadic tree. However, storing the whole dyadic tree
with the same noise at any level will result in error of size
Ω(log1.5 T) for all W . Instead, we want to make sure that
within a subtree of height h, the noise added to any variable
is proportional to h. To achieve this, we use a different
privacy parameter εk at level k of the dyadic tree and ensure
that the sum of privacy parameters converges to ε.

Let β > 1 be a parameter and ζ(·) be the Riemann zeta
function: ζ(β) =

∑∞
1 i−β . Set εk = ε

ζ(β)kβ
. The algorithm

AllWindowSum is shown as Algorithm 2. Proof of theorem
below is analogous to Theorem 3.

Theorem 4. There exists a constant K s.t. AllWin-
dowSum satisfies ε-differential privacy and achieves (δ, γ)-
utility, where

δ =

{
O(1

ε
log1.5βW log0.5 1

γ
), logW ≥ K log 1

γ

O(1
ε

logβW log 1
γ

), logW < K log 1
γ

Furthermore, the algorithm can be implemented to use O(T)
words of space and run in O(log T) time per update on inputs
consisting of T updates.

Algorithm 2 AllWindowSum

Initialize T = T (1, 1), with c1,1 initialized to Lap(1/ε1).
for all updates xi do

if the rightmost leaf of T is i− 1 then
Grow T so that T = T (1, 2(i−1)), adding additional
nodes and variables as necessary; initialize new vari-
ables at level k to Lap(1/εk).
Add the value c01,i−1 to the root variable c1,2(i−1),

where c0lu is the value of clu without the Laplace noise.
end if
Add xi to all clu in such that i ∈ [l, u].

Let W ′ = 2dlogWe. At time step j, output F̂ ′w(j,W) =
s((k−1)W, Tk−1)−s(j−W, Tk−1)+s(j, Tk), where k =
dj/W ′e.

end for

Proof. Privacy. The proof of privacy is analogous to
the proof of privacy for Theorem 3, but we treat different
levels of T separately and use Theorem 2 to bound the total
privacy loss. More precisely, we show that level k in the
tree satisfies εk-differential privacy and use the fact that∑∞
k=1 εk = ε.
Utility. The utility analysis is also analogous to the proof

of Theorem 3, noticing the following facts: (1) W ≤ W ′ ≤
2W ; (2) as an upper bound on the variance of any variable

used to compute F̂ ′w(j,W) we can use the variance of vari-
ables at level logW ′ + 1, which is O(logβW). The rest of
the proof is unchanged.

4.3 Exponential Decay
While for the window sum problem we keep a sequence of

dyadic trees, for the exponential decay problem we keep a
single dyadic tree that grows over time. The main property
of exponentially decaying sums that we use is that if S1 is
the exponential decay sum over a time interval [a, b−1] and
S2 is the exponential decay sum over a time interval [b, c],
then αc−b+1S1 + S2 is the exponential decay sum over the
time interval [a, c]. Thus at a node in the dyadic tree that is
indexed by interval [l, u] we can keep the exponential decay
sum for that interval. However, doing this for every interval
results in a data structure with unbounded sensitivity. We
update only the left nodes in the tree and show that we can
bound the sensitivity in that case.

The ExponentialSum algorithm is shown as Algorithm 3.
We analyze the algorithm for α ∈ (2/3, 1); observe that
when α ≤ 2/3, the range of the Fe is [0, 3], and, therefor,
achieving (1.5, 0)-utility is trivial. Thus α → 1 is the inter-
esting regime for approximating Fe.

The following lemma is useful in the analysis.

Lemma 3. For an arbitrary i, let [l1, u1], [l2, u2], . . . be the
sequence of intervals such that ∀k : i ∈ [lk, uk] and [lk, uk] is
a left node. Assume the intervals are ordered in ascending
order of uk − lk. Then uk − i ≥ 2k−1 − 1.

Proof. By induction. The base case is trivial, as from
i ∈ [l1, u1] follows u1 − i ≥ 0. For the inductive step, it
suffices to show that uk − uk−1 ≥ 2k−2. By the construc-
tion of T , all nodes indexed by intervals [l, u] such that
i ∈ [l, u] lie on the path from the leaf indexed by i to the
root of T . Therefore, all nodes indexed by [lk, uk] for some
k are ancestors of i, and, by the construction of T we have
uk − lk + 1 ≥ 2k−1; in particular, [lk, uk] is an ancestor of

289

Figure 2: Window sum for a window size W = 4. This example illustrates the algorithm at time i = 7, and the
output is F̂w(7,W = 4) = s(W, T1)−s(3, T1)+s(7, T2) = c14−(c12+c3)+(c56+c7) = x4+x5+x6+x7+z14−z12−z3+z56+z7,
where zlu denotes the noise at node [l, u].

Algorithm 3 ExponentialSum

Set λ = 1
α ln 2

(
ln 2α

1−1α
+ 1

2
+ ln 2

)
.

Initialize T = T (1, 1), with c1,1 initialized to Lap(λ/ε)
for all updates xi do

if the rightmost leaf of T is i− 1 then
Grow T so that T = T (1, 2(i−1)), adding additional
nodes and variables as necessary and initializing new
variables to Lap(λ/ε).
Add the value αi−1c01,i−1 to the root variable c1,2(i−1),

where c0lu is the value of clu without the Laplace noise.
end if
for all [l, u] such i ∈ [l, u] and the node indexed by [l, u]
is a left node do

add xiα
u−i to clu

end for
output F̂e(j, α) =

∑r
k=0 cuk,uk+1α

j−uk+1 .
end for

[lk−1, uk−1] and uk−1− lk−1 + 1 ≥ 2k−2. By assumption, all
nodes indexed by [lk, uk] are left nodes; let the right sibling
of [lk−1, uk−1] be the node indexed by [l′k−1, u

′
k−1]. By con-

struction, u′k−1− l′k−1 = uk−1− lk−1 and the parent of both
nodes is indexed by [lk−1, u

′
k−1]. All ancestors of [lk−1, uk−1]

are indexed by intervals that contain [lk−1, u
′
k−1] as a subin-

terval, and, therefore,

uk ≥ u′k−1 = uk−1 + (uk−1 − lk−1 + 1)

≥ uk−1 + 2k−2

This completes the inductive step.

Theorem 5. Assume α ∈ (2/3, 1) and let K be a univer-
sal constant. ExponentialSum satisfies ε-differential pri-
vacy and achieves (δ, γ)-utility with

δ =

{
O(1

ε
α

1−α log0.5 1
γ

), log α
1−α ≥ log 1

γ

O(1
ε

log α
1−α log 1

γ
), log α

1−α < log 1
γ

Furthermore, ExponentialSum can be implemented to use
O(log T) words of space and to run in O(log T) time per
update on inputs consisting of T updates.

Proof. Privacy. It is sufficient to fix T and argue that

ExponentialSum is ε-differentially private for inputs of size
T when all outputs for j ≤ T are produced at step T .

We analyze the sensitivity of T . Define c0(x) as in the
proof of Theorem 3 and [l1, u1], [l2, u2], . . . as in Lemma 3.
We have

‖c0(x1, . . . , xi, . . . , xT)− c0(x1, . . . , 1− xi, . . . , xT)‖1

≤
∞∑
k=1

αuk−ixi ≤
∞∑
k=1

αuk−i =
1

α

∞∑
k=0

α2k

≤ 1

α
+

1

α

∫ ∞
0

α2xdx =
1

α
+

1

α ln 2

∫ ∞
ln 1
α

e−t

t
dt

=
ln 2 + E1(ln 1

α
)

α ln 2
. (2)

Here E1(x) = E1(x) =
∫∞
x

e−t

t
dt. We have the following

series expansion for E1, which converges for all real |x| ≤
π [AS64]:

E1(x) = −η − lnx+

∞∑
k=1

(−1)k+1xk

k!k
, (3)

where η is the Euler-Mascheroni constant. Since, by as-
sumption, α > e−1, we have ln 1

α
< 1. For x < 1, the last

term in (3) is bounded by η+E1(1) = η+ 1
2
. Therefore, we

have,

E1(2 ln
1

α
) ≤ − ln ln

1

α
+

1

2
= ln

1

ln 1
α

+
1

2
(4)

For x ∈ (0, 2), we have the following series expansion for
lnx:

lnx = x− 1−
∞∑
k=2

(1− x)k

k
. (5)

Since by assumption 1/α − 1 < 1/2, we have ln(1/α) ≥
(1/α− 1)/2. Substituting in (4), we get

E1(ln
1

α
) ≤ ln

1
1−α
2α

+
1

2
= ln

2α

1− α +
1

2
(6)

Substituting (6) into (2) gives us the following bound on

290

sensitivity:

‖c0(x1, . . . , xi, . . . , xT)− c0(x1, . . . , 1− xi, . . . , xT)‖1

≤ 1

α ln 2

(
ln

2α

1− 1α
+

1

2
+ ln 2

)
(7)

By Theorem 1 and (7), the algorithm ExponentialSum
satisfies ε-differential privacy.

Accuracy. Clearly, EF̂e(j, α) = Fe(j, α). Next we upper

bound σ2, the maximum variance of F̂ (j, α) over all j. By
Lemma 3, all intervals [1, u1], [u1, u2], . . . , [ur, j] correspond
to nodes in distinct levels of T , and therefore have sizes
which are distinct powers of 2. We have, for some fixed
constant C,

σ2 ≤
(
C

log α
1−α

αε

)2 ∞∑
i=1

α2(2i−1)

=

(
C

log α
1−α

αε

)2
1

α2

∞∑
i=2

α2i ≤ 1

α2

(
C

log α
1−α

αε

)3

.

The proof can be completed analogously to the proof of The-
orem 3.

4.4 Polynomial and Other Decay Functions
Unlike the running sum, window sum, or exponential de-

cay sum problems, there is no easy way to combine poly-
nomial decay sums over intervals [a, b − 1] and [b, c] into a
polynomial decay sum over [a, c]. Therefore, our techniques
for estimating polynomial decay sum are considerably differ-
ent and in fact apply to arbitrary slow-growing decay sum
functions. We analyze the algorithm for polynomial decay
and remark at the end of the section how it extends to ar-
bitrary decay functions.

On a high level, we approximate the polynomial decay
function g(i) = (i + 1)−c by a function g′ that is constant
on exponentially growing in size intervals. Then we can ap-
proximate the decay sum induced by g′ by running multiple
instances of our window sum algorithm in parallel. This
technique results in a bi-criteria approximation, i.e. our ap-
proximation guarantee has both a multiplicative and an ad-
ditive approximation factor. As c → 1 (i.e. as the range of
the polynomial decay sum grows), the additive approxima-
tion factor remains bounded and is dominated by β−2, where
(1±β) is the multiplicative approximation factor. Thus the
approximation guarantees for our algorithm are mostly de-
termined by a trade-off between additive and multiplicative
approximation.

For a given polynomial decay function g = (i + 1)−c and
the induced decay sum F , let us a fix a multiplicative error
parameter β and define a function b as ∀j ≥ 1 : b(j) =
max{i : g(i) ≥ (1 − β)j} and b(0) = 0. Intuitively g(i) is
almost constant for i ∈ [b(j − 1), b(j)).

We can now define a function g′ that approximates g:
∀i ∈ [b(j− 1), b(j)) : g′(i) = (1−β)j−1 Let F ′ be the decay
sum induced by g′. From the definition of g′ it is immediate
that ∀j, ∀x ∈ {0, 1}j : (1− β)F (j) ≤ F ′(j) ≤ F (j).

The PolynomialSum algorithm is shown as Algorithm 4.
Note that we call the j-th instance of WindowSum with
input consisting of time updates in {0, (1 − β)j−1}. It is
straightforward to check that the WindowSum algorithm
can handle such scaled instances without modification. Note
also that we modify the WindowSum algorithm slightly by

Algorithm 4 PolynomialSum

Set λ = log(1/(1−β))
cβ2 + 1

β
.

Start an instance of WindowSum for input x1, . . . with
window size W1 = b(1) and initializing noise for each vari-
able Lap(λ/ε). Set j∗ = 1.
for all updates xi do

if i = b(j∗) + 1 then
Set j∗ = j∗ + 1.
Start a new instance of WindowSum with window
size Wj∗ = b(j∗)−b(j∗−1) and and initializing noise
for each variable Lap(λ/ε).

end if
for all k ≤ j∗ do

Update the k-th instance of WindowSum with input
(1− β)k−1xi−b(k−1)

end for
Output

F̂p(i, c) =∑
j≥0:b(j)<i

Fw((1− β)jx1, . . . , (1− β)jxi−b(j),Wj+1).

end for

adjusting the magnitude of noise added to the variables as-
sociated with the dyadic trees kept by WindowSum.

Theorem 6. PolynomialSum satisfies ε-differential pri-
vacy, and for any j, with probability 1 − γ, we have (1 −
β)Fp(j, c)−O(δ) ≤ F̂p(c) ≤ Fp(j, c) +O(δ), where

δ =

 1
ε

(
1
cβ2 log 1

1−β

)1.5
log0.5 1

γ
if 1

cβ2 log 1
1−β ≥ log 1

γ

1
ε

1
cβ2 log 1

1−β log 1
γ

if 1
cβ2 log 1

1−β < log 1
γ

Furthermore, PolynomialSum can be implemented to use
O(T) words of space and run in O(log2 T/ log(1/(1 − β)))
time per update on inputs consisting of T updates.

Proof. Privacy. The privacy analysis is analogous to
the analysis in the proof of Theorem 3, but we bound sensi-
tivity over all instances of WindowSum. Due to the scaling
of the input, the sensitivity of the j-th instance of Window-
Sum is bounded by (1+β)j−1(logWj+1). Let us first bound
Wj . Observe that b(j) = bg−1((1−β)jc. For g(i) = (i+1)−c,

we have b(j) ∈ [(1 − β)−j/c − 2, (1 − β)−j/c − 1]. Then Wj

can be bounded as Wj = b(j) − b(j − 1) ≤ (1 − β)−j/c −
(1 − β)−(j−1)/c + 1. Since 1 − β < 1 and j ≥ 1, we have

Wj ≤ (1−β)−j/c. We can then bound the overall sensitivity
is by

∞∑
j=1

(1− β)j−1 logWj +

∞∑
j=0

(1− β)j

≤
∞∑
j=1

(1− β)j−1 log
1

(1− β)j/c
+

1

β

=
1

cβ2
log

1

(1− β)
+

1

β
(8)

Theorem 1 and (8) complete the privacy proof.

Accuracy. Note that EF̂p(j, c) = F ′(j). The variance
of Fw((1 − β)jxb(j), . . . , (1 − β)jxk,Wj) is at most 2(1 −

291

β)2jλ2 logWj . Therefore, the total variance σ2 of F̂p(j, c) is

σ2 ≤ λ2 1

c
log

1

1− β

∞∑
j=0

(j + 1)(1− β)2j

= λ2 1

cβ2(2− β)2
log

1

1− β = O

((
1

cβ2
log

1

1− β

)3
)

Using Lemma 2 as in Theorem 3 we can show that for any
j, with probability at least 1− γ,

|F̂p(j, c)− F ′(j)| ={
O((1

cβ2 log 1
1−β)1.5 log0.5 1

γ
) if 1

cβ2 log 1
1−β ≥ log 1

γ

O(1
cβ2 log 1

1−β log 1
γ

) if 1
cβ2 log 1

1−β < log 1
γ

Since for all x and all j, (1 − β)F (j) ≤ F ′(j) ≤ F (j), this
completes the proof.

This algorithm can more generally be used to compute
a private (under continual observation) approximation to a
decayed sum F induced by a decay function g as long as
g−1 grows subexponentially. In this case sensitivity remains
bounded and the additive error guarantee is dominated by
a function of β, but the exact function depends on g. The
algorithm is not applicable to the window or running sum
problem, since for them g−1 is not well defined; the guaran-
tee for exponential decay sum is incomparable with the one
in Theorem 5.

5. LOWER BOUNDS
We formalize the general packing-bound framework for

lower bounding the dependence of the error δ on the error
probability γ for algorithms that are private under contin-
ual observation and achieve (δ, γ)-utility. We also instanti-
ate the framework with a construction that yields concrete
lower bounds for the three decay sum problems considered
in this paper. As far as the dependence on error probability
is concerned, our lower bounds for window and exponential
decay sums are tight. Our lower bound for polynomial decay
sums is against a purely additive approximation and is not
directly comparable to the upper bounds on the approxima-
tion factors of our algorithm.

Suppose that for a fixed error probability γ, we want to
prove a lower bound on δ for any ε-differentially private al-
gorithm that achieves (δ, γ)-utility with respect to a function
F (x1, . . . , xj) We can take γ = 2/3q, and it follows, by the
union bound, that for any set Q ⊆ [n] of size q, with proba-
bility 2/3, the algorithm is within an absolute error δ from
F (x1, . . . , xj) for all j ∈ Q. Assume that for some T we can
construct N +1 instances x0, . . . ,xN , each of length T , that
satisfy the following properties:

1. (Q, δ)-independence: for all a, b ∈ {0, . . . , N}, a 6= b,
there exists some j ∈ Q ⊆ T such that |F (xa1 , . . . , x

a
j)−

F (xb1, . . . , x
b
j)| > 2δ.

2. D-closeness: for all a, b ∈ {0, . . . , N}, xa and xb have
hamming distance at most D.

Lemma 4. Assume there exists an ε-differentially private
algorithm A that at time step j outputs F̂ (x1, . . . , xj). As-
sume further that for any Q ⊆ N, |Q| = q, we have Pr[∀j ∈
Q : |F̂ (x1, . . . , xj)−F (x1, . . . , xj)| ≤ δ] ≥ 2/3. If for some Q
there exists a set {x0, . . . ,xN} that simultaneously satisfies

(Q, δ)-independence and D-closeness with respect to F , then
D > lnN+ln 2

ε

Proof. Let B(xi) = {f : |fj − F (xi1, . . . , x
i
j)| ≤ δ}. By

assumption, Pr[(F̂ (xi1, . . . , x
i
j))

T
j=1 ∈ B(xi)] ≥ 2/3. Then,

by the definition of differential privacy and D-closeness, we
have

∀i : Pr[(F̂ (x01, . . . , x
0
j))

T
j=1 ∈ B(xi)] ≥ e−εD2/3.

By (Q, δ)-independence, B(xa) ∩ B(xb) = ∅ for all a 6= b.
Therefore,

Pr[(F̂ (x01, . . . , x
0
j))

T
j=1 ∈

N⋃
i=1

B(xi)]

=

N∑
i=1

Pr[(F̂ (x01, . . . , x
0
j))

T
j=1 ∈ B(xi)] ≥ Ne−εD2/3.

However, since B(x0)∩
⋃N
i=1B(xi) = ∅, by the assumptions

on A we have

Pr[(F̂ (x01, . . . , x
0
j))

T
j=1 ∈

N⋃
i=1

B(xi)] < 1/3.

Therefore, 2N < eεD, and the lemma follows by taking log-
arithms.

In order to apply Lemma 4, we need a method to con-
struct a set of instances satisfying (Q, δ)-independence and
D-closeness for a given error bound δ, such that D is upper
bounded by a function of δ and N is lowerbounded by a
function of |Q|. We show a construction that allows us to
derive a lower bound for any decayed sum problem, where,
naturally, the form of the lower bound depends on the spe-
cific problem, i.e. on the decay function g. As corollaries, we
derive specific lower bounds for the problems we consider in
this paper. In our construction, the set of vectors {xi}qi=0

is defined as x0 = (0Dq) and xi = (0(i−1)D, 1D, 0(q−i)D).
We set Q = {j : D divides j} and choose δ according to
the specific decay function g. Consider a general decayed
sum function F (x1, . . . , xj) with a decay function g. The
construction gives our main lower bound theorem.

Theorem 7. Assume there exists an ε-differentially pri-
vate algorithm A that at time step j outputs F̂ (x1, . . . , xj)
and achieves (δ, γ)-utility with respect to a decayed sum func-
tion F induced by g. Denote G(x) =

∑x−1
i=0 g(i). Then

δ ≥ 1
2
G(Ω(log(1/γ)

ε
)).

For the three problems considered in this paper we derive
the following corollaries.

Corollary 1. Assume there exists an ε-differentially pri-
vate algorithm A that at time step j outputs F̂w(j,W) and
achieves (δ, γ)-utility with respect to Fw(j,W). Then, δ ≥
Ω
(

min
{
W
2
, log(1/γ)

ε

})
.

Note that the lower bound of [DPNR10] is a special case of
the above corollary for γ = 2/3W = 2/3T .

Corollary 2. Assume there exists an ε-differentially pri-
vate algorithm A that at time step j outputs F̂e(j, α) and
achieves (δ, γ)-utility with respect to Fe(j, α). Then, for

α ∈ (2/3, 1) we have δ ≥ Ω
(

min
{

α
1−α ,

log(1/γ)
ε

})
.

292

Corollary 3. Assume there exists an ε-differentially pri-
vate algorithm A that at time step j outputs F̂p(j, c) and
achieves (δ, γ)-utility with respect to Fp(j, c). Then, δ ≥
Hc(Ω(log(1/γ)

ε
)) ≥ Ω

(
1− εc−1

logc−1(1/γ)

)
, where Hc(k) is the

k-th generalized harmonic number in power c.

6. PRIVACY EXPIRATION
In some situations privacy concerns themselves are time-

dependent. The knowledge of an event may be considered
sensitive for a fixed period of time, after which the event is
no longer relevant and privacy requirements may be relaxed.
In this section we model this scenario by extending the def-
inition of differential privacy under continual observation in
a natural way. Our definition of privacy with expiration
is satisfied by any algorithm which is private under contin-
ual observation; however, we investigate whether relaxing
the privacy constraints for old events allows us to achieve
stronger accuracy guarantees. We show that computing run-
ning sums under privacy with an expiration window W re-
quires no more error than the window sum problem under
standard privacy constraints. Thus privacy expiration leads
to error that scales with the size of the expiration window
rather than entire input. We observe a similar phenomenon
for computing general linear maps online, for which we char-
acterize the error complexity of output perturbation.

6.1 Model
Definition 3. Let g : N → R be a non-increasing func-

tion. Let A be a randomized online algorithm that at time
step j outputs A(x1, . . . , xj). A satisfies ε-differential pri-
vacy with expiration g if for all T ∈ Z, for all measurable
subsets S of the range of A, all possible inputs x1, . . . , xT ,
all j ≤ T and all x′j ∈ [0, 1] (where probability is over the
coin throws of A)

Pr[(A(x1, . . . ,xj , . . . , xk))Tk=1 ∈ S]

≤ eg(T−j)εPr[(A(x1, . . . , x
′
j , . . . , xk))Tk=1 ∈ S].

When g(i) takes the value 1 for i < W and∞ for i ≥W , we
say A satisfies ε-differential privacy with expiration window
W .

The expiration function g models how fast privacy con-
cerns“degrade”with time. In the sequel, we focus on the pri-
vacy expiration window model that imposes a sharp thresh-
old on how privacy degrades. However, smoother expiration
models are possible.

To gain further intuition about privacy with expiration,
let us consider a utility-theoretic implication of the defini-
tion. Assume each user has a cost function cj associated
with event xj such that for each k, cj(A(x1, . . . , xk), k) gives
the expected cost incurred at time k related to information
about event xj being revealed by the algorithm’s output. We
can model expiration of privacy concerns by a cost function
of the form

cj(A(x1, . . . , xk), k) = c′j(A(x1, . . . , xk))g−1(k − j).

Then an algorithmA that satisfies ε-differential privacy with
expiration g has the property that reporting an event to the
algorithm does not increase a user’s cost by more than ε at
any point in time, for any cost function cj of the form above.

It is straightforward to check that privacy with expiration
composes.

Lemma 5. If two algorithms A1 and A2 respectively sat-
isfy ε1 and ε2-differential privacy with expiration g, then any
function of their concatenated outputs will satisfy (ε1 + ε2)-
differential privacy with expiration g.

6.2 Linear Maps
In this section, we focus on the class of online linear maps,

which at every time step i ∈ N, output the inner product
yi = aix

i, for some row vector ai = (ai1, . . . , aii) of length
i. Here xi denotes the partial input (x1, . . . , xi). The entire
linear map from time step 1 to time step T can be repre-
sented in vector form by yT = ATxT , where AT is a square
N × N lower-triangular matrix whose i-th row is given by
[ai,0N−i].

Theorem 8. Let ALM be the (randomized) algorithm that
at time step i outputs ŷi = aix

i + zi, where zi ∼ Lap(0, λi).
ALM is ε-differentially private with expiration window W
if the noise parameters {λi}i∈[T] satisfy the set of T linear
constraints

∀j ∈ [T],

W+j−1∑
k=j

|akj |
λk
≤ ε (9)

Proof. Consider the time step t ∈ [T]. For j ∈ {t −
W + 1, . . . , t}, let xt and xt(j) denote neighboring input
sequences which differ only by their j-th entries xj 6= x′j .
Conditioned on xt, the output sequence at time t, ŷt =
Atxt + zt, has independent entries distributed according to
the product distribution

fxt = Lap(a1x
1, λ1) ∗ . . . ∗ Lap(atx

t, λt).

Thus, ∀j ∈ {t−W + 1, . . . , t}, ∀xj 6= x′j , and ∀s ∈ R,

fxt(s)

fxt(j)(s)
=

N∏
k=1

exp

(
|akj(xj − x′j)|

λk

)

= exp

|xj − x′j | N∑
k=j

|akj |
λk

 ≤ exp(ε), by (9).

(10)

This inequality holds for all t ∈ [T]. Thus Definition 3 is
satisfied, which concludes the proof.

Note that for each i ∈ [T], the parameter λi appears only
in W inequality constraints of the type (9), more precisely
in the inequalities indexed by j ∈ {i − W + 1, . . . , i}. A
trivial solution would set all the noise parameters equal:
λk = maxj

∑W+j−1
i=j |ai,j |, for all k ∈ [T]. However this

solution may be suboptimal in terms of accuracy. In the
next theorem we exhibit a different feasible solution to the
constraints (9) which achieves error that depends on the
privacy window parameter W rather than the length of the
input.

Theorem 9. The algorithm ALM with noise parameters
λi = W

ε
maxj∈{i−W+1,...,i} |aij |, achieves ε-differential pri-

vacy with expiration window W , and (δ, γ)-utility, with δ =
O
(
W
ε

log(1/γ)C
)
, for any γ > 0, where

C = max
i∈[T]

max
j∈{i−W+1,...,i}

|aij |

.

293

Proof. Privacy. For j ∈ [T], we have

W+j−1∑
k=j

|akj |
λk
≤
W+j−1∑
k=j

maxi∈{k−W+1,...,k} |aki|
λk

=

W+j−1∑
k=j

maxi∈{k−W+1,...,k} |aki|
maxl∈{k−W+1,...,k} |akl|W

ε = ε.

(11)

Thus, by Theorem 8, the algorithm is ε-differentially private
with expiration window W .

Accuracy. For i ∈ [T], let λ = c
λi

, where c is a constant

such that λ < 0.75/λi, and let t =
1.5λ2λ2

i+log(2/γ)√
2λiλ

. Then

tσi = t
√

2λi =
1.5λ2λ2

i + log(2/γ)

λ
= 1.5cλi + log(2/γ)

λi
c

= log(2/γ)
W

ε
max

j∈{i−W+1,...,i}
|aij |

(
1.5c

log(2/γ)
+

1

c

)
= O

(
log(1/γ)

W

ε
max

j∈{i−W+1,...,i}
|aij |

)
,

(12)

and, exp(0.75λ2σ2
i − λtσi) = exp(1.5λ2λ2

i − λt
√

2λi) = γ/2.

(13)

Using (12) and (13) in Lemma 2, we get

Pr

[
|ŷi − yi| > O

(
W log(1/δ)

ε
max

j∈{i−W+1,...,i}
|aij |

)]
≤ γ.

(14)
This inequality holds for every i ∈ [T]. Note that C ≥
maxj∈{i−W+1,...,i} |aij |, for all i ∈ [T]. Thus,

Pr

[
|ŷi − yi| > O

(
W log(1/δ)

ε
C

)]
≤ Pr

[
|ŷi − yi| > O

(
W log(1/δ)

ε
max

j∈{i−W+1,...,i}
|aij |

)]
,

(15)

which together with (14) concludes the proof.

Corollary 4. For the running sum, (aij = 1, for all
i ≥ j, and 0 otherwise), algorithm ALM with noise pa-
rameters λi = W

ε
, for all i ∈ [T], achieves ε-differential

privacy with expiration window W , and (δ, γ)-utility, with
δ = O

(
W
ε

log(1/γ)
)
, for any γ > 0.

In the following section we present an algorithm giving
stronger accuracy guarantees for the running sum problem.

6.3 Running sum
Using Lemma 5 we derive a meta-algorithm. Given any ε-

differentially private window sum algorithm AW for window
size W , Algorithm 5 computes running sum with privacy
expiration window W and the same accuracy guarantees as
AW . Using WindowSum as a subroutine, we get an algo-
rithm which is private with expiration window W and has
additive error polylogarithmic in W .

Theorem 10. Let AW satisfy ε-differential privacy and
achieve (δ, γ)-utility. Then PrivacyExpiration satisfies ε-
differential privacy with expiration window W and achieves
(δ, γ)-utility.

Algorithm 5 PrivacyExpiration

Require: Algorithm AW for window sum with window size
W , ε-differentially private under continual observation.

AW computes window sum estimate F̂w(i,W) at time step
i.
for all inputs xi do

Compute
∑i−W
k=1 xk.

Simulate AW with input xi
Output

∑i−W
k=1 xk + F̂w(i,W).

end for

Proof. Privacy. As usual, we argue privacy for any
fixed arbitrary T . The output of PrivacyExpiration up
to time T is a function of two sequences: (F̂w(i,W))Ti=1 and
(xi−W)Ti=1. The first sequence satisfies ε-differential privacy
by the assumption on AW , and, consequently, ε-differential
privacy with expiration window W . On the other hand, the
second sequence satisfies 0-differential privacy with expira-
tion window W , since the sequence of outputs up to any
time step T is not a function of any xj for j > T −W . The
privacy guarantee follows by composition.

Accuracy. Observe that each output is the sum of an
exact (i.e. without added noise) sum and an approximate

window sum F̂w(i,W) for some i. Therefore PrivacyExpi-
ration achieves accuracy guarantees no worse than those of
AW for window parameter W .

7. EXTENSIONS AND APPLICATIONS
Algorithms for sum problems can be used to compute

more sophisticated statistics as we described earlier. In this
section we exhibit a few extensions and applications of our
algorithms. We show how they can be used to compute sums
over individual predicates and some special cases of sums
over holistic predicates, including distinct counts which is
of great interest. We also show how to compute histograms
(over windows or decayed). In the following discussion we
denote an arbitrary universe as U .

7.1 Individual Predicates
We define an individual predicate abstractly as a func-

tion P : U → [0, 1]. Let the input at time step i be
ui, where ui ∈ U . The decayed predicate sum for an in-
dividual predicate P and decayed sum function F then is
F (P(u1), . . . ,P(uj)). Differential privacy and utility for pred-
icate sums can be defined analogously to decayed sums. The
following claim is immediate for individual predicates:

Theorem 11. Let A be an ε-differentially private algo-
rithm that achieves (δ, γ)-utility with respect to a decayed
sum F . Then, on input P(u1), . . . ,P(uT), A is ε-differentially
private with respect to u1, . . . , uT and achieves (δ, γ)-utility
with respect to the decayed predicate sum for P and F .

7.2 Holistic Predicate Sum
Individual predicates are limited in that they can depend

only on a single update ui rather than the whole sequence of
updates. Here we define the more general notion of holistic
predicates and treat the special case of low-sensitivity holistic
predicates, with the distinct count problem as an important
application.

A holistic predicate is a function P : U∗ → [0, 1]. The de-
cayed predicate sum for the holistic predicate P is F (P(u1),
. . ., P(u1, . . . , uj)).

294

Let us call a holistic predicate k-sensitive if for any se-
quence of updates u1, . . . , uT , any j ∈ [T] and any u′j ∈ U ,
the sequences P(u1, . . . , uj), . . ., P(u1, . . . , uj , . . . , uT) and
P(u1, . . . , u

′
j), . . . ,P(u1, . . . , u

′
j , . . . , uT) differ in at most k

components. The following theorem follows from the basic
properties of ε-differential privacy (proof omitted).

Theorem 12. Let A be an ε-differentially private algo-
rithm that achieves (δ, γ)-utility with respect to a decayed
sum F . Then, when given input P(u1), . . ., P(u1, . . . , uT)
for a k-sensitive holistic predicate P, A is kε-differentially
private with respect to u1, . . . , uT and achieves (δ, γ)-utility
with respect to the decayed predicate sum for P and F .

We can show that the fundamental distinct count prob-
lem can be encoded as a 2-sensitive holistic predicate. In
the distinct element count problem the input is a sequence
of updates u1, u2, . . ., and at each time step j the goal is
to approximate the number of distinct elements seen so far,
i.e. |{u ∈ U : ∃i ≤ j s.t. ui = u}|. This problem is equiv-
alent to a predicate sum problem where F is simply the
running sum function, and P(u1, . . . , uj) is 0 when ∃i < j :
ui = uj and 1 otherwise. The proof of the following lemma
is deferred to the full version of the paper.

Lemma 6. The predicate P(u1, . . . , uj) = 1(∀i < j : ui 6=
uj) is 2-sensitive.

Then, by Theorem 12 and the algorithm of Dwork et al.
[DPNR10] for the running sum problem, we have the follow-
ing result:

Theorem 13. There exists an ε-differentially private al-
gorithm that achieves (δ, γ)-utility for the discrete element
count problem with δ = O(log1.5 T log0.5 1

γ
) (in the case

log T = ω(log 1
γ

)) or δ = O(log T log 1
γ

) (in the case log T =

O(log 1
γ

)), where T is the number of updates.

We leave open the problem of designing a private algo-
rithm for estimating, at each time step, the number of dis-
tinct elements seen over the last W updates, with absolute
error polylogarithmic in W .

7.3 Histograms
Consider a situation in which each update can belong to

one of several categories. More formally, let the update at
time step i be (ui, xi) ∈ U× [0, 1]. Let x(u, j) be x restricted
to all components xi for i ≤ j such that ui = u. Then, at
time step j, the algorithm outputs a vector y(j) ∈ RU , where
yu(j) is an approximation to F (x(u, j)), for some decayed
sum function F . We call this the decayed histogram problem
for F . Differential privacy under continual observation for
decayed histogram problems can be defined analogously to
decayed sum problems.

Given an algorithm to approximate a decayed sum, it can
be easily extended to an algorithm for the corresponding
decayed histogram problem.

Theorem 14. Let A be an ε-differentially private algo-
rithm that achieves (δ, γ)-utility with respect to a decayed
sum F . Then, there exists an ε-differentially private algo-
rithm A′ that uses A as a black box and for each j and each
u satisfies Pr[|yu(j)− F (x(u, j))| > δ] < γ.

8. CONCLUSION
We were inspired by the recent work on differential privacy

of data analysis with continual updates [DPNR10, CSS10a],
a research direction motivated by monitoring applications.
However, our observation is that in monitoring applications
typically recent data is more important than distant data.
Hence, we need analyses that are accurate on the most recent
window of data or data where past is decayed (polynomially
or exponentially, as is common in database streaming).

We presented upper and lower bounds for a general class
of functions — predicate sums — on window and decayed
data. We derived our upper bounds by balancing noise at
different levels of a tree atop the data in a nontrivial way,
and derived lower bounds by packing arguments.

We introduced the “dual” problem when accuracy has to
be with respect to the entire data of the past, but privacy
guarantees expire, and presented differentially private algo-
rithms whose accuracy scales with the privacy window. We
reduced the running sum problem in this new model to com-
puting window sum under the usual differential privacy con-
straints. We also characterized the error achieved by output
perturbation for the general problem of computing a linear
map online with privacy expiration.

Both the notions of decayed data and privacy expiration
are important, and many aspects remain open for future
study. Two concrete open problems are showing tight er-
ror lower bounds for privacy expiration, and reducing the
running sum problem with smooth privacy expiration to de-
cayed sums.

9. REFERENCES
[AS64] M. Abramowitz and I.A. Stegun. Handbook of

mathematical functions with formulas, graphs,
and mathematical tables, volume 55. Dover
publications, 1964.

[CS03] E. Cohen and M. Strauss. Maintaining
time-decaying stream aggregates. In PODS,
2003.

[CSS10a] T.H.H. Chan, E. Shi, and D. Song. Private and
continual release of statistics. In ICALP, 2010.

[CSS10b] T.H.H. Chan, E. Shi, and D. Song. Private and
continual release of statistics. Cryptology
ePrint Archive, Report 2010/076, 2010.

[DGIM02] M. Datar, A. Gionis, P. Indyk, and R. Motwani.
Maintaining stream statistics over sliding
windows:(extended abstract). In SODA, 2002.

[DMNS06] C. Dwork, F. Mcsherry, K. Nissim, and
A. Smith. Calibrating noise to sensitivity in
private data analysis. In TCC, 2006.

[DPNR10] C. Dwork, T. Pitassi, M. Naor, and
G Rothblum. Differential privacy under
continual observation. In STOC, 2010.

[Dwo10] C. Dwork. Differential privacy in new settings.
In SODA, 2010.

[War65] S. Warner. Randomized response: A survey
technique for eliminating evasive answer bias.
Journal of American Statistical Association,
1965.

295

	p1-brijder
	p10-segoufin
	p21-sagiv
	p45-freydenberger
	p57-bourhis
	p69-lohrey
	p81-durand
	p93-abiteboul
	p105-björklund
	p117-hellings
	p129-libkin
	p141-antonopoulos
	p153-geerts
	p165-davidson
	p189-barceló
	p201-david
	p213-barany
	p225-davidson
	p237-cohen
	p249-kimelfeld
	p261-zeng
	p272-li
	p284-bolot

