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ABSTRACT
In this big data era, huge amounts of spatial documents have been
generated everyday through various location based services. Top-k
spatial keyword search is an important approach to exploring use-
ful information from a spatial database. It retrieves k documents
based on a ranking function that takes into account both textual
relevance (similarity between the query and document keywords)
and spatial relevance (distance between the query and document
locations). Various hybrid indexes have been proposed in recent
years which mainly combine the R-tree and the inverted index so
that spatial pruning and textual pruning can be executed simultane-
ously. However, the rapid growth in data volume poses significant
challenges to existing methods in terms of the index maintenance
cost and query processing time.

In this paper, we propose a scalable integrated inverted index,
named I3, which adopts the Quadtree structure to hierarchically
partition the data space into cells. The basic unit of I3 is the key-

word cell, which captures the spatial locality of a keyword. More-
over, we design a new storage mechanism for efficient retrieval of
keyword cell and preserve additional summary information to fa-
cilitate pruning. Experiments conducted on real spatial datasets
(Twitter and Wikipedia) demonstrate the superiority of I3 over ex-
isting schemes such as IR-tree and S2I in various aspects: it incurs
shorter construction time to build the index, it has lower index stor-
age cost, it is order of magnitude faster in updates, and it is highly
scalable and answers top-k spatial keyword queries efficiently.
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The great success of iPhone and Android has led to an increase in
the market share of smartphones in recent years. Such smartphones
are equipped with GPS devices that allow a user to conveniently
capture and associate his/her current location with published con-
tent. Users can take a photo, mark its geo-location and annotate it
with tags on Flickr so that the photo is associated with both spatial
and textual information. They can also publish news and events on
the spot using Twitter. Consequently, more and more spatial doc-
uments1 have been created and become publicly accessible. For
example, Flickr has hosted more than 5 billion photos, impacted
by the iPhone’s existence2. Twitter nowadays delivers almost 250
million tweets a day3. The scale of these enormous location-based
databases and the demand for real-time response make it very crit-
ical to develop efficient query processing mechanisms.

Top-k spatial keyword search is an important tool in exploring
useful information from a spatial database and has been well stud-
ied for years [20, 4, 10, 8, 6, 12, 14, 17]. The query consists of a
spatial location, a set of keywords and a parameter k. The answer is
k top-most relevant documents which are ranked based on a com-
bination of both the spatial and textual attributes. The spatial rele-
vance is measured by the distance between the location associated
with the candidate document to the query location, and the textual
relevance is computed in the same way as in traditional search en-
gines. In this paper, we study both AND semantics and OR semantics
for the spatial keyword query.

• The AND semantics has a textual constraint that each returned
document should contain all the query keywords. Such se-
mantics is widely used in many location based applications
where the query keywords indicate a user’s preference. For
example, queries like “spicy Chinese restaurant” have clear
user intention and require all the keywords to be matched.
The collective spatial keyword query recently proposed in
[3] is another interesting application of AND semantics.

• The OR semantics allows the query keywords to partially match
a document. This is a more general case. In the above ex-
ample, when a user does not have a strong preference, non-
spicy Chinese restaurants can also be recommended if they
are close to the user’s location. Compared to AND semantics,
more candidates will be examined in the query processing of
OR semantics.

1We use the term spatial document to refer to a document that
has a geo-location annotation.
2http://techcrunch.com/2011/09/02/instagram-adds-50-million-
photos-in-august-now-over-200-million-total/
3http://techcrunch.com/2011/10/17/twitter-is-at-250-million-
tweets-per-day/
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Ideally, a scalable solution should satisfy three requirements: (i)
The index requires low maintenance cost and should be efficient
for highly frequent insert operations. (ii) The index shows effec-
tive storage utilization. (iii) The index answers queries efficiently.
In state-of-the-art solutions, the most popular one is to embed the
inverted index into the R-tree, named the IR-tree family [10, 6,
14]. In these indexes, a centralized R-tree is maintained to cap-
ture the global spatial information. All the documents are inserted
into the R-tree using the spatial attribute. Each node in the tree
is augmented with an inverted index, which refers to a pseudo-
document representing all the documents whose locations fall in-
side the node’s MBR. The IR-tree can take advantage of spatial and
textual information simultaneously in the pruning stage. When ex-
amining a tree node, we can calculate its upper-bound score using
the maximum query term weight and the minimum spatial distance.
If the upper bound value is smaller than the current best score, the
node can be pruned. However, when handling a large dataset, the
IR-tree suffers from two main drawbacks. First, the centralized R-
tree mechanism requires high update cost. Each node has to main-
tain an inverted index for all the keywords of documents associated
with this node’s MBR. When a node is full and split into two new
nodes, all the textual information in the node has to be re-organized.
Second, the processing cost to examine whether a node is relevant
to the query keywords is not negligible [17]. A large number of
pseudo-documents have to be accessed when the query keywords
are frequent. In the worst case, all the tree nodes have to be ac-
cessed for a query, incurring very high I/O cost. Thus, it is difficult
for IR-tree to scale to a huge dataset.

Recently, Rocha-Junior et. al. proposed the S2I index and showed
that it offers better query processing performance [17]. S2I uses
textual-first partition and splits the database into inverted lists. If
a keyword is frequent, an aggregated R-tree [16] is built to fur-
ther improve spatial pruning. Otherwise, the infrequent keywords
are stored in a flat file. S2I is scalable in terms of the number of
keywords in the database because given a set of query keywords,
only the related inverted lists are accessed. Compared to IR-tree, it
greatly reduces the amount of I/O access in the worst case. How-
ever, it is costly to perform partial aggregation across different R-
trees, especially when the keywords are frequent. It results in a
large number of random accesses on tree nodes. In addition, S2I
maintains inverted lists and R-trees at the same time. When a key-
word becomes frequent, its related documents were stored in the
flat file and now these documents have to be taken out and inserted
into a new R-tree. It takes considerable overhead for the data trans-
fer between the flat file and the R-tree index.

In this paper, we use the Quadtree [9] to decompose the data
space into a hierarchy of cells and propose a scalable integrated
inverted index, named I3, to manipulate spatio-textual informa-
tion. Quadtree is selected because it is recommended for update-
intensive applications [11]. Our index stores keyword cell as
the basic unit, which captures spatial locality for a keyword. A
keyword cell, denoted by 〈wi,Cj〉, refers to a list of documents
containing keyword wi and having their associated locations in cell
Cj . Moreover, I3 stores summary information of keyword cell for
effective pruning. The summary information includes a signature
file [7] which aggregates document id in the keyword cell and the
upper bound score of keyword relevance. Based on the summary
information, we propose different pruning strategies for AND and
OR semantics. To sum up, we propose a scalable index structure
I3 for top-k spatial keyword query and the index has the following
advantages:

• I3 greatly reduces the index construction time.

• I3 takes much less update cost than existing methods and is
more suitable for big data scenarios.

• I3 is effective in storage utilization.

• I3 significantly outperforms state-of-the-art schemes when
answering top-k spatial keyword queries in terms of AND se-
mantics and OR semantics.

The rest of the paper is organized as follows. In Section 2, we
review related work in the area of top-k spatial keyword search. In
Section 3, we address the problem of spatial keyword search based
on AND semantics and OR semantics. The index overview of I3 and
detailed explanation of data operations are presented in Section 4.
The query processing strategy is proposed in Sections 5. Results
of an extensive experimental study on real datasets are reported in
Section 6. Section 7 concludes the paper.

2. RELATED WORK
Spatial keyword search has been well studied for years due to its

importance to commercial search engines. Various types of spatial
keyword queries have been proposed. These related works can be
categorized from two dimensions. The first dimension indicates
whether the query contains a region as a spatial constraint and the
second dimension specifies whether AND or OR semantics is used.

First, we introduce the works with spatial constraint which re-
quires the returned documents’ associated location to be intersect-
ing with or contained in a query region [4, 10, 20, 12, 5, 14].
Among these works, [4] and [10] adopt AND semantics while [20], [12],
[5] and [14] use OR semantics. This type of query is especially use-
ful in web search engine. The query keywords contain a gazetteer
term which can be represented by an approximate region. The re-
sult documents have spatial annotations that overlap with the query
region, and are ranked based on certain criteria. Early works [20, 4]
use two separate indexes, an R-tree to capture spatial information
and inverted index for textual pruning. The query processing con-
tains two stages, either spatial-first or textual-first, depending on the
spatial and textual selectivity. Such a two-phrase pruning approach
is not efficient because many false positive candidates, which are
only spatially or textually relevant, still need to be accessed. To
improve the efficiency, various hybrid indexes have been proposed.
The main idea is to extend R-tree to embed textual information in
tree nodes. The most common solution is to augment a tree node
with inverted index for the spatial documents within that MBR [10,
14].

The remaining works [8, 6, 17] do not have the query region
overlapping constraint. The candidates can be located anywhere
in the space and ranked by spatial relevance and textual relevance.
In [8], Felipe et al. considered AND semantics and ranked the re-
sults by their distance to the query location. They proposed IR2,
a hybrid index of the R-tree and signature file, for query process-
ing. Cong et al. [14] proposed a more general top-k spatial keyword
query. It uses OR semantics and retrieves spatial documents ranked
by both spatial relevance and textual relevance. The spatial rele-
vance is measured by the distance from the document’s associated
location to the query location and the textual relevance is defined
using tf-idf. To support top-k spatial keyword queries, IR-tree was
proposed to integrate R-tree with inverted index. It augments the
nodes of an R-tree with a pseudo-document vector to store the tex-
tual information of that node. Spatial relevance is calculated from
the MBR and an upper bound of textual relevance is derived from
the pseudo-document for pruning. As a variant of IR-tree, DIR-
tree takes into account both spatial and textual proximity when in-
serting an object. It shows better performance when the spatial
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keywords are correlated locally. However, the IR-tree family takes
non-negligible processing cost when examining whether a node is
relevant to query keywords. A large number of pseudo-documents
have to be accessed when the query keywords are frequent, incur-
ring high I/O cost.

Recently, S2I index [17] was proposed for more efficient spatial
keyword search. It partitions the spatial database first by the textual
attribute. If a keyword is infrequent, all the elements in the inverted
list are stored sequentially for efficient retrieval to save I/O cost.
Otherwise, an aggregated R-tree [16] is built for spatial pruning.
S2I is scalable to the number of keywords in the database because
given a set of query keywords, only the related inverted lists will be
accessed. However, it is difficult to do spatial aggregation across
different R-trees.

Our proposed I3 index adopts textual partition first just like the
S2I index. We discard R-tree and use Quadtree to split the space
into a hierarchy of cells. The basic unit in our index is named
keyword cell which captures spatial locality for a keyword. We
design a new storage mechanism to store keyword cell. We also
augment dense keyword cell with signature file and other summary
information for effective pruning.

Besides the traditional spatial keyword search problem, variants
of the topic have been proposed. One is to allow the query key-
words to appear in multiple documents, which is referred as mCK
query[18, 19] or collective spatial keyword [3]. Another interest-
ing extension is to add the user’s driving or walking direction as a
constraint [13].

3. PROBLEM STATEMENT
In our data model, a spatial document D is associated with both

spatial and textual attributes. Since we assume the documents are
mainly generated from smart phones, we can use a two dimensional
point in the form of latitude and longitude to represent spatial infor-
mation. The textual attribute is represented by a list of keywords,
each with a term weight which can be customized in different ap-
plications. We use the classic tf-idf measure [2, 15] to evaluate
the term weight or textual relevance score si of a keyword wi with
respect to a document D :

D = < D .id, D .lat, D .lng, D .terms>

D .terms = {< wi, si >}

Figure 1 illustrates an example of a spatial database with 8 doc-
uments, each associated with a location and a set of keywords. The
term weight of each keyword in the document in also provided. For
the problem definition, we adopt the same top-k spatial keyword
query in [6] except that we consider both AND semantics and OR se-
mantics. In the definition, a query Q is a spatial point with several
keywords. For example, in Figure 1, the query contains three key-
words and its location is marked as a five-pointed star. Since we
consider top-k query, Q also contains a parameter k to determine
the number of matching documents to return.

Q = <Q.lat, Q.lng, Q.terms, Q.k >

When AND semantics is used, D is a candidate only if it contains
all the query keywords, i.e.,

∀w ∈ Q.terms, w ∈ {D .terms.wi}
When OR semantics is used, D is a candidate as long as it con-

tains at least one query keyword to indicate the textual relevance,
i.e.,

d1

d2

d3

d4

d5

d6

d7
d8

d1
d2
d3
d4
d5
d6
d7
d8

(Chinese 0.6), (restaurant,0.4)
(Korean 0.7), (restaurant 0.3)
(spicy 0.2), (Chinese 0.2), (restaurant 0.5)
(spicy 0.7), (restaurant 0.7)
(spicy 0.8), (Korean 0.5), (restaurant 0.6)
(spicy 0.4), (restaurant 0.5)
(Chinese 0.1), (restaurant 0.3)
(restaurant 0.2)

Document keywords

Spatial documents and a query Q

Q
(spicy, Chinese, restaurant)

Figure 1: A simple example of a spatial database

∃w ∈ Q.terms, w ∈ {D .terms.wi}
The ranking function needs to take into account both spatial and

textual proximity. We define the score of a document D as the
linear combination of its spatial score and textual score, using a
parameter α .

D .score = α ·φs+(1−α) ·φt
Here, φs refers to spatial proximity, measured inversely propor-

tional to the distance from the query location to the candidate’s lo-
cation. φt is tf-idf based textual relevance score, measured directly
proportional to the query keyword frequency in the candidate doc-
ument. Finally, the result set contains k tuples with the highest
scores.

Note that in our data model we consider a spatial database in
which each document is associated with a two dimensional point.
However, our proposed index is general enough to handle arbitrary
geometry shape.

4. INTEGRATED INVERTED INDEX
An efficient index for spatial keyword search is required to sup-

port both spatial pruning and textual pruning simultaneously. Ex-
isting solutions prefer the combination of R-tree and inverted list.
However, those hybrid indexes are not scalable and require high
maintenance cost. In this section, we introduce our new index I3 to
manipulate spatial textual data.

4.1 Textual Partition
Like S2I, I3 adopts textual-first partition. In other words, given a

spatial document D , we split it into a set of small tuples. Each tuple
is associated with only one keyword w. The location information
is inherited from D . We also preserve the document id and term
weight s in D . Hence, a tuple T has the following fields:

T = < T .id, T .w, D .id, D .lat, D .lng, T .s>

Tuples with the same T .w are grouped together. Such a textual-
first partition provides a better performance bound than IR-tree in
the worst case because only the related query keywords will be
accessed, i.e., T is candidate only if T .w ∈ Q.terms.
4.2 Keyword Cell

After the textual partition, commercial search engines build an
inverted list for each partition and the tuples are inserted in the de-
scending order of their term weight. Without spatial information
embedded, spatial pruning cannot be applied via the inverted in-
dex. To improve performance, S2I distinguishes between frequent
and infrequent keywords. Given a threshold T , if a keyword’s fre-
quency exceeds T , it is considered frequent and all the tuples for
the keyword will be inserted into a separate R-tree. Otherwise, the
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keyword is infrequent and its tuples are stored in a flat file sequen-
tially. Such a design has the following drawbacks:

• The threshold T is difficult to tune. If it is set too small,
there will be a large number of small R-tree index files gen-
erated. The restriction of open file limit in the operating sys-
tem may lead to degradation in the index performance. If T
is set too large, many keywords become infrequent and lack
spatial pruning in the query processing.

• When the query keywords are frequent, it requires consid-
erable random access cost to aggregate the final score for a
document whose keywords appear across different R-trees.
It lacks global summary information among the R-trees for
pruning and the overlap of MBRs in different trees is also not
good for score aggregation.

In this paper, we discard R-tree and use Quadtree [9] for space
decomposition. We maintain a Quadtree for each keyword. There
are two reasons for this selection:

1. Quadtree is easier to maintain and is recommended in update
intensive applications [11].

2. Quadtree provides a uniform space decomposition mecha-
nism for all the keywords. It is suitable for join queries
among different keywords in query processing.

A Quadtree has a maximum capacity for the cells. When the
maximum capacity is reached, the cell is split into four smaller
cells and the data points in the parent cell are inserted into child
cells. We treat the tuples that are associated with the same keyword
and located in the same cell as a basic unit, denoted by keyword

cell 〈wi,Cj〉. In this way, the inverted list for wi becomes a list of
keyword cells. Since each keyword cell has a maximum capacity,
we set the capacity to be the same as the page size. If the page size
is P and a tuple takes B bytes for storage, the capacity is set �P/B�.
Thereafter, all the tuples T with the same keyword and located in
the same cell will be stored in the same disk page. These tuples can
be retrieved with one disk I/O. If the number of tuples in 〈wi,Cj〉
exceeds �P/B�, we say 〈wi,Cj〉 is dense or keyword wi is dense in
cellCj. The keyword cell will be split into smaller ones that are not
dense.

Compared to S2I, keyword cell provides a uniform storage and
retrieval interface for all the keywords as they follow the same
space decomposition mechanism. I3 does not need the threshold
T to indicate whether a keyword is frequent or infrequent.

Compared to inverted index, I3 further partitions the tuples in
the list based on their cell id. With the embedded spatial informa-
tion, spatial pruning can be utilized to facilitate query processing.
In addition, we do not need to guarantee that all the elements in
an inverted list are stored contiguously because guaranteeing the
contiguity requires intensive update cost to manage variable-length
fragments[21]. Instead, we allow the keyword cells in the same list
to be stored in any order and in different pages to effectively save
maintenance cost.

Figure 2 shows two inverted lists for keywords “spicy” and “restau-
rant” derived from the example spatial database in Figure 1. Each
inverted list consists of a set of keyword cells based on the space
decomposition. In this example, we set �P/B� to be 2 for sim-
plicity, meaning each page contains at most 2 tuples. A keyword
cell 〈wi,Cj〉 is stored in the inverted list of wi only if the keyword
wi is neither empty nor dense in cell Cj . If 〈wi,Cj〉 is dense, it
contains more than 2 tuples and will be split into smaller keyword
cells. For example, “restaurant” is contained in three documents

Table 1: Notation table
D A spatial document
T A spatial tuple with only one keyword
α The weight of spatial relevance in ranking function
C The whole space region
wi A keyword
Cj A cell in Quadtree
P Page size
B Tuple size

〈wi,Cj〉 Keyword cell of keyword wi in cellCj
Si Summary node
E Summary information of dense keyword cell
H Hash function for the signature file
P A disk page
η Signature length
δ Score of the k-th result

w1

w2

w3

w4

w5

w6

w′
1

w′
2

w′
3

w′
4

w′
5

wi is dense in

w′
i is not dense in

Lookup Table

Head File

Data File

P3 P4 P5 P6 P7 P8 PV−1 PVP1 P2 · · ·

Figure 3: Index structure of I3

{d4,d8,d7} in cell C4. Thus, the keyword cell 〈restaurant,C4〉 is
dense and split into three smaller keyword cells: 〈restaurant,C4_1〉,
〈restaurant,C4_2〉 and 〈restaurant,C4_4〉.

4.3 Index Overview
An overview of I3 is shown in Figure 3. The index consists of

three main components: a lookup table serving as the portal, a head
file containing summary information of dense keyword cells and a
data file storing the tuples of keyword cell in all the inverted lists.
To facilitate understanding of the index, a notation table is provided
in Table 1.

4.3.1 Lookup Table
The lookup table is essentially a map whose key is a keyword

wi and the value contains a pair of fields. Suppose that the whole
space region is denoted by C, which is the root cell in Quadtree.
The first field is a boolean flag indicating whether wi is dense in
C. The other field is a file offset for the head file or data file. If
keyword cell 〈wi,C〉 is not dense, it means wi appears in fewer
than �P/B� tuples. These tuples can be stored in one disk page and
fetched with one I/O. In this case, the entry in the map will point
to the start position of the disk page in the data file. Otherwise, a
summary node will be created in the head file and the offset field in
the map is used to locate this summary node in the head file.
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spicy

restaurant

d4

d3

d5

d6

d5

d6

d2

d3

d4 d8
d7

C2 C3 C4

C1

d1

C2 C3

C4 1 C4 2 C4 4

C1 C2

C3 C4

cell partition index

Figure 2: keyword cell examples for “spicy” and “restaurant”

4.3.2 Head File
A head file contains summary information of dense keyword

cells for effective pruning. Given a keyword cell 〈wi,Cj〉, the sum-
mary information E include a signature file sig and an upper bound
textual score max_s:

E =< E .sig, E .max_s>
The signature file is a bitmap of length η and associated with a
hash function H based on the document id. When a tuple T is
inserted, it is mapped to the H(D .id)-th bit and that bit is set to
1. The signature file is used to aggregate all the documents con-
taining keyword wi and located in cell Cj . When AND semantics is
used, a result is required to contain all the query keywords. We can
intersect the signatures of different keywords in the same cell. If
there is no intersection, it means we cannot find a spatial document
associated with all the keywords. We can prune the cell without
examining the objects within the cell. The field max_s is the upper
bound textual relevance of keyword wi. Since we can calculate the
spatial relevance using the minimum distance from the query loca-
tion to cellCj , we can get a final upper bound score of keyword wi
for aggregation. If the aggregation score is smaller than the k-score
in top-k results, we can prune the cell as well.

We organize the summary information similar to R-tree. In R-
tree implementation, each tree node has an MBR for itself as well as
a list of child MBR. The MBR is summary information and used as
an approximate representation for the data points or shapes within
that node. In our implementation, we create a summary node Si
for each dense keyword cell. The summary node contains its own
summary information E . Since this is a dense keyword cell, we
uniformly decompose the cell into four child cells. The summary
information of these four child keyword cells are also stored in Si.
Besides the summary information, Si contains a list of child point-
ers. If a child keyword cell is still dense, we create another sum-
mary node for it in the head file and the pointer points to the newly
created node. Otherwise, the pointer points to a disk page storing
the documents in that child keyword cell. This implementation is
illustrated in Figure 3. Note that in this figure, some child pointers
have no outgoing arrows. This is because there are no keywords
appearing in that cell.

4.3.3 Data File
Our data file contains a sequence of fixed-size pages. Each page

is split into a fixed number of slots, one slot for one spatial tuple
T . As mentioned, the number of slots in a page is �P/B� if a tuple
takes B bytes. We discard the requirements of ranking order and
page contiguity in inverted index so that different keyword cells in
the same list can be stored in different pages and updated concur-
rently. We only require that all the spatial tuples from the same
keyword cell are stored in the same page so that they can be ac-
cessed with one page I/O. To improve storage utilization, we allow

different keyword cells to be stored at the same page. However,
when a page is loaded into memory, it may contain objects from
different keyword cells. To identify objects from the same key-
word cell in a page, we attach a new field, named source id, to each
tuple. Each keyword cell has a unique source id so that we can scan
the page and fetch the valid tuples.

In short, our data file provides a flexible and uniform access in-
terface for different keywords in different cells. All the keyword
cells from different inverted lists are integrated and stored in one
data file. Compared to S2I, our index is more elegant and demon-
strates higher storage utilization. In S2I, it needs to set a threshold
to determine whether a keyword is frequent or not. Infrequent key-
words are stored in one flat file which contains their inverted lists
while frequent keywords are stored in different R-trees. In I3, we
use keyword cell to provide a uniform storage and access strategy
for frequent and infrequent keywords. Hence, I3 can avoid the data
movement between inverted file and R-trees when the status of a
keyword turns from infrequent to frequent or vice versa.

4.4 Data Operation
Now we introduce how to maintain the index. More specifically,

we explain three most basic data operations on I3, including data
insertion, deletion and update.

4.4.1 Data Insertion
In Algorithm 1, we show the sketch of inserting a tuple T into

I3. We first check whether T .w exists in the lookup table. If this is
a new keyword, we select any page P in the data file with an empty
slot and insert T into P. The lookup table is also updated with a
new entry for this non-dense keyword (lines 1 - 4). If the keyword
appears in the lookup table, we check whether T .w is dense in the
whole region C. If it is not dense, we know that its entry in the
lookup table points to the disk page P where the related documents
are stored. We call function insertNonDenseKwd to insert T into
P (lines 6 - 8). Otherwise, the entry in the lookup table points to a
summary node in the head file. We start from this root cell C and
recursively check whether T .w is dense in the child cell containing
T . There would be only one child cell containing tuple T . In
this procedure, all summary nodes that are accessed are updated to
include information of tuple T . The process stops at a non-dense
cell Cu (lines 10 - 15). We can get the disk page for 〈T .w,Cu〉 in
the child pointers of Si and call function insertDenseKwd to insert
the tuple (line 16).

Algorithm 2 shows how to insert a tuple T with a non-dense
keyword into a page P. If P is not full, we can insert T into any
empty slot and the procedure is finished (lines 1 - 2). Otherwise, the
page is full and we need to scan all the tuples in P to see if they are
associated with the same source id. If all of them are from the same
keyword cell, the number of tuples containing T .w exceeds the
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Algorithm 1 Data Insertion
1. if T .w is a new keyword then
2. select any page P with an empty slot
3. insert T into P
4. insert T .w into lookup table
5. else
6. if T .w is not dense in cell C then
7. find the disk page P containing tuples in 〈T .w,C〉
8. insertNonDenseKwd(T , P)
9. else

10. C← C
11. while T .w is dense inC do
12. update the summary node Si for 〈T .w,C〉
13. find the child cellCu where T is located
14. C←Cu
15. find the disk page P containing tuples in 〈T .w,Cu〉
16. insertDenseKwd(T , Si, Cu, P)

maximum capacity and makes it a dense keyword. In other words,
T .w is now dense in the root cell C. We split the dense keyword
cell and allocate a summary node S′ in the head file to store the
summary information. All the tuples in P are scanned to get the
signature file and upper bound textual relevance. Meanwhile, the
entry of T .w in the lookup table is updated to be dense and points
to the summary node S′ in the head file. Finally, we find the child
cell Cu containing T and call insertDenseKwd to insert the tuple
into Cu (lines 4 - 9). If page P is full and the tuples in P are from
multiple keyword cells, we scan the page and group the tuples by
source id. Let O denote the set of tuples from 〈T .w,C〉. We find a
page P′ with at least |O|+1 empty slots and move the tuples in O
together with T into P′. The entry for T .w in the lookup table is
also updated as we have changed its disk page in the data file (lines
11 - 15).

Algorithm 2 insertNonDenseKwd(T , P)
1. if P is not full then
2. insert T into P
3. else
4. if all the tuples in P are from the same source then
5. allocate a new summary node S′ in the head file
6. scan tuples in P and update S′
7. update lookup table for T .w
8. find the child cellCu where T is located
9. insertDenseKwd(T , S′, Cu, P)

10. else
11. fetch all the tuples O from keyword cell 〈T .w,C〉
12. find a page P′ has at least |O|+1 empty slots
13. move O from P to P′
14. insert T into P′
15. update the entry of T .w in the lookup table

Now we introduce how insertDenseKwd works, as shown in
Algorithm 3. The algorithm works similarly to Algorithm 2 except
that it needs to update the summary node Si. First, we update the
signature and weight field in E for Si and Eu for the child cell
to incorporate the new tuple (line 1). After that, if P has an empty
slot, we simply insert T into P (lines 2 - 3). Otherwise, we scan the
page and check whether all the tuples are associated with the same
source id. If all the tuples are from the same keyword cell, this child
keyword cell 〈T .w,Cu〉 will become dense. A new summary node
S′ is allocated in the head file. We update the u-th child pointer and

make it point to the new summary node S′. All the tuples in P are
scanned to update summary information in S′. Since we know T .w
is dense inCu, we find the child cellC′

u inCu which contains T and
call insertDenseKwd again to insert T intoC′

u (lines 5 - 10). If the
tuples in the full page P are from different sources, we fetch all the
tuples in P which have the same source id with T and find a page
P′ with empty slots to host all these tuples. We move these tuples
to P′ and update the u-th child pointer to reflect the modification of
disk page (lines 12 - 16).

Algorithm 3 insertDenseKwd(T , Si,Cu, P)
1. update the summary information for Si and u-th child keyword

cell to incorporate tuple T
2. if P is not full then
3. insert T into P
4. else
5. if all the tuples in P are from the same source then
6. allocate a new summary node S′ in the head file
7. update the u-th child pointer in Si to point to S′
8. scan tuples in P and update S′
9. find the child cellC′

u of Cu where T is located
10. insertDenseKwd(T , S′, C′

u, P)
11. else
12. fetch all the tuples O from keyword cell 〈T .w,C〉
13. find a page P′ has at least |O|+1 empty slots
14. move O from P to P′
15. insert T into P′
16. update the u-th child pointer in Si to point to P′

4.5 Data Deletion and Update
The delete operation is simpler than the insert operation. If T .w

is not dense in the root cell C, we follow the lookup table to find
the disk page. Then, we scan the items in the page, find the tuple
and delete it. If this is the last tuple associated with the keyword,
we also remove the entry in the lookup table. If the page becomes
empty after deletion, we do not delete it because this page can be
easily reused by other insertion or split of keyword cells. If the
tuple is associated with a dense keyword, we also need to scan the
tuples with the same source id in the page to update the signature
and weight field in its summary node. The update of summary
information is then propagated upwards the summary nodes until
we reach the root of Quadtree. An update operation is treated as a
deletion followed by an insertion because its location information
or keyword information could be changed and the tuple belongs to
another keyword cell.

5. QUERY PROCESSING
In this section, we introduce our search algorithm based on I3.

We first present the overview of the query processing algorithm.
Then, we explain different pruning techniques based on AND se-
mantics and OR semantics.

5.1 Algorithm Overview
Since all the keywords follow the same space decomposition

mechanism, our query processing algorithm starts from the root
cell C and adopts a top-down search strategy to access child cells.
Each cell is a candidate search space and its upper bound score can
be calculated by summing the spatial relevance score and textual
relevance score. The spatial relevance score is measured by the
minimum distance from the cell to the query point while the tex-
tual relevance is the aggregation score of different keywords. Let

364



δ denote the k-th score of the current top-k results; if the upper
bound score of a cell is smaller than δ , the cell can be pruned.
For the candidate cells, we access them in decreasing order of their
upper bound scores. This is similar to a best-first k-nearest neigh-
bour search in R-tree. The algorithm terminates if the upper bound
scores of all the remaining cells are smaller than δ .

Algorithm 4 shows the sketch of the search algorithm for top-k
spatial keyword queries. For each candidate cell, we maintain four
fields used for pruning.

C =< C .C, C .denseKwds, C .docs, C .upperScore>

C .C represents cellC which is the current search region. The query
keywords are divided into two categories. If a query keyword w is
dense in C, we put the keyword in C .denseKwds. Otherwise, w is
not dense and we can directly access its related tuples by loading
the disk page. These candidate documents are inserted into C .docs.
Finally, C .upperScore means the upper bound relevance score in
the current cell. If C .upperScore≤ δ , the cell can be pruned.

In Algorithm 4, a priority queue PQ is maintained, which con-
tains candidate cells ordered by their upper bound score. Initially a
candidate for the root cell C is pushed into PQ (line 1). In the fol-
lowing query processing stage, we pop a candidate C with the max-
imum upper bound score in each iteration (line 3). If C .upperScore≤
δ , we terminate the algorithm as all the remaining candidates can
be pruned (lines 4 - 5). Otherwise, we check if C .denseKwds is
empty. If all the keywords in the current cell are not dense, we
have retrieved all the related tuples in disk pages and store them in
C ′.docs. We can calculate the final relevance score of these docu-
ments and update δ (lines 5 - 10). If there are still query keywords
that are dense in C .C, we need to zoom into the child cells and cre-
ate a new candidate C ′ for each child cell. C ′.C is set to the child
cell Ci (line 13). For each dense keyword in C ′.denseKwds, if it
is no longer dense in the child cell Ci, we remove it and fetch its
related tuples in the disk page. For each tuple T , if its document
D exists in C .docs, it means D contains another query keyword
which is also not dense in cellCi. We update D’s textual relevance
score to include T .s. Otherwise, we insert a new document into
C .docs (lines 14 - 20). After that, we check whether we can prune
the new candidate C ′. If not, we update its upper bound score and
push it into the priority queue (lines 21 - 24).

For query processing, there is a need to distinguish between the
AND semantics and OR semantics. There are two key differences:
how to check whether a cell can be pruned and how the upper bound
score for a candidate cell is computed. In the following subsections,
we introduce how the pruning works in the two types of semantics.

5.2 Query Processing for AND Semantics
First, we introduce how to prune a candidate C when the query

model follows the AND semantics in Algorithm 5. Since a result is
required to contain all the query keywords, C can be pruned if there
is no document in the cell C .C containing all the query keywords.
We check whether there is any intersection among the signature
files of dense keywords in the current cell. If no intersection is
found, the cell can be pruned (lines 1 - 6). Otherwise, we store
the intersection in a variable sig and continue to check if there is
intersection between the document id set C .docs and sig. Again,
if there is no intersection, we can prune the candidate search space
(lines 7 - 12).

Next, we present how to update the upper bound score for a can-
didate C for the AND semantics. The textual relevance score of
a document D is the aggregation of relevance score from all the
query keywords. If C .denseKwds contains all the query keywords,
the aggregation score is the sum of E .s stored in the summary node.

Algorithm 4 Query Processing
1. initialize a root candidate and push it into a priority queue PQ
2. while PQ is not empty do
3. pop the first candidate C
4. if C .upperScore ≤ δ then
5. break
6. if C .denseKwds is empty then
7. for doc ∈ C .docs do
8. calculate the relevance score s for doc
9. if s > δ then

10. δ ← s
11. else
12. for child cellCi in C .C do
13. create a new candidate C ′
14. for keyword w in C .denseKwds do
15. if w is dense inCi then
16. insert w into C ′.denseKwds
17. else
18. retrieve tuples {T } in 〈w,Ci〉
19. for T ∈ {T } do
20. update C ′.docs
21. if prune(C ′) = TRUE then
22. continue
23. updateUpperScore(C )
24. PQ.add(C ′)

If C .denseKwds only contains part of the query keywords, the ag-
gregation score is contributed from two sources: score.dense and
score.non_dense. The contribution from dense keywords is calcu-
lated in the same way. The score.non_dense is the maximum score
from C .docs. Finally, by adding the spatial relevance, we can get
C .upperScore. The algorithm is shown in Algorithm 6.

As an illustrated example, suppose we are examining cell C4 in
Figure 2 for two query keywords “spicy” and “restaurant”. We
know that “spice” is not dense in C4 while “restaurant” is dense in
this cell. Thus, C .denseKwds= {restaurant} and C .docs= {d4}.
In this case, score.dense is the maximum score of “restaurant” in
C4, which is 0.7. score.non_dense is the relevance score of “spicy”
in d4. So the upper bound score of textual relevance for C4 equals
to 0.7+0.7 = 1.4.

Algorithm 5 prune(C ) in AND semantics
1. set all bits of sig to be 1
2. for w ∈ C .denseKwds do
3. get the summary information E for 〈w,C .C〉
4. sig← sig&E .sig
5. if sig= 0 then
6. return TRUE
7. if C .docs is not empty then
8. for D ∈ C .docs do
9. if sig[D .id] = 0 then

10. remove D from C .docs
11. if C .docs is empty then
12. return TRUE
13. return FALSE

5.3 Query Processing for OR Semantics
Query processing for OR semantics differs from that of AND

semantics in that a cell can be pruned only if it does not contain
any query keywords. It requires C .docs to be empty and the inter-
section of the signatures from the dense keywords be 0. This is a
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Algorithm 6 updateUpperScore(C ) in AND semantics
1. calculate the spatial relevance s.spatial of cell C .C
2. s.dense← 0
3. s.non_dense← 0
4. for w ∈ C .denseKwds do
5. Get the summary entry E for 〈w,C .C〉
6. s.dense← s.dense+E .s
7. for D ∈ C .docs do
8. if D .score> s.non_dense then
9. s.non_dense← D .score

10. C .upperScore← s.spatial+ s.dense+ s.non_dense

stricter condition than that in AND semantics. Therefore, we need to
examine much more candidates in OR semantics.

The calculation of the upper bound score in OR semantics is a bit
tricky. Since any document containing a subset of query keywords
is considered a candidate, we need to check the upper bound scores
for all the possible subsets. The one with the maximum score is
used to calculate C .upperScore. We use the Apriori [1] algorithm
to solve the problem. In the bottom level of the lattice, the subsets
contain only one keyword. If this keyword is dense, its score is
represented by E .s. If not, we check any document in C .docs con-
taining the keyword and use the real relevance score. Two query
subsets in the same level can be merged only if we can find a com-
mon document id in these two sets. After the expansion finishes,
we get the maximum score of all the candidate subsets as our upper
bound score for textual relevance.

We still take cell C4 as an example to show how to calculate the
textual relevance. This time we assume the query keywords are
“spicy Chinese restaurant”. We know that “restaurant” is a dense
keyword in C4 while both “spicy” and “Chinese” are not dense.
Suppose η is 4 and the hash function H(id) = id%η , the signature
for “restaurant” in C4 is 1001 as it contains document {d4,d7,d8}.
Keyword “spicy” is contained in documents {d4} and “Chinese”
in {d7}. There is no document in C4 containing all the query key-
words. To get the upper bound score, we need to check the subsets
of these three keywords. The upper bound score for each valid
subset of query keywords is shown in Figure 4. For example, the
score for {Chinese,restaurant} is 0.1+0.7 = 0.8 and the score for
{spicy,restaurant} is 0.7+ 0.7 = 1.4. The final upper bound for
textual relevance would be 1.4.

spicy Chinese Restaurant
0.10.7 0.7

spicy, Chinese spicy, restaurant

1.4
Chinese,restaurant

0.8

spicy, Chinese, restaurant

Figure 4: An example of calculating upper bound score in OR

semantics

6. EXPERIMENT EVALUATION
In this section, we study the performance of I3 and compare

it with state-of-the-art approaches, including IR-tree and S2I, us-
ing real datasets Twitter and Wikipedia and real query log from

Table 3: REST query sample
1 restaurant 2 restaurant equipment
3 Italian restaurant 4 restaurant supplies
5 used restaurant equipment 6 restaurant coupons
7 golden corrall restaurant 8 restaurant recipes
9 restaurant chairs 10 restaurant nyc

AOL. The implementations of IR-tree and S2I were generously
provided by the authors. We slightly modified the code to support
both AND and OR semantics. We do not show experiment results of
other variants of IR-Tree like DIR-tree and CDIR-tree as proposed
in [6] because we found that these variants showed little improve-
ment in query processing performance but took much longer time
to build the index. All of the indexes were implemented in Java
and experiments were conducted on a server with Quad-Core AMD
Opteron(tm) Processor 8356, 64GB memory, running Centos 5.6.

6.1 Dataset
We select Twitter and Wikipedia as two representative datasets.

In the Twitter datasets, there are a large number of spatial tweets
publicly accessible but each tweet contains only very few keywords.
A tweet is designed to contain at most 140 characters and most of
the keywords appear only once in one tweet. Thus, tweet is not tex-
tually abundant and the textual relevance may not play an important
role in the ranking function. We extracted 15 million tweets which
are associated with latitude and longitude. Wikipedia, on the other
hand, is abundant in textual information. Each article contains hun-
dreds of keywords. However, compared to Twitter, there are much
fewer available articles associated with spatial attribute. Some arti-
cles related to gazetteer terms may be associated with coordinates.
For example, in the article about “Forbidden_City”4, there is a seg-
ment formatted in {{coord|39|54|53|N|116|2 3|26|E}}. We
extracted around 400K articles with such format from the latest
Wikipedia dataset.

Given the 15 million Twitter dataset, we also sampled 3 smaller
ones for scalability test, which were named Twitter1M, Twitter5M
and Twitter10M. The statistics of these datasets is shown in Table 2,
including dataset cardinality, total number of unique keywords and
the average number of keywords for each spatial document.

6.2 Query Set
In order for a comprehensive performance study, we generated

two types of queries from a real AOL query log 5: FREQ and REST.
In FREQ, the queries are selected to contain frequent keywords.
First, we picked queries that contain only two keywords. Then,
we sorted these queries based on the frequency of keywords. The
first 100 queries are selected as FREQ_2. We repeated the same
procedure to generate FREQ_3, FREQ_4 and FREQ_5, in which each
query contains 3, 4 and 5 keywords respectively. The other type
REST is about restaurant, which is a common type of query in loca-
tion based services. We selected 100 commonest queries contain-
ing keyword “restaurant”. The top-10 query keywords are shown
in Table 3. The location information in the above query sets is sam-
pled from the spatial distribution of the Twitter data set.

6.3 Setup
We set P= 4KB in all the three indexes. For other parameters in

IR-tree and S2I, we follow the same setting as reported in their ex-
4http://en.wikipedia.org/wiki/Forbidden_City
5http://www.gregsadetsky.com/aol-data/
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Table 2: Dataset description
DataSets Number of tuples Number of unique keywords Average number of keywords per document D
Twitter1M 1,000,000 441,457 6.56
Twitter5M 5,000,000 1,249,999 6.54584
Twitter10M 10,000,000 1,964,267 6.5442
Twitter15M 15,000,000 2,557,752 6.54324
Wikipedia 401,892 866,307 129.941

Table 4: Parameter Setting
Number of query keywords qn 2, 3, 4, 5

α 0.1, 0.3, 0.5, 0.7, 0.9
k 10, 50, 100, 150, 200

periments. During the query processing stage, we clear the system
cache before we execute a query set so that the following query pro-
cessing is not affected by the cache. Since each query set contains
100 queries, the average processing time and I/O cost are reported.
For query processing of I3, we load the lookup table into mem-
ory as it is quite small. The access to the head file and disk file
are disk-based. The query parameters in the experiment setup are
shown in Table 4. We are interested to evaluate query performance
in terms of varying number of query keywords qn for FREQ query,
spatial relevance weight α in the ranking function and the number
of query results k. The value in bold represents the default setting.

Since in our implementation, each tuple in the datafile takes
B = 32 bytes. Each page can hold at most �P/B� = 128 tuples.
I3 only has one parameter that we need to tune, which is the sig-
nature length η in the head file. Figure 5 shows the top-k query
performance using AOL query set and the head file size in his-
togram based on Twitter1M dataset. As η increases, the pruning
for both AND and OR semantics becomes better but more disk space
is required. In the following experiments, we set η = 300.
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Figure 5: Performance tuning for η

6.4 Index Construction Time and Storage Cost
In this part, we examine the index construction time and storage

cost. The time to build each index is shown in Figure 6. Note
that building time is affected by various factors, such as cache size,
index design and even code optimization. It is difficult to provide
a thoroughly fair comparison. Here, we simply report the building
time obtained based on the experiment setup discussed previously.
As shown, I3 takes the least time to build the index for the Twitter

datasets as it provides a uniform storage and access interface for
keyword cell. The construction cost of IR-tree is sensitive to the
number of objects in the dataset. As we can see, the building time
increases dramatically as the number of objects in Twitter grows
from 1M to 15M. However, it performs very well in the Wikipedia
dataset for two reasons. One is that Wikipedia only contains 400K
objects which is much smaller than Twitter. The other is that the
implementation is based on a static dataset. An R-tree is first built
and then the inverted lists are i njected into the tree nodes. Hence,
when a tree node is split, it does not need to re-organize the inverted
lists in that node.
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Figure 6: Index construction time

The storage size of different indexes is reported in Table 5. We
report the head file and data file size for I3. Among all the schemes,
I3 is the most storage efficient as it allows different keyword cells
to be stored in the same disk page. It takes 2-3 times less storage
than S2I. Moreover, S2I generates a large number of small index
files. In the Twitter5M dataset, 111,702 small files were created as
part of the spatial tree index. IR-tree stores the pseudo-documents
or inverted index in a separate file. Thus, we report both the R-
tree size and the inverted index size. Unfortunately, the storage of
inverted index is not optimized in the implementation. The experi-
ment result shows it takes 623GB in the Twitter15M dataset.

6.5 Query Processing
We study the index performance in both AND and OR semantics

using the FREQ and REST query sets. We report the query process-
ing performance in datasets Twitter5M and Wikipedia in terms of
different experiment settings, including varying number of query
keywords qn, number of top-k results and spatial relevance weight
α in the ranking function. We also test the scalability of the index
with respect to an increasing data cardinality in the Twitter dataset.

6.5.1 Increasing number of query keywords
In this experiment, we increase the number of query keywords
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Table 5: Index size(GB)

I3 S2I IR-tree
Data File Head File Index Inv Index R-tree

Twitter1M 0.21 0.01 0.6 3.4 0.06
Twitter5M 1.2 0.09 2.8 71 0.3

Twitter10M 2.2 0.16 4.2 287 0.6
Twitter15M 3.3 0.26 6.9 623 0.9
Wikipedia 1.8 0.12 4.1 8.1 0.26
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Figure 7: Running time of increasing qn

qn from 2 to 5 using FREQ query set. Figure 7 shows the query
processing time in both AND and OR semantics in the two datasets.
We can see that I3 demonstrates the best performance when han-
dling frequent query keywords. This confirms that the index design
and query processing algorithm are effective. The summary infor-
mation of keyword cell can be retrieved efficiently and facilitate
the pruning of search space. If the query is based on AND seman-
tics, the running time even reduces as qn becomes larger. There are
fewer candidates containing all the query keywords and most of
the search space can be pruned using the intersection of signature
file. The query processing time of I3 can be more than an order of
magnitude faster than IR-tree and S2I when qn is 4 and 5. When
the query is based on OR semantics, the advantage is not so signif-
icant as that for AND semantics. However, I3 still takes the least
time to answer a query and shows scalable performance in terms of
increasing query keywords.

The processing time of S2I is not sensitive to the query seman-
tics. The reason is that it simply aggregates partial scores from
different R-trees. It does not have any summary information like
I3 to detect whether a document id appears in all of these R-trees,
which can be used for pruning in AND semantics. Moreover, the per-
formance of S2I degrades as qn increases. When the keywords are
frequent, it takes longer time to perform partial aggregation among
different R-trees. Such join operations are expensive. It is worse
than IR-tree when handling Wikipedia dataset in which textual in-
formation is abundant.

IR-tree shows the worst performance in the Twitter5M dataset.
It takes more than 10s to answer a query with frequent keywords,

which is in line with our analysis on its performance in the worst
case. When the tree size is large and the query keywords are fre-
quent, the cost to access tree nodes and inverted lists becomes very
expensive. In Wikipedia, IR-tree performs better than S2I in OR

semantics as the tree is quite small, containing around 100 inter-
nal nodes. Note that IR-tree demonstrates better performance in OR

than in AND semantics. We found that the score of 50-th document
in top-k results is much larger than that in AND semantics. This
makes the pruning more effective in OR semantics. Many nodes
in IR-tree are pruned because their upper bound scores are smaller
than the 50-th score.
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The IO cost results of different indexes answering queries in
OR semantics in Twitter5M and Wikipedia are shown in Figures 8
and 9. For I3, we report IO cost caused by accessing both summary
nodes in the head file (the gold part in the bottom of the histogram
in the figure) and the disk pages in the data file (the red part on the
top of the histogram in the figure). For S2I, since all the keywords
are frequent, S2I builds an R-tree for each query keyword and only
the tree nodes are accessed. Hence, only the number of tree IOs is
shown in the figure. There is no sequential access to the infrequent
keywords stored in the flat file. In IR-tree, the IO cost consists of
the access to tree nodes (the red part on the top of the histogram)
and their associated inverted file (the gold part in the bottom of the
histogram). As we can see, it is incredibly expensive to access the
inverted file associated with tree nodes in IR-tree. The reason is
that in the implementation, a B-tree is built for each inverted file to
facilitate the retrieval of relevant document lists for the query key-
words, which leads to a large number of I/O access. I3 shows the
best performance as qn increases.
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6.5.2 Increasing number of query results
The results of increasing k are shown in Figure 10. The cap-

tion of each sub-figure represents the query semantics, dataset and
query type used in the experiment. We can see that IR-tree is not
scalable in terms of k. As k increases, the k-th score becomes larger.
IR-tree needs to examine much more tree nodes as the pruning be-
comes less effective. Since the tree node is augmented with in-
verted lists, the cost to access tree nodes is expensive. S2I shows
stable performance in the Twitter dataset but is sensitive to k in the
Wikipedia dataset. I3 is scalable to k in the two datasets in both
AND and OR semantics.
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Figure 10: Increasing number of query results

6.5.3 Varying α in the ranking function
In Figure 11, we study the impact of spatial relevance weight

α . The results demonstrate interesting patterns in two different
datasets. In Twitter, most of the keywords in a tweet appear only
once. For documents containing keyword wi, the term weight of wi
is basically the same in these documents. In other words, the rank-
ing function is mainly determined by the spatial relevance. It is
difficult for a document whose associated location is far away from
the query location to be ranked in the top results. Thus, the perfor-

mance is irrelevant to α in Twitter. No matter how α varies, the
documents whose associated locations are near the query location
are returned.

In Wikipedia, we can see that the effect of α in the ranking func-
tion. Among the three types of index, S2I is the most sensitive
to α . When α is small, spatial relevance becomes not important.
The spatial pruning of R-tree in S2I is not useful and most of the
tree nodes have to be accessed. However, when α is close to 1,
the ranking function is mainly determined by the spatial proxim-
ity. S2I performs very well in this case. For IR-tree and I3, their
performance gets better as α increases but not so significantly as
S2I.
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Figure 11: Varying α

6.5.4 Increasing cardinality of Twitter dataset
In this experiment, we examine the performance in terms of in-

creasing cardinality of dataset. We tested on four datasets: Twitter1M,
Twitter5M, Twitter10M and Twitter15M. The running time is shown
in Figure 12. We plot the time result in REST queries without log
scale. As we can see, I3 and S2I demonstrate better scalability than
IR-tree in the Twitter dataset.

6.6 Update Cost
We also compare the update cost in I3 with S2I in Twitter and

Wikipedia. We did not compare with IR-tree as the update imple-
mentation was not provided. Moreover, it has been reported that
S2I is more update efficient than IR-tree [17]. To compare the up-
date performance, we first build the index to a moderate size, then
execute 4,000 randomly generated data operations, including inser-
tion and deletion of spatial documents, and finally flush the update
back to disk index. Table 13 shows the update cost for different
data size. I3 has a clear advantage over S2I as it has more flexible
and efficient I/O access mechanism. The reasons are twofold. First,
S2I maintains an inverted file for all the infrequent keywords and
builds an R-tree file for each frequent keyword. When a keyword
becomes frequent, its inverted list needs to be removed and all the
items in the list are re-inserted into an R-tree. This causes consid-
erable I/O cost. Second, it is difficult for S2I to take advantage of
disk locality to save disk seek time and rational latency as spatial
objects are more likely to be stored in different R-tree files. Com-
pared to S2I, I3 provides uniform storage mechanism to frequent
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Figure 12: Increasing cardinality of Twitter

keywords and infrequent keywords. Thus, its update cost is much
cheaper.
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Figure 13: Index update time

7. CONCLUSION
In this paper, we presented a scalable index named I3 for effi-

cient top-k spatial keyword search. We used Quadtree for space
decomposition and proposed the concept of keyword cell as the ba-
sic storage unit. The keyword cell captures spatial locality for a
keyword. We designed a uniform storage mechanism for frequent
and infrequent keywords. For effective pruning, we built an associ-
ated head file to store summary information for dense keyword cell.
Our index supports both AND and OR semantics. Experiment results
verified the advantages of I3. It not only took less building time,
update overhead and storage cost, but also outperformed existing
methods in answering queries in large-scale datasets.
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