
Skyline Probability over Uncertain Preferences

Qing Zhang∗‡, Pengjie Ye∗‡
∗The Australian e-Health Research Centre
{qing.zhang, pengjie.ye}@csiro.au

Xuemin Lin‡, Ying Zhang‡
‡The University of New South Wales, Australia

{lxue, yingz}@cse.unsw.edu.au

ABSTRACT
Skyline analysis is a key in a wide spectrum of real appli-
cations involving multi-criteria optimal decision making. In
recent years, a considerable amount of research has been
contributed on efficient computation of skyline probabilities
over uncertain environment. Most studies if not all, assume
uncertainty lies only in attribute values. To the extent of
our knowledge, only one study addresses the skyline proba-
bility computation problem in scenarios where uncertainty
resides in attribute preferences, instead of values. However
this study takes a problematic approach by assuming inde-
pendent object dominance, which we find is not always true
in uncertain preference scenarios. In fact this assumption
has already been shown to be not necessarily true in un-
certain value scenarios. Motivated by this, we revisit the
skyline probability computation over uncertain preferences
in this paper.

We first show that the problem of skyline probability com-
putation over uncertain preferences is]P-complete. Then
we propose efficient exact and approximate algorithms to
tackle this problem. While the exact algorithm remains ex-
ponential in the worst case, our experiments demonstrate its
efficiency in practice. The approximate algorithm achieves
ε-approximation by the confidence (1 − δ) with time com-
plexity O(dn 1

ε2
ln 1

δ
), where n is the number of objects and

d is the dimensionality. The efficiency and effectiveness of
our methods are verified by extensive experimental results
on real and synthetic data sets.

1. INTRODUCTION
Given two multi-dimensional objects p and q, p dominates

q iff p is preferred to q in all dimensions, and strictly better
than q in at least one dimension. A skyline point is a point
that are not dominated by any other points in the same data
set. Skyline computation aims at efficiently retrieving all
skyline points from a (possibly) large data set [4]. Since the
debut of the skyline query processing research in 2001, this
topic has been extensively studied. Various techniques have

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT/ICDT ’13 March 18 - 22 2013, Genoa, Italy
Copyright 2013 ACM 978-1-4503-1597-5/13/03 ...$15.00.

been developed to compute skyline as well as its variations
such as reverse skyline, skycube, etc. In 2007, driven by
many applications involving uncertain data, Pei et. al first
investigated efficient skyline computation on uncertain data
[19], where a multi-dimensional object is assumed to have
uncertain attribute values under certain probability distri-
butions. Obviously under this assumption, any object can
be a skyline point with certain probability p ∈ [0, 1], where p
is defined as the skyline probability. The traditional skyline
definition is thus naturally extended to probabilistic skyline
which consists of all points whose skyline probabilities are
over a threshold τ (0 < τ < 1). Many techniques have been
developed thereafter to efficiently compute the probabilistic
skyline over uncertain data. Readers can check the related
work section for details.

Most existing skyline probability computation methods
assume that computations are performed in a database with
deterministic attribute preferences. However in many appli-
cations, user preferences towards particular data values are
different, especially when categorical data is involved. For
example, a music fan prefers Mozart’s brisk minuet while
another may like Beethoven’s pastoral symphony. Even a
same user may change his/her own preferences on two at-
tributes under different situations, such as a tourist favour-
ing a beach view room in scorching summer and preferring a
fireplace room in chilly winter. To the extent of our knowl-
edge, the only study on skyline probability computation over
uncertain preferences was published in literature in 2010,
where Sacharidis et al. first investigated computing proba-
bilistic contextual skylines [21]. In that study, every multi-
dimensional object has fixed attribute values while prefer-
ences among those values are uncertain. Mathematically,
they model the preference π between two values as a random
variable such that 0 ≤ π ≤ 1, where π = 0/1 degenerates
π to the traditional certain preference definition. Note that
this probabilistic preference model has already been widely
used in voting theory as fuzzy/probability voting schema [8]
and probabilistic majority rules [17].

To compute the skyline probability on uncertain prefer-
ences, Sacharidis et al. [21] adopted the independent ob-
ject dominance assumption. In a nutshell, this assumption
treats object dominances as mutually independent events.
Therefore the skyline probability of an object can be simply
calculated as the multiplication of probabilities that this ob-
ject is not dominated by others, mathematically represented
as Equation 2 in [21]. As we already knew that this assump-
tion is not necessarily true in skyline probability computa-
tion over uncertain values [19]. Here we also demonstrate

395

that in general, this assumption is also NOT valid when
considering skyline probability over uncertain preferences,
through the following observation:

Observation. Consider a two-dimensional space with three
objects in Figure 1 (left). We use ≺ to represent prefer-
ence/dominance relations between values/objects. For ex-
ample, s ≺ t implies that s is preferred to t by the popu-
lation. Also we assume that any two attribute values are
equally preferred by the population, as shown in Figure 1
(right).

Figure 1: A 2-D space with uncertain preferences

Without loss of generality, we consider the skyline prob-
ability of P1. It is easy to see that the probability of P2

dominating P1 is Pr(P2 ≺ P1) = 1
2
. Similarly we have

Pr(P3 ≺ P1) = 1
4
. Following approaches taken in [21],

shortened as Sac hereafter, by assuming independent ob-
ject dominance we compute the skyline probabilities of P1

as:

sky(P1) = (1− 1

2
) ∗ (1− 1

4
) =

3

8
.

Alternatively, following basic definitions of probability, we
always can take a naive approach to compute skyline prob-
abilities, i.e. enumerating all sample spaces and summing
probabilities where P1 is a skyline point. In Figure 2 we list
all possible sample spaces formed by various combinations
of preferences, with corresponding probability and skyline
objects. Hence to compute sky(P1), we only need to add up

Sample space Skyline objects

+

+

+

+

Probability

Figure 2: All sample spaces with skyline points

probabilities of spaces (α ≺ β ∧ s ≺ t) and (β ≺ α ∧ s ≺ t):

sky(P1) =
1

4
+

1

4
=

1

2
.

Note that the probabilities of sample spaces are computed
by assuming independence among attribute preferences of
different dimensions.

Conclusion. The second näıve approach enumerates all pos-
sible sample spaces and outputs correct results. Therefore
the sky(P1) computed by Sac is not correct. In fact for
three objects in this example Sac can only correctly com-
pute sky(P2).

Analyses. So why Sac fails on sky(P1) and sky(P3)? The
answer is simple: with uncertain preference, object domi-
nance relations can not be assumed independent. Intuitively
the dominance relations between two objects will be related
to uncertain preferences between their attribute values. If
two objects share a common attribute value, such as P2 and
P3 sharing t, the dominance relations involving these two
are no longer independent. Let Dom(,) define dominance
relations between two objects. Then in our observation,
Dom(P1,P2), Dom(P1,P3) are not mutually independent.
On the other hand when no common values exist between
two objects, dominance relations involving these two can
be considered independent. This explains why Sac can cor-
rectly compute sky(P2) since P1 and P3 share no values,
and Dom(P1,P2) and Dom(P3,P2) are thus mutually inde-
pendent.

Indeed, our later theoretic analyses indicate that within
uncertain preference scenarios, computing only a single ob-
ject’s skyline probability becomes elusive, not even to say
finding all objects’ skyline probabilities, i.e. probabilistic
skyline. In this paper, we thus focus on efficiently com-
puting the skyline probability of a given object. Our main
contributions are:

• We propose a deterministic algorithm and prove that
skyline probability computation over uncertain prefer-
ences is a]P-complete problem.

• We design a randomised algorithm to compute skyline
probabilities in large data sets. Our algorithm achieves
ε-approximation with confidence (1 − δ), within time
complexity O(dn 1

ε2
ln 1

δ
), where d is the dimensionality

and n is the cardinality of the data sets.

• We propose two speed-up techniques that can efficiently
improve performances of both algorithms.

• We perform extensive experiments on real and large
synthetic data sets. The performance of our algorithms
is verified by our experiment results.

The rest of the paper is organised as follows. Section 2
introduces notations and definitions used throughout this
paper and also formally defines the problem of skyline prob-
ability computation over uncertain preferences. Section 3
proposes a deterministic solution with]P-complete proofs.
Section 4 presents an ε-approximate approach on comput-
ing the skyline probability. Section 5 discusses two speed-up
techniques aiming at improving computational efficiencies
of deterministic and approximate approaches. Section 6 re-
ports a systematic performance study on real and synthetic
data sets. Section 7 reviews related works in the litera-
ture and Section 8 concludes this paper with possible future
works.

2. UNCERTAIN PREFERENCES AND SKY-
LINE PROBABILITY

396

Given a multi-dimensional space D (|D| = d) consisting
of n + 1 objects: O and Qi (1 ≤ i ≤ n). Without loss of
generality, we consider calculating the skyline probability of
O. For any object O (Qi), we use O.j (Qi.j) to represent
its value on j th dimension. Also we use ≺ to denote pref-
erence/dominance relations among values/objects. Figure 3
summarises the above notations and others used throughout
this paper.

Figure 3: The summary of notations

Uncertain preference. Given two distinct values α and β,
we use probabilistic models to describe the uncertain pref-
erences between them. That is:

Pr(α ≺ β) + Pr(β ≺ α) ≤ 1.

Here the inequality stands for chances when α and β are
incomparable. If α and β are the same value, we have
Pr(α � β) = Pr(β � α) = 1.

Dominance probability. For reasons of simplicity, we as-
sume no duplicate objects in D. Given two objects Qi and
O, Qi dominates O (i.e. Qi ≺ O) iff Qi is preferred or
equal to O on any dimension and preferred on at least one
dimension (i.e. ∀j Qi.j � O.j ∧ ∃j′ Qi.j′ ≺ O.j′). Let ei
denote the event Qi ≺ O, by our definition, the probability
of ei is a joint probability of attribute value preferences:

Pr(ei) = Pr(

d⋂
j=1

(Qi.j�O.j)) (1)

Equation 1 can be simplified through assuming attribute
value preferences of different dimensions are mutually inde-
pendent, which is a commonly adopted assumption in multi-
dimensional data analyses. Therefore, we have:

Pr(ei) =

d∏
j=1

Pr(Qi.j�O.j) (2)

Skyline Probability. An object’s skyline probability is de-
fined as the probability that this point can not be dominated
by others. Therefore the skyline probability of O, sky(O),
can be mathematically represented as:

sky(O) = Pr(

n⋂
i=1

ei) = 1− Pr(

n⋃
i=1

ei) (3)

Note here ei denotes the complementary event of ei. From
the inclusion-exclusion principle [15], we rewrite Equation

3 as:

sky(O) = 1 +

n∑
k=1

(−1)k
∑

I⊂{1,...,n}
|I|=k

Pr(EI), (4)

where EI denotes the intersection of |I| events, i.e.
⋂
i∈I

ei.

As discussed, those I object dominance events in EI are
generally not mutually independent, i.e. Pr(EI) 6=

∏
i∈I

Pr(ei).

Indeed for Qi involved in EI , let VIj denote the set of distinct
values of those Qi.j. We can rewrite Pr(EI) as:

Pr(EI) = Pr(

d⋂
j=1

⋂
v∈Vl

j

v � O.j) (5)

To compute Equation 5, we make another assumption: pref-
erences sharing a common value are mutually independent.
We illustrate this assumption through an example of three
values α, β and γ with uncertain preferences predefined.
We believe that preferences on (α, β) and (β, γ) are mutu-
ally independent, i.e. users’ preference on (α, β), will not
influence their preference on (β, γ). Note that if consider-
ing three preferences on (α, β), (β, γ) and (γ, α) together,
they are usually not mutually independent since otherwise
it may be against the common sense assumption that prefer-
ences should be non-conflicting. In light of this assumption,
we simplify Equation 5 as:

Pr(EI) =

d∏
j=1

∏
v∈VI

j

Pr(v � O.j), (6)

It is easy to verify that for any |I| with only one event ei,
the above equation degenerates to Equation 2.

Collectively, with Equations 4 and 6, we can compute the
skyline probability of any object in a space predefined with
uncertain preferences. We use the following running exam-
ple to illustrate how to compute skyline probabilities from
those two equations.

Example 1. Assume a two-dimensional space D including
five points, shown in Figure 4 (a). All attribute values are
equally preferred with probability 0.5. Figure 4 (b) lists all
uncertain preferences related to O.

(a) An example space (b) uncertain preferences

Figure 4: A running example

To compute sky(O), we first calculate all joint probabili-
ties, Pr(EI), in Equation 4. This can be easily achieved by
applying Equation 6. For instance:

Pr(e1 ∩ e2 ∩ e3) = (
1

2
)2 × (

1

2
)2 =

1

16
.

397

Then from Equation 4 we derive:

sky(O) = 1− 3

2
+

17

16
− 7

16
+

1

16
=

3

16
.

Again it can be verified that if assuming object dominance
independent, we will have an incorrect result of sky(O), 9

64
.

Problem Statement: Given a set of objects in a d-dimensional
space D with uncertain preferences predefined, in this pa-
per we investigate the problem of efficiently computing the
skyline probability of a given object O in this set.

3. DETERMINISTIC ALGORITHM
An immediate deterministic algorithm, with applying Equa-

tions 4 and 6, can be easily derived. However instead of
näıvely calculating every Pr(EI) with time complexityO(d |I|)
, we can slightly speed up these calculations through a sim-
ple sharing computation technique. That is by organising
those Pr(EI) calculations systematically, we can achieve a
constant time complexity, O(d), on computing Pr(EI).

Consider two sets of events, I and I−{ei}. From Equation
6, we have:

Pr(EI) = Pr(EI−{ei}) ∗
∏
j′

Pr(Qi.j′ ≺ O.j′)

Here j′ is a dimension where Qi.j′ /∈ VI−{ei}j′ , i.e. Qi.j′ does

not equal to any j′-dimensional values of points involved in
I − {ei}. Given the value of Pr(EI−{ei}), since there exist
at most d such dimensions, the computational complexity
for any Pr(EI) would be O(d), For instance, in our running
example, if given Pr(e1 ∩ e2) = 1

4
, we can compute Pr(e1 ∩

e2 ∩ e3) as easy as:

Pr(e1 ∩ e2 ∩ e3) = Pr(e1 ∩ e2) ∗ 1

2
∗ 1

2
=

1

16
.

To apply this sharing technique, we need to organise all
Pr(EI) computations systematically. A rule of thumb is to
always compute Pr(EI) from Pr(EI′), where |I| = |I ′| + 1.
Figure 5 illustrates a possible computational sequence, indi-
cated by arrows, in finding sky(O) in our running example.
It is easy to see that this rule guarantees that any Pr(EI)

Figure 5: A sharing computation sequence for
sky(O) in Example 1

be computed in O(d). Algorithm 1 concludes this basic de-
terministic algorithm from above analyses.

Time complexity. In Algorithm 1, we compute every Pr(EI)
in O(d). Therefore the time complexity of this algorithm is:

O(

n∑
k=1

d ·

(
n

k

)
) = O(d2n).

Algorithm 1: A deterministic algorithm

Input: d-dimensional points O,Q1, ...,Qn in space D
with uncertain preferences already defined on D

Output: sky(O)

Y ← 1;
for k=1 to n do

if k equals 1 then
compute all n probabilities Pr(EI);

else
compute all

(
n
k

)
joint probabilities Pr(EI) where

|I| = k, from already computed
(
n
k−1

)
probabilities Pr(EI′) where |I ′| = k − 1;

Y ← Y + (−1)k ·
∑

Pr(EI);

Return Y;

Obviously when n becomes large, the cost of this determin-
istic solution will eventually be prohibitive. Can we do bet-
ter? Unfortunately we prove that there unlikely exists any
deterministic approach with polynomial time complexity, as
stated in the following theorem.

3.1 Computational complexity analyses

Theorem 1. Computing the skyline probability of an ob-
ject in a multi-dimensional space with predefined uncertain
preferences, is]P-complete.

Proof. We first show that this problem is in the class]P.
Again considering sky(O) in a space D with n + 1 points,
(O,Q1, . . . ,Qn). Assume all attribute values in D are com-
parable with unanimous uncertain preferences ½. Given a
set of preference assignments, we define it a successful one
if O is a skyline point under these assignments. In this
space D, any set of preference assignments occurs with a

same probability: 1
2

−d+
∑d

j=1 Vj , here Vj represents number
of distinct values in jth dimension. Therefore computing
sky(O) is equivalent to counting number of successful sets,
i.e. preference assignments. A nondeterministic Turing ma-
chine needs only guess an assignment and check in polyno-
mial time whether O is a skyline point under this particular
assignment. Therefore computing sky(O) is]P.

Then we prove it is]P-complete by polynomial time re-
ducing a known]P-complete problem, the DNF counting
[16]. Restricted to only positive literals, we have positive
DNF formula, as illustrated in the following example with 4
literals and 3 clauses:

(x1 ∧ x3) ∨ (x2 ∧ x4) ∨ (x3 ∧ x4) (7)

Given an instance of the positive DNF formula with d
literals and n clauses, we reduce it to a case of computing
sky(O). That is from each clause Ci in the DNF formula,
we define attribute values of Qi as:

• if xj ∈ Ci, Qi.j 6= O.j;

• if xj /∈ Ci, Qi.j = O.j;

Also if an xj of Ci is true, we consider Qi.j ≺ O.j with
probability ½. Otherwise O.j ≺ Qi.j with probability ½.
It is easy to verify that this reduction can be finished in
polynomial time.

398

On one hand, if there exists a satisfiable assignment of
the DNF formula, i.e. at least one Ci is true, then we have
Qi ≺ O. Hence the number of satisfiable assignments equals
the number of preference assignments where O is dominated
by others. Let µ represent the constant probability of any
preference assignments. Assume that the solution of a DNF
counting problem is U . We have:

sky(O) = 1− µ ∗ U

On the other hand, if O is dominated by at least one point
in D, then the corresponding Ci must be true. This implies
a satisfiable assignment of the DNF formula. Consequently,
the solution U of this DNF counting problem is:

U = (1− sky(O))/µ

Note that if d = 1, since all objects have different attribute
values, the skyline probability can be easily computed in
O(n) by assuming independent object dominance. However
Theorem 1 remains]P-complete whenever d ≥ 2. Therefore
in general cases the performance of any deterministic ap-
proach is limited, especially when n is large. In light of this,
we propose the following approximate algorithm as a rem-
edy solution for efficiently computing skyline probabilities
of objects in a very large data set.

4. MONTE CARLO ESTIMATION
An immediate approximate solution for sky(O) is to only

consider some ‘important’ objects, or compute some signif-
icant joint probabilities of those 2n − 1 ones in Equation 4
and ignore remaining items. We did a simple trial over a
synthetic data set with 1000 uniformly distributed 5-d ob-
jects to test the feasibility of these two approaches, namely
A1: computing sky(O) from only partial number of objects
who dominate O with highest probabilities; A2: comput-
ing sky(O) through only calculating partial number of joint
probabilities in Equation 4. Figure 6 presents absolute er-
rors of our two approximate approaches. Clearly, A2 is not a

 0.2

 0.4

 0.6

10 15 20 25

A
b
so

lu
te

 e
rr

o
r

Number of objects

(a) Solution A1

 0

 1

 2

 3

 4

1K 1M 200M

A
bs

ol
ut

e
er

ro
r

Number of computed probabilties

(b) Solution A2

Figure 6: Two tentative approximate solution

good approach since even a random guess will guarantee bet-
ter absolute errors (less than 1). A1 is also not a satisfactory
approach since it can not guarantee the quality of approxi-
mate answers. Moreover, it takes more than 1 hour for A1

to reach the best approximation result after computing 25
important objects. Longer computational time, if consid-
ering more important objects, can be envisaged. Therefore
in the following subsections, we propose a sampling based
Monte Carlo estimation method which not only guarantees
ε-approximation, but also can be computed within a linear
time complexity.

4.1 The sampling method
As discussed in the introduction part, we can always näıvely

compute skyline probabilities from summing probabilities
of sample spaces where O is a skyline point. Mathemati-
cally, let Ω represent the set of sample spaces, i.e. various
combinations of attribute value preferences involving O and
other objects. Let ωh be one sample space s.t. ωh ∈ Ω,
1 ≤ h ≤ |Ω|. We can express our näıve method mathemati-
cally as:

sky(O) =

|Ω|∑
h=1

(Pr(ωh) · |{ωh ∈ Ω|SO}|) (8)

Here SO represents the state where O is a skyline point in a
sample space. Recall our independent assumptions discussed
in Section 2, Pr(ωh) can be efficiently computed through
multiplications of all preference probabilities. Figure 7 lists
all possible sample spaces of our running example (Figure
4), where O is a skyline point, together with corresponding
probabilities.

Sample space Skyline objects

+

+

+

Probability

Figure 7: Sample spaces where O is a skyline object

It is easy to infer that |Ω| increases exponentially with
the total number of distinct attribute values on all dimen-
sions. Therefore when |Ω| becomes very large, enumerating
all possible worlds becomes prohibitive. Instead we sample
only part of them. Specifically, we choose a sample space
ωh with probability Pr(ωh). In ωh, we check whether O is a
skyline point. Repeat this step m times and let Y represent
the number of sample spaces where O is a skyline point. We
use Y

m
as the final estimation of sky(O).

To sample an ωh, we do not need to sample all its prefer-
ences. Instead, in our implementation, we sample ωh’s pref-
erences on the fly, i.e. lazy sampling. With this strategy,
we start by checking whether O is a skyline point against
every other object and we only sample preferences needed
in this checking so far. Whenever we observe O is domi-
nated by an object, the corresponding ωh can thus be safely
discarded even we may have only partially sampled all ωh’s
preferences.

Intuitively, with this lazy sampling strategy, if O is not a
skyline object in ωh, we expect it to be dominated by objects
in our checking sequence as early as possible, if not the first.
Therefore, in the very first step of our sampling algorithm,
we sort all other objects according to their probabilities of
dominating O, to form a checking sequence. The object
with highest probability of dominating O is always checked
first. For instance, in our running example, we always check
O against Q2 and Q4 first, then Q1 and Q3. Note that
although this sorting incurs computational overheads, it is

399

almost negligible when considering all m sampling iterations
can share a same sorted checking sequence.

4.2 Algorithm and analyses
Algorithm 2 collectively presents details of our sampling

algorithm discussed above. The performance of this algo-

Algorithm 2: A Monte Carlo sampling algorithm

Input: d-dimensional objects O,Q1, . . . ,Qn in space D
and uncertain preferences already defined on D

Output: the approximation of sky(O)

Sort Q1, . . . ,Qn in descending order, basing on their
dominant probabilities on O;
Y ← 0;
for h=1 to m do

for j=1 to n do
check dominance between O and Qj in the
sorted sequence, sampling preferences
accordingly ;
if O is dominated by Qj then

go to 3;

Y ← Y + 1;

Return Y/m;

rithm is guaranteed in the following theorem:

Theorem 2. Given an absolute error bound ε and a con-
fidence interval 1− δ. If m = 1

2ε2
ln 2

δ
, Algorithm 2 guaran-

tees:

Pr(

∣∣∣∣Ym − sky(O)

∣∣∣∣ ≥ ε) ≤ δ
Proof. Let Xh define an independent 0−1 random vari-

able, which equals 1 when O is a skyline point under ωh.
Since every ωh is sampled with probability Pr(ωh), from
Equation 8 we derive that E [Xh] = sky(O). Therefore, the
expectation value of Y is:

E [Y] =

m∑
h=1

E [Xh] = m ∗ Pr(sky(O)) (9)

Recall Hoeffding’s inequality [16], we have:

Pr(

∣∣∣∣Ym − sky(O)

∣∣∣∣ ≥ ε) ≤ 2e−2mε2

Let m = 1
2ε2

ln 2
δ
, we prove this theorem.

Time complexity. It is easy to derive that Algorithm 2 can
compute an approximate skyline probability inO(dn 1

ε2
ln 1

δ
).

To further improve this sampling algorithm’s performance,
we propose two speed-up preprocessing techniques in the
next section aiming at reducing number of necessary ob-
jects involved in the skyline probability computation. More
importantly, these techniques can also be applied on the
deterministic algorithm, making exact skyline probability
computation possible within polynomial time, under certain
data distributions.

5. ABSORPTION AND PARTITION

In this part we introduce two speed-up preprocessing tech-
niques, namely absorption and partition. In a nutshell, they
both aim at reducing number of objects necessarily involved
in skyline probability computations.

Absorption. The intuition is that to compute sky(O) in
Algorithm 1, we may not necessarily involve every other
point. For instance in our running example, with/without
Q1, we always compute same result of sky(O). Thus Q1

becomes a dispensable object in computing sky(O). We call
it being absorbed. Mathematically, we can rigidly define
whether an object can be absorbed by others through the
following theorem:

Theorem 3. If a point Qi shares identical values with O
on m dimensions, 0 ≤ m ≤ d. Then any point Qj shares
identical values with Qi on all remaining d−m dimensions
can be ‘absorbed’ by Qi, i.e.

sky(O) = Pr(

n⋂
i=1

ei) = Pr(e1

⋂
. . .
⋂
ej−1

⋂
ej+1 . . .

⋂
en)

Proof. Without loss of generality, let us assumeQi′ (2 ≤
i′ ≤ n) shares identical values with O on m dimensions.
Also let Q1 shares identical values with Qi′ on remaining
dimensions. Applying the inclusion-exclusion principle, the
skyline probability of O can be represented as:

sky(O) = 1− Pr(e1)− Pr(

n⋃
i=2

ei) + Pr(e1 ∩
n⋃
i=2

ei)

If Q1 ≺ O, by definition, it is easy to infer that Qi′ ≺ O. In
other words Pr(ei′ |e1) = 1. Therefore:

Pr(e1 ∩
n⋃
i=2

ei) = Pr(e1) · Pr(

n⋃
i=2

ei|e1) = Pr(e1)

And the skyline probability of O is:

sky(O) = 1− Pr(

n⋃
i=2

ei) = Pr(

n⋂
i=2

ei)

Moreover, absorption satisfies transitivity, as stated in the
following corollary:

Corollary 1. Let Qx C Qy denote Qy be absorbed by
Qx. If Qx C Qy and Qy C Qz. Then Qx C Qz.

Proof. From Qx C Qy we infer that there must exist a
set of dimensions, Γxy, where:{

Qx.j 6= O.j, j ∈ Γxy
Qx.j = Qy.j, j ∈ Γxy

Similarly, from Qy C Qz, we have:{
Qy.j 6= O.j, j ∈ Γyz
Qy.j = Qz.j, j ∈ Γyz

Therefore, Γxy must be a subset of Γyz since at least on
dimensions of Γxy, Qy.j 6= O.j. This Γxy ⊂ Γyz implies that
Qx.j = Qz.j, (j ∈ Γxy). Consider Qx.j 6= O.j, (j ∈ Γxy),
we conclude that Qx C Qz.

Based on this transitivity property, during the absorp-
tion preprocessing, we only need to perform a one pass data

400

scan with arbitrary sequence to remove all unnecessary ob-
jects. That is we start from any Qi, then query a set of
objects sharing same values with Qi on all dimensions j,
where Qi.j 6= O.j. These objects can thus be safely ‘ab-
sorbed’ in computing sky(O). Algorithm 3 presents details
of this preprocessing procedure.

Algorithm 3: The absorption technique

Input: d-dimensional points O,Q1, ...,Qn in space D
Output: A set of objects that are really necessary in

computing sky(O)

S← {Q1, . . . ,Qn};
for i=1 to n do

if Qi exists in S then
Compare Qi and O to find a set of dimensions
Γ, such that Qi.j 6= O.j, (j ∈ Γ);
if |Γ| ≥ 1 then

Retrieve all points Qi′ such that
Qi′ .j = Qi.j, (j ∈ Γ);
Remove those Qi′ from S

Return S;

Partition. Recall that in the introduction section, we men-
tioned that dominance relations between two objects and
O can be independent as long as those two objects share
no common attribute values. Here we formally prove this
independence property in Theorem 4.

Theorem 4. If n objects, Q1, . . . ,Qn, can be partitioned
into m sets St, 1 ≤ t ≤ m such that either no two objects
from different sets share same attribute values, or only shar-
ing same values as O, sky(O) can be simply computed as:

sky(O) =

m∏
t=1

Pr(
⋂
Qi∈St

ei)

Proof. Given m partitions, we have:

sky(O) = Pr(

m⋂
t=1

(
⋂
Qi∈St

ei)) = 1− Pr(

m⋃
t=1

Ct),

where Ct = (
⋃
Qi∈St

ei).

Since no two objects from different sets share attribute
values, it is easy to infer that given two sets St and St′ , we
have:

Pr(Ct ∩ Ct′) = Pr(Ct) · Pr(Ct′)

Therefore we derive the skyline probability of O as:

sky(O) = 1−
m∑
t=1

Pr(Ct) +
∑
t<t′

Pr(Ct) · Pr(Ct′)

+ · · ·+ (−1)m
m∏
t=1

Pr(Ct)

=
m∏
t=1

(1− Pr(Ct))

=
m∏
t=1

Pr(
⋂
Qi∈St

ei)

To avoid redundant preprocessing steps, we always ap-
ply absorption before partition. This guarantees that after

partition, no more absorption procedures are necessary in
every partitioned set. For instance, to compute sky(O) in
our running example (Figure 4), we first discard Q1 through
absorption preprocessing. Then we partition remaining ob-
jects into three independent sets:

sky(O) =

4∏
i=2

Pr(ei) =
3

16

Analyses. If objects follow a dense distribution, then ab-
sorption may remove a load of unnecessary objects. On the
other hand, if objects take a really sparse distribution, more
independent sets can be generated by partition. However
there exist no performance guarantees for these two prepro-
cessing techniques. Yet under certain data distribution these
techniques may help exact solutions achieving polynomial
time complexity, such as computing skyline probabilities on
objects following block-zipf distribution, detailed in the next
section.

6. EMPIRICAL STUDY
We evaluate our exact and approximate algorithms on

real and synthetic data sets. In these data sets, we always
assume uncertain preferences predefined between attribute
values. The preference probabilities are randomly gener-
ated between [0, 1], with 0 and 1 degenerating uncertain
preferences to traditional certain ones. All algorithms are
implemented in GNU C++ 4.3.2, and executed on a Linux
2.6.31.8 PC with 2.66 GHz Intel Xeon X3330 CPU and 4GB
memory.

Synthetic data sets. We generate synthetic data sets in this
empirical study for two testing purposes: a) evaluating the
efficiency of our two preprocessing techniques. b) testing
the accuracy and efficiency of our approximate algorithm
on large data sets. In light of these, we create two types of
data:

• Uniform: objects’ attribute values are generated in-
dependently following uniform distributions on each
dimension.

• Block-zipf: objects are grouped into several disjointed
blocks where no two objects from different blocks share
a common value. Inside each block, objects follow
zipf’s distribution with zipf parameter 1.

Note that unlike other skyline research papers in liter-
ature, we do not generate correlated/anti-correlated data
sets. Because with uncertain preferences defined, a same
block-zip data set can be correlated or anti-correlated with
probabilities. Figure 8 shows correlated and anti-correlated
block-zipf distributions.

Table 1 summarises parameters used in generating syn-
thetic data sets.

Parameter Range
Uniform data set cardinality (n) 10, 20, 40, 50

Block-zipf data set cardinality (n) 10, 1K, 10K, 100K
Dimensionality (d) 2, 3, 4, 5

Table 1: Parameter and ranges

401

(a) Correlated block-zipf (b) Anti-Correlated block-zipf

Figure 8: Block-zipf data distribution with different
attribute value preferences

Real data sets. We also use a real data set publicly avail-
able from the UC Irvine Machine Learning Repository, called
Nursery 1. This data set contains 12,960 instances and 8
categorical attributes such as number of children, parents’
occupation, etc.. Each instance in this data set represents an
application submitted to the nursery school. And the nurs-
ery school will make decisions on these applications by rank-
ing them on preferences over those categorical attributes.
Obviously preferences on number of children can vary dra-
matically among various user perspectives. It is thus natural
to model them with uncertain preferences. Because of miss-
ing detail preference information from the nursery school,
without loss of generality, we generate synthetic preferences
for those 8 attributes. Semantically, in this application, an
instance’s skyline probability is its possibility to be accepted
by the school as a good application.

Algorithms. Table 2 lists all four implemented algorithms,
with two exact ones and two approximate ones. Det is the
deterministic algorithm, i.e. Algorithm 1. Det+ prepro-
cesses data with two speed-up techniques, i.e. absorption
and partition, before applying Det on skyline probability
computations. Similarly, Sam is the Monte Carlo sampling
algorithm, i.e. Algorithm 2. Sam+ applies our preprocess-
ing techniques before running Sam on data sets.

Algorithm Abbreviation
Deterministic Det

Deterministic with data preprocessing Det+
Monte Carlo sampling Sam

Sampling with data preprocessing Sam+

Table 2: Algorithms and their abbreviations

Performance metrics. We use average running time and
absolute errors to measure performance of our four algo-
rithms. Specifically, if a data set has no more than 1000
objects, we will calculate every object’s skyline probability
and then compute average values. Otherwise, we will ran-
domly pick 1000 objects to compute average values.

6.1 Deterministic Algorithms
We evaluate performances of our two deterministic algo-

rithms on the uniform and block-zipf data sets. First, we fix
the data dimensionality as 5 and vary the size of data sets
from 10 to 50 on uniform data, and 10 to 100K on block-zipf

1http://archive.ics.uci.edu/ml/datasets/Nursery

data. Figure 9 reports efficiency comparisons between Det
and Det+ on different data sets. In Figure 9 (a), it is not

0
2k

5k

10k

10 20 40 50

R
u

n
n

in
g

 t
im

e
 (

s
e

c
)

Number of objects

Det
Det+

(a) Uniform (5d)

10-4

1

1k

10 1k 10k 100k

R
u

n
n

in
g

 t
im

e
 (

s
e

c
)

Number of objects

Det
Det+

(b) Block-zipf (5d)

Figure 9: Efficiency of exact algorithms (varying n)

surprising to see both deterministic algorithms can not com-
pute skyline probabilities of a uniform data set with more
than 50 objects, within 104 seconds. However, although pre-
processing add some overheads to Det+, we notice that the
overall performance of Det+ is still much better than Det,
due to removal of unnecessary objects in its computation.

Moreover, in Figure 9 (b),while Det’s performance on the
block-zipf data is similar to that on a uniform data set, Det+
can efficiently compute skyline probability of a data set with
up to 100k objects, within 1000 seconds. This demonstrates
the efficiency of our preprocessing techniques.

Similar conclusions can be drawn from Figure 10, where
we fix the size of data sets as 50/10k accordingly and vary
dimensionality of data sets. It is interesting to note that
Det+ performs especially well on low dimensional data, due
to ‘absorption’ efficiently removing many unnecessary ob-
jects in preprocessing. Also note that in Figure 10 (b), we
only report performance of Det+ since Det can not compute
any object’s skyline probability in these data sets within 104

seconds.

0
2k

5k

10k

2 3 4 5

R
u

n
n

in
g

 t
im

e
 (

s
e

c
)

Number of dimensions

Det
Det+

(a) Uniform (50)

101

102

103

2 3 4 5

R
u

n
n

in
g

 t
im

e
 (

s
e

c
)

Number of dimensions

Det+

(b) Block-zipf (10k)

Figure 10: Efficiency of exact algorithms (varying
d)

6.2 Approximate algorithms
We evaluate the accuracy and performance of our two ap-

proximate algorithms on the uniform and block-zipf data
sets. For both algorithms, we set ε = 0.01, δ = 0.01 and the
sample size as 3000. Note that although theoretically the
sample size for both algorithms should be 26492 (1

2ε2
ln 2

δ
).

From our empirical studies on running Sam and Sam+ on
a block-zipf 5-d data set with 100k objects, we observe that
3000 is already a good enough sample size that satisfies the
ε = 0.01 error bound. Figure 11 reports the results of our

402

empirical studies with different absolute approximation er-
rors generated by Sam and Sam+ under various sample sizes.

10-4

10-3

10-2

10-1

100

10 1k 3k 10k

Ab
so

lu
te

 e
rro

r

Number of samples

Sam
Sam+

Figure 11: Absolute errors with various sample sizes

We compare approximate results by Sam and Sam+ against
exact ones of block-zipf data sets in Figure12. Both algo-
rithms output approximations with absolute errors well be-
low ε = 0.01.

10-4

10-3

10-2

10 100 1k 10k

A
b

s
o

lu
te

 e
rr

o
r

Number of objects

Sam
Sam+

(a) 5-d objects

10
-3

10
-2

2 3 4 5

A
b

s
o

lu
te

 e
r
r
o

r

Number of dimensions

Sam

Sam+

(b) 10k objects

Figure 12: Approximation accuracy with ε = δ = 0.01

Similar as efficiency evaluations on deterministic algorithms,
we compare efficiency of Sam and Sam+ on various synthetic
data sets. We also include reported running time of Det+
as a reference. Figure 13 compares efficiency of Sam and
Sam+, on uniform and block-zipf data sets with 5-d objects.
Note that due to the logarithmic scale used in this figure,
the same Det+ looks different to that displayed in Figure 9
(a).

10-4

10-2

100

102

104

106

10 20 40 50

R
u
n
n
in

g
 t
im

e
(s

e
c
)

Number of objects

Der+
Sam

Sam+

(a) Uniform (5d)

10-4

10-2

100

102

104

106

10 1k 10k 100k

R
u
n
n
in

g
 t
im

e
(s

e
c
)

Number of objects

Der+
Sam

Sam+

(b) Block-zipf (5d)

Figure 13: Efficiency of approx. algorithms (varying n)

It is interesting to note that on a small data set or un-
der a certain data distribution (block-zipf in this paper),
Det+ performs even better than sampling algorithms, if not
always. However when data sets get larger, sampling algo-
rithms undoubtedly beat their deterministic opponents.

Figure 14 reports similar performance comparison results
on fixed-size data sets with varying dimensionality.

10-2

100

102

104

106

2 3 4 5

R
u

n
n

in
g

 t
im

e
(s

e
c
)

Number of dimensions

Der+
Sam

Sam+

(a) Uniform (50)

10-2

100

102

104

106

2 3 4 5

R
u

n
in

g
 t

im
e

(s
e

c
)

Number of dimensions

Der+
Sam

Sam+

(b) Block-zipf (10k)

Figure 14: Efficiency of approx. algorithms (varying d)

6.3 Evaluation on real data sets
Finally we evaluate our deterministic and approximate

algorithms on the nursery school data set, which contains
12960 8-dimensional objects. From it, we generate two data
sets with dimensionality equals to 4 and 8 correspondingly.
Figure 15 reports the experiment results. Note that since
Det can not deliver any object’s skyline probability results
within 104 seconds, we omit it in Figure 15. Also note that
although the worst case time complexity of Det+ is expo-
nential, it still can efficiently compute skyline probabilities
of objects in these real data sets because of the preprocessing
techniques.

10-3
10-2
10-1
100
101
102
103
104
105

4 8

R
u

n
n

in
g

 T
im

e
 (

s
e

c
)

Number of dimensions

Det+
Sam

Sam+

(a) Efficiency comparison

10
-3

10
-2

4 8

A
b

s
o

lu
te

 e
r
r
o

r

Number of dimensions

Sam

Sam+

(b) Error comparison

Figure 15: Evaluation on real data sets

7. RELATED WORK
Previously known as Pareto sets [2] or maximum vec-

tors [10], the skyline operator was first introduced in the
database community by Börzsönyi et al. to support multi-
criteria decision making [4]. Aiming at efficient skyline query
processing on very large data sets, many techniques have
been proposed thereafter, ranging from intuitive block nested
loop approach, to intricate index-based skyline query pro-
cessing methods [5, 22, 18, 6, 3, 11]. Variations of skyline
query have also emerged from literature, such as skycube
[24], reverse skyline [12], sliding window skyline [14, 23],
approximate skyline [9] etc. Note that the approximate sky-
line in [9] refers to finding a subset of representative skyline
points, which should not be confused with the probabilistic
skyline later appears in literature.

Pei et al. first investigated skyline computation problems
on uncertain data [19]. In their study, attribute values of an

403

object follow random distributions. Therefore dominance
relations between objects become uncertain. Consequently
every object will have a probability to be a skyline point. To
compute the probabilistic skyline is thus to find all objects
having their skyline probabilities greater than a threshold τ .
Motivated by this uncertain data model, many variations of
probabilistic skyline have been investigated, such as prob-
abilistic reverse skyline [1, 13], probabilistic top-k skyline
query [25], etc.

Most of those probabilistic skyline models assume uncer-
tain attribute values. However, uncertain preferences are
also very common in real life. Various uncertain preference
models have been well discussed in [26], such as those used in
voting systems. Sacharidis et. al first studied an uncertain
preferences based probabilistic skyline model [21], which was
also referred as a fuzzy skyline model in [7]. Nevertheless
compared to the crowded research activities of probabilistic
skyline over uncertain values, finding probabilistic skyline
over uncertain preferences seems very quiet. To the extend
of our knowledge, [21] is the only paper that formally de-
fines probabilistic skyline over uncertain preferences, and
provides a first solution as discussed before.

8. CONCLUSIONS
In this paper, we revisited the skyline probability compu-

tation problem over uncertain preferences. We proved the
]P-completeness of this problem and presented deterministic
as well as randomised approaches, with two speed-up pre-
processing techniques. Using synthetic and real data sets,
the empirical studies demonstrated both efficiency and ef-
fectiveness of our algorithms.

Unlike computing probabilistic skylines over uncertain data
where many efficient polynomial algorithms have already
been developed, computing probabilistic skyline over uncer-
tain preferences becomes extremely hard given the compu-
tational intractability of even computing one single object’s
skyline probability. A näıve approach will be calculating
every object’s skyline probability by applying the sampling
algorithm proposed in this paper. However a more efficient
solution may be applying the generic top-k evaluation frame-
work for uncertain databases, proposed in [20]. This will be
one of our future works.

9. REFERENCES
[1] M. Bai, J. Xin, and G. Wang. Probabilistic reverse

skyline query processing over uncertain data stream.
In Proceedings of the 17th international conference on
Database Systems for Advanced Applications - Volume
Part II, DASFAA’12, pages 17–32, Berlin, Heidelberg,
2012. Springer-Verlag.

[2] O. Barndorff-Nielsen and M. Sobel. On the
distribution of the number of admissible points in a
vector random sample. Theory of Probability and its
Application, 11(2):249–269, 1966.

[3] I. Bartolini, P. Ciaccia, and M. Patella. Efficient
sort-based skyline evaluation. ACM Trans. Database
Syst., 33(4):1–49, 2008.

[4] S. Borzsony, D. Kossmann, and K. Stocker. The
Skyline operator. In Data Engineering, 2001.
Proceedings. 17th International Conference on, pages
421–430, 2001.

[5] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang.
Skyline with presorting. In ICDE, pages 717–816,
2003.

[6] P. Godfrey, R. Shipley, and J. Gryz. Algorithms and
analyses for maximal vector computation. The VLDB
Journal, 16(1):5–28, 2007.

[7] A. Hadjali, O. Pivert, and H. Prade. On different
types of fuzzy skylines. In Proceedings of the 19th
international conference on Foundations of intelligent
systems, ISMIS’11, pages 581–591, Berlin, Heidelberg,
2011. Springer-Verlag.

[8] A. Kangas, J. Kangas, and M. Kurttila. Decision
Support for Forest Management (Managing Forest
Ecosystems). Springer, softcover reprint of hardcover
1st ed. 2008 edition, Nov. 2010.

[9] V. Koltun and C. H. Papadimitriou. Approximately
dominating representatives. Theor. Comput. Sci.,
371(3):148–154, 2007.

[10] H. Kung and F. Luccio. On finding the maxima of a
set of vectors. Journal of the ACM (JACM), 1975.

[11] K. C. K. Lee, B. Zheng, H. Li, and W.-C. Lee.
Approaching the skyline in z order. In VLDB ’07:
Proceedings of the 33rd international conference on
Very large data bases, pages 279–290. VLDB
Endowment, 2007.

[12] X. Lian and L. Chen. Monochromatic and bichromatic
reverse skyline search over uncertain databases. In
SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD
international conference on Management of data,
pages 213–226, New York, NY, USA, 2008. ACM.

[13] X. Lian and L. Chen. Reverse skyline search in
uncertain databases. ACM Trans. Database Syst.,
35(1):3:1–3:49, Feb. 2008.

[14] X. Lin, Y. Yuan, W. Wang, and H. Lu. Stabbing the
sky: Efficient skyline computation over sliding
windows. In ICDE ’05: Proceedings of the 21st
International Conference on Data Engineering, pages
502–513, Washington, DC, USA, 2005. IEEE
Computer Society.

[15] M. Mitzenmacher and E. Upfal. Probability and
Computing. The press syndicate of he university of
cambridge, 2005.

[16] R. Motwani. Randomized Algorithms. 1995.

[17] D. Mueller. Probabilistic majority rule. Kyklos, 1989.

[18] D. Papadias, Y. Tao, G. Fu, and B. Seeger.
Progressive skyline computation in database systems.
ACM Trans. Database Syst., 30(1):41–82, 2005.

[19] J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic
skylines on uncertain data. In B. Jiang, editor,
Proceedings of the 33rd international conference on
Very large data bases, pages 15–26. VLDB
Endowment, 2007.

[20] C. Re, N. Dalvi, and D. Suciu. Efficient Top-k Query
Evaluation on Probabilistic Data. In Data
Engineering, 2007. ICDE 2007. IEEE 23rd
International Conference on, pages 886–895, 2007.

[21] D. Sacharidis, A. Arvanitis, and T. Sellis. Probabilistic
contextual skylines. In Data Engineering (ICDE),
2010 IEEE 26th International Conference on, pages
273–284, 2010.

[22] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient

404

progressive skyline computation. In VLDB ’01:
Proceedings of the 27th International Conference on
Very Large Data Bases, pages 301–310, San Francisco,
CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[23] Y. Tao and D. Papadias. Maintaining sliding window
skylines on data streams. IEEE Trans. on Knowl. and
Data Eng., 18(3):377–391, 2006.

[24] Y. Yuan, X. Lin, Q. Liu, W. Wang, J. X. Yu, and
Q. Zhang. Efficient computation of the skyline cube.
In VLDB ’05: Proceedings of the 31st international
conference on Very large data bases, pages 241–252.
VLDB Endowment, 2005.

[25] Y. Zhang, W. Zhang, X. Lin, B. Jiang, and J. Pei.
Ranking uncertain sky: The probabilistic top-k skyline
operator. Information Systems, 36(5):898–915, 2011.

[26] M. ÃŰztÃijrk and A. TsoukiÃăs. Preference
modelling. In State of the Art in Multiple Criteria
Decision Analysis, pages 27–72. Springer-Verlag, 2005.

405

