
Access Patterns and Integrity Constraints Revisited

Vince Bárány
Department of Mathematics

Technical University of
Darmstadt

barany@mathematik.tu-darmstadt.de

Michael Benedikt
Department of Computer

Science
Oxford University

michael.benedikt@cs.ox.ac.uk

Pierre Bourhis
Department of Computer

Science
Oxford University

pierre.bourhis@cs.ox.ac.uk

We consider which queries are answerable in the presence
of access restrictions and integrity constraints, and which
portions of the schema are accessible in the presence of ac-
cess restrictions and constraints. Unlike prior work, we fo-
cus on integrity constraint languages that subsume inclusion
dependencies. We also use a semantic definition of answer-
ability: a query is answerable if the accessible information
is sufficient to determine its truth value. We show that
answerability is decidable for the class of guarded depen-
dencies, which includes all inclusion dependencies, and also
for constraints given in the guarded fragment of first-order
logic. We also show that answerable queries have “query
plans” in a restricted language. We give corresponding re-
sults for extractability of portions of the schema. Our results
relate querying with limited access patterns, determinacy-vs-
rewriting, and analysis of guarded constraints.

1. INTRODUCTION
Querying under access patterns has been the object of

considerable research over the past decade. Access patterns
are restrictions in a schema, stating that a relation can only
be queried by a lookup on certain attributes. The most
fundamental problem considered is: given a schema with
access patterns and a query Q, is Q answerable: i.e. is it
true that we can obtain the full answer to Q on every input
database, making use of the given access patterns. A basic
setting is where there is one access method per relation, and
accesses are exact : they return all tuples. In this setting,
Li characterized which conjunctive queries are answerable,
showing that the problem of answerability is NP-complete
[1]. Answerable queries in this setting can be answered in a
simple way – there is an equivalent conjunctive query such
that a naive evaluation of atoms in the order they appear in
the query produces the complete query answer. For instance,
a query Q = ∃x S(x) ∧ R(x, y) can be naively evaluated if
there is unrestricted access to S but access to R only on the
first position – the evaluation would first get all values for
S, then plug the resulting set into R. In the terminology of

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
EDBT/IDBT’13 March 18-22 2013, Genoa, Italy
Copyright 2013 ACM 978-1-4503-1598-2/13/03 ...$15.00.

[2] such a query is “executable” and a query equivalent to it
is “feasible”, [1] calls a query of this sort “orderable” and a
query equivalent to it “stable”.

Later work considered extensions to more complex set-
tings, including richer query languages (e.g. [3, 4]). Of par-
ticular interest to us is the work of Deutsch, Ludäscher and
Nash, which considers richer schemas, including integrity
constraints in addition to access patterns [2]. They deal with
a general class of integrity constraints, tuple-generating de-
pendencies. One of their main results is that for classes of
constraints that satisfy a certain condition (chase termina-
tion) one can determine whether a query has an executable
rewriting over structures satisfying the constraints. Unfortu-
nately, the chase termination condition is undecidable. Fur-
thermore, many basic integrity constraints, such as referen-
tial constraints, do not lead to chase termination.

Here we will take another look at query answering with
access patterns and integrity constraints. Our focus will
be on inclusion dependencies and some natural (and wide-
ranging) generalizations, including guarded tuple-generating
dependencies and guarded constraints. This class of depen-
dencies is important in practice, is orthogonal to chase termi-
nation, and allows (we believe) a cleaner theory of answering
under constraints.

We will also distinguish several notions of data manage-
ment under access patterns and constraints. We first look
at a stronger query-independent property that we denote
super-extractability. A schema is super-extractable if we can
get at a superset of the values within it using the access
patterns. More generally, we will consider which portions of
the schema are super-extractable – a position in a relation
is super-extractable if we can get at all the values that occur
in that position using the access methods.

Example 1.1. Consider a schema with ternary relations
R and S, along with unary relation U . The constraints are
inclusion dependencies R[1, 2] −→ S[1, 2], S[3] −→ U [1],
R[1] −→ U [1]. R[1, 2] −→ S[1, 2] denotes the fact that every
tuple t in R has a tuple s ∈ S such that s.1 = t.1∧ s.2 = t.2.

There is an access method AcMR on R using positions 1
and 2 as the input, an access method AcMS on S using posi-
tions 1 and 3 as the input, and an input-free access method
AcMU to U .

We can extract all of relation R from any structure for
the schema. To do this, we extract all of relation U using
AcMU , putting the result in a set U0. We then bind all pairs
of values from U0 within AcMS , resulting in a set S0. Since
U0 must contain R[1] and S[3], we can see that S0 must
contain all tuples that are images of R under the inclusion

213

dependency from R to S, i.e. the projection of S0 onto the
first two components must contain π#1,#2R. Thus if we take
all pairs of values from S0 and plug them into AcMR, we will
obtain the full value relation R. In our terminology we state
that every position of R is super-extractable (see Section 3
for the precise definition of super-extractability).

Super-extractability is not necessary for query answering,
but it is clearly a desirable property, and it allows certain
issues in the interaction of constraints and access patterns
to be neglected. We will also investigate a variant of super-
extractability which states that we can determine exactly
which values are in a given portion of the schema (we say
that the corresponding position is extractable).

We then turn to query answering under schemas that in-
clude access patterns and constraints. We distinguish sev-
eral notions of what it means to answer a query under a
schema. The first is semantically defined: a query is access-
determined if the information we can obtain by extracting
all the accessible facts is sufficient to determine the truth
value of the query. We will show that this property is decid-
able for a large class of constraints, and that when a query
is access-determined we have an algorithm for answering it
that has low complexity in the size of the database.

Example 1.2. Suppose our schema has a binary relation
A, a ternary relation B and inclusion dependencies: A[1, 2] −→
B[1, 2] and B[2, 3] −→ A[1, 2]. The access methods in the
schema give the ability to freely query relation B, but only
the ability to do membership tests on A.

The query Q = ∃yA(x, y) is access-determined, since we
can obtain the full picture of relation B, and using the first
inclusion dependency and the membership test, determine
all of relation A.

The second inclusion dependency is not critical for this
reasoning. However, the two dependencies together are cyclic,
so any algorithm based on“chasing until termination”– roughly,
trying to enumerate all the consequences of the query under
the dependencies (e.g. [2]) – will not terminate.

We compare this semantic notion to the syntactic no-
tion of answerability. We define a general notion of “access-
rewritability” for a query under access restrictions and con-
straints – a query is access-rewritable in a logic if it can be
evaluated by running a query in the logic on the accessible
data. We show that for guarded constraints, any query that
is access-determined has an access-rewriting in first-order
logic.

Example 1.3. Consider a schema with unary relations A,
B, D and a binary relation C and the integrity constraint:
∀x[A(x) ↔ (D(x) ∧ (∀y C(x, y) → B(y)))], which states
that the predicate A is a view defined exactly by the formula
D(x) ∧ (∀y C(x, y) → B(y)).

There are input-free accesses on C,B and D, but on A

there is only an access method requiring a value for the first
position.

Consider the query Q = ∃xA(x). Q is access-determined,
since we can access completely all relations in the definition
of the view A, and thus use the constraint to get all values
of A(x). It is easy to see that Q is not equivalent to any
executable conjunctive query or even to a union of conjunc-
tive queries. In our sense, Q is rewritable as: ∃xD(x) ∧
(∀y C(x, y) → B(y)).

Our results on rewriting for guarded constraints will make
use of tools developed for the recently-defined guarded nega-
tion fragment [5].

We also show that for restricted classes of constraints we
get a rewriting as a positive existential first-order formula,
which will correspond to the notion of rewritability used in
all earlier work. For instance, our methods will allow us to
determine that the query in Example 1.2 is access-rewritable,
with the rewriting being ∃xyB(x, y).

Putting all of our results on query answering together, we
get a new method for showing that queries are stable in the
presence of integrity constraints. We examine the complex-
ity of finding the rewritings for each considered subclass.

In summary our contributions are:
• Algorithms for determining whether a portion of the

schema can be extracted by using the given access
methods, exploiting the constraints.

• Results showing that when a position can be extracted,
there are very simple “static extraction plans” that can
perform the extraction.

• Matching upper and lower bounds on the complexity
of extraction for guarded constraints, guarded tuple-
generating dependencies, linear guarded (aka LAV) de-
pendencies, and inclusion dependencies.

• Algorithms for determining whether a query is“semantically-
answerable” (access-determined), along with complex-
ity bounds.

• Results that show that when a query is access-determined
it has a rewriting in a restricted class.

Our results shed light on the relationship between seman-
tic implication and rewriting in the context of access restric-
tions, and also relate work on access restrictions to recent
work on interpolation and decidability for restricted logics
[5, 6, 7].

Organization: Section 2 gives the basic definitions. Sec-
tion 3 deals with extractability, while Section 4 deals with
access-determined queries. Section 5 explains the connection
with prior work.

2. DEFINITIONS AND PROBLEM STATE-

MENT

Schemas, structures, and access paths. Throughout
this work we deal with schemas that consist of:

• relations, each with a given arity; a number bounded
by the arity of relation R will be called a position of
R. For simplicity we assume that each position of each
relation can store data of some fixed infinite datatype,
say integers.

• integrity constraints, to be described below
• access methods, each consisting of a relation symbol
R and a set of positions of R, the input positions of
the method. Unlike most prior work, we allow multiple
methods per relation. We also allow the possibility
that a relation has no accesses – i.e. we can learn
about the values of such a relation only via integrity
constraints with other relations.

A structure I for S is defined as usual ([8]), consisting of a
set dom(I) (the domain) along with a mapping taking each
relation symbol R in the schema to a relation I(R) on D hav-
ing the arity of R. Since our schemas include constraints, if
we say I is an S-structure we will mean that the constraints in
S hold in I. We will often use the basic terminology of model

214

theory, including the various notations for saying that a for-
mula holds given a valuation and a structure. We say that a
structure is a model of a sentence, meaning that it satisfies
the sentence according to the usual semantics of first-order
logic. The vocabulary of a structure is the set of relations
it interprets. A reduct of a structure to a subset V0 of its
vocabulary is obtained by removing all of the predicate sym-
bols outside the vocabulary. The expansion of a structure is
formed by adding on relations for new symbols, leaving the
interpretations in the original vocabulary the same.

When we talk about a structure for a schema S consist-
ing of constraints and access restrictions, we will mean by
default a finite structure. However, in our results we will
consider only integrity constraint languages where the re-
striction to finite structures is not critical, and thus state-
ments of the form “on every structure . . .”, can generally
be interchanged with “on every finite structure . . .” without
changing the truth value of the results.

An access consists of an access method to some relation
R of the schema and a binding of the input positions of the
method to values. The output of such an access on a struc-
ture I is the set of all tuples in I(R) that project onto the
binding. Given a structure I and a set of seed constants C0,
a valid access path (for S and C0) is a sequence of accesses ai
and (alternating) outputs oi such that all values in the input
binding of ai occur in the output of an earlier aj or are con-
stants of C0. We often drop the qualifier “valid” for brevity,
and just refer to an access path. The set of constants C0 can
be considered a parameter in accessibility problems. How-
ever it can be easily shown that adding constants other than
those in the constraints and the queries under consideration
(e.g. for query-answering problems) does not make any dif-
ference in the problems we consider, given our assumptions
on the schema (only integer attribute datatypes). Hence we
will always take C0 to be the constants in the constraints
unioned with constants in the query (for query answerabil-
ity). It is easy to modify our results for schemas in which
the attributes can be of enumerated type.

An access path is a way of getting information about a par-
ticular structure. We will be interested in the ability to per-
form some task (e.g. answering a query) that requires find-
ing an access path in every structure satisfying the schema.
An important question is: when this is possible, can we get
some convenient static description of the access path that is
required in each structure. Generalizing the notion of Chang
and Li [9] to the case of multiple-accesses per relation, we
define a conjunctive query Q = ∃~x

∧

i≤n
Ai to be executable

if there are access methods AcMi on the relation of atom Ai

such that for every i ≤ n and for each variable x that oc-
curs in Ai within input positions of AcMi, there is j(x) < i

such that x occurs in Aj in a non-input position of AcMj .
On any structure, we can generate an access path Pk that
implements Qk =

∧

i≤k
Ai by induction on k, where in the

inductive step we add on all accesses that bind input posi-
tions of AcMi in which a variable x of Ai occurs with values
from Pj(x), while positions where Aj has a constant c, c is
put in the binding. An executable conjunctive query equiv-
alent to Q(xi) = ∃x1 . . . xi−1xi+1 . . . xn R(x1 . . . xn) will be
called a static extraction plan for R[i].

A structure I ′ is consistent with an access path p of the
form a1, o1 . . . ai, oi and schema S if I ′ satisfies the con-
straints in the schema and for each access ai in p the output
oi of ai in p is the same as the output of ai on I

′. A boolean

query Q is certain after access path p if it is true on every
structure consistent with p. Likewise, we say Q is inconsis-
tent after path p if it is false on every consistent structure.

Constraints. The most general class of constraints we
will look at are sentences of the guarded fragment GF [10]:
given any signature consisting of relations and constant sym-
bols only, that is the fragment of first-order logic built up
from atomic formulas via boolean connectives and guarded
existential quantification ∃~y R(~x, ~y)∧φ(~x, ~y), where ~x, ~y con-
tain all free variables of φ. From the definition, one easily
sees that GF is also closed under guarded universal quantifi-
cation ∀~y R(~x, ~y) → φ(~x, ~y). GF contains all inclusion depen-
dencies, and also contains constraints with other quantifier
alternation patterns, such as the constraint in Example 1.3.

The class of guarded dependencies, GTGD consists of sen-
tences of the form:

∀~xR(~x) ∧ φ(~x) → ∃~y
∧

j

R
′
j(~x, ~y)

where φ is a conjunction of atoms (possibly empty) and
each R and R′

j are atoms (possibly with repeated variables).
Linear-guarded dependencies, LinGDep, introduced in [11]
represent a special case in which φ is empty: that is, the
left-hand side of the implication is simply an atom.

The most restricted class of constraints we consider here
is that of inclusion dependencies (ID), which are, of course,
linear-guarded dependencies whose right-hand side has a
single atom, with no repeated variables in atoms. Thus,
ID ⊂ LinGDep ⊂ GF .

We do not have GTGD ⊆ GF, but we can transform every
GTGD sentence to a GF sentence that behaves similarly: we
simply add an additional “dummy guard relation” covering
the head of each clause. We will show directly that all the
results we get for GF carry over to GTGD.

Super-Extractability. The first problem we study is,
informally: what subset of the data can we obtain from a
database in advance of querying? Can we get all the data in
a given relation? Can we get all the data in a given position
of a relation? Here we are interested in finding out whether
one can obtain all the values that occur in a particular posi-
tion of a relation R through repeated and nested invocation
of the access methods at hand. This is a trivial notion with-
out integrity constraints – the only way we can extract all
the data from a position is if we have an input-free access
on that relation. But in the presence of integrity constraints
the notion is non-trivial: if we have an inclusion constraint
from R to S, then we may be able to get data from R by
getting it from S.

We will consider the ability to get a superset of the values,
resulting in the notion of super-extractability, which we now
explain in detail. Given a schema S, a position i of relation
R and a finite structure I we say R[i] is super-extractable
on I if every value v of πi(I(R)) is an accessible value of
I; that is there is a valid access path p where v occurs in
one of its outputs. R[i] is super-extractable (over S) if it is
super-extractable on every structure I satisfying S.

Given a value v in a structure I satisfying S, the extraction
depth of v is the shortest valid access path that returns v
(and is infinite otherwise). For a super-extractable position
R[i], we say the extraction depth of the position is the supre-
mum over all finite structures I of S and all values v in R[i]
of the extraction depth of v.

215

If the extraction depth of R[i] is some k < ∞, then it is
easy to see that performing the concatenation of all access
paths of length k will yield a substructure where all values of
R[i] are present. Also note that if R[i] has a static extraction
plan, then the extraction depth is finite, and is bounded by
the length of the plan.

If R[i] is super-extractable, we can obtain (a superset of)
all the values in the ith projection, but we may not be able
to determine whether a value is in the projection or not.
For example, consider a schema with binary relation R and
unary relation T . Suppose we have an inclusion dependency
R[1] −→ T [1] and T has an input-free access. Then R[1] is
super-extractable, since we get all of its values by querying T .
However we will not know whether these values are actually
in R or not. Later in the paper we will consider a variant of
super-extractability, extractability, that tells exactly which
values are present.

Query answering I: semantic answering. We now
look at boolean conjunctive queries Q, and discuss what it
means to answer Q in the presence of constraints and access
patterns. Unlike prior work ([2]) we start with a semantic
notion of answerability. Informally, a query is answerable
with respect to S if on every structure conforming to S we
can extract enough information to determine the satisfaction
of Q.

Q is access-determined on I (with respect to S) if there is
a valid path P, such that Q is either inconsistent or certain
after P: in this case we say that“P witnesses thatQ is access-
determined on I”. We say Q is access-determined on S if it
is access-determined on every finite structure I satisfying S.

We can restate being access-determined using the follow-
ing terminology: the accessible substructure of a structure I

is the structure I′ for the vocabulary of I such that for any
relation R in the vocabulary, a tuple is in I′(R) iff it is re-
turned by an access to R in a valid access path in I. The
domain of the structure is the union of all values occurring
in such tuples. We also say that I′ contains exactly the ac-
cessible facts of R, and refer to it as the“accessible part of I”,
writing AccessiblePart(I). For a number k, the k-accessible
substructure is similarly defined as the structure containing
all facts that are extractable using a path of size at most k.

Note that if S contains at least one access method for every
relation, then for any structure I, the accessible substructure
of I is the induced substructure obtained by restricting I to
the accessible values, where these are the values that occur
in the output of some valid access path.

The following lemma rephrases being access-determined
in this terminology:

Lemma 2.1. Q is access-determined iff for any two finite
structures I1, I2 for the schema S, if they have the same ac-
cessible substructure then either both of them satisfy Q or
neither of them do.

Proof. Suppose Q satisfies the condition above, and let I
be a structure where Q holds. Let P be a path that includes
all valid accesses on I (such a path clearly exists). Then Q is
certain after P, since any structures agreeing on P will have
the same accessible substructure as I. If Q does not hold in
I the same argument shows that Q is inconsistent after P.
Thus Q is access-determined.

Conversely, suppose Q is access-determined, and let I1, I2
be two structures of the schema sharing the same accessible
substructure. Let P be a path such that Q is either incon-

sistent or certain after P. We can take P to contain all valid
accesses on I1. The hypotheses imply that performing the
same accesses as in P on I2 must give the same result. Thus
if Q is certain after P on I1, the same must be true on I2,
and similarly if Q is inconsistent.

An a priori weaker condition considers only substructures
on which the query is true: on every valid structure I on
which Q holds, there is a valid path P on I such that Q is
certain after P. We say “a priori weaker”, since it is easy to
see that these are equivalent (e.g. using the lemma above).
We will thus use this definition interchangeably with the
others.

Query answering II: answering a query with bounded
information. In our definition of answering above, we re-
quired only that the answer to the query can be determined
by some path, but the length of this path may be unbounded.
It is easy to see that, as with super-extraction, we may need
paths of unbounded length, since we may need to put in
each output of some initial access. We will thus look for
situations in which the answer to a query must be known
after all access paths of a given length are explored.

We say Q has answering depth k if for any finite structure
I for the schema if we let p be the concatenation of all valid
paths of length at most k, then Q is either certain or incon-
sistent after p. We also say that Q is k-access-determined in
this case. Again it is sufficient to check that when Q holds
in the structure, it is certain after all paths of length k are
tested.

Query answering III: rewritings. The notion of access-
determinacy is semantic, in that the plan only gets enough
information to answer the query – it does not tell how to ef-
fectively obtain the answer itself. If Q is access-determined,
then to answer it we can perform all the valid accesses on a
structure I until a fixed point is reached, at which point we
know that the query must either be certain or inconsistent
after that resulting path p. Checking whether Q is certain
or inconsistent on a structure is a matter of “query answer-
ing with respect to integrity constraints”: the constraints
being the integrity constraints in the schema and the con-
straints expressing that the target structure must be consis-
tent with p. Here query answering with constraints means
checking whether a query is implied by the constraints and
the facts holding in a particular structure. It is known that
for guarded constraints this problem is 2EXPTIME-complete [7].
We will present a superior method for answering an answer-
determined query, based on rewritings.

Prior work [9, 3] has considered syntactic notions of an-
swerability, restricting to the setting where there is a single
access per relation. There the focus has been on unions of
conjunctive queries that are executable – those that are the
union of executable CQs, where executability is as defined
previously.

We will consider a more general version of rewritability,
allowing querying over the accessible substructure. For a
logic L whose vocabulary consists of predicates in the origi-
nal schema S, a query Q is L access-rewritable for schema S

if there is a query Q′ in L such that for all finite structures
I satisfying S, Q is true in I iff Q′ is true in the accessible
substructure of I. For a number k, a query Q is L, k-access-
rewritable for schema S if there is a query Q′ in L such that
for all finite structures I satisfying S, Q is true in I iff Q′

is true in the k-accessible substructure of I. Since this is

216

the major kind of rewriting we consider in the paper, we
will generally drop the prefix (access-), and just refer to L-
rewritable, L, k-rewritable, etc.

Example 2.2. Consider Example 1.3. The query is FO-
access-rewritable, and is in fact FO, 1-rewritable, since we
can obtain the answerable part with paths of length 1. In-
deed, it is GF, 1-access-rewritable, since the rewriting is in
the guarded fragment.

Li and Chang [9] initiated the study of rewritability. They
prove that in the absence of constraints answerability is
equivalent to rewritability. This was extended by Nash and
Ludäscher [3] to unions of conjunctive queries. Nash and
Ludäscher use the terminology “executable” as we do, and
use “feasible” for what we term rewritable. We will show
(Proposition 4.18) that ∃+FO, k-access-rewritability corre-
sponds to feasibility in the sense of [3], where ∃+FO is posi-
tive existential first-order logic.

3. SUPER-EXTRACTABILITY
We will study which relation positions are super-extractable,

beginning with schemas in which constraints are sentences in
the guarded fragment, our largest constraint class. We will
show that we can decide super-extractability for this class,
and that for super-extractable positions we can perform the
extraction in a particularly simple way.

We then turn to more restricted classes starting with in-
clusion dependencies and then expanding to more general
classes. In those cases we show that we can decide super-
extractability more efficiently.

Our definition of super-extractability allows us to over-
estimate the data in a given position. We discuss getting
“the best” extraction plan – one that gives the most precise
over-estimate.

Super-extractability for guarded constraints. Our
first observation is that super-extractability is decidable for
constraints in the guarded fragment. We will make use of
the following fundamental results of Grädel:

Theorem 3.1. [10] One can decide whether a guarded
fragment sentence has a model in 2EXPTIME, and the prob-
lem is complete for 2EXPTIME. When the arity is bounded,
the complexity becomes EXPTIME-complete. Furthermore,
any guarded fragment sentence that has a model has a finite
model.

We now recall (e.g. from [2]) the usual “axioms” for a set
of access methods. Given a set of access methods AM over
relations S, we consider a conjunction φAM over the schema
S+ consisting of S and an additional relation AccVal. For
each access method a ∈ AM with relation R and for each
position j of R, φAM has the conjunct:

φa,j = ∀~x
(

R(~x) ∧
∧

i∈Input(a)

AccVal(xi)
)

→ AccVal(xj) .

These are guarded dependencies that can also be directly
rewritten in GF. In addition, φAM has conjuncts stating that
constants are accessible. Note that all of these conjuncts are
guarded. Let con(S) be the constraints in schema S.

We now show:

Claim 3.2. Position i of relation R is super-extractable
iff ψ = con(S)∧φAM ∧∃~zR(~z)∧¬AccVal(zi) is unsatisfiable.

Proof. SupposeR[i] is not super-extractable. Then there
is a structure I and a tuple ~c ∈ I(R) such that ci is not
returned in any valid access path. Expand I by letting
AccVal(x) hold of any value that is returned by a valid ac-
cess path on I ; then the resulting structure witnesses the
satisfiability of the sentence ψ above.

In the other direction, suppose ψ is satisfiable by some
structure I. By the finite model property of the Guarded
Fragment I can be taken to be finite. Let A1 be I(AccVal)
and A0 be a set of tuples for the relation AccVal obtained
by using the sentences φa,j above as Datalog rules, and tak-
ing the usual least fixpoint semantics. Then A0 is contained
in A1, since A1 is a fixpoint. If we replace A1 by A0 in
I , we do not change the truth value of ψ, since con(S)
does not mention the predicate AccVal and the other con-
juncts are monotone as AccVal decreases (since each con-
junct in φAM quantifies only universally over AccVal and the
other conjunct quantifies existentially over ¬AccVal). The
resulting structure thus serves as a counterexample to super-
extractability.

We thus have:

Theorem 3.3. For any schema with all constraints in
the guarded fragment, one can decide whether a position is
super-extractable in 2EXPTIME. Conversely, the problem is
2EXPTIME-hard.

The hardness follows from prior results on satisfiability, be-
cause in the absence of accesses, a position is super-extractable
(vacuously) exactly when the constraints are inconsistent.

We can also conclude that the extraction depth is finite:

Theorem 3.4. For any schema consisting of guarded frag-
ment constraints, for any position i in relation R, if R[i] is
super-extractable then it has finite extraction depth.

Proof. Suppose R[i] has extraction depth above k for
every number k. There is a sentence φk of first-order logic
over the relational schema that asserts this, hence by the
compactness theorem there is a model M (not necessarily
finite) for the relations in the schema, and an element v in
πi[R] in M such that no valid (finite) access path extracts v.
Let M ′ expand M by letting AccVal be the set of elements
obtainable via a finite access path.

Then M ′ is a model of the extraction axiom ψ of Claim
3.2, hence by that claim R[i] is not super-extractable.

Super-extractability for dependencies. We now look
at cases where we can get a better extraction algorithm.

We review the well-known chase algorithm in the gen-
eral context of “tuple generating dependencies”, that is, con-
straints of the form:

∀~x φ(~x) → ∃~y φ′(~x, ~y)

where φ and φ′ are conjunctions of atoms from a relational
signature.

Given a structure I and schema S consisting of tgds only,
the chase sequence is a sequence of structures 〈Cn〉 in the
vocabulary of S expanded with the predicate AccVal, defined
as follows:

• C0 = I

• Cn+1 is formed from Cn by applying a “chase step”
with respect to the dependencies and accessibility ax-
ioms of φAM from Section 3 to every structure I ∈

217

Cn. A chase step is defined exactly analogously in the
classical case (see e.g. [12], for inclusion dependencies,
and [13] for extensions to (positive) dependencies): In
a single chase step, applied to structure I, for every
~c ∈ I that satisfies φ(~c) but where I,~c does not satisfy

∃~y φ′(~x, ~y), we create a new tuple ~d and add facts so

that I,~c, ~d |= φ′(~x, ~y).
We denote the union of the Cn by Univ(Sch, I), referring

to it also as the chase structure or universal structure. It is
easy to see that it is uniquely defined up to isomorphism.

We will consider how the chase simplifies the analysis of
super-extractability.

Consider the structure consisting of just fact R(c1, . . . , cn),
where ~c is a tuple of distinct constants, and the schema S+

above – i.e. the original dependencies plus the “axioms” for
the accessibility predicate. Then we claim :

Claim 3.5. If all dependencies are guarded, then R[i] is
super-extractable iff the value ci is an accessible value in the
chase structure iff AccVal(ci) holds in the chase structure.
Furthermore, the extraction depth of ci in the chase structure
bounds the extraction depth for R[i].

Proof. We prove only the first part. If R[i] is super-
extractable, then finite controllability of the chase for guarded
dependencies [14, 7] yields that the axioms unioned with
R(~c) imply AccVal(ci), and thus in particular AccVal(ci)
holds in the chase structure. It is easy to see that this im-
plies that ci is an accessible value in the chase structure.
On the other hand, suppose ci is an accessible value in the
chase structure; clearly AccVal(ci) will then hold in the chase
structure. If we have an arbitrary finite model I of the the-
ory above (including R(~c)), there is a homomorphism of the
chase structure into I , and hence AccVal(ci) holds in I , and
R[i] is super-extractable.

Thus we have seen that it suffices to analyze the chase
structure.

We now restrict further to constraints where both left- and
right- hand sides are guarded; note that the “accessibility
axioms” can be taken to be of this form. Let GS be the set
of guarded facts over a collection of distinguished constants
d1 . . . dn, where n is the maximal arity of relations in S: here
guarded means that the set includes a fact R containing all
di. For G1, G2 ∈ GS, let G1 →CH G2 denote the fact that

starting with a structure where the ~d satisfy G1 and applying
some sequence of chase steps, we get to a structure satisfying
G2.

Let EV = {(G1, G2) ∈ GS × GS, G1 →CH G2}. Consider
the set EV0 containing all pairs of the forms: 1. (G,G ∪

AccVal(dj)), whereG containsR(~d),AccVal(dm1
) . . .AccVal(dmn

)
and there is an access on R with input positions m1 . . .mn

2. Pairs (G,G′) with G′ ⊆ G.
We claim that EV is formed from the set EV0 by closing

under the following rules:

• Suppose G1(~d) ∈ GS, and G′
1(~e) is the result of ap-

plying a chase step to G1, where ~e contains all values

appearing in generated facts that are either from ~d or
created in the chase step; note that our requirement
on the dependencies implies that the number of such
values is at most n, the maximal arity of a relation
in the schema. Suppose G′′

1 results from applying to
G′

1 a renaming f of ~e to d1 . . . dn, (G
′′
1 , G

′′
2) ∈ EV, and

G2 is the result of applying f−1 to G′′
2 . Then we can

conclude that (G1, G1 ∪G2 ↾ ~d) ∈ EV.
• If (G1, G2) ∈ EV, (G2, G3) ∈ EV, then (G1, G3) ∈ EV.

Above G2 ↾ ~d refers to the facts in G2 which mention only

values in ~d.
To see this, consider a pushdown automaton whose stack

contents are elements of GS, with the ~d annotated with a

partial function to a copy ~d′, indicating their correspondence
with variables in the previous stack. The transitions of the
PDA correspond to applications of the chase. We have a
push rule that corresponds to applying a dependency to any
guarded set of facts, producing new facts over the set of
constants but with a correspondence to the old constants.
In the special case of the rules corresponding to access pat-
terns, we have a swap rule that takes any guarded set of
facts and adds on the facts derived by the access methods,
leaving the mapping the same. We have a pop-and-swap
move that pops the top of the stack while moving down all
new facts that hold on the shared variables between the top
two stacks. It is easy to verify that G1 →CH G2 iff G1 with
the empty mapping reaches G2 with the empty mapping in
the PDA described above. Indeed, more generally there is a
correspondence between paths of chase rules and reachable
stacks of the PDA, where the correspondence can be proven
by induction.

Reachability in such a PDA can be tested using the clas-
sical saturation procedure, starting with the reachable pairs
given by swap moves and then closing under transitivity and
matches of pushes with with pop-and-swaps. This yields ex-
actly the rules above.

Now the set GS can be doubly-exponential in general.
However, in the case where the right-hand side of all con-
straints consists only of a guard predicate and unary predi-
cates, we need not consider all guarded sets, but just ones
having only a single guard predicate. Note that the sen-
tences that involve the accessibility predicate are of this
form. This modified GS has exponential size. Since the
closure process above is monotone, we have the following:

Theorem 3.6. For a schema in which constraints consist
only of inclusion dependencies, we can compute the set EV

in EXPTIME, and hence can determine super-extractability
in EXPTIME.

With each pair (R(~x) ∧
∧

i∈I AccVal(xi), R(~x)∧
∧

i∈J
AccVal(xi)) we can associate a relative extraction plan.

This is an executable plan, having two distinguished sets
of free variables, inputs xi : i ∈ I and outputs xi : i ∈
J−I . It has the property that on any structure, if we replace
the input variables by all tuples of values in the projection
of R onto xi : i ∈ I , the corresponding conjunctive query
(where the other free variables are existentially quantified)
will return all values xi : i ∈ J − I that are in the projection
of R onto J − I . Each closure rule for EV corresponds to
a rule for concatenating such plans. E.g. for the second
closure rule (transitivity), we simply concatenate the two
relative extraction plans. In the closure process the size of
this plan may double with each iteration of a rule, leading
to a doubly-exponential bound on the size of an extraction
plan.

The argument above gives a refinement of Theorem 3.4:

Corollary 3.7. For a schema consisting of only inclu-
sion dependencies alone, if an attribute can be completely

218

extracted, then there is a static plan that witnesses this of at
worst doubly-exponential size.

Extensions to more general dependencies. We now
consider linear-guarded dependencies. Recall that a LinGDep
is a sentence of the form:

∀~x R(~x) → ∃~y
∧

j<m

Tj(~x, ~y) (1)

We now show that the results for IDs extend to this case:

Theorem 3.8. There is an EXPTIME algorithm that takes
as input a schema with LinGDep’s and a position R[j] and
determines whether it is super-extractable. In addition, a
super-extractable position has a static extraction plan.

Proof. We omit the full proof, noting only that the sim-
pler case where no repeated variables can be reduced to the
case of inclusion dependencies. Given a schema S consisting
of LinGDep we create a schema S′ with only ID in a larger
vocabulary. For each dependency dep as in (1), we introduce
a relation Rdep with no access methods and with arity equal
to the number of variables in dep, and replace dep with ID:

∀~x R(~x) → ∃~yRdep(~x, ~y)

and for each j < m

∀~x ~y Rdep(~x, ~y) → Tj(~x, ~y)

We claim that a position j of R is super-extractable in S iff
it is super-extractable in S′.

The direction from right to left is clear, since every struc-
ture for S can be expanded into a structure satisfying S′. In
the other direction, suppose that we have a structure I ′ for
S′ and a value v for R[j] that is not super-extractable on
I ′. We take a superstructure I of I ′ by replacing Rdep by
{~x, ~y|

∧

j
Tj(~x, ~y)}. The schema S is now satisfied, and we

have not added any accessible tuples. Thus the set of access
paths is unaffected, and v is thus not superextractable on I ,
allowing us to conclude that R[j] is not super-extractable in
S.

Furthermore, any static extraction plan for S′ must be an
extraction plan for S, since the new predicates cannot occur.
From this and Corollary 3.7 the theorem follows.

For guarded dependencies, we get a similar result, but
with a worse bound, using the same technique; details are
in the full paper.

Theorem 3.9. There is a 2EXPTIME algorithm that takes
as input a schema with GTGD’s and a position R[j] and de-
termines whether it is super-extractable. A super-extractable
position has a static extraction plan.

Exact Extraction. We have seen that if a relation is
super-extractable, then we have a simple static plan that
gets a superset of its values: a UCQ in the case of guarded
constraints, and a CQ for inclusion dependencies. But what
about getting the exact set of values?

We say that a position i in a relation R with arity n is ex-
tractable if it is super-extractable and furthermore for every
structure I, for every value c the query

∃x1 . . . xi−1xi+1 . . . xnR(x1 . . . xi−1, c, xi+1 . . . xn)

is access-determined. That is, we can determine exactly the
values in that position using the access methods. Upper

bounds on extractability will follow from later results on
query answering:

Theorem 3.10. For any set of guarded constraints, ex-
tractability is decidable in 2EXPTIME. For inclusion depen-
dencies it is decidable in EXPTIME

The result will follow from Claim 4.15, proved later on,
that gives a reduction from extractability to answer-determinacy,
along with a 2EXPTIME bound on answer-determinacy for
guarded constraints (proven in Theorem 4.1) and an EXPTIME

bound on answer-determinacy for inclusion dependencies (proven
in Proposition 4.13).

Lower bounds for (super-)extractability. Recall that
for general guarded constraints, deciding super-extractability
is 2EXPTIME-complete (Theorem 3.3). We now establish
matching lower bounds for extractability and super-extractability
for weaker dependencies. First note the following:

Proposition 3.11. For any constraint language contain-
ing inclusion dependencies, there is polynomial time reduc-
tion from super-extractability to extractability. Thus hard-
ness results for super-extractability carry over immediately
to extractability.

Proof. Given position i of R to be checked for super-
extractability with respect to constraints S, we let S′ be the
extension of S with unary predicate P , with an inclusion
dependency from R[i] to P [1] and a boolean access on P .
It is easy to see that R[i] is super-extractable iff P [1] is
extractable.

We can thus get bounds on extractability via super-extractability.
We now give a lower bound on both for inclusion dependen-
cies:

Theorem 3.12. The problem of determining, given a schema
S whose constraints consist only of inclusion dependencies
and a position R[i] whether or not R[i] is super-extractable,
is EXPTIME-hard. The same holds (via Proposition 3.11)
for extractability.

The result is a bit surprising, in that the lower bound for
inclusion dependency implication is PSPACE. The proof is
by a rather involved reduction taking an alternating PSPACE

machineM and input word w, producing in polynomial time
a schema with distinguished relation R and position t such
that M accepts w exactly when R[t] is super-extractable. It
is given in the full version of the paper.

For guarded dependencies, we do not get a better bound
then for general guarded constraints:

Theorem 3.13. The problem of determining, given a schema
S whose constraints consist only of guarded constraints, and
a position R[i], whether or not R[i] is super-extractable (resp.
extractable), is 2EXPTIME-hard.

The proof is by a reduction to hardness results for deter-
mining certain answers with guarded dependencies [15].

4. QUERY ANSWERING
We now study deciding whether a query is access-determined.

As in the case of super-extractability, we start with the gen-
eral case of guarded constraints, showing that the notion is

219

decidable, and that when it happens we get a “static plan”
for doing the answering. In this case, the static plan is a
rewriting. We then turn to more restricted classes, moving
this time first to guarded dependencies, and then to linear-
guarded dependencies.

Access-determined queries over Guarded constraints.
We start our investigation of access-determinacy with a gen-
eral result:

Theorem 4.1. For a schema S comprising guarded con-
straints and a conjunctive query Q it is decidable in 2EXPTIME

whether Q is access-determined on S (and indeed, this prob-
lem is 2EXPTIME-complete).

For simplicity, we will prove these and other results in
the section in the restricted case where every relation has
at least one access, and hence the accessible substructure
is the substructure induced by the accessible values. We
consider a vocabulary extending S with unary predicates
M1,M2,AccVal, along with a set C of |Q| many constants.

For a formula φ and unary predicate A, let φA be its
restriction to A: subformulas of the form ∃xψ are replaced
by ∃xA(x) ∧ ψ. Further let h(Q) be the image of Q under
a homomorphism h, where the variables are mapped onto
constants in C.

For a homomorphism h consider the sentence Th that is a
conjunction of sentences asserting:

• the image of h is in M2

• ¬QM1
, where QM1

is the relativization of Q to M1

• ∀x (AccVal(x) →M1(x) ∧M2(x))
• con(S)M1

∧ con(S)M2
,

where these denote the relativization of the constraints
to the predicates M1 and M2, respectively.

•
∧

R has an access with inputs ~x

∀~x, ~y
(

R(~x, ~y) ∧
∧

i
AccVal(xi) →

∧

j
AccVal(yj)

)

• The analogous axioms to the one above for free ac-
cesses, and axioms stating that all constants are in
AccVal.

We now relate these axioms to the notion of access-determinacy:

Lemma 4.2. Some Th is satisfied by a finite model iff Q is
not access-determined on S iff Tid has a finite model, where
id is the identity homomorphism onto a set of constants of
the same size as Q.

Proof. We prove only the first equivalence, the second
follows since if Th has a finite model for some h, then Tid

has a finite model.
Suppose Th has a finite model, which must be of the form

M = (D,M1,M2,AccVal, . . .), where . . . indicates the rela-
tions of the original schema S. Let AV be the accessible
values of the reduct of M to S. It is clear from the axioms
that the set AccVal in M must contain AV , although it may
strictly contain it. We claim that if we replace AccVal by
AV , Th is still true: this is because the predicate AccVal is
not mentioned in the rules of items 1,2 and 4 above; it is only
universally quantified in those of item 3, while those of items
5 and 6 hold of AV . Thus we can assume AccVal is exactly
the accessible values AV . Now consider the structureM ′

1 for
S formed by restricting all S predicates to M1. Q does not
hold on this structure, but after making all possible accesses,
Q is still consistent – since there is a structureM ′

2 satisfying
the constraints with the same accessible substructure as M ′

1

on which Q holds, namely the one formed by restricting all
S predicates to M2. Thus Q is not access-determined.

Conversely, suppose Q is not access-determined, and con-
sider a witness to this, consisting of structures I1 and I2
sharing the same accessible substructure, where Q does not
hold in I1 but does hold in I2. We create a structure for the
vocabulary used in each Th by letting: M1 be the domain of
I1, AccVal be the common accessible values of I1 and I2, M2

be the domain of I2, and the S relations be as in I1 ∪ I2. We
let h be the homomorphism that witnesses that Q does hold
in I2, and interpret the constants in C accordingly. Then
the resulting structure is a finite model of Th.

We return to the proof of Theorem 4.1. Write the sen-
tence Th as ¬QM1

∧ G, where G is the conjunction of all
conjuncts of Th except the second one (referring to items in
the ordering given before).

Observe that G is in the guarded fragment. For the rules
in item 1 and 3 this is clear. For item 4 it follows from the
fact that the constraints are guarded. For the last two items
it follows since the accessed atom R serves as a guard.

¬QM1
is the negation of a conjunctive query. Hence to

check finite satisfiability of Th we need to see if a GF sentence
implies a conjunctive query over finite models (for short, we
say that a theory finitely implies a query when this hap-
pens).

Thus, given the lemma, Theorem 4.1 follows from the fol-
lowing variant of the main result of Bárány, Gottlob, and
Otto [7]:

Theorem 4.3. One can decide in 2EXPTIME whether a
GF sentence finitely implies a conjunctive query Q. Further-
more, this holds iff the sentence implies Q.

This result is stated in [7], with constants excluded. The
extension to constants can be seen by examination of the
proof, or by applying the more general result of [5] discussed
further on, and removing constants by replacing them with
existentially quantified variables (staying in the 2EXPTIME-
decidable language of [5]).

The corresponding hardness follows by noting that a query
over inaccessible relations is access-determined exactly when
the constraints are unsatisfiable, which is known to be 2EXPTIME-
hard [10].

As with extractability, our axiomatization implies the ex-
istence of a bound on the number of accesses needed:

Theorem 4.4. For any schema based on guarded constraints
and conjunctive query Q, if Q is access-determined then it
is k-access-determined for some k.

Proof. If Q is not k-access-determined for any k, then
by the Compactness Theorem of classical model theory [8]
we see that there is a (possibly infinite) model M for the
vocabulary extending the schema S with unary predicates
M1,M2 where the submodel generated by each Mi satisfies
con(S), M1 does not satisfy Q but M2 does, and the acces-
sible substructures of M1 and M2 are the same. Extending
by the predicate AccVal, we get a model of Th for some ho-
momorphism h, and hence applying the finite controllability
result of [7] we get a finite model. Now Lemma 4.2 implies
that Q is not access-determined.

Finally, we relate this to rewritability.

220

Theorem 4.5. For any schema S having only guarded
constraints and UCQ Q access-determined on S, there is an
integer k such that Q is FO,k-rewritable over S.

This result has the following consequence for the “data
complexity” of access-determined queries:

Corollary 4.6. For any fixed UCQ Q that is access-
determined on S there is a polynomial time algorithm that
finds the answer to Q on any structure for S.

In contrast, note that if Q is not access-determined, the
data complexity of finding the certain answers to Q can
be CoNP-hard, even for guarded constraints [7, Theorem
19(5)].

In proving Theorem 4.5 we make use of the guarded nega-
tion fragment of first-order logic, denoted GNF, which we
will discuss further below. GNF is built up from atomic for-
mulas (including equality) via the rules: φ1, φ2 ∈ GNF ⇒
φ1 ∧ φ2, φ1 ∨ φ2 ∈ GNF; φ ∈ GNF ⇒ ∃xi φ ∈ GNF; and
φ(~x) ∈ GNF ⇒ R(~x) ∧ ¬φ ∈ GNF, where the atom R(~x),
which may be a predicate or an equality, must contain all
free variables of φ. For a relational signature σ, we write
GNF(σ) for the set of formulas in the guarded negation frag-
ment that make use of only predicates in σ. The importance
of GNF for us is that, as far as sentences are considered, it
contains GF, contains all conjunctive queries, is closed un-
der boolean combinations of sentences as well as guarded
quantification, and that GNF has the finite model property.
See Bárány, ten Cate, and Segoufin [5] for more information
about GNF.

Proof of Theorem 4.5. The proof uses exactly the line
of argument in Marx’s [6]. By Theorem 4.4 we know that
for some k, Q is determined by the k-accessible substructure
over finite models, relative to the constraints con(S). Note
that the k-accessible substructure can be described as a set
of acyclic conjunctive queries, which implies that it can be
described by formulas in the guarded fragment. Also note
that the free variables in the defining formulas are guarded.
Hence Q∨ ¬con(S) is a query in the guarded negation frag-
ment that is determined over finite structures by a set of
guarded negation views with free variables guarded, namely:
{con(S)} ∪ {k− acc(R) : R ∈ S}, where k− acc(R) is the re-
striction of relation R to the k-accessible substructure. Since
all queries involved are in the guarded negation fragment,
and all free variables are guarded, the statement that they
are determined can be expressed as a sentence in the guarded
negation fragment over a signature with two copies of the
view predicates:

(

∀~x
∧

i
φi(~x) ↔ φ′

i(~x)
)

→
(

∀~xρ(~x) ↔ ρ′(~x)
)

where φi

are the view definitions and ρ is Q ∨ ¬con(S).
We can then apply the finite model property for GNF to

infer that Q ∨ ¬con(S) is determined by the views over all
models. Thus by Theorem 3.1 of Segoufin and Vianu’s pa-
per [16], Q ∨ ¬con(S) is rewritable in first-order logic using
these views over all models, and hence Q is rewritable as a
first-order query using {k−acc(R) : R ∈ S}. In addition, the
rewritten query is domain-independent: access-determinacy
implies that changing the structures outside of the active-
domains of {k − acc(R) : R ∈ S} does not impact the result
of Q∨¬con(S). A domain-independent query over a schema
can be rewritten as a query using only quantification re-
stricted to the active domain of structures in the schema

(see, e.g. Lemma 5.3.8 in [17]), which in this case is exactly
the k-accessible substructure.

Theorem 4.5 shows that we have a rewriting, but how
complex can it be? Clearly, the rewriting can be a UCQ

(e.g. if everything is accessible). It can also be an arbitrary
formulas in the guarded fragment: the constraints may say
that some inaccessible predicateR(x) is defined by a guarded
fragment formula φ(x) over accessible predicates, in which
case the query ∃xR(x) is access-rewritable as ∃xφ(x). It
is easy to contrive examples that mix and match the two
cases above, requiring a rewriting that is a combination of
a conjunctive query and guarded fragment formulas. It is
thus natural to conjecture that whenever we have an access-
determined query over a schema with guarded constraints,
the rewriting can be found as a GNF formula. It turns out
this is indeed the case.

Theorem 4.7. For every schema S having only guarded
constraints and every UCQ Q that is access-determined on
S, there is a natural k such that Q is GNF,k-rewritable over
S.

The result follows from a recently-proved result that GNF
has the Craig Interpolation property. For convenience, we
will state the property only for sentences below, although it
normally talks about open formulas.

Theorem 4.8. [18] If φ→ φ′ is a validity, with φ a GNF-
sentence over signature τ and φ′ a GNF-sentence over sig-
nature σ, then there is a GNF-sentence ρ such that all pred-
icates in the signature are in σ ∩ τ and all constants are in
σ ∪ τ such that both φ→ ρ and ρ→ φ′ are valid.

Given the above theorem, the proof follows along the same
lines as Theorem 4.5. It is well-known (and is easy to show)
that Craig Interpolation implies the Projective Beth Defin-
ability property for the logic (see [6]). From this we can in
turn show that if a boolean query is determined by a set of
views in the logic, then the query is rewritable in the logic.
Applying this as in the proof of Theorem 4.5 we see that
Q ∨ ¬con(S) is rewritable as a GNF-sentence using predi-
cates {k − acc(R) : R ∈ S}.

As in the proof of Theorem 4.5 the rewriting produced
by the argument above quantifies over the whole structure
(including the inaccessible values), rather than only the ac-
cessible ones. However, access-determinacy implies that the
query is “domain-independent” (depending only on the ex-
tensions of the accessible predicates). By results of Bárány,
ten Cate, and Otto [19], it can be converted into “Guarded-
Negation Relational Algebra”, and from there into an active
domain formula in the Guarded Negation Fragment.

We note an important consequence of Theorem 4.7: for
access-determined queries, the rewriting can be found effec-
tively. The algorithm is a brute-force check of every GNF sen-
tence: we can check whether each is a rewriting, using the de-
cidability of GNF, and (since the query is access-determined),
eventually the check will return true. Note also that this
argument can be applied not just to access-determinacy of
UCQs (nowhere did we use that the query was positive) but
to access-determinacy of GNF queries; it can also be applied
to constraints given in GNF rather than the guarded frag-
ment.

221

Answerability for Dependencies. We now examine
the relationship of access-determinacy to rewritability in re-
stricted cases. We begin with the case of guarded dependen-
cies. Recall that these are of the form:

∀~x R(~x) ∧ φ(~x) → ∃~yφ′(~x, ~y)

where R is an atom and φ, φ′ are conjunctions of atoms.
We let Chase(Sch,Q) be the structure formed by start-

ing with the canonical structure of Q (that is, the structure
whose domain elements are the variables, with the structure
given by the query [17]) as the initial structure, and then ap-
plying the chase construction using the constraints of schema
Sch. Note that the resulting structure can be expanded to
the vocabulary for Th, by letting M2 be the entire structure,
AccVal the accessible elements, and M1 the chase closure of
AccVal, and we will sometimes abuse notation by viewing
it that way subsequently. We can now relate the theory Th

presented before to this structure. The following is a variant
of the standard universality property of the chase:

Lemma 4.9. Given a homomorphism h from Q to a set of
constants C, and a structure M containing C that satisfies
Th, there is a homomorphism from Chase(Sch,Q) onto a
substructure M ′ of M satisfying Th.

We can now show that checking whether a query is access-
determined can also be done by looking at structures formed
via the chase.

Proposition 4.10. For schemas where all constraints are
guarded dependencies, Q is access-determined iff the univer-
sal structure Chase(Sch,Q) satisfies the relativization of Q
to the chase closure of AccVal.

Proof. In one direction, suppose Chase(Sch,Q) has the
property above. If Q is not access-determined, onsider a fi-
nite structure I for schema Sch where Q holds, and another
structure I′ sharing the same accessible facts with I where Q
does not hold. We can convert I and I′ into a finite model M
of Th in the obvious way. By Lemma 4.9 we have a homo-
morphism from M ′ = Chase(Sch,Q) onto a submodel of M .
Further, we can easily see that since the relativization of Q
to the chase closure of AccVal is satisfied inM ′, its homomor-
phic image will witness satisfaction of Q in I′, contradicting
our assumption.

In the other direction, if Q is access-determined, then by
Lemma 4.2 Tid does not have a finite model. Hence by Theo-
rem 4.3 Tid does not have any model, and thus no expansion
of M ′ = Chase(Sch,Q) is a model of Tid. But if there were
no witness to Q in the chase closure of AccVal within M ′,
consider the “obvious interpretation” of the chase closure as
a structure for the vocabulary of Tid – that is, expanding to
let M ′

1 the chase closure of the image of Q under id, andM ′
2

is the chase closure of AccVal. This structure would satisfy
Tid, a contradiction.

Consequences. We first refine Proposition 4.10 to get
a bound on the size of the chase closures that we need to
consider.

Given any structure I of a schema with linear-guarded
dependencies, and a set S ⊂ I, a k-step chase closure of S
is any subset Sk of I that can be formed from S0 = S the
following inductive process: let Si+1 is formed from Si by
adding witnesses ~y for every dependency, ∀~xφ→ ∃~yψ where
~x is instantiated for every tuple in Si satisfying φ.

Lemma 4.11. Given a schema S whose constraints consist
of guarded dependencies, a conjunctive query Q is access-
determined iff for every structure I of the schema, there is a
witness to Q in the k-step chase-closure of the k-accessible
substructure of I, where k is doubly exponential in the size
of Q and S.

Proof. Note that we can consider Chase(Sch,Q) as an
ω-tree where the nodes have labels that correspond to facts
in the vocabulary of Sch unioned with AccVal, where the
free variables are bounded by the number of variables in the
right-hand side of any rule. When a new fact is generated
in a chase step, it is added as a child of the node containing
the guard fact. This is then an ω-regular tree, and the rules
in the schema along with the axioms for AccVal can be con-
verted into the rules of a top-down non-deterministic Büchi
tree automaton A1 that accepts the tree representation of
Chase(Sch,Q); at every node, a guess is made of all the facts
that will hold of the variables in that node, with the state
also tracking facts that have already been verified in an an-
cestor of the node. In each transition, a guess is made as
to how the remaining facts to be verified are passed on to
the children, and if the children do not include the neces-
sary variables, the run fails. Note that this may require at
most a doubly-exponential number of states, corresponding
to every guarded collection.

By Lemma 4.10 Q is not access-determined iff A1 accepts
a tree which fails to contain a witness to Q consisting of
accessible elements. One can create an exponential-sized
non-deterministic automaton A2 that accepts exactly trees
that contain such a witness to Q; the complement of A2 can
be obtained as doubly-exponential size non-deterministic au-
tomata. Thus Q is not access-determined iff A1∩A

c
2 accepts

a tree. This is true exactly when Ac
2 does not accept on the

unique tree accepted by A1 truncated to depth the number
of states of A1 ∩A

c
2.

This shows that in the canonical instance, it suffices to
look for a witness to Q in the chase closure of AccVal within
a doubly-exponential truncation of Chase(S,Q). The result
now follows using the universality of the chase and of the
canonical instance.

We can get a refinement of Theorem 4.5, guaranteeing
that queries can be rewritten in a special form.

Theorem 4.12. Given a schema S whose constraints con-
sist of guarded dependencies, a conjunctive query Q that is
access-determined is ∃+FO, k-rewritable for some k.

Proof. By Lemma 4.11 we know that there is some k
such that Q is true iff the query holds in the k-step chase
closure of the k-accessible substructure. We now use the
following fact:

Given a set of TGDs, a number k, and a conjunctive query
Q, there is a UCQ Q′ such that for every instance I, Q holds
in the k-step closure of I iff Q′ holds in I itself.

This result is well-known (see e.g. [11]); by induction, it
suffices to prove it for k = 1, and for k = 1 it is proven
by unioning the queries formed by 1. matching subqueries
Q′(~x, ~y) with the heads φ(~x, ~y) of TGDs ρ(~x) → ∃~yφ(~x, ~y)
where the variables ~y cannot appear in Q outside of Q′ 2. re-
placing Q′ in Q with ρ(~x)

We can use the chase-based approach to give a more pre-
cise bound on verifying that a query is access-determined.

222

Proposition 4.13. In the case of schemas having only
linear-guarded dependencies, we can determine if Q is access-
determined in EXPTIME.

Proof. (sketch) Notice that in these cases we know that
Q is access-determined iff the chase structure contains a ho-
momorphic image of Q in the chase closure of its accessi-
ble part. An exponential-sized PDA can explore the chase
closure, guessing a homomorphism from the query to ele-
ments within guarded sets on the stack, and recording in
the control state atoms that have already occurred in the
pre-image of the homomorphism. Since reachability in a
PDA is PTIME, we have an EXPTIME upper bound.

Lower bounds. As with extractability, we have match-
ing lower-bounds for checking if a query is access-determined.

Proposition 4.14. Even for schemas having only inclu-
sion dependencies, the problem of checking if Q is access-
determined is EXPTIME-hard.

Proof. We make use of the following claim, which is of
independent interest:

Claim 4.15. There is a polynomial time reduction from
extractability to access-determinacy, for each constraint class
(inclusion dependencies, guarded constraints, . . .).

The proposition follows immediately from the claim, since
extractability was shown to be EXPTIME-hard in Theorem 3.12.

Given a position R[i] in a schema S with inclusion depen-
dencies, our reduction generates the query Q = ∃~xP (xi) ∧
R(~x), over a schema S′ obtained from adding unary pred-
icate P to S, where P has only a “boolean access” – one
requiring the value of the free variable as input.

We check that this is a reduction. It is easy to see that if
R[i] is extractable, Q is access-determined – indeed, it has
an obvious query plan. On the other hand, if R[i] is not
extractable, we have a value v and two instances I and I′

with the same accessible substructure, where v ∈ R[i] in I

but v 6∈ R[i] in I′. By expanding I and I′ to have P (v) true,
we get that Q is not access-determined. This completes the
proof of the claim and (hence) the proposition.

Comparison with non-answerable queries. We com-
pare the results we have obtained for access-determined query
to the situation in the case of a non-access-determined query
Q.

For a logic L, say that a conjunctive query Q is L access
certain-answer rewritable over schema S if there is Q′ such
that: for any structure I satisfying the schema constraints,
Q′ returns true on the accessible substructure of I iff Q is
certain after the path returning the accessible substructure.
More formally, AccessiblePart(I) |= Q′ iff for all I′ |= con(Sch)
with AccessiblePart(I) = AccessiblePart(I′) it holds that I′ |=
Q.

We say Q is L,k access certain-answer rewritable iff the
above is true but with the accessible substructure replaced
by the k-accessible substructure.

If Q is access-determined, then Theorem 4.5 shows that it
is FO, k access certain-answer rewritable.

We show that we may not have FO, k access certain-answer
rewritability for any k, even in the absence of constraints:

Proposition 4.16. There are conjunctive queries that are
not FO, k access certain-answer rewritable for any k, even
in the absence of constraints.

Proof. We simply take a schema with no integrity con-
straints, containing a binary relation R which has an access
method on the first position along with a unary relation U
that is completely accessible. Thus the accessible substruc-
ture of a structure I is the restriction to the transitive closure
under R of the interpretation of U . The query ∃xR(x, x) is
certain iff the accessible substructure contains a tuple of the
form R(x, x): clearly this requires us to look at the full ac-
cessible substructure.

It is well-known that conjunctive queries are not FO-rewritable
over general guarded constraints. The following shows that
they are not even FO access certain-answer rewritable:

Proposition 4.17. There are conjunctive queries that are
not FO access certain-answer rewritable over guarded con-
straints.

Proof. We use the fact that query answering under guarded
tgds (hence under guarded constraints) is not FO-rewritable
in the usual sense of open world query answering [11]. Let
Q′ and S be a query and schema such that Q is not FO-
rewritable w.r.t. the constraints in S in the usual open-world
query-answering sense. Consider S′ with an additional copy
R′ of every predicate R in S. All predicates R′ are fully
accessible, while all the original predicates R are completely
inaccessible. The constraints in the new schema include all
the constraints in S, and in addition inclusion dependencies
stating that R′ is included in R. Thus the accessible sub-
structure of a structure I is simply an arbitrary substructure
of a structure satisfying the schema constraints. It is easy to
see that our notion of access certain-answer rewritable degen-
erates to the standard notion of rewritability in this setting,
and hence Q is not FO access certain-answer rewritable.

Rewritability and Executability. Recall that Theo-
rem 4.5 showed that for schemas with guarded constraints,
any access-determined query is FO, k-rewritable and that
Theorem 4.12 shows that for linear-guarded constraints each
access-determined query is ∃+FO, k rewritable.

We will now show that the latter queries have executable
rewritings in the sense of [2]. Recall that an executable CQ is
one where the order of the atoms is consistent with the access
methods (variables occurring in input positions always occur
at an earlier output position), and a UCQ is executable if it
is a union of executable CQs. The following result is easy to
show using the definitions:

Proposition 4.18. A query Q is equivalent to an exe-
cutable UCQ iff it is ∃+FO, k rewritable for some k.

5. RELATED WORK
Our work has a close connection to two lines of research.

The most obvious connection is to the study of answering
queries with limited access constraints. This notion has been
studied from the theoretical point of view in the 90’s [20,
21]. There were also systems created which optimize queries
with respect to access restrictions, e.g. Florescu et. al [22].
Chang and Li [1, 9] began the study of which queries were
answerable, with particular emphasis on the application to
integration from web-based data sources. The study of an-
swerability was continued by Nash, working with Ludäscher,
and later with Deutsch [3, 4, 2].

223

Our work is directly inspired by Deutsch, Ludäscher, and
Nash’s [2], where the interaction of integrity constraints and
access patterns is considered. The main contribution of [2]
is an algorithm for determining whether a query is “feasi-
ble” – rewritable as an executable query – the algorithm ap-
plies to tuple-generating dependencies with negation, and
requires the chase procedure to terminate; thus whether
the algorithm terminates is undecidable in general. Query-
independent properties are not considered in [2]. Our work
on query-answering differs from [2] with regard to the class of
constraints considered and to the notion of “answerability”
considered. In terms of constraints consider guarded con-
straints, which can have arbitrary quantifier alternation, and
thus are not contained in dependencies of any sort. On the
other hand, [2] deals with dependencies that are not guarded.
Although the TGDs of [2] subsume inclusion dependencies,
their algorithm does not terminate on cyclic inclusion de-
pendencies. Our results give the first complete analysis for
querying answering in the presence of access constraints and
IDs. While [2] define answerability in terms of an executable
rewriting, we consider semantic notions of answerability and
more general rewritings, which can involve quantifier alter-
nation. We show that our more general rewritings are nec-
essary for guarded constraints, and we related the semantic
notion of answerability to the syntactic one. Even for the
more restricted notion of rewritability of [2], our results yield
new algorithms for detecting rewritability. We make use of
the “repeated chase technique” introduced by [2], coupling
it with model-theoretical methods.

The second line of work that we build on concerns the
relation between semantic implication and rewritability for
views and queries. Nash, Segoufin, and Vianu initiated the
study of the relationship between the notions “Views V de-
termine query Q” and “Q is rewritable over V in language
L” [16]. Among other contributions, [16] gives conditions on
Q and L that imply that determined queries are rewritable,
and present cases where no such rewriting exists. Afrati [23],
and Pasailă [24] study the question for restricted classes.

Particularly relevant to this paper is Marx’s [6], which
shows that determinacy is decidable for views and queries
in the “Packed Fragment” (which subsumes guarded logic),
and argues that for determined queries, the rewriting can be
taken to be in the Packed Fragment as well. The proof of
the latter result in [6] is flawed, as discussed in [18]. Indeed,
ten Cate and Marx have shown that determinacy-implies-
rewriting fails for the fragments considered in [6]. Neverthe-
less, our result uses similar techniques and a proof develop-
ment inspired by Marx’s work in [6].

AcknowledgementWe thank the anonymous referees of
ICDT for their help in improving the paper. Benedikt and
Bourhis are supported by the Engineering and Physical Sci-
ences Research Council project ”Query-Driven Data Acquisi-
tion fromWeb-based Datasources”(EPSRC EP/H017690/1).
We are very grateful to Balder ten Cate for numerous helpful
comments and corrections on the draft.

6. REFERENCES
[1] C. Li, “Computing complete answers to queries in the

presence of limited access patterns,”VLDB Journal,
vol. 12, no. 3, pp. 211–227, 2003.

[2] A. Deutsch, B. Ludäscher, and A. Nash, “Rewriting
queries using views with access patterns under
integrity constraints,” in ICDT, 2005.

[3] A. Nash and B. Ludäscher, “Processing union of
conjunctive queries with negation under limited access
patterns,” in EDBT, 2004.

[4] A. Nash and B. Ludäscher, “Processing first-order
queries under limited access patterns,” in PODS, 2004.

[5] V. Bárány, B. ten Cate, and L. Segoufin, “Guarded
negation,” in ICALP, 2011.

[6] M. Marx, “Queries determined by views: pack your
views,” in PODS, 2007.

[7] V. Bárány, G. Gottlob, and M. Otto, “Querying the
guarded fragment,” in LICS, 2010.

[8] C. Chang and H. J. Keisler, Model Theory. Elsevier,
1990.

[9] C. Li and E. Chang, “Answering queries with useful
bindings,”TODS, vol. 26, no. 3, pp. 313–343, 2001.

[10] E. Grädel, “On the restraining power of guards,” J.
Symb. Logic, vol. 64, pp. 1719–1742, 1999.

[11] A. Cal̀ı, G. Gottlob, and T. Lukasiewicz, “A general
datalog-based framework for tractable query
answering over ontologies,” in PODS, 2009.

[12] D. S. Johnson and A. C. Klug, “Testing Containment
of Conjunctive Queries under Functional and Inclusion
Dependencies,” JCSS, vol. 28, no. 1, pp. 167–189,
1984.

[13] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa,
“Data exchange: Semantics and query answering,” in
ICDT, 2003.

[14] R. Rosati, “On the decidability and finite
controllability of query processing in databases with
incomplete information,” in PODS, 2006.

[15] A. Cal̀ı, G. Gottlob, and M. Kifer, “Taming the
infinite chase: Query answering under expressive
relational constraints,” 2012. full version of KR 2008
paper, to appear.

[16] A. Nash, L. Segoufin, and V. Vianu, “Views and
queries: Determinacy and rewriting,” ACM Trans.
Database Syst., vol. 35, no. 3, 2010.

[17] S. Abiteboul, R. Hull, and V. Vianu, Foundations of
Databases. Addison-Wesley, 1995.

[18] V. Bárány, M. Benedikt, and B. ten Cate, “Rewriting
guarded negation queries,” 2012. Submitted, available
from the authors.

[19] V. Bárány, B. ten Cate, and M. Otto, “Queries with
guarded negation,” in VLDB, vol. 5, pp. 1328–1339,
2012.

[20] O. M. Duschka and A. Y. Levy, “Recursive plans for
information gathering,” in IJCAI, 1997.

[21] A. Rajaraman, Y. Sagiv, and J. D. Ullman,
“Answering queries using templates with binding
patterns,” in PODS, 1995.

[22] D. Florescu, A. Y. Levy, I. Manolescu, and D. Suciu,
“Query optimization in the presence of limited access
patterns,” in SIGMOD, 1999.

[23] F. N. Afrati, “Determinacy and query rewriting for
conjunctive queries and views,” Theor. Comput. Sci.,
vol. 412, no. 11, pp. 1005–1021, 2011.

[24] D. Pasailă, “Conjunctive queries determinacy and
rewriting,” in ICDT, 2011.

224

