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ABSTRACT
Active context-free games are two-player games on strings
over finite alphabets with one player trying to rewrite the
input string to match a target specification. These games
have been investigated in the context of exchanging Active
XML (AXML) data. While it was known that the rewrit-
ing problem is undecidable in general, it is shown here that
it is EXPSPACE-complete to decide for a given context-
free game, whether all safely rewritable strings can be safely
rewritten in a left-to-right manner, a problem that was pre-
viously considered by Abiteboul et al. Furthermore, it is
shown that the corresponding problem for games with finite
replacement languages is EXPTIME-complete.

Categories and Subject Descriptors
F.2.m [Analysis of Algorithms and Problem Com-
plexity]: Miscellaneous; F.4.2 [Mathematical Logic and
Formal Languages]: Grammars and Other Rewriting Sys-
tems; H.3.5 [Information Storage and Retrieval]: On-
line Information Services—Web-based Services

General Terms
Algorithms, Theory

1. INTRODUCTION
In this paper, we study Active Context-Free Games, played

by two players on finite strings. The motivation for these
games comes from the study of Active XML documents [1,
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3, 8]. In such documents, only some of the data is explicitly
given, the rest of the data can be obtained by calls to Web
services. An example could be a document that includes as
a part the latest news headlines. Rather than storing these
headlines on the host web server, a web service run by a
news agency is called each time the document is requested
by a user. The headlines retrieved by the call are then in-
corporated into the document before it is sent to the user.
It can also be the case that the news agency returns another
active document, i.e., one that contains further possibilities
for calling web services.

However, this approach raises some challenges when doc-
uments should be valid with respect to some schemas. The
hosts not only need to ensure that their own documents
conform to the schema, but also that this is the case for all
possible documents resulting from web service calls.

This scenario was studied by Milo et al. [8], who formu-
lated a polynomial time algorithm for a restricted setting,
in which this schema rewriting problem on AXML trees can
be solved by recursively solving a similar rewriting problem
on strings.

In order to model and study this scenario, active context-
free games, or context-free games for short, were introduced
by Muscholl et al. [9]. Context-free games are two-player
games played on strings, where the first player, Juliet, rep-
resents the host. By calling on letters she tries to rewrite
the string into one that conforms to a schema, represented
by a regular language. Her opponent, Romeo, gets to pick a
string from a regular set to replace the letter Juliet called
on. Starting from a given string, representing the active
document, Juliet wins if the string is ever rewritten into a
word in the schema language. Otherwise, Romeo wins.

In this particular paper we focus on so-called left-to-right
(L2R) strategies. If Juliet follows such a strategy, she is
not allowed to call a position that is to the left of a previ-
ously called position. L2R-strategies have been considered
before, e.g. in [9, 2]. They are more feasible than unre-
stricted strategies. For instance, while it is in general im-
possible to determine, given a game and an input string,
whether Juliet has a winning strategy, it can be decided
in EXPTIME whether she has a winning L2R-strategy [9].
The aforementioned efficient algorithm by Milo et al. [8] also
requires a restriction to L2R rewritings.

It is thus useful to determine during the design phase of
a system whether for Juliet, L2R-strategies are universal.
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1 This is the L2RAll problem, studied here: given a game,
does Juliet have a winning L2R-strategy for every string
for which she has a winning strategy at all? The L2RAll
problem was first considered in [2], where it was claimed to
be undecidable.

We take the following approach to the problem. First
we show that if L2R-strategies are not universal, there is a
string for which Juliet has a winning strategy with one left
step but no L2R winning strategy. Then we show how to
construct automata for all strings with a winning L2R strat-
egy and for all strings with a winning “1-left-step” strategy,
respectively. The L2RAll problem then boils down to a
containment test for these two automata. To show that the
automata can be effectively (and optimally efficiently) com-
puted, we use the concept of effects of a string. In a nutshell,
the effect of a substring summarizes how the string that is
obtained from it during the game can affect the automaton
for the schema.

We show that the L2RAll problem can be solved in expo-
nential space and that this is optimal. If the set of possible
replacement strings from which Romeo can choose is finite
and explicitly given, for every letter, the complexity drops
to exponential time. Thus, we prove the following result.

Theorem 1 (Main Theorem).

(a) L2RAll is EXPSPACE-complete.

(b) If all replacement languages are finite and explicitly given
in the input, L2RAll is EXPTIME-complete.

The paper is organized as follows. After some prelimi-
naries, we show in Section 3 that to decide the L2RAll
problem, general strategies can be replaced by “1-left-step”
strategies. In Section 4 we define effects and state their ba-
sic properties. Section 5 shows how to define and compute
automata for the set of words with winning L2R strategies.
In Section 6 we give the decision algorithms and in Section 7
the matching lower bounds. Details for some omitted proofs
in Section 7 can be found in the full version of this paper [4].

Related work. We already discussed the most important
related papers [2, 9, 1, 8] above. That automata for the set
of words with winning L2R strategies can be constructed
in exponential time was already shown in [9]. However, the
proof did not give an explicit construction but was by reduc-
tion to algorithmic problems for pushdown systems. That
L2RAll is decidable was already claimed in the Diploma
thesis of Joscha Kulbatzki, which was written under the su-
pervision of the third author [7].

We thank the anonymous reviewers of ICDT 2013 for help-
ful suggestions and Ahmet Kara for proof reading.

2. PRELIMINARIES
In this section we define the fundamental notions.

2.1 Context-free games
A context-free game G = (Σ, R, T ) consists of a finite al-

phabet Σ, a rule set R ⊆ Σ × Σ∗ and a regular target lan-
guage T ⊆ Σ∗. It is required that for each symbol f ∈ Σ,
1The high complexity of lower bounds we prove for the
L2RAll problem may seem to make this task forbiddingly
difficult; however, since L2RAll is effectively a static anal-
ysis problem, the added complexity may be affordable as a
pre-processing step.

the set Rf =def {u | (f, u) ∈ R} is regular. By Γ we denote
the set Γ =def {f | f ∈ Σ, Rf 6= ∅} and we call the symbols
from Γ function symbols. We denote function symbols by
f, f1, . . . and terminal symbols from Σ \ Γ by a, b, a1, . . ..

A play of the game G is played by two players, Juliet
and Romeo, on a word w ∈ Σ∗.

In its original form, as introduced in [9], the game pro-
ceeds in rounds, in each of which Juliet selects a position
of the current string and Romeo chooses a rewriting rule
to replace the current symbol f at that position by a string
from Rf . For the purposes of this paper a different, but
equivalent, definition of (the rules of) context-free games is
more suitable,

In our definition, a play can have several passes in which
the focus is moved along the current string, from left to right.
In each round, Juliet selects whether the current symbol
in the current word should be rewritten or passed over. If
she chooses a rewrite, then Romeo chooses a substitution
for the symbol that is allowed by the rule set.

More formally, a configuration is a tuple C = (p, u, v) ∈
{1, 2}×Σ∗×Σ∗ where p is the player to move (1 for Juliet
and 2 for Romeo), uv is the current word, and the first
symbol of v is the current position. A winning configuration
for Juliet is a configuration C = (p, v, ε) with v ∈ T .

In each configuration (1, u, v) with v 6= ε, Juliet can ei-
ther choose a Read move or, if the first symbol f of v is
from Γ a Call move. If she selects Read, the play moves one
step to the right. If she selects Call, then Romeo selects a
string from the set Rf . In a configuration (1, u, ε) Juliet
can either do a left step or stop the game.

A move of Juliet is thus represented by Read, Call, LS
or Stop and a move of Romeo is represented by a string x.

The configuration C′ = (p′, u′, v′) is a possible successor
configuration of C = (p, u, v) (Notation: C → C′) if

(1) p′ = p = 1, u′ = us, and sv′ = v for some s ∈ Σ (Juliet
plays Read);

(2) p = 1, p′ = 2, u′ = u, and v′ = v (Juliet plays Call);

(3) p = 2, p′ = 1, u′ = u, v = fx for some f ∈ Γ, v′ = yx
for some y ∈ Rf (Romeo plays y);

(4) p′ = p = 1, u 6∈ T , v = ε, v′ = u, u′ = ε, (Juliet plays
LS).

If Juliet plays Stop in a configuration C = (p, u, ε) we write
C → > if u ∈ T and C → ⊥ if u 6∈ T and we thus consider
> and ⊥ as configurations as well.

Since we will mostly consider configurations where Juliet
is to move, we often omit the player when talking about
them. Thus (u, v) is a shorthand for (1, u, v).

The initial configuration of game G for string u is defined
as C0(u) =def (1, ε, u).

A play of the game G is either an infinite sequence Π =
C0, C1, . . . or a finite sequence Π = C0, C1, . . . , Ck of config-
urations, where, for each i > 0, Ci−1 → Ci . If the sequence
is finite, then Ck must be either > or ⊥. If Ck = >, Juliet
wins the play, in all other cases, Romeo wins. We write
Π ≡ p if player p wins Π.

We assume in this paper that a game G = (Σ, R, T ) is rep-
resented by a DFA A(T ) for T and by a NFA Af for Rf , for
every f ∈ Γ.2 In the sequel, let A(T ) = (Q,Σ, δ, F, q0) with

2We note that whether Rf is represented by DFAs or NFAs
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state set Q, transition function δ : Q × Σ → Q, accepting
states F ⊆ Q and initial state q0 ∈ Q.

We note that our definition of active context-free games
is indeed equivalent to the one in [9]. Juliet can select
an arbitrary position by playing a sequence of Read moves
possibly followed by a LS move, another sequence of Read
moves and, eventually, a Call move at the desired position.

2.2 Game trees
The game tree TreeG,u for G on string u is a tree labeled

by configurations. Each branch of the tree represents one
possible play of the game. The root of TreeG,u is labeled by
the initial configuration C0(u). A node labeled C has one
child for every configuration C′ such that C → C′. This
means that the only leaves of TreeG,u are nodes labeled by
final configurations of finite plays. In general, nodes labeled
by configurations C = (1, u, v) have one or two children: if
v = sv′ for some s ∈ Σ, there is always one child corre-
sponding to a Read move, and a second one corresponding
to a Call move exists iff s ∈ Γ. If v = ε, the two children
correspond to a LS and Stop move respectively. Nodes la-
beled by configurations where Romeo is to move can have
infinitely many children.

2.3 Strategies
A strategy for player p ∈ {1, 2}maps prefixes C0, C1, . . . , Ck

of plays, where C0 is an initial configuration and Ck is a
p-configuration, to allowed moves. A strategy σ is memory-
less if, for every prefix C0, C1, . . . , Ck of a play, the selected
move σ(C0, C1, . . . , Ck) only depends on Ck.

We denote strategies for Juliet by σ, σ′, σ1, . . . and strate-
gies for Romeo by τ, τ ′, τ1, . . ..

For configurations C,C′ and strategies σ, τ we write C
σ,τ−→

C′ if C′ is the unique successor configuration of C deter-
mined by the strategies σ and τ . Given an initial word

u and strategies σ, τ the play3 Π(σ, τ, u) =def C0(u)
σ,τ−→

C1
σ,τ−→ C2 · · · is uniquely determined.

A strategy σ for Juliet is finite on string u if the play
Π(σ, τ, u) is finite for every strategy τ of Romeo. It is a
winning strategy for u if Π(σ, τ, u) ≡ 1, for every τ . A strat-
egy τ for Romeo is a winning strategy for u if Π(σ, τ, u) ≡ 2,
for every strategy σ of Juliet.

We are particularly interested in restricted kinds of strate-
gies of Juliet.

A left-to-right (L2R) strategy for Juliet is a strategy in
which Juliet never does a LS move.

We denote the set of all unrestricted strategies for Juliet
in the context-free game G by STRAT(G), and the set of all
L2R-strategies by STRATL2R(G). The set of all strategies
for Romeo is denoted by STRATRomeo(G).

By definition, STRATL2R(G) ⊆ STRAT(G).
By safe(G) we denote the set of all words for which Juliet

has a winning strategy and by safeL2R(G) the set of all words
for which she has a winning L2R-strategy.

In this paper we are mainly interested in the following
algorithmic problem: given a context-free game G, decide

does not influence the complexity. However, we conjecture
that allowing NFAs for T may lead to an unavoidable expo-
nential blowup of the complexity. We chose DFAs for our
setting as we are interested in cases with reasonable effi-
ciency.
3As the underlying game G will always be clear from the
context, our notation does not mention G explicitly.

whether safeL2R(G) = safe(G). By L2RAll we denote the
set of all games G, for which safeL2R(G) = safe(G).

As context-free games are reachability games we can make
use of the following classical result; see, e.g., [6].

Theorem 2. Let G be context-free game, and u a string.
Then the following holds for the game starting from u.

(a) Either Juliet or Romeo has a winning strategy. If
Juliet or Romeo has a winning strategy then they also
have a memoryless strategy.

(b) Either Juliet has a winning L2R strategy or Romeo
has a winning strategy against all L2R strategies. If
Juliet has a winning L2R strategy then she also has
a memoryless winning L2R strategy. If Romeo has a
winning strategy against all L2R strategies then he also
has a memoryless such strategy.

Therefore, we will only consider memoryless strategies.
Thus, in the following, strategies σ for Juliet map config-
urations C to moves σ(C) ∈ {Call,Read} and strategies τ
for Romeo map configurations C to moves τ(C) ∈ Σ∗.

We sometimes consider subgames on a certain part of a
string and talk about strategies for subgames. From a con-
figuration (u, vw), Juliet can use a strategy σ on the sub-
game on v. This means that she follows σ until a configura-
tion (uv′, w) is reached.

The strategy tree for a strategy σ of Juliet is the re-
striction TreeG,u(σ) of TreeG,u to σ. In other words, for
nodes labeled by configurations where Juliet is to move,
we remove all subtrees rooted at children labeled by con-
figurations that are not selected by σ. Strategy trees for
Romeo are defined symmetrically. If we fix strategy σ for
Juliet and τ for Romeo, we get TreeG,u(σ, τ), which only
has one branch, labeled by the play Π(σ, τ, u). Notice that
if a strategy σ of Juliet is winning, then TreeG,u(σ) has no
infinite branches.

If Π(σ, τ, w) is finite, then wordG(w, σ, τ) is the word in
the final configuration of the play on w following σ and τ .
(and otherwise wordG(w, σ, τ) = ⊥). We let

wordsG(w, σ) =def {wordG(w, σ, τ)|τ ∈ STRATRomeo(G)}.

As usual, if the game G is clear from the context, we
shall omit G from the notation. We may also restrict these
definitions in a natural way to only include finite or L2R-
strategies where mentioned.

To deal with “game effects” the following will be useful.
We call a set of sets normal if it does not contain two sets
X and Y with X ⊂ Y . A finite set S of finite sets can be
normalized by applying the following Norm operator.

Norm(S) = {Y ∈ S | there is no X ∈ S, such that X ⊂ Y }.

Lemma 3. Let S1, S2 be normal sets of sets. If for every
s1 ∈ S1 there is s2 ∈ S2 such that s2 ⊆ s1 and vice versa
then S1 = S2.

Proof. We show that every set s1 ∈ S1 is also in S2.
The lemma then follows by symmetry.

Let thus s1 ∈ S1. By our assumption there is s2 ∈ S2

such that s2 ⊆ s1 and there is a set s′1 ∈ S1 such that
s′1 ⊆ s2. However, as S1 is normal, s1 = s′1 and we get
s1 = s′1 ⊆ s2 ⊆ s1 and thus s1 = s2.

We sometimes just write N(S) for Norm(S).
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3. FROM GENERAL TO L2R+-STRATEGIES

Definition 1. A strategy σ of Juliet is an extended L2R-
strategy (L2R+) if for every string u and every strategy τ
of Romeo, Juliet plays LS at most once and plays at most
one Call before the LS-move.

Lemma 4. Let G be a context-free game. Then safe(G) =
safeL2R(G) if and only if safeL2R+(G) = safeL2R(G).

Proof. If safe(G) = safeL2R(G), then safeL2R+(G) =
safeL2R(G) by definition.

Assume that safe(G) 6= safeL2R(G) and let w be a string
in safe(G) \ safeL2R(G). Let σ be a winning strategy for
Juliet on w, i.e., starting from the configuration (1, w, ε).
Consider the strategy tree TreeG,w(σ). In addition to the
configuration labels, we mark each node n in this tree with
a value LS(n), where LS(n) is the maximum number of LS
moves, on any branch of the subtree rooted in n. Since the
tree has infinite branching, the value LS(n) can, in general,
be unbounded, i.e., LS(n) =∞. Since σ is a winning strat-
egy, however, the tree has no infinite branches.

Nodes n with LS(n) 6=∞ and LS(n) > 0 are also marked
by Calls(n), the maximum number of Call moves that occur
before the first LS step, on any branch of the subtree rooted
in n. We note that Calls(n) might be ∞.

In the following, we call, for nodes n with LS(n) 6=∞, the
pair (LS(n),Calls(n)) the marking of n and we denote by ≤
the lexicographic order on markings.

Without loss of generality, we may assume that σ is op-
timally efficient in the following sense. We assume that for
every node n of the strategy tree, labeled with a config-
uration (p, u, v), such that LS(n) 6= ∞, there is no other
winning strategy σ′ on w, such that the strategy tree for
σ′ and w has a node n′ labeled with the same configura-
tion but having a lexicographically smaller marking. Such
an optimally efficient strategy can be constructed for every
configuration (p, u, v) by nested induction on the minimal
value of (LS(n),Calls(n)) that nodes n representing (p, u, v)
can assume in winning strategies for (p, u, v).

As safe(G) 6= safeL2R(G), there must be a node n in
TreeG,w(σ) with LS(n) > 0.

We first show that TreeG,w(σ) must contain nodes n with
LS(n) > 0, LS(n) 6= ∞ and with a marking different from
(1, 0), i.e. configurations in which Juliet actually has to
make at least one more Call before her last LS move.

If TreeG,w(σ) has nodes with LS-value ∞, it also has a
node n′, where LS(n′) = ∞, but LS(n) 6= ∞, for every
child node n of n′. Otherwise, TreeG,w(σ) would have in-
finite branches, contradicting the fact that σ is a winning
strategy. There must be arbitrarily large LS-values among
the children of n′ as otherwise LS(n′) 6= ∞. In particular,
n′ must have a Juliet-grandchild n with LS(n) > 1 and
therefore a marking differing from (1, 0).

If TreeG,w(σ) has no nodes with LS-value∞, then for the
root r of TreeG,w(σ) it holds LS(r) 6=∞, and thus LS(r) ≥ 1
(as otherwise w ∈ safeL2R(G)) and Calls(r) > 0 (as other-
wise one LS-step less would suffice — at the root the current
position is 1!).

Thus, there must be a Juliet-node n1 with LS(n1) > 1,
LS(n1) 6=∞ and with a marking different from (1, 0).

Let n be any node with LS(n) > 0, LS(n) 6=∞ and with
a marking (i, j) 6= (1, 0). For the markings of the children
and grandchildren of n there are the following possibilities.

(i) Juliet plays Read on n and for the unique child n′ of
n the marking is (i, j).

(ii) Juliet plays Call on n, j = ∞, and there is a grand-
child n′ of n with marking (i,∞).

(iii) Juliet plays Call on n, j =∞, there are grandchildren
n′′ with LS(n′′) = i and for all grandchildren markings
of the form (i, j′), j′ 6= ∞. In particular, there is a
grandchild n′ with marking (i, j′), for some j′ > 0.

(iv) Juliet plays Call on n, j 6= ∞, and all grandchildren
have markings that are strictly smaller than (i, j), in-
cluding one child n′ with marking (i, j − 1).

(v) Juliet plays LS on n, j = 0 and the child n′ of n
has a configuration of the form (1, u, ε) and marking
(i− 1, j′) with j′ > 0.

We can construct a sequence n1, n2, . . . of nodes by chos-
ing, in all cases (i)-(v), ni+1 = n′i, for i ≥ 1. As this se-
quence follows a branch of the tree and n1 is a winning node
for σ, the sequence can not be infinite. Furthermore, each
leaf has marking (1, 0). Therefore, the sequence must con-
tain a Juliet-node n` with marking (1, 1). Let (1, x, y) be
the configuration of n`. We claim that xy ∈ safeL2R+(G) \
safeL2R(G).

First, xy 6∈ safeL2R(G), as otherwise the marking of n`
would be at most (1, 0) (no Call move needed before the
LS-step).

On the other hand, as the marking of n` is (1, 1), starting
from (1, xy, ε), Juliet can play Read on x and can win with
one Call before the one and only LS move, therefore xy ∈
safeL2R+(G). Thus, safeL2R+(G) 6= safeL2R(G), completing
the proof.

4. EFFECTS FOR L2R STRATEGIES
Effects are a way to summarize the impact with respect

to the automaton A(T ) of the possible strings by which a
(sub-)string can be rewritten in one pass of a play. (Recall
that A(T ) = (Q,Σ, δ, F, q0) is the DFA accepting the regular
language T .) In this section, we only consider L2R strategies
for Juliet, that is, Juliet never makes an LS-move.

Suppose we have the game configuration (1, v, uw). As
play goes on, it will eventually reach some configuration
(1, vu′, w), where u has been traversed and rewritten into
u′. If we fix a strategy for Juliet and Romeo then u′ is
uniquely determined (unless the subgame on u does not ter-
minate). If we only fix a strategy σ for Juliet, each strategy
of Romeo determines a string u′ (or does not terminate) and
we can associate the set words(u, σ) with σ. The relative ef-
fect e(σ, u, q) of u for a strategy σ of Juliet and a state
q is just the set of states that A(T ) can reach by reading
strings in words(u, σ), starting from state q. The effect of u
is basically the set of all such sets e(σ, u, q), for all states q
and strategies σ.

Thus E [u] is a mapping that assigns to every state of Q
a set of sets of states and thus its type is Q→ P(P(Q)).

Definition 2. Let u be a string, q ∈ Q a state and σ a
L2R-strategy of Juliet. The relative effect e(σ, u, q) is the
set {δ∗(q, w)|w ∈ words(u, σ)} or ⊥ if ⊥ ∈ wordsG(w, σ).

The effect E [u] of u maps every state q to the normalized
set of relative effects e(σ, u, q) of u for all σ ∈ STRATL2R.
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Stated less formally, e(σ, u, q) is the set of states for which
there is a strategy τ of Romeo and a string w ∈ Σ∗ such
that w = word(u, σ, τ) and δ∗(q, w) = p, or ⊥ if ⊥ ∈
wordsG(w, σ). The definition of the effect E [u] uses nor-
malized sets of relative effects as Juliet can always restrict
herself to strategies with minimal relative effects.

Lemma 5. Let u be a string and G a context-free game.
Then, u ∈ safeL2R(G) if and only if there is a relative effect
e ∈ E [u](q0) for which e ⊆ F .

Proof. The latter condition is equivalent to the existence
of a strategy for Juliet for which all states that can be
reached by counter-strategies of Romeo are in F and there-
fore is equivalent to u ∈ safeL2R(G).

If we want to stress the game relative to which an effect
is defined, we add a superscript to this notation as in EG[s]
or in eG(σ, s, q).

It should be noted that strategies of Juliet for which
Romeo has a non-terminating counter strategy are not re-
flected in the effect of a word u. We tacitly assume that
Juliet will always follow a strategy that guarantees termi-
nation (and such strategies are always available as Juliet
can simply stick to Read moves).

Henceforth, we will often consider relative effects and ef-
fects without having an underlying word u at hand. An
(abstract) relative effect is just an element of P(Q). An
(abstract) effect is a mapping E of type Q → P(P(Q)),
such that every E[q] is normal. We denote the set of all4

abstract effects by E .

Composition.
We next define the composition operation ◦ for effects. If

E1 = E [u] and E2 = E [v] then E1◦E2 should just be E [uv].
However, we need a definition of ◦ for abstract effects, that
is, a definition that is independent of the strings u and v.

The definition uses the operation Mix, which is defined
on sets of sets of sets. Let D = {D1, . . . , Dn} be a set of sets
of sets. Then Mix(D) is the set

Norm({d1 ∪ · · · ∪ dn | d1 ∈ D1 ∧ · · · ∧ dn ∈ Dn}).

In other words, the Mix operation computes every way of
taking the union of one element from each of D1, . . . , Dn.

We define the composition E1 ◦E2 of two abstract effects
E1, E2 : Q→ P(P(Q)) as follows.

(E1 ◦ E2)(q) = Norm(
⋃

X∈E1(q)

Mix({E2(p) | p ∈ X})).

Intuitively, for all sets X that Juliet can choose from E1(q),
Juliet can answer each choice of a state p ∈ X by Romeo
with a strategy from E2(p). The resulting state sets, for
each X have to be put together into one set of states that
Juliet can enforce by some strategy.

Lemma 6. Let u, v be strings. Then E [u] ◦E [v] = E [uv].

Proof. We show that, for each q, it holds that, for each
relative effect e in (E [u] ◦ E [v])(q) there is a relative effect
e′ ∈ E [uv](q) with e′ ⊆ e and vice versa. The statement of
the lemma then follows by minimality of relative effects.

4As always, we assume that the target automaton A(T ) is
fixed.

Let e ∈ (E [u]◦E [v])(q) be a relative effect. We show that
there is a relative effect e′ ∈ E [uv](q) such that e′ ⊆ e.

By the definition of ◦ there exists a relative effect X =
{q1, . . . , qk} ∈ E [u](q) and relative effects ei2 ∈ E [v](qi), for

each i, such that e =

k⋃
i=1

ei2.

We denote the strategy of Juliet on u yielding X by σ1

and the strategies on v yielding e12, . . . , e
k
2 (from q1, . . . , qk,

respectively) by σ1
2 , . . . , σ

k
2 , respectively.

We define a strategy σ on uv for Juliet as follows. In
the first phase, on u, Juliet plays according to σ1. If y is
the word by which u is rewritten in the game on u, then
δ∗(q, y) = qi, for some i ∈ {1, . . . , k}. In the second phase,
on v, Juliet plays according to strategy σi2.

We claim that for e′ = e(σ, uv, q) it holds e′ ⊆ e. Let
p ∈ e′ be arbitrarily chosen. Thus, there is a strategy τ
of Romeo such that the word w = word(uv, σ, τ) fulfills
δ∗(q, w) = p. We can write w as w1w2, where w1 is the
rewriting of u and w2 the rewriting of v in the game following
σ and τ .

By definition of X = e(σ1, u, q) and the definition of σ it
follows that δ∗(q, w1) ∈ X and thus δ∗(q, w1) = qi, for some
i. Therefore, Juliet plays according to σi2 in the game on v
and consequently δ∗(qi, w2) ∈ e(σi2, v, qi) = ei2. Altogether,

p = δ∗(q, w) = δ∗(δ∗(q, w1), w2) = δ∗(qi, w2) ∈ ei2 ⊆ e,

as required.
Next we show that for each relative effect e′ ∈ E [uv](q)

there is a relative effect e in (E [u] ◦ E [v])(q) with e ⊆ e′.
Let e′ ∈ E [uv](q) be a relative effect and let σ be a strat-

egy of Juliet such that e′ = e(σ, uv, q). Let σ′ denote
the strategy of Juliet on u that is induced by σ and let
X = e(σ′, u, q) = {q1, . . . , qk}.

Let w1, . . . , wk be words from words(u, σ′) such that, for
every i, δ∗(q, wi) = qi and let τ1, . . . , τk be corresponding
strategies of Romeo on u. For every i, let σi denote the
strategy of Juliet on v induced by σ from configuration
(wi, v) on and let Xi = e(σi, v, qi). Finally, let

e =

k⋃
i=1

Xi ∈Mix({E [v](p) | p ∈ X}).

We claim that e ⊆ e′: Let p be an arbitrary state in
e, thus p ∈ Xi, for some i. There exists a strategy τ ′ of
Romeo on v such that for the word z = word(v, σi, τ

′) it
holds δ ∗ (qi, z) = p. Combining τi (on u) and τ ′ (on v)
yields a strategy τ for Romeo such that word(uv, σ, τ) =
wiz. Furthermore, δ∗(q, wiz) = δ∗(δ∗(q, wi), z) = p and
thus p ∈ e′ = e(σ, uv, q).

5. AUTOMATA FOR L2R STRATEGIES
In this section, we define, for each context-free game G,

the NFAs AL2R(G) and ÂL2R(G), recognizing safeL2R(G)
and Σ∗ \ safeL2R(G), respectively. One of them, AL2R(G),
is based on the computation of relative effects of the form
e(σ, u, q0) for strategies σ of Juliet, whereas the other is
based on the computation of dual effects (to be defined be-
low) of the form ê(τ, u, q0) for strategies τ of Romeo. Fur-
thermore, we show correctness of these automata and how
to compute them in exponential time from G.
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5.1 L2R automata

Definition 3. Let G = (Σ, R, T ) be a context-free game
with a DFAA(T ) = (Q,Σ, δ, q0, F ) for T . The NFAAL2R(G) =
(QL2R,Σ, δL2R, {q0}, FL2R) is defined as follows:

• QL2R = P(Q);

• δL2R(X, s) = Mix({E [s](q) | q ∈ X}), for each X ⊆ Q
and s ∈ Σ;

• FL2R = P(F ).

Proposition 7. Let G = (Σ, R, T ) be a context-free game
with a DFA A(T ) = (Q,Σ, δ, q0, F ) for T . Then L(AL2R(G)) =
safeL2R(G).

Proof. We show by induction on |u| that for every string
u ∈ Σ∗ we have Norm(δ∗L2R({q0}, u)) = E [u](q0):

For u = ε, Norm(δ∗L2R({q0}, ε)) = {{q0}} = E [ε](q0).
For u = vs we get

N(δ∗L2R({q0}, vs)) = N(
⋃

X∈δ∗L2R({q0},v)

δL2R(X, s))

= N(
⋃

X∈E [v](q0)

δL2R(X, s))

= N(
⋃

X∈E [v](q0)

Mix({E [s](q) | q ∈ X}))

= (E [v] ◦ E [s])(q0)

= E [u](q0).

We can conclude as follows that Juliet has a L2R winning
strategy on u if and only if AL2R(G) accepts u.

u ∈ safeL2R(G) ⇔ ∃e ∈ E [u](q0) : e ⊆ F
⇔ E [u](q0) ∩ P(F ) 6= ∅
⇔ N(δ∗L2R({q0}, u)) ∩ P(F ) 6= ∅
⇔ δ∗L2R({q0}, u) ∩ P(F ) 6= ∅

5.2 Computing L2R automata

Proposition 8. There is an algorithm that computes in
exponential time the NFA AL2R(G) for each context-free game
G = (Σ, R, T ), provided that T is represented by a DFA
A(T ) = (Q,Σ, δ, q0, F ) and the sets Rf are represented by
DFAs, NFAs or regular expressions.

Proof. The algorithm first computes in exponential time
the effects E [s], for every symbol s ∈ Σ, using Algorithm 1
below. By Proposition 9 below, this is possible in exponen-
tial time. The construction of AL2R(G) is then straightfor-
ward. It should be noted that Mix({E [s](q) | q ∈ X}) can
be computed in exponential time as |{E [s](q) | q ∈ X}| ≤
|Q| and each set E [s](q) is of at most exponential size.

We next show how to compute the effect E [s] for each
symbol s of a context-free game G by a monotone fixed-
point computation in exponential time. The pseudo-code of
our algorithm is stated as Algorithm 1 below.

The algorithm uses a variable P (s, q) for each symbol s
and every state q ∈ Q, intended to represent E [s](q) and

maintains the invariant P (s, q) ⊆ E [s](q). In other words,
for each set X in P (s, q), there is an L2R-strategy σ of
Juliet such that X = e(σ, s, q).

Slightly abusing notation, we write P [s] for the function
defined by q 7→ P (s, q). It should be noted that during the
computation the functions P [s] need not be “real effects”
in the sense that there is some string u with P [s] = E [u].
They are rather “partial effects”, that is, arbitrary functions
of type Q→ P(P(Q)).

In the description of the algorithm, we use P [w] as a short-
hand for P [a1] ◦ · · · ◦ P [a`], where a1 · · · a` = w and the
operation ◦ is defined just as for effects.

Algorithm 1 Compute the effects of symbols from Σ

for all s ∈ Σ, q ∈ Q do
2: P [s](q)← {{δs(q)}}

while some set P [s](q) has changed in the previous it-
eration do

4: for all f ∈ Γ, q ∈ Q do
P [f ](q)← P [f ](q) ∪Mix({P [w](q) | w ∈ Rf})

6: P [f ](q)← Norm(P [f ](q))

Proposition 9. Algorithm 1 computes, for every context-
free game G = (Σ, R, T ), the effect E [s], for every symbol
s ∈ Σ. If T is represented by a DFA A(T ) = (Q,Σ, δ, q0, F )
and the sets Rf are represented by DFAs, NFAs or regular
expressions it can be carried out in exponential time.

Proof. We first show how the algorithm can be imple-
mented to run in exponential time. We assume without loss
of generality that all sets Rf are represented by NFAs.

As every set P [s](q) can only contain sets of at most ex-
ponential size (in |Q|), the number of iterations of the while
loop is at most exponential. Line 6 will make sure that
P [f ](q) is always normal. It thus only remains to show how
to implement a single execution of line 5,

P [f ](q)← P [f ](q) ∪Mix({P [w](q) | w ∈ Rf}).

The idea is to cycle through all sets U ⊆ Q that do not yet
have a subset in P [f ](q), to test whether U ∈Mix({P [w](q) |
w ∈ Rf}), and to add it to P [f ](q) if this is the case. We
do this in a bottom up fashion, starting with the singelton
subsets of U , then testing the subsets of size 2 and so on.

Given a set U that does not yet have a subset in P [f ](q),
we test whether, for each w ∈ Rf , there is a set W ∈
P [w](q) with W ⊆ U . If this is not the case, then U 6∈
Mix({P [w](q) | w ∈ Rf}). If, on the other hand, this is
the case, then there is a subset U ′ of U that belongs to
Mix({P [w](q) | w ∈ Rf}). In fact, we must have U = U ′,
since otherwise, we would have already added U ′ to P [f ](q),
and not considered U for testing.

The test above can be implemented with the help of a
suitable automaton. An NFA B is constructed that accepts
all strings w ∈ Σ∗ for which there is a set W ∈ P [w](q) with
W ⊆ U . This automaton is defined as AL2R(G) in Definition
3 below, but with the following modifications. First, the
initial state is {q}. Second, the set of accepting states is
P(U). Third, the transition function is defined with the
sets P [s](p) in place of E[s](p), for symbols s and states p.

That L(B) is as stated above can be shown in analogy to
the proof5 of Proposition 7. Whether, for each w ∈ Rf , there

5We point out that the current proof is similar to the proof of

110



is a set W ∈ P [w](q) with W ⊆ U , can then be tested by
checking whether Rf ⊆ L(B). This latter test asks whether
the language of an NFA of polynomial size is contained in
the language of an NFA of exponential size. It can be trans-
lated into a nonemptiness test for an automaton of exponen-
tial size (the intersection of B with the complement of the
automaton for Rf ) and is thus doable in polynomial space.

It remains to show that the algorithm is also correct, that
is, that after its termination it holds P [s] = E [s], for every
s ∈ Σ. We do this in two steps.

We make use of the following notation. Let P j [s] denote
the value of P [s] after the j-th iteration of the WHILE loop.
For a strategy σ of Juliet and a string u ∈ Σ∗, we write
Depth(σ, u) for the maximum nesting depth of Call moves
in any play Π(σ, τ, u). If the nesting depth is unbounded,
we let Depth(σ, u) = ω

We first show the following claim.

Claim 1. For every j ≥ 0, for all symbols σ ∈ Σ and for all
q ∈ Q, P j [s](q) contains exactly the relative effects e(σ, s, q),
for all strategies σ of Juliet with Depth(σ, s) ≤ j.

We prove Claim 1 by induction on j.
For j = 0 this holds true as each P 0[s](q) = {{δ(q, s)}}

is just the set with the relative effect corresponding to the
strategy of Juliet that reads s in its very first step.

Now let j > 0 and let the induction hypothesis hold for
all m < j. We need to prove the induction step only for
symbols f ∈ Γ (as opposed to s ∈ Σ), as symbols in Σ \ Γ
only have depth-0 strategies for Juliet.

As {P j−1[w](q) | w ∈ Rf} is a finite set, there are ` ∈ N,
and strings w1, . . . , w` ∈ Rf such that {P j−1[w](q) | w ∈
Rf} = {P j−1[wi](q) | i ∈ {1, . . . , `}}. For each w we de-
note by i(w) the number in {1, . . . , `} with P j−1[w](q) =
P j−1[wi(w)](q). For reference, we denote the set {w1, . . . , w`}
by S(j, f, q).

Let now e be a relative partial effect in P j [f ](q). If e ∈
P j−1[f ](q), then e = e(σ, f, q) for some strategy σ of Juliet
with Depth(σ, f) ≤ j − 1, by induction. Thus, we assume
e ∈ P j [f ](q) \ P j−1[f ](q) and thus e “arrived” in P [f ](q)
in the j-th iteration of the WHILE loop. Therefore, e ∈
Mix({P j−1[w](q) | w ∈ Rf}). Furthermore, there are rela-
tive partial effects e1, . . . , e` such that

• ei ∈ P j−1[wi](q), for every i, and

• e = e1 ∪ · · · ∪ e`.

By induction and the correctness of ◦ we can conclude that,
for each i, there is a strategy σi of Juliet on wi of depth
≤ j − 1 such that ei = e(σi, wi, q).

The strategy σ of depth j can now be obtained as follows.
In the first round, Juliet does a Call move. Then, if Romeo
chooses a string w ∈ Rf she follows the strategy σ′ such that
e(σ′, w, q) = ei, for the i ∈ {1, . . . , `} with P j−1[w](q) =
P j−1[wi](q). Thus, e(σ, s, q) = e1 ∪ · · · ∪ e` = e.

Conversely, let σ be a strategy of Juliet on f of depth at
least 1 and at most j and let e = e(σ, f, q). The first step of
Juliet, following σ, is a Call on s. For each i ∈ {1, . . . , `} let
σi be the strategy of Juliet that is induced by σ on wi and
let ei = e(σi, wi, q). Now for each possible reply w ∈ Rf of
Romeo, let σw be the strategy that yields e(σi(w), wi(w), q)

Proposition 7 but not on the proof of Proposition 8. Rather
the proof of Proposition 8 will be based on the current proof.

and let ew = e(σw, w). Thus,

e =
⋃

w∈Rf

ew = e1 ∪ · · · ∪ e`.

Clearly, each strategy σw, and in particular every σwi

has a Call depth ≤ j − 1 on wi. Thus, by induction we
conclude that ei ∈ P [wi](q), for every i and therefore e ∈
Mix({P j−1[w](q) | w ∈ Rf}), as required.

This concludes the proof of the Claim 1.

So far we have not ruled out that there might be a strategy
σ of Juliet with unbounded Call depth such that e(σ, f, q) 6∈
P [s](q), at the end of the computation of Algorithm 1.

To bridge the gap, we use an additional game G′ that is
obtained from G by a restriction to finite rule sets as follows.

For each f and each string w ∈ Rf let v(f, w) be a string
of minimal length such that v(f, w) ∈ Rf and E [v(f, w)] =
E [w].

Let S be the union of the set of all strings of the form
v(f, w) with all sets6 of the form S(j, q, f) that were defined
in the proof of Claim 1. Let G′ = (Σ, R′, T ), where, for each
f , R′f = Rf ∩ S.

As all sets S(j, q, f) are finite and there are only finitely
many effects with respect to G, S is a finite set and thus all
sets R′f are finite as well.

Claim 2. For every symbol s, EG[s] = EG
′
[s].

Obviously, for each s and q and every finite G-strategy σ
of Juliet, the G′-strategy σ′ that is is induced by σ fulfills

eG
′
(σ′, s, q) ⊆ eG(σ′′, s, q), simply because all plays in G′

are also plays in G. To complete the proof of Claim 2 it
thus suffices to prove the following claim.

Claim 3. For every string u ∈ Σ∗, state q and finite G′-
strategy σ′ of Juliet there is a finite G-strategy σ with

eG(σ, u, q) ⊆ eG
′
(σ′, u, q).

We first observe that DepthG
′
(σ′, u) < ω Otherwise, the

strategy tree induced by σ′ on u would be a finitely branch-
ing tree with arbitrarily long branches and thus would con-
tain infinite branches by König’s Lemma, contradicting finite-
ness.

Thus, we can show Claim 3 by induction on DepthG
′
(σ′, u).

The case DepthG
′
(σ′, u) = 0 is simple as G′ and G co-

incide as long as no Calls are made (as in the play on u
following σ′).

For the induction step, let DepthG
′
(σ′, u) = k > 0 and let

us assume that the claim holds for smaller depths.

Let e′ = eG
′
(σ′, u, q).

We consider two cases.
The first case is that u = sw, for some s ∈ Σ and w ∈ Σ∗

and σ′ plays a Read on s.

In this case, we can conclude that eG
′
(σ′, w, p) = e′ and

that DepthG
′
(σ′w, w) < k, where p = δ(q, s) and σ′w is the

strategy of Juliet on w induced by σ′. Thus, by induction,

there is a G-strategy σw with eG(σw, w, p) ⊆ eG
′
(σw, w, p).

Combing σw with an initial Read on s yields the desired
strategy σ.

The second case is that u = fw, for some f ∈ Σ and
w ∈ Σ∗ and σ′ plays a Call on f .

6The sets S(j, q, f) will become important after the proof of
Claim 2.
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We define σ as follows. For each z ∈ Rf , v(z, f) is a
possible answer of Romeo in both games G and G′. As

DepthG
′
(σ′, v(z, f)) < k, induction yields a finite G-strategy

σz,1 with eG(σz.1, v(z, f)w, q) ⊆ eG
′
(σ′, v(z, f)w, q) = e′. As

EG[v(f, w)] = EG[v], there is a strategy σz for Juliet with
eG(σz.1, v(z, f), q) = eG(σz, z, q).

We define strategy σ for the case that Romeo replies by
z on fw as follows. It plays according to σz on z and then
follows the strategy induced by σz.1 on w. Altogether, we
can conclude eG(σ, fw, q) ⊆ e′, as required.

This completes the proofs of Claim 3 and of Claim 2.

To complete the proof of the proposition it suffices to ob-
serve that, by the choice of the set S, the output of Algo-
rithm 1 on input G is the same as on input G′.

As all rule sets in G′ are finite, every finite strategy σ′ of

Juliet contributing to EG
′
[s] are of bounded Call depth.

Otherwise, the strategy tree induced by σ′ on a symbol
s would be a finitely branching tree with arbitrarily long
branches and thus would again contain infinite branches by
König’s Lemma, contradicting finiteness. Therefore, Algo-

rithm 1 computes, on input G or G′, all effects EG
′
[s] cor-

rectly and thus, by Claim 2, also all effects of G.

5.3 Automata for strategies of Romeo
For the proof of Theorem 17 below, we need an NFA of ex-

ponential size for Σ∗ \ safeL2R(G). As complementation of
AL2R(G) might yield an automaton of doubly exponential
size (in |G|), we follow a different approach by construct-
ing an NFA for Σ∗ \ safeL2R(G) that works analogous as
AL2R(G) but is based on strategies of Romeo. To this end,

we define dual effects and the dual automaton ÂL2R(G) next.

Definition 4. Let G be a context-free game, u a string, q
a state of the target automaton and τ a strategy of Romeo.
The dual relative effect ê(τ, u, q) is the set {δ∗(q, w)|w =
word(u, σ, τ), σ ∈ STRATL2R(G)}.

The dual effect Ê [u] of u maps every state q to the normal-
ized set of dual relative effects ê(τ, u, q) of u for all strategies
τ ∈ STRATRomeo(G).

For the sake of clarity, we will sometimes refer to non-dual
(relative) effects as primal (relative) effects.

The informal meaning of dual relative effects is dual to the
informal meaning of primal relative effects: ê(τ, u, q) is the
set of states, for which there is a strategy σ of Juliet and a
string w ∈ Σ∗ such that w = word(u, σ, τ) and δ∗(q, w) = p.
We note that non-terminating plays do not contribute to
dual effects, as for every strategy τ there is a strategy σ of
Juliet that yields a finite play (e.g., the strategy that al-
ways does Read), and thus reflecting non-terminating plays
in ê(τ, u, q) would not have any consequences.

The dual effect of a string can be obtained from its primal
effect via a simple operation, SMix, very similar to the Mix
operation used in previous sections. Let D = {D1, . . . , Dn}
be a set of sets. Then

SMix(D) = Norm({{d1, . . . , dn} | d1 ∈ D1∧· · ·∧dn ∈ Dn}).

In other words, SMix contains all sets that can be formed
by selecting one element from each of the elements of D.
Notice that, while Mix takes a set of sets of sets and returns
a set of sets, SMix takes a set of sets and returns a set of
sets.

Lemma 10. Let u be a string and q ∈ Q a state of A(T ).

Then Ê [u](q) = SMix(E [u](q)).

Proof. As both sets are normal it suffices, thanks to
Lemma 3, to show that for every ê ∈ Ê [u](q) there is some
e ∈ SMix(E [u](q)) such that e ⊆ ê, and vice versa.

Let ê ∈ Ê [u](q) and let τ be a strategy of Romeo such
that ê = ê(τ, u, q). By definition, ê = {δ∗(q, w) | w ∈
word(u, σ, τ), σ ∈ STRATL2R}. This means that for ev-
ery σ ∈ STRATL2R there is a a state in e(σ, u, q) that
also belongs to ê. In particular, there is an element e in
SMix(E [u](q) such that e ⊆ ê.

For the other direction, consider e ∈ SMix(E [u](q)). By
definition of E [u](q) and SMix, for every finite strategy σ of
Juliet there is a strategy τ of Romeo such that δ∗(q, w) ∈
e, where w = word(u, σ, τ). Let t = TreeG,u be the (full)
game tree for u. Let Le be the set of leaves of t that are
labeled by configurations (1, w, ε) with δ∗(q, w) ∈ e. Let Se
be the set of nodes n of t such that for every strategy σ of
Juliet, the subtree of the strategy tree TreeG,u(σ) rooted
in n either has an infinite branch or a leaf in Le.

The root of t must belong to Se. Otherwise, Juliet would
have a finite strategy σ such that no strategy of Romeo
yields a state in e, contradicting the above statement about
e. Furthermore, if a node in t belongs to Se and is labeled by
a configuration where Juliet is to move, then all its children
belong to Se. If a node in t belongs to Se and Romeo is to
move, then at least one of its children belongs to Se. We can
define a strategy τ for Romeo that from a node in Se always
selects a child node in Se. In the strategy tree TreeG,u(τ),
every node belongs to Se. This immediately implies that
ê(τ, u, q) ⊆ e.

It follows that composition of dual effects just works like
composition of effects. In the following, the operation “◦”
for dual effects is defined exactly as for effects.

Lemma 11. Let u, v be strings. Then Ê [u]◦Ê [v] = Ê [uv].

Proof. This follows from definition 4 exactly like the cor-
responding statement for primal effects by reversing the roles
of Juliet and Romeo in the proof of lemma 6.

Now we are ready to define the dual automaton ÂL2R(G)
for Σ∗ \ safeL2R(G).

Definition 5. Let G = (Σ, R, T ) be a context-free game
with a DFA A(T ) = (Q,Σ, δ, q0, F ) for T . Then the NFA

ÂL2R(G) = (Q̂L2R,Σ, δ̂L2R, {q0}, F̂L2R) is defined as follows:

• Q̂L2R = P(Q);

• δ̂L2R(X, s) = Mix({Ê[s](q) | q ∈ X}), for each X ⊆ Q
and s ∈ Σ;

• F̂L2R = P(Q \ F ).

Proposition 12. Let G = (Σ, R, T ) be a context-free game
with a DFA A(T ) = (Q,Σ, δ, q0, F ) for the target language.

Then L(ÂL2R(G)) = Σ∗ \ safeL2R(G).

Proof. As for AL2R(G), the first step is to show that

Norm(δ̂∗L2R(q0, u)) = Ê [u](q0), by induction on |u|.
For u = ε we have

Norm(δ̂∗L2R({q0}, ε)) = {{q0}} = Ê [ε](q0).
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For u = vs we get

N(δ̂∗L2R({q0}, vs)) = N(
⋃

X∈δ̂∗L2R({q0},v)

δ̂L2R(X, s))

= N(
⋃

X∈Ê [v](q0)

δ̂L2R(X, s))

= N(
⋃

X∈Ê [v](q0)

Mix({Ê [s](q) | q ∈ X}))

= (Ê [v] ◦ Ê [s])(q0)

= Ê [v](q0).

We can conclude as follows that Romeo has a L2R win-
ning strategy on u if and only if ÂL2R(G) accepts u.

u ∈ Σ∗ \ safeL2R(G) ⇔ ∃e ∈ Ê [u](q0) : e ∩ F = ∅
⇔ Ê [u](q0) ∩ P(Q \ F ) 6= ∅
⇔ N(δ̂∗L2R({q0}, u)) ∩ P(Q \ F ) 6= ∅
⇔ δ̂∗L2R({q0}, u) ∩ P(Q \ F ) 6= ∅

Proposition 13. There is an algorithm that computes
in exponential time the NFA ÂL2R(G) for each context-free
game G = (Σ, R, T ), provided that T is represented by a
DFA A(T ) = (Q,Σ, δ, q0, F ) and the sets Rf are represented
by DFAs, NFAs or regular expressions.

Proof. Similar to the algorithm computingAL2R(G), this
algorithm first computes in exponential time the effects E [s],

for every symbol s ∈ Σ. From these, it computes Ê [s], for

every s ∈ Σ, via Ê [s](q) = SMix(E [s](q)), for every q ∈ Q.
Each computation of a set SMix(E [s](q)) can be done in ex-
ponential time, similarly as for line 5 of Algorithm 1. To this
end, one can test, for every set X ⊆ Q, whether it can be
obtained by picking elements from the sets in E [s](q). The

sets Mix({Ê [s](q) | q ∈ X}) can be computed in exponential
time as well in a straightforward fashion.

6. UPPER BOUNDS
In this section, we prove the upper bounds results of our

Main Theorem 1. The problem L2RAll is decidable and
can actually be decided in exponential space. If all rule sets
are finite and given in the input explicitly, then the problem
can be decided in exponential time.

Before we describe the algorithm for L2RAll, we state
two auxilliary results that allow us to consider only finite
subsets of each replacement languages.

For any string w, let F (w) = {q ∈ Q | E[w](q)∩P(F ) 6= ∅}
be the set of states from which Juliet has a winning strategy
on w.

For a state q and a set S of states let Aq,SL2R denote the
automaton that is obtained from AL2R(G) by chosing q as
initial state and P(S) as set of accepting states.

Lemma 14. For every state q and w ∈ Σ∗ the automaton

A
q,F (w)
L2R accepts exactly the strings v such that there is a

winning strategy for Juliet on vw starting at state q in
A(T ).

The proof is similar to the proof of Proposition 7.

For a state q ∈ Q let Gq denote the game obtained from G
by chosing the state q as initial state of the target automa-
ton.

Lemma 15. Let q ∈ Q, w ∈ Σ∗ and f ∈ Γ. If there
is a string v ∈ Rf such that vw ∈ safeL2R(Gq) then there

is a string v′ of length at most |Qf | · 2|Q| such that v′w ∈
safeL2R(Gq).

Proof. This follows from Lemma 14 and a pumping ar-
gument for the product automaton B combining ÂL2R and
A(Rf ): For any two states (X1, p1), (X2, p2) ∈ Q̂L2R × Qf
there is a string v with δB((X1, p1), v) = (X2, p2) if and only

if there is such a string v′ of length at most |Q̂L2R ×Qf | =
|Qf | · 2|Q|.

Theorem 16. L2RAll ∈ EXPSPACE

Proof. We give a nondeterministic exponential-space al-
gorithm A deciding L2RAll, the complement of L2RAll.
This yields the result since EXPSPACE is closed under
complement and NEXPSPACE = EXPSPACE thanks to
Savitch’s Theorem [10].

The idea is that A guesses a symbol f ∈ Γ and strings
u,w such that ufw ∈ safeL2R+(G) \ safeL2R(G) is a witness
string on which Juliet plays Call in the first pass on ufw.
Thanks to Lemma 15, A only needs to verify that, for all
replacement strings v ∈ Rf of length at most |Qf | · 2|Q|,
it holds that uvw ∈ safeL2R(G). A short summary of A is
given as Algorithm 2.

Algorithm 2 Test for G ∈ L2RAll

1: Guess f ∈ Γ and a dual relative effect êuf
2: while Guessing a string u in a streaming fashion do
3: Use AL2R(G) to compute the set U = E[u](q0) non-

deterministically
4: Use ÂL2R(G) to nondeterministically verify êuf ∈

Ê[uf ](q0)
5: Guess a string w and compute F (w) by simulating
AL2R(G) backwards

6: if êuf ∩ F (w) = ∅ then
7: // ufw 6∈ safeL2R(G)

8: for all v ∈ Rf with |v| ≤ |Qf | · 2|Q| do
9: Guess a set Uv ∈ U

10: for all q ∈ Uv do

11: Simulate A
q,F (w)
L2R on input v

12: if A
q,F (w)
L2R accepts v then

13: // uvf ∈ safeL2R(G)
14: else
15: Reject

Accept
16: Reject

The main challenge is that the string u may in general be
of doubly exponential length and therefore cannot be stored.

Therefore, to compute the sets U = {U1, U2, . . . , Un}, A
guesses u in a streaming fashion, one symbol at a time. It
simulates AL2R on u and computes E[u](q0) online. This can
be done in exponential space by storing the set E[u](q0) ∈
P(P(Q)). At the same time, having guessed a dual relative

effect êuf , it guesses a run of ÂL2R on uf , effectively veri-
fying that there is a strategy corresponding to this relative
effect.
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Afterwards, to compute F (w) ∈ P(Q), A guesses a string
w, and incrementally computes a set F (w) ⊆ Q of states
from which Juliet can win the game as defined in Lemma 14.
The set F (sw′) can be computed from the set F (w′) by

checking, for each q ∈ Q, whether A
q,F (w′)
L2R accepts s. As

there are only exponentially many subsets of Q it is not
hard to prove by a standard pumping argument that w can
be chosen of exponential size and that its computation can
be actually carried out in polynomial space. With F (ε) = F
the correctness of this incremental computation follows by
a simple induction argument.

The algorithm then checks whether êuf contains a state
from F (w). If it does not, we know that ufw 6∈ safeL2R(G).
If it does, A immediately rejects.

Finally, A checks for all strings v ∈ Rf of length at most

|Qf | · 2|Q|, if uvw ∈ safeL2R(G). This can be done by (1)
cycling through all strings v of this length, (2) checking if
v ∈ Rf by simulating A(Rf ) on v and (3) in case A(Rf )
accepts v, guessing a set Ui ∈ U and testing whether for
every q ∈ Ui there is a relative effect e ∈ E [v](q) such that
e ⊆ F (w).

To perform test (3), A simulates, for each q ∈ Uv, a run

of A
q,F (w)
L2R on v. This can be done in PSPACE. If all runs

succeed, A concludes that uvw ∈ safeL2R(G), otherwise it
rejects.

Altogether, A only requires exponential space; it remains
to show that A accepts iff safeL2R+(G) \ safeL2R(G) 6= ∅.

If A accepts, then there exists a string ufw such that
(a) ufw /∈ safeL2R(G) (this follows directly from Lemma

14) and (b) for all v ∈ Rf of length at most |Qf | · 2|Q| there

exists a set Uv ∈ E[u](q0) such that v is accepted by A
q,F (w)
L2R

for all q ∈ Uv.
With Lemmas 14 and 15, it follows from (b) that for every

v ∈ Rf there is a strategy σv of Juliet on u such that for
all states q ∈ e(u, σv, q0), Juliet has a winning strategy on
vw starting at q.

This yields a winning L2R+strategy for Juliet on ufw:
In the first pass, Juliet calls f . On the second pass, de-
pending on Romeo’s choice of v, Juliet plays according to
σv on u and is guaranteed to reach a state starting from
which she has a winning strategy on vw.

For the ”only if” part, assume safeL2R+(G)\ safeL2R(G) 6=
∅ holds. Then there exists a word on which Juliet has a
winning L2R+strategy, but no winning L2R strategy. This
word must be of the form ufw with f being the symbol
Juliet calls on her first pass for some winning L2R+strategy
σ. In lines 1 through 4, A guesses this word.

Since Juliet has no winning L2R strategy on ufw, Romeo
must have a strategy τ on uf such that ê(uf, τ, q0)∩F (w) =
∅. Since this dual relative effect can be guessed by A, the
test on line 6 can be passed.

Let σv be Juliet’s strategy on u in case Romeo replaces
f by v ∈ Rf and Uv = e(u, σv, q0) ∈ E[u](q0). Since σ
is winning on uvw, Juliet has a winning strategy on vw
starting at q for any q ∈ Uv. Using Lemma 14, this means
that for any v ∈ Rf , A can guess a set Uv ∈ E[u](q0) = U

on line 9 such that all A
q,F (w)
L2R accepts v for q ∈ Uv. This

condition is checked in lines 10 through 15, and since it is
fulfilled for all v ∈ Rf , A accepts.

For games G with finite replacement languages, this algo-
rithm can be modified to run in exponential time in |G|.

Theorem 17. L2RAll ∈ EXPTIME for games with fi-
nite replacement languages, given explicitly as part of the
input.

Proof. We are going to modify Algorithm 2 such that
it runs in exponential time. This works because the only
NFAs of doubly exponential size that Algorithm 2 uses, can
be replaced by NFAs of exponential size, if the replacement
sets Rf are finite and explicitly given in the input.

Algorithm 2 uses nondeterminism for two kinds of pur-
poses: for guessing effects and other sets and for guessing
strings. The latter can be delegated to standard polynomial
space non-emptiness tests for exponential size automata,
while the former can be done by cycling through all possible
candidates (as there are always only exponentially many).

To this end, the algorithm A′ contains an outer loop over
all f ∈ Γ, sets W ⊆ Q and vectors of sets U1, . . . , U|Rf | ∈
P(Q). Inside this loop, similar to algorithm 2, A′ checks if
there are strings u and w such that U1, . . . , U|Rf | ∈ E[u](q0)

and W = F (w); then, all A′ needs to do is check for all
i = 1, . . . , |Rf | whether δL2R

∗(Ui, vi) ∩ P(F (w) 6= ∅ (with

Rf = {v1, . . . , v|Rf |}) and ÂL2R accepts ufw.
To verify the existence of a string u with U1, . . . , U|Rf | ∈

E[u](q0), A′ computes the product automaton of |Rf | copies
ofAL2R and checks whether the product state (U1, . . . , U|Rf |)
is reachable inpolynomial space (and thus exponential time).

To find a string w with W = F (w), A′ computes the
product automaton with one copy of AL2R

q,F , for each q ∈
W ; again, the verification of the existence of w is by a non-
emptiness test.

Finally, A runs one copy of AL2R with starting state Ui
and final state set P(W ) on vi for each i = 1, . . . , |Rf | and

runs ÂL2R on ufw; if all copies of AL2R and ÂL2R accept,
A accepts, since a separating string ufw has been found.
The correctness of this algorithm follows similar to the proof
of theorem 16, and since it loops an exponential number
of times and takes no more than exponential time in each
iteration, A′ is an EXPTIME algorithm deciding L2RAll
for games with finite replacement languages, given explicitly
as part of the input.

7. LOWER BOUNDS
In this section, we prove the hardness results of Theorem

1. More precisely, we show that L2RAll is EXPSPACE-
hard in general and EXPTIME-hard for games with finite
replacement sets.

Proposition 18. L2RAll is hard for EXPSPACE.

Proof (sketch). The proof is by a reduction from the
Exponential Width Corridor Tiling problem. In this
problem, we are given a set U = {u1, . . . , uk} of tiles with
a designated initial tile uI ∈ U and final tile uF ∈ U .
There are also two relations H,V ⊆ U × U . These are the
horizontal and vertical constraints, respectively. A tile uj
is only allowed to the right of a tile ui if (ui, uj) ∈ H and
only allowed on top of ui if (ui, uj) ∈ V . We are also given
a number n in unary notation.

Formally, a corridor tiling of width ` is a mapping t :
{0, . . . , ` − 1} × {0, . . . ,m} → U , for some m. A tiling t is
valid if

• t(0, 0) = uI ,

• t(`− 1,m) = uF ,
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• for every i ∈ {0, . . . , `− 2} and j ∈ {0, . . . ,m},
(t(i, j), t(i+ 1, j)) ∈ H, and

• for every i ∈ {0, . . . , ` − 1} and j ∈ {0, . . . ,m − 1},
(t(i, j), t(i, j + 1)) ∈ V .

Exponential Width Corridor Tiling asks whether an
instance I = (U, uI , uF , V,H, n) has a valid corridor tiling of
width 2n. This problem is well known to be EXPSPACE-
complete; see, e.g., [5, 11].

Given an input instance I = (U, uI , uF , V,H, n) for Ex-
ponential Width Corridor Tiling, we construct from
I a context-free game G = (Σ, R, T ) such that there exists
a valid corridor tiling for I if and only if there is a string
for which Juliet has a winning L2R+strategy but no L2R
strategy in G. The claim then follows from this reduction
by Lemma 4.

The rough idea of the construction of G is as follows. Let
2n be the target width for a tiling. Tilings are encoded by
strings of the form v = ((uc)∗)#)∗, where u is a tile and c a
0-1-string of length n that should encode the column number
of the position of u. A sequence (uc)∗ encodes a row of a
tiling and rows are separated by #. For each column number
i ∈ {0, 1, . . . , 2n − 1}, we denote by c(i) the encoding of i as
a binary string of length n over {0, 1}.

We construct G in such a way that all the strings in
safeL2R+(G) \ safeL2R(G) are of the form gvf , where v is
the encoding of a correct tiling.

The main task of Juliet in the game is to show that
the middle part v of the input string indeed represents a
correct tiling, while Romeo tries to disprove her. For this,
we utilize a protest technique [9], in which we force Juliet to
call potentially inconsistent symbols in the input, allowing
Romeo to flag constraint violations. The additional symbols
f and g are primarily meant to ensure that Juliet needs a
L2R+strategy to win; f is also needed to identify violations
of vertical constraints, as we shall describe later.

We next sketch the different ways in which a string v of
the form (U0n(U{0, 1}n)∗U1n#)∗ may fail to encode a valid
tiling. After that, we examine how to deal with these types
of violations.

• Horizontal error: v violates the horizontal constraints,
i.e. v contains a substring of the form u{0, 1}nu′ with
(u, u′) /∈ H;

• Constant error: The first (last) symbol from U in v is
not uI (uF );

• Increment error: Two subsequent column number en-
codings are inconsistent, i.e. v contains a substring of
the form c(i)Uc(j) with j 6= i+ 1;

• Vertical error: v violates the vertical constraints, i.e. v
contains a substring of the form uc(i)(U∪{0, 1})∗#(U∪
{0, 1})∗u′c(i) with (u, u′) /∈ V for some i ≤ 2n − 1.

We construct G such that Romeo can win without any
effort on inputs with horizontal or constant errors and by
pinpointing positions with increment or vertical errors other-
wise. Horizontal and constant errors can be basically tested
by the target DFA, so we merely need to make certain that
strings with these kinds of errors can never be rewritten into
the target language.

In the main part of the game, during the second pass,
Juliet calls all positions of tiling symbols and gives Romeo

the possibility to mark a violating position. If v contains
an increment error at some position, Romeo can prove this
with a simple subgame. Verifying vertical errors is slightly
more complicated. To this end, Juliet has to allow Romeo
to add an n-digit number cf to the end of v in the single
move of the first pass. Romeo should pick cf as the encoding
of the number of a column in which a vertical error occurs.
In the main part, Romeo can then indicate the positions of
the two tiles of that error and in a subgame it is verifed that
that are actually in the same column (with number cf ) on
consecutive rows.

We force Juliet to call all positions of tiling symbols by
introducing into the alphabet a disjoint copy Û of U , the
set of marked tiles, as well as a protest symbol @. The idea
is that for as long as Juliet keeps calling tile positions in
order, Romeo replaces those tiles with their corresponding
marked tiles, but as soon as Juliet skips a tile, Romeo
protests by returning @ the next time Juliet plays a call
move. By including only appropriate strings in the target
language, we make sure that Romeo wins on strings on
which Juliet has tried to ”cheat” by skipping a tile and
Romeo has rightfully protested, and that Romeo loses on
strings on which he protests without just cause.

Increment errors are dealt with in a similar manner by
use of a number protest symbol @N . As soon as Juliet calls
the tile position immediately before the violating substring
c(i)Uc(j), Romeo returns @N , signifying that Juliet now
has to call each of the n bits to the right of @N in turn until
Romeo returns a flag bit 0N or 1N to pinpoint a position
in c(i) that witnesses j 6= i + 1. (The correctness of this
flagging procedure follow from Lemma 19 below.) Similarly
as for tiles, we use additional marked bits 0̂, 1̂ and the protest
symbol @ to force Juliet to call each position of c(i).

Finally, to handle vertical errors, we add another disjoint
copy UV of U , called flagged tiles to the alphabet. As de-
scribed above, after giving the encoding cf of a column
where vertical constraints are violated, Romeo replaces two
tiles involved in this violation by their corresponding flagged
tiles. Again, we need to make sure via the target language
that Romeo always wins on rewritten strings with correctly
flagged vertical errors and loses on strings with incorrect
claims of vertical errors.

More details of the proof can be found in the full version
of this paper.

Lemma 19. For a number i ∈ {0, 1, . . . , 2n − 1} let c(i)
be the n-bit binary encoding of i, and for an n-bit string c
let ck denote the k-th position of c. For any two numbers
i, j ∈ {0, 1, . . . , 2n − 1}, it holds that j 6= i+ 1 if and only if
there exists a number k ≤ n such that one of the following
conditions holds:

(a) c(i)k 6= c(j)k, c(i) 6= 1n and for some k′ > k, it holds
that c(i)k′ = 0 or c(j)k′ = 1;

(b) c(i)k = c(j)k and it holds that either k = n or c(i)k+1 =
1 and c(j)k+1 = 0

(c) c(i) = 1n

The proof of the following result is given in the full version
of this paper.

Proposition 20. L2RAll is hard for EXPTIME, even
for games with finite replacement language.
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Proof (sketch). The proof is by a polynomial time re-
duction from the L2R word problem, i.e., given a game G =
(Σ, R, T ) and a string u, decide whether u ∈ safeL2R(G).
This problem is was shown to be EXPTIME-complete in [9].

To this end, we show how to construct in polynomial time
a game G′ = (Σ′, R′, T ′) from G and u such that the follow-
ing statements are equivalent.

(a) u ∈ safeL2R(G).

(b) safe(G′) \ safeL2R(G′) 6= ∅.

The construction of G′ ensures that Juliet can deduce a
winning strategy on a string g0uh0 wrt G′ with a single Call
move in a first phase followed by an L2R phase if and only
if she has an L2R winning strategy on u in G. In G′ we use
additional symbols g0, g1, g2, h0, h1, h2,#,@, where

• g0, g1, g2, h0, h1, h2 are used to rule out L2R strategies
for many strings,

• @ can be used by Romeo to “protest” if Juliet devi-
ates from the intended flow of the game, and

• # is used to force Juliet to follow an L2R strategy on
u (or otherwise Romeo can “protest”).

The alphabet Σ′ is Σ∪{g0, g1, g2, h0, h1, h2,#,@} and we
assume that the latter eight symbols do not belong to Σ.

For each rule f → w1 | · · · | w` of R, there is a rule
f → #w1 | · · · | #w` | @ in R′. Furthermore, R′ contains
the following rules.

• g0 → g1 | @

• g1 → g2 | @

• h0 → h1 | h2 | @

For a string w ∈ (Σ∪{#})∗, we write cl(w) for the string
that results from w by eliminating all occurrences of #.

The target language T ′ of G′ contains

• all strings g1wh1 with cl(w) ∈ T ;

• all strings g2wh2 with cl(w) ∈ T ;

• the string g0u@;

• all strings of the form gwh where g ∈ {g0, g1, g2}, h ∈
{h0, h1, h2}, and in w there is at least one occurrence of
@ but no occurrence of # to the right of an occurrence
of @;

• all strings @wh1 and @wh2, where w only contains
symbols from Σ.

Clearly, G′ can be constructed in polynomial time from G
and u, in particular a DFA for T ′ (assuming a DFA for T ).

That (a) and (b) are indeed equivalent is shown in the full
paper.

8. CONCLUSION
We investigated a practically relevant restriction of strate-

gies for context-free games and their relation to general
strategies. That L2RAll is EXPSPACE-complete in gen-
eral but EXPTIME-complete in the restricted case where
the replacement languages in G are finite, is somewhat sur-
prising, since the L2R word problem, i.e., checking whether

a given string is safely rewritable in a left-to-right fashion,
is EXPTIME-complete in both cases[9].

The automaton construction for safeL2R we give here can
be generalised to yield automata for strings which can be
safely rewritten using up to k left steps (with a full L2R pass
being played before each left step). This is done by gener-
alising our definition of effects to k-effects, each of which is
a set of sets of (k − 1)-effects representing games on later
passes. In this framework, effects as defined in this paper
would correspond to 1-effects.

It can also be shown that for every game G there is a game
G′ with finite replacement languages whose safely rewritable
strings are exactly those of G.

A further open frontier remains in the form of One-Pass
(1P) strategies [2], which restrict L2R strategies by forcing
Juliet to make her decisions in a streaming manner, i.e.
without knowing the entire input string. While Abiteboul,
Milo and Benjelloun [2] have shown a number of interesting
properties of such strategies, the general problem of testing
whether every safely L2R-rewritable string of a given game
can also safely rewritten in a 1P fashion is not even known
to be decidable.
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