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ABSTRACT

Skyline queries have attracted considerable attention by the
database community during the last decade, due to their
applicability in a series of domains. However, most existing
works tackle the problem from an efficiency standpoint, i.e.,
returning the skyline as quickly as possible. The user is then
presented with the entire skyline set, which may be in sev-
eral cases overwhelming, therefore requiring manual inspec-
tion to come up with the most informative data points. To
overcome this shortcoming, we propose a novel approach in
selecting the k most diverse skyline points, i.e., the ones that
best capture the different aspects of both the skyline and the
dataset they belong to. We present a novel formulation of
diversification which, in contrast to previous proposals, is
intuitive, because it is based solely on the domination rela-
tionships among points. Consequently, additional artificial
distance measures (e.g., Lp norms) among skyline points are
not required. We present efficient approaches in solving this
problem and demonstrate the efficiency and effectiveness of
our approach through an extensive experimental evaluation
with both real-life and synthetic data sets.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Data mining ; H.3.3
[Information Search and Retrieval]: Selection process

General Terms

Algorithms

Keywords

Skyline, Diversity, MinHashing, Approximation.

1. INTRODUCTION
Skyline queries, in the context of databases, were initially

proposed in [4] and since then, they have attracted consider-
able attention by the database and data analysis community,

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
EDBT/ICDT ’13, March 18 - 22 2013, Genoa, Italy.
Copyright 2013 ACM 978-1-4503-1597-5/13/03 ... $15.00

as they perform multi-objective optimization without the re-
quirement for user-defined scoring functions. The only input
required by the user is the preferences regarding the mini-
mization / maximization of attribute values. For example,
if price and quality are two of the attributes, then users pre-
fer to minimize price and maximize quality, selecting items
which are (objectively) better than (i.e., dominate) others.

Despite the research attention that this field has attracted,
most of the efforts focus on the efficiency perspective of the
problem, i.e., how to retrieve the skyline as quickly as pos-
sible (minimizing I/O and CPU time). However, depending
on the data distribution and dimensionality, it is very likely
that the skyline will contain a significantly high number of
points for the user to inspect manually. More formally, the
expected skyline cardinality of a set of n randomly generated
points in d dimensions is m = O((lnn)d−1) [3]. In a data
set containing 109 points, having about 103 skyline points
may not be that much compared to the data set cardinality,
but it is impractical for the user to inspect manually.

To overcome the skyline cardinality explosion problem,
two main directions have been followed, both of which focus
on the selection of a fixed-size subset of k skyline points. The
first alternative considers the entire dataset, selecting a set
of k skyline representatives, which collectively dominate as
many distinct points as possible [21]. The second alternative
considers the skyline set alone, and selects k skyline points
that best describe the skyline contour. The state-of-the-art
techniques include [38, 32] and rely solely on the Lp distance.

In this research, we also address the skyline cardinal-
ity explosion problem, and propose the SkyDiver (Skyline
Diversification) framework, which outputs efficiently a sub-
set of k skyline points with high diversity. Our measure of
diversity is defined in a meaningful and intuitive way, based
on the most fundamental skyline concept: the dominance re-
lation. In particular, each skyline point is related to its dom-
inated set Γ(p), i.e., the set of points that it dominates, which
is an established approach for dominance-based ranking [21,
36], thereby making it suitable as a building block for our di-
versification model. More specifically, the diversity between
two skyline points p and q is defined as the Jaccard distance
Jd of their corresponding dominated sets, i.e., Jd(p, q) = 1 -
|Γ(p)∩Γ(q)|
|Γ(p)∪Γ(q)|

. When Γ(p) and Γ(q) largely overlap, the diver-

sity score will be small; conversely, sharing few dominated
points results in high diversity. Finally, our diversification
model inherently encourages large domination sets, because
for a fixed number of commonly dominated points, the se-
lected pair will be the one that collectively maximizes the
domination score. The choice of Jd arises naturally, taking
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Figure 1: Graph with dominance relations.

into consideration that it is the most widely used similarity
measure for sets.
The need for diversification arises in any context where

there are users with varying tastes, e.g., web search [1, 2], or
(manual) post-processing is necessary to fulfill their needs,
e.g., exploratory search [8] and data analysis [25, 31]. The
skyline setting is no exception, considering that some users
may be looking for a“cheap”buy, whereas others for a“qual-
ity” one. Moreover, there may be some users who are inter-
ested in having an investigative look before proceeding with
their purchase. Without knowing the user’s true interests,
our best bet would be to diversify the skyline result, to fulfill
the needs of as many users as possible.
To motivate our approach further, consider Figure 1, where

a set of points has been split into its skyline (upper) and the
set of dominated points (lower), and an edge signifies that
the skyline point dominates the corresponding point on the
right. This representation abstracts a multitude of domains:
i) nodes are product reviews and an edge exists when a prod-
uct is at least as good as another, ii) nodes are web pages
and a node dominates another if it contains at least as much
information on a topic of interest, iii) nodes are web search
results and an edge exists if a user selected one result over
the others. The selected document becomes part of the sky-
line, whereas the rest belong to the dominated set.
Note that the entire representation only relies on the dom-

inance relation because this may be all we have. For in-
stance, in our third example, we only know that a user
preferred some documents over the rest, without explicitly
knowing “why”. Similarly, the data may belong to a 3rd
party who has anonymized or obfuscated it and we are only
presented with this dominance graph, but not the actual
data values. This practically translates into an inability to
build and use a multi-dimensional index.
A max-coverage approach with k = 2 would return the

pair (b, c). However, their domination sets largely overlap,
meaning that little new information will be provided. Sim-
ilarly, d discusses topics already covered by both b and c.
On the contrary, a may provide truly fresh information that
none other does, despite the fact that it dominates a single
point. Our proposed approach would return the pair (c, a):
c dominates the most points and addresses a lot of the infor-
mation found in b and d; a provides truly new information
compared with c, and will attract users with a varied taste
better than any other combination.
Overall, our contributions are briefly described as follows:

• We define a novel and intuitive measure of skyline di-
versity, which is solely based on the dominance prop-
erty. In particular, the diversity between skyline points
is computed as the Jaccard distance of their associated
dominated sets, making our technique suitable for set-

tings, such as partially-ordered domains or data with
categorical feature. Therefore, we advocate this mea-
sure as an intuitive approach for (dis)similarity com-
putation between skyline points.

• Given our similarity measure, the problem of k-most
diverse skyline points is mapped naturally to the k-
dispersion problem. Since k-dispersion is NP-hard [19],
we apply a greedy-based heuristic that offers a 2-appro-
ximation with respect to the optimal solution.

• We propose the index-independent SkyDiver frame-
work, to efficiently approximate the optimal solution,
employing MinHash signatures and we provide theo-
retical guarantees for the effectiveness of our approach.
Alternatively, Locality Sensitive Hashing (LSH) can be
used, as a space-efficient approximation to the Min-
Hashing.

• We provide an extensive and comprehensive experi-
mental evaluation of SkyDiver, using both real-life
and synthetic datasets to verify our theoretical study.

The rest of the work is organized as follows. Related work
is summarized in Section 2. Section 3 presents some fun-
damental concepts with respect to the problem and our so-
lution. Our algorithms are studied in detail in Section 4
whereas Section 5 discusses performance evaluation results
based on real-life and synthetic data sets. Finally, Section 6
summarizes our work and discusses future work briefly.

2. RELATED WORK
Diversity is a topic studied in different disciplines. Since

the literature is very rich, we followingly discuss briefly the
most basic contributions that are closely related to ours.

Operations Research. Diversification in Operations Re-
search has been used as a means of dispersion in optimiza-
tion problems. In particular, this concept has applications
in facility location, where the locations of k new stores or
warehouses must be determined in order to be convenient to
deliver products to clients. The intractability of the prob-
lem was first investigated in [19], where it was shown to
be NP-Hard. Some heuristic-based algorithms are studied
in [14], whereas [28] discusses problem variations in detail.
The authors also show that a 2-approximation is the best
that we can get when the distance measure respects the tri-
angular inequality. In [16] the authors provide a uniform
treatment of the different dispersion problems and experi-
ment with randomized heuristics. Finally, we note the work
of [26] which studies upper bounds and exact algorithms for
dispersion problems.

Information Retrieval. It has become evident in the IR
community [5], that the returned results of a query should
provide some sort of diversification, thereby covering various
tastes or resolving query ambiguity [30], even after taking
personalization factors into account. Such items can also
serve as a good basis for further query refinement or ex-
ploratory search [8]. In [1] a systematic approach to diver-
sifying results is presented, aiming to minimize the risk of
dissatisfaction of the average user. The problem is shown
to be NP-hard, thus, approximation algorithms are used to
solve it efficiently. Finally, [2] investigates new scoring func-
tions that take into consideration both the relevance and the
diversity of the result set.
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Database Management. The diversification problem has
been also addressed by the database community. Diversifica-
tion of XML results is studied in [22]. In [17], diversification
is studied for points in Euclidean space and access methods
are used. In [34], the DivDB system is developed, which
provides result diversification by using an SQL interface,
whereas [13] studied the dynamic case of the problem.
Our research contributes to the data management disci-

pline, by investigating diversification issues in the result of a
skyline query[4], which is widely used to reveal the best items
based on maximization or minimization preferences. Among
the different algorithms proposed in the literature for skyline
query processing, BBS [24] is the most preferred, because it
has two significant properties, namely result progressiveness
and I/O optimality. However, in cases where indexing can-
not be applied, one must resort to other alternatives. Two
efficient algorithms for skyline computation without the use
of an index are proposed in [11] and [29]. The first one is de-
signed for the streaming case and performs multiple passes
over the data returning approximate results. In contrast,
the second one is designed for the I/O model and always
provides correct results. In the sequel, we take a closer look
to existing techniques that are mostly related to our work.

Skyline Diversity. Representing the skyline contour [32]
has been suggested as an alternative for skyline diversifica-
tion [38]. Both techniques use an Lp norm (Euclidean dis-
tance in particular) as the measure of diversity between sky-
line points. This choice may be problematic in the following
cases: i) the dimensions correspond to attributes that are
difficult to combine (e.g., price and quality), ii) the skyline
is computed over a partially-ordered domain [37], and iii)
the points’ attributes are non-numerical values, e.g., when
operating over a document collection where the attributes
may be terms, q-grams or topics. Under such circumstances,
a multidimensional index can not be used, rendering the
techniques infeasible or even inapplicable. Additionally, the
Euclidean distance is sensitive to dimension scaling, mean-
ing that a weighted distance measure might be more ap-
propriate. Therefore, by selecting an off-the-shelf distance
measure, the scale independence property of skylines is dis-
regarded. More notable is the fact that only the skyline set
S is used to determine a solution, disregarding the rest of the
points. Note that this is in contrast with existing literature
that accepts dominance power, i.e., |Γ(p)|, as a predominant
quality characteristic of a skyline point [24, 36].

Coverage-based techniques. The techniques in [21, 15,
10] also consider the problem of reducing the skyline size and
suggest to select a subset of k skyline points according to a
maximum coverage criterion. In particular, the optimiza-
tion goal is to maximize the number of distinct non-skyline
points dominated by at least one of the k selected skyline
points. Despite its set-oriented nature, this technique es-
sentially solves a different problem, aiming to maximize the
dominated set of the selected skyline points, and not to di-
versify them in any way. Note that such a solution would
have been highly attractive in conjunction with a greedy
heuristic, as shown by the following lemma.

Lemma 1. ([7]) The greedy algorithm on a set-cover prob-
lem with finite VC-dimension v, yields an approximation ra-
tio of O(v log vc), where c is the optimal solution.

The set system of such a max-coverage instance has a
finite VC-dimension [33] of d (d being the dimensionality

Table 1: k-max-coverage vs k-dispersion
k-max-coverage k-dispersion

data k coverage diversity coverage diversity

IND5M4D
2 98.4% 0.064 95.5% 1.000
10 99.9% 0.064 95.8% 0.916
50 100% 0.018 98.3% 0.553

FC5D
2 93.7% 0.304 88.6% 1.000
10 98.9% 0.088 88.9% 0.941
50 99.8% 0.032 93.2% 0.714

REC5D
2 70% 0.634 56.2% 1.000
10 93.1% 0.328 56.7% 0.997
50 98.6% 0.142 68.6% 0.864

of the problem) due to the axis-aligned hyper-rectangles of
dominating regions, anchored to the upper right corner of
the d-dimensional space [23]. From Lemma 1 and a reduc-
tion of max-coverage to set-cover, we can also expect a bet-
ter approximation than the 1 − 1/e of the general case. To
the best of our knowledge, such a remark has been largely
overlooked in the skyline literature.

To illustrate the difference between our objective and the
one in coverage-based techniques, we have performed the
following experiment: We computed the diversity and cov-
erage scores, both by a k-dispersion and a k-max-coverage
algorithm, for various data sets (see Section 5 for details).
Table 1 contains the results of this experiment. We draw
the following conclusions: i) Clearly, we can not solve the
diversity problem through coverage. Coverage selects points
with high overlap in their dominating regions, which sharply
reduces diversity. ii) When the objective is diversity, cover-
age is not as high as when aiming for coverage per se, but it
is still high enough. This was expected, since the diversity
measure tends to select points that cover a good portion of
the dataset from their own viewpoint.

The SkyDiver framework, proposed in this paper, bases
diversification on the concept of domination and thus, it
does not depend on additional distance functions, in con-
trast to existing techniques. Moreover, SkyDiver is index-
independent, in the sense that given the skyline set, diversifi-
cation is provided by performing a single pass over the data.
Therefore, even if there exist categorical attributes, skyline
diversification can still be performed. Finally, we note that,
in contrast to previously proposed techniques, our approach
considers not only the skyline set, but also the dominated
subsets in order to facilitate diversification.

3. BASIC CONCEPTS
In this section, we present some basic concepts and defi-

nitions regarding the focus of our research, in order to keep
the work self-contained. Table 2 depicts the basic notations
that are used frequently.

3.1 Problem Definition
Let D be a d-dimensional dataset, where w.l.o.g. smaller

values are preferred.1 We say that p = (p.x1, ..., p.xd) ∈ D
dominates q = (q.x1, ..., q.xd) ∈ D (and write p ≺ q), when:
∀i ∈ {1, ..., d}, p.xi ≤ q.xi∧∃j ∈ {1, ..., d} : p.xj < q.xj . The
skyline S of D, is composed of all points in D that are not
dominated by any other point.

Given a data set D, the skyline set S and an integer k, k ≥

1We focus on numerical attributes for ease of presentation.
Our approach applies to categorical ones equally well.
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Table 2: Frequently used symbols
Symbol Description

D, n = |D| the data set and its cardinality
S, m = |S| the skyline set and its cardinality
sj the j-th skyline point
k number of diverse skyline points
t size of each signature

M , M̂ domination and signature matrix
ξ LSH similarity threshold
ζ number of zones for LSH
Γ(p) set of points dominated by p
Js(p, q) Jaccard similarity between p, q
Jd(p, q) Jaccard distance between p, q

Ĵd(p, q) Jaccard distance for signatures

2, the goal of the diversification process is to return a subset
Sk ⊆ S containing k skyline points, aiming to maximize their
diversity, i.e., the dissimilarities among the skyline points.
To quantify the diversity between two skyline points we need
a distance function d : S × S → ℜ.
To overcome the limitations discussed in Section 2, we pro-

pose to use the Jaccard distance for diversity computation.
With each skyline point p there is an associated subset of D
containing all points dominated by p, denoted as Γ(p). The
domination score of p is the cardinality of Γ(p). The simi-
larity between p and q is defined as the Jaccard similarity

between the sets Γ(p) and Γ(q), i.e., Js(p, q) = |Γ(p)∩Γ(q)|
|Γ(p)∪Γ(q)|

and ranges between 0 and 1. The corresponding distance
measure is thus Jd(p, q) = 1 − Js(p, q) and it is well known
that it satisfies all metric properties. The selection of the
Jaccard distance as a measure of diversity was based on the
following rationale: i) it solely relies on the domination rela-
tionships among points, and thus, no user-defined distance
function or additional input is required, ii) the quality of
the resulting set of points does not depend on the skyline
S alone, but on the characteristics of D as well, iii) it leads
to elegant ways of diversity computation by means of min-
wise independent permutations and iv) it is the most widely
accepted measure for set similarity/dissimilarity.
To facilitate diversification, we take the perspective of [13],

viewing k-diversity as a dispersion problem. In k-dispersion,
the goal is to find k objects such that an objective function
of their distance is optimized. The optimal solution of the
k-dispersion problem is given by:

OPT = arg max
A⊆S

|A|=k

f(A)

There are two basic alternatives for the objective function:
i) in the k-MSDP (Max-Sum Dispersion Problem) the goal
is to maximize the sum of the pair-wise distances, and ii)
in the k-MMDP (Max-Min Dispersion Problem) the goal
is to maximize the minimum pair-wise distance. Although
either alternative can be employed, we choose to work with
k-MMDP because it leads to 2-approximation algorithms,
instead of the 4-approximation of k-MSDP [28].

Example 1. Figure 2 illustrates the output of a k-MMDP
and a k-MSDP for k=3. For simplicity, assume that objects
are 2D points and the L2 distance is used as the measure
of diversity. By inspecting the two solutions, we observe

a

d

b

c

(a) solution for 3-MSDP

a

d

b

c

(b) solution for 3-MMDP

Figure 2: Solutions to dispersion problems.

that the solution for k-MMDP returns points that are more
distant to each other than k-MSDP. Both solutions contain
the objects a and b. However, k-MMDP returns d as the
third point, whereas k-MSDP returns c. Observe that the
distance between a and c is smaller than the distance between
a and d. Thus, in k-MSDP, although the sum of distances
between the returned points is maximized, small distances
may still occur, because they are compensated by larger ones.

3.2 Straight-Forward Techniques
Before studying our framework, we describe briefly some

straight-forward approaches and we report on their efficiency
and effectiveness.

Brute-Force. This algorithm generates all pair-wise dis-
tances between skyline points, evaluates all

(
m
k

)
alternatives

and selects the optimal solution. Clearly, this method suffers
from performance degradation by increasing the number of
skyline points or the value k. In addition, there is a O(m2)
cost to compute all pair-wise distances of the skyline points.

Simple Greedy. This method avoids the computation of
all pair-wise distances among skyline points, by employing
a heuristic-based algorithm, which guarantees a 2-approxi-
mation of the optimal solution. The main drawback of this
approach is that in order to compute the Jaccard distance of
two skyline points p and q, range queries must be executed
to determine the cardinalities of the dominating sets Γ(p),
Γ(q) and Γ(p)∩Γ(q). Evidently, the cost of such an approach
is prohibitive, both with respect to I/O and CPU time, even
when an aggregate multidimensional index is available.

Sampling-Based. One may be inclined to think that sam-
pling S or D − S will lead to a reduction of the cost to
compute the k-most diverse skyline points. Taking a sample
from S means that less than m skyline points will partici-
pate in the selection process, whereas sampling from D − S
results in fewer points that will contribute to the computa-
tion of the Jaccard distance between skyline points. In our
case, sampling is not helpful as we discuss in the sequel.

Lemma 2. Let S be a set of m items in a metric space
and ∆ the diameter (maximum pair-wise distance). Any
one-pass deterministic or randomized algorithm, that uses
less than or equal to m/2 items, will fail with probability at
least 1/2 to compute ∆ exactly or provide a 2-approximation.

Proof. We focus on data sets containing exactlym points.
Each point is uniquely identified by its id between 1 and m.
Define the data sets D1, D2, ..., Dm as follows. Each data
set Di contains a set of m − 1 points that are clustered
together in a minimum bounding sphere with diameter δ,
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whereas the point with id=i, 1 ≤ i ≤ m is located at a
distance 2δ + c from the center of the sphere, where c is
a small constant. Let A be a deterministic algorithm that
uses s < m space. A randomly chosen Di is selected and
given as input to A. Each point of Di is presented to A as
a stream of points. Algorithm A selects s points to main-
tain in a deterministic manner. Each pair of nodes has the
same probability of being the one with the maximum dis-
tance. Since we have

(
m
2

)
different distances from which

exactly one is the maximum, with s points we can produce(
s
2

)
pair-wise distances, meaning that the probability of suc-

cess is s(s − 1)/m(m − 1) and the probability of failure is
1 − s(s − 1)/m(m − 1). Setting s = m/2 we get that the
failure probability is (3m− 2)/(4m− 4) ≥ 1/2, ∀m ≥ 2.
For the 2-approximation case, the difference is that the i-

th element must be included in the s points selected by the
algorithm. The distance between pi and any of the other
points lying inside the sphere is guaranteed to be at least
∆/2. Thus, the success probability in this case equals s/m
and consequently, the failure probability is 1− s/m. There-
fore, even by maintaining m/2 elements from S any deter-
ministic algorithm will err with probability 1/2.
Using Yao’s minimax principle [35], the effectiveness of

any one-pass randomized algorithm cannot be better.

The previous result states that if one wants to get a suc-
cess probability larger than 1/2 in estimating the diameter
∆ (i.e., the optimal solution to the 2-dispersion problem), at
least m/2 points must be stored by any deterministic or ran-
domized algorithm. The result may be extended for any k.
On the other hand, sampling from D−S is not an effective
solution either, because of the sparsity issue. To illustrate
this effect, assume that the data set is viewed as a domina-
tion matrix 2 M with n−m rows and m columns, m = |S|
and n = |D|. In this matrix, the cell in the i-th row and the
j-th column is 1 if the j-th skyline point dominates the i-th
data point and 0 otherwise. The sparsity of the domination
matrix depends heavily on the data distribution as well as
on the dimensionality of the data space. As an example,
for 10,000 uniformly distributed points, in 3 dimensions the
percentage of zeros is 45%, in 5 dimensions it is 84% and
in 7 dimensions the percentage of zeros reaches 97%. The
percentage of zeros is higher in anticorrelated data sets. It is
evident that with the existence of sparsity it is not possible
to simply perform random sampling and then try to com-
pute the diversity among skyline points. Such an approach
could miss important parts of the columns (containing 1’s),
resulting in erroneous diversity computation.

4. THE SKYDIVER FRAMEWORK
Given the shortcomings of the aforementioned solutions,

more suitable techniques need to be employed. In this sec-
tion, we present the SkyDiver framework for the skyline
diversification problem. Our methodology consists of two
consecutive phases, fingerprinting and selection:

Phase 1: Fingerprinting. This phase generates a reduced
size signature for each skyline point, based on MinHashing.

Phase 2: Selection. This phase is responsible for select-
ing the k most diverse skyline points. It is applied either

2Keep in mind that this matrix is used only for illustration
purposes and it is not constructed in practice.

directly to the MinHash signatures or to the modified sig-
natures generated by Locality Sensitive Hashing (LSH).

4.1 Phase 1: Fingerprinting with MinHashing
The basic objective of the following method is threefold:

i) to avoid the execution of range queries, ii) to avoid the
computation of all O(m2) pairwise skyline diversities and iii)
to be able to work either with or without an index. In this
respect, we propose the usage of the MinHashing technique
[6], because it fits nicely with our diversity measure and
requires a single pass over the data. Each column of the
domination matrix is represented by a signature of size t,
such that t << (n−m).

Let H = {h1, ..., ht} be a set of t min-wise independent
hash functions, where each hi performs a random permuta-
tion of the rows. The cardinality of H (i.e., the number of
hash functions used) determines the size of each signature.
To generate random permutations of rows, each hash func-
tion hi ∈ H is of the form hi(x) = ai ·x+bi mod P , where P
is a prime number larger than n−m and ai, bi are randomly
chosen constants taking integer values in [1, P ]. Although
such a family of hash functions does not satisfy the min-
wise independence property, it is used as an approximation
that works very well in practice. Moreover, the MinHash
technique has a very nice property that is directly related to
the Jaccard similarity. If Js(p, q) is the Jaccard similarity
between skyline points p and q, then for each hash function
hi it holds that Prob[hi(p) = hi(q)] = Js(p, q) [6].

Recall that each row of the domination matrix M corre-
sponds to a bit-array. If the j-th position of the i-th row is
1 then the j-th skyline point dominates the i-th point. Each
row is hashed t times using the hash functions in H and the
signature of each skyline point is updated accordingly. Each
signature is composed of t integer values, capturing the first
row identifier with a non-zero element for each permutation.

4.1.1 Index-Free Signature Generation

There are many reasons why the data set may not be sup-
ported by an R-tree-like indexing scheme. Some of them
are: i) high dimensionality, which deteriorates indexing per-
formance, ii) the data set may contain intermediate results
and thus no index is available yet, iii) operations performed
on a projection of the data set in specific dimensions make
the index inapplicable and iv) the data set contains categor-
ical attributes that prevent multi-dimensional indexing.

Figure 3 outlines the index-free signature generation pro-
cess. The algorithm takes as input the set of skyline points
S, the family of hash functions H and the number t of sig-

nature slots. The output is a matrix M̂ with t rows and
m columns, where m is the cardinality of the skyline set.

Each column of M̂ stores the MinHash signature of the cor-
responding skyline point. Each data point is scanned once
(Line 2) and it is checked against the skyline points to detect
dominance relationships. If a skyline point sj dominates the
investigated point (Line 6), then the matrix containing the
MinHash signatures is updated accordingly (Line 7). The
procedure to update the signature matrix is given in Lines
9–12, where we iteratively apply the hash functions.

Note that the index-free technique requires a single pass
over the multidimensional data set, provided that the sky-
line set is available. The advantage of this method is that
no index is required, whereas the sequential scan of the data
set is expected to be efficient taking into consideration that
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Algorithm SigGen-IF (D, S, H, t)
Input: D data set, S skyline set, H hash functions,

t number of slots per signature

Output: M̂ signature matrix

1. initialize all cells of matrix M̂ with ∞;
2. for (rowcount← 1 to |D|) /* read data points */
3. p← next data point;
4. if ( p is a skyline point ) then continue;
5. for j ← 1 to |S|
6. if (sj ≺ p) then
7. UpdateMatrix( rowcount, j );

8. return(M̂);

9. Procedure UpdateMatrix( row, column )
10. for i← 1 to t
11. vi ← hi(row); /* apply hash function */

12. M̂ [i, column]← min(M̂ [i, column], vi);

Figure 3: Index-free signature generation.

usually the data file is stored sequentially on the disk. Most
notably, such an approach does not require that attributes
are numeric, but can handle categorical attributes as well as
partially ordered domains. However, in cases where an in-
dex is already available, more efficient processing is possible,
which we investigate in the next paragraphs.

4.1.2 Index-Based Signature Generation

More often than not, data points that are close in the
multidimensional space are expected to be dominated by
the same subset of skyline points. This feature is unique
in index-based techniques since the sequential scan of data
points does not guarantee any locality of references, unless
the data is presorted based on a spatial proximity crite-
rion (e.g., space filling curves). Therefore, when an index
is present, we can exploit this property and reduce process-
ing costs by avoiding index probes. We discuss in detail the
appropriateness of each approach in Section 5.
Figure 4 outlines the MinHash signature creation in the

presence of an aggregate R-tree. A priority queue PQ is
used to store R-tree entries that require further consider-
ation. The algorithm removes the top entry e from PQ
(Line 11) and checks whether it is partially or fully domi-
nated by a skyline point (Line 14). Full dominance means
that the lower left corner of e is dominated, whereas par-
tial dominance means that e is not fully dominated, but
its upper right corner is. Partial dominance prevails and
if both relations exist, we need to visit e’s subtree (Line
16) by queuing it in PQ. In case of exclusive full domi-
nance, UpdateFullDominance is called(Line 18), which up-
dates the signatures without probing the index, by iterating
over the number of enclosed objects in e (Lines 21–24).

Example 2. Consider the set of points in Figure 5, en-
closed by the minimum bounding rectangles R1, R2 and R3.
The skyline set is composed of a, b and c. Evidently, R1 is
fully dominated by b, whereas R2 is fully dominated by a, b
and c. Neither MBR is partially dominated. Therefore, for
these two MBRs we avoid expanding the search toward the
leaf and update the signatures immediately. In contrast, we
have to increase the level of detail for R3, because although

Algorithm SigGen-IB (D, S, H, t, R)
Input: D data set, S skyline set, H hash functions,

t number of slots per signature

Output: M̂ signature matrix

1. rowcount← 1;

2. initialize all cells of matrix M̂ with ∞;
3. initialize priority queue PQ;
4. for entry e in R.root
5. DominatedRel( e, full, partial );
6. if ( !partial.isEmpty ) then
7. PQ.insert( e );
8. continue;
9. UpdateFullDominance( e, full );
10. while ( !PQ.empty ) do
11. e← PQ.removeTop();
12. node← R.read(e.id);
13. for each entry e′ in node
14. DominatedRel( e′, full, partial );
15. if ( !partial.isEmpty and !node.isLeaf ) then
16. PQ.insert( e′ );
17. continue;
18. UpdateFullDominance( e′, full );

19. return(M̂);

20. Procedure UpdateFullDominance( e, fullDom )
21. for k ← 1 to e.count
22. for j ← 1 to |fullDom|
23. UpdateMatrix( rowcount, S.index(fullDomj) );
24. rowcount++;

Figure 4: Index-based signature generation.

it is fully dominated by c, it is partially dominated by b.

4.2 Phase 2: Selecting Diverse Skyline Points
The next step involves the selection of k skyline points,

aiming to maximize their diversity. To perform this step effi-
ciently, we should avoid the computation of the exact diver-
sity score between pairs of skyline points, since this process
involves probing the R-tree for Jaccard distance computa-
tions, which leads to significant computation costs due to
the execution of range queries of large volume. Thus, in our
framework we exploit the signatures only, avoiding access to
the raw data. We study two different techniques: the first
one is based solely on the MinHash signatures whereas the
second applies locality-sensitive hashing aiming to less mem-
ory consumption and enabling speed/accuracy trade-offs.

R

R

1

2

R3

a

c

b

Figure 5: Domination of MBRs.
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Algorithm SelectDiverseSet (S, k, F (.))
Input: S skyline set, k number of required points

F (.) distance measure used
Output: A set of diverse skyline points

1. m← |S|; /* cardinality of skyline set */
2. best← −∞;
3. p ← skyline point in S with max dominance score;
4. A ← {p}
5. while (|A| < k) do
6. x ← argmaxx∈S−A miny∈A{F (x, y)}, i.e., find

a point x ∈ S-A such that the min distance F (.)
between x and the points in A is maximized;

7. resolve ties by selecting the point with the max
dominance score;

8. A ← A ∪ {x};
9. return(A);

Figure 6: Outline for selecting k diverse points.

4.2.1 The Signature-Based Method

Let Ĵs(p, q) be the estimated Jaccard similarity defined as
the fraction of signature positions of p and q where their
values agree. The corresponding estimated Jaccard distance

Ĵd(p, q) is simply 1− Ĵs(p, q). Since we have t different hash
functions, formally we have:

Ĵs(p, q) =
|j : 0 ≤ j ≤ t, hj(p) = hj(q)|

t

Lemma 3. ([27]) The distance function Ĵd respects the
triangular inequality.

According to the previous discussion, the set of signa-

tures along with the distance measure Ĵd is a metric space.
We need this result to apply a greedy heuristic for the k-
dispersion problem that guarantees a 2-approximation with
respect to the optimal solution [28]. The algorithm first
determines the two points with the maximum pair-wise dis-
tance, and then greedily adds more points to the result set,
trying to maximize the minimum distance. The problem
with this approach is that it requires quadratic complexity
(O(m2)) to determine the two most distant points. Here,
we use a different technique with O(k2m) complexity with-
out sacrificing the 2-approximation guarantee. The basic
difference with respect to the work in [28] is that instead of
selecting the two most distant points, we start with the sky-
line point with the maximum domination score and then use
the greedy approach to include more points, until k points
are determined. We also resolve ties by selecting the points
with highest domination score, thereby treating coverage as
a secondary objective.
The algorithm outline for selecting k diverse skyline points

is given in Figure 6. Next, we show that SelectDiverseSet

achieves a 2-approximation with respect to the optimal so-
lution. This can be proved by using the same rationale as
the one used for the proof of Theorem 2 of [28]. Here, we
give a simpler alternative.

Lemma 4. Algorithm SelectDiverseSet reports a set
of k skyline points in O(k2m) time, achieving a 2-approxima-
tion with respect to the optimal solution.

Proof. The first point is selected inO(m) time. To select
the second one we compute the distance between each of the
m− 1 remaining points and the one selected. To select the
third point we need 2(m− 2) distance computations. Thus,
to select all k points we need in totalm+(m−1) + 2(m−2)+
... +k(m − k) ∈ O(k2m) distance computations. Let, Sj

denote the set containing the j skyline points selected so
far, where j ≤ k. Thus, when the first point is selected
we have |S1| = 1, whereas when all k points are selected
|Sk| = k. Let p1 be the first point selected. To select the
second point p2, the algorithm scans all skyline points and
picks the one that maximizes its distance from p1. Create
a neighborhood N (si) for each skyline point si ∈ Sj , such
that N (si) = {q ∈ D : F (si, q) < OPT/2}. We argue
that there must be a point in D not belonging to any of the
j neighborhoods. If this is not the case, then the optimal
solution to the k-MMDP problem could not be OPT , which
is a contradiction. Thus, for any j ≤ k it is guaranteed
that the minimum distance between points in Sj is at least
OPT/2.

According to [12], if Ω(ε−3β−1 log(1/δ)) is the signature
size, where ε is the maximum allowed error (0 < ε < 1), then
with probability at least 1− δ it holds that (1− ε)Js(p, q)+

εβ ≤ Ĵs(p, q) ≤ (1 + ε)Js(p, q) + εβ, where 0 < β < 1 is
the required precision. This essentially means that the 2-

approximate greedy heuristic using Ĵd as the distance mea-
sure, is applied on the (ε,δ)-approximation of the Jaccard
distances, for which the inequalities are (1+ ε)Jd(p, q)− ε−

εβ ≤ Ĵd(p, q) ≤ (1−ε)Jd(p, q)+ε−εβ. Consequently, by set-
ting appropriate values for ε and δ, the signature distances
can be made very close to the original Jaccard distances
[9]. Due to distance distortions, as a result of embedding
the distances in lower dimensionality, it is possible to obtain
a sub-optimal solution. The following theorem relates the
true optimal solution, to the one computed by working with
MinHash signatures.

Theorem 1. Let OPT be the value of the optimal solu-
tion to the k-diversity problem in the original space and let
x, y denote the corresponding skyline points, i.e., Jd(x, y) =

OPT . Also, let ÔPT be the optimal value if the problem is
solved using MinHash signatures and let a, b be the corre-

sponding skyline points, i.e., Ĵd(a, b) = ÔPT . For a given ε
and sufficiently small δ, it holds that: Jd(a, b) ≥

1+ε
1−ε

OPT −
2ε
1−ε

.

Proof. The optimal solution is given by a set of k points,
Sk = {o1, o2, ..., ok}, forming a k-clique. Each k-clique
is represented by a single value, i.e., the minimum of the(
k
2

)
distances among any two points in the clique, R(Sk) =

min∀oi,oj (Jd(oi, oj)). Based on this formulation, OPT is
the representative distance of the optimal solution.

Given our formalization of the top-k diversity problem
as an instance of k-MMDP, for any set of k points, Pk =
{p1, p2, ..., pk}, Pk 6= Sk, it holds that R(Pk) = min∀pi,pj

(Jd(pi, pj)) ≤ R(Sk) = OPT . In other words, any other k-
clique will either be at most as good as Sk but never better,
e.g., containing an edge with equal minimum weight, or it
will contain at least one distance strictly worse than OPT .

Let Ŝk be the set of k points that we select as the opti-

mal solution in the MinHash signature space and ÔPT be
their representative distance defined by the skyline points a
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and b, i.e. Ĵd(a, b) = ÔPT . It is not hard to verify that

if Ŝk = Sk, or Ŝk contains R(Sk) but no worse edge, then

Jd(a, b) = Ĵd(a, b) = OPT and the inequality surely holds.

The challenging case is when Ŝk contains some points whose
edge is worse in the original space than in the signature
space. Specifically, the problem arises when in the signature

space Ĵd(a, b) ≥ Ĵd(x, y), despite that Jd(a, b) < OPT in
the original space. Let DO be any distance from the op-
timal solution O in the original space, OPT < DO. Since
ε > 0 ⇒ (1 + ε)OPT − ε < (1 + ε)DO − ε. Simply put,
underestimating a higher value than OPT could also yield a
sub-optimal result, but the worst case is obtained when we
underestimate OPT itself. The same holds for overestimat-
ing Jd(a, b) and lower values. On the other hand, overesti-
mating a value Jd(w, z), Jd(w, z) < Jd(a, b) < OPT so that

Ĵd(w, z) ≥ Ĵd(a, b) ≥ Ĵd(x, y) contradicts our assumption

that Ĵd(a, b) is the optimal solution in the signature space;

otherwise, Ĵd(w, z) would have been selected. For the worst

case scenario to occur, i.e., Ĵd(a, b) ≥ Ĵd(x, y), where Jd(a, b)
has been overestimated and OPT has been underestimated,
it should hold:

Ĵd(a, b) ≥ Ĵd(x, y)⇔ (1−ε)Jd(a, b)+ε ≥ (1+ε)OPT −ε⇔

Jd(a, b) ≥
(1 + ε)

(1− ε)
OPT −

2ε

1− ε

Corollary 1. Let a and b be the two skyline points defin-
ing the solution of the 2-approximation heuristic for the k-
diversity problem, when run over the MinHash signatures,
where Jd(a, b) is their corresponding distance. Also, let OPT
be the optimal distance. Then, the following holds: Jd(a, b)

≥ 1
2

(1+ε)
(1−ε)

OPT − ε
1−ε

.

For the previous bounds to work, we have assumed that
the parameter δ is very small. This is because if the distances
are not well-preserved in the signature space, then we cannot
have a guarantee about the solution in the original space.

4.2.2 The LSH-Based Method

A potential limitation of the signature-based approach, is
that the size of the signatures may be increased significantly
in order to reduce the error probability, resulting in: i) in-
creased processing costs during distance computation and
ii) increased memory requirements. Keeping the signature
size as small as possible has a direct negative impact on ac-
curacy, due to Theorem 1, a result we also experimentally
validate. Instead, we propose to apply Locality Sensitive
Hashing (LSH) [18].
The signature matrix is split to ζ zones, each containing

r rows such that ζ · r = m. For each zone, a hash function
is applied and each signature part is hashed to a bucket.
Based on this scheme, the probability that two skyline points
s1, s2, will hash to different buckets in all zones equals 3

(1 − Js(s1, s2)
r)ζ , whereas the probability that will hash

to the same bucket in at least one zone equals 1 − (1 −
Js(s1, s2)

r)ζ . Our target is to select skyline points that

3To be precise, we should use Ĵs(s1, s2), but since the dis-
tortion of the similarities can be made arbitrarily small, we

can safely assume that Ĵs(s1, s2) ≈ Js(s1, s2).

are hashed in different buckets in all zones or if this is not
possible, to minimize the number of skyline points that fall
in the same bucket in some of the zones. The values of r
and ζ are controlled by the value of the threshold ξ, which
is selected such that ζ · r = m and ξ ≈ (1/ζ)(1/r). Basically,
the threshold ξ controls the shape of the sigmoid function
1− (1− Js(s1, s2)

r)ζ . For example, we may assume that we
consider two points similar if their similarity is more than
20%, 50% or 80%.

Let B denote the number of buckets used per zone. Each
skyline point is seen as a bit-vector containing ζ ·B dimen-
sions, where a value of 1 (0) denotes that the skyline point
is hashed (not hashed) to the corresponding bucket. Conse-
quently, two skyline points s1, s2 are dissimilar if they both
have a value of 1 in as few bit-vector positions as possible,
thus, the diversity is quantified by the Hamming distance
between their corresponding bit-vector representations. In
particular, we observe that the number of buckets where two
skyline points disagree equals half the Hamming distance be-
tween their corresponding bit-vectors. Note also that since
each skyline point is necessarily hashed in exactly one bucket
in each hashtable, the L1 norm of its bit-vector is equal to
ζ, i.e., ||bv(si)||1 = ζ, ∀i ∈ [1,m].

Example 3. Figure 7 depicts a possible distribution of
signatures into buckets, when ζ=4 and B=3. The number
shown in the upper-right corner of each bucket corresponds
to the position in the bit-vectors, which are presented on the
right. Each bit-vector contains ζ · B=12 bits, where exactly
four of them are set. By observing points a and b we see that
they are never hashed to the same bucket. Therefore, their
distance should be equal to 4, whereas one can easily verify
that the Hamming distance between bv(a) and bv(b) is 8.

bv(a)= 100 010 010 100

001 001 100 001bv(d)=

bv(c)= 010 001 100 001

bv(b)= 010 100 001 001

0
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b,c
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c,d
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3

5

b
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11
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a

9

(a) hashtables for the zones (b) skyline bit-vectors

Figure 7: Buckets and bit-vectors of skyline points.

Since the Hamming distance satisfies the triangular in-
equality, the 2-approximation heuristic is immediately appli-
cable. Thus, to determine the k most diverse skyline points,
algorithm SelectDiverseSet of Figure 6 is applied by us-
ing the Hamming distance of the bit-vectors instead of the
signature-based distance that has been used previously. We
denote this algorithm as SkyDiver-LSH.

5. PERFORMANCE EVALUATION
In this section, we report on the results of a comprehen-

sive set of experiments, towards comparing the various tech-
niques covered in the previous sections. First, we present the
implemented algorithms as well as the data sets used.

5.1 Algorithms and Data Sets
We have implemented four different algorithms, two of

which (SkyDiver-MH and SkyDiver-LSH) can be applied
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regardless of having an index in place. The evaluated algo-
rithms are presented in Table 3.

Table 3: Evaluated algorithms
Algorithm Reference

Brute-Force (BF) brute-force algo. (Sec. 3.2)
Simple-Greedy (SG) simple greedy algo. (Sec. 3.2)
SkyDiver-MH (MH) MinHash-based algo. (Sec. 4.2.1)
SkyDiver-LSH (LSH) LSH-based algo. (Sec. 4.2.2)

We have generated synthetic data sets following the inde-
pendent (IND) and anticorrelated (ANT) distributions, using
the methodology presented in [4]. In addition, we have used
two real-life data sets: Forest Cover (FC) downloaded from
UCI Machine Learning Repository (http://kdd.ics.uci.edu)
and Recipes (REC) [20], obtained from Sparkrecipes.com,
where each data point is a recipe and its attributes are the
nutritional values for several common compounds, e.g., car-
bohydrates, protein, calcium etc. Table 4 summarizes the
basic dataset characteristics, with default values underlined.

Table 4: Basic data set characteristics
Data set Cardinality Dimensionality
Independent (IND) 1M, 2M, 5M, 7M 2, 3, 4, 6
Anticorrelated (ANT) 1M, 2M, 5M, 7M 2, 3, 4, 6
Forest Cover (FC) ∼ 581K 4, 5, 7
Recipes (REC) ∼ 365K 4, 5, 7

The code was written in C++ and all experiments were
run on a Quad-Core @3.5GHz machine, with 4Gb RAM,
running Linux. Each data set was indexed by an aggregate
R*-tree, with a 4Kb page size. An associated cache with
20% of the corresponding R*-tree’s blocks was used with
every experiment. Timings reported in the graphs are in
seconds, measured as CPU processing time and assuming a
default value of 8ms per page fault. Unless stated other-
wise, all values reported below refer to the 2-step process of
finding the k-most diverse skyline points, without the cost
of finding the skyline itself as it does not affect the relative
performance of the algorithms. Regarding effectiveness, we
report the minimum (Jaccard) distance among the pair of
points that has been selected by each approach.

5.2 Experiments and Results
We begin by evaluating when signature creation should

use an index (IB) or not (IF), in case we have such an option.
We then evaluate the efficiency of all techniques compared
to various parameters, using the IB approach, since BF and
SG use the index as well. We finally report on result quality
and memory consumption.
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Figure 8: Time for generating MinHash signatures
vs signature size.

Signature Generation. Our first experiment focuses on
the cost for signature generation and how the index affects
this step. Figures 8(a)-(b) show the signature generation
time as a function of the signature size, for all dimensions of
FC and REC data sets, respectively. Clearly, by increasing
the signature size, the signature generation phase requires
more time. Nevertheless, selecting IB or IF seems to be un-
related to signature size. Similar results have been obtained
for IND and ANT, which we omit due to space limitations.

Figures 9(a)-(d) report the time taken to generate the sig-
natures, whether we use an index (IB) or not (IF), for varied
cardinalities / dimensionalities of IND and ANT data sets.
Figures 9(a) and 9(b) report CPU and total time – I/O’s
included – respectively, for varying cardinalities and d = 4.
ANT data consistently favor the IB approach. However, for
IND data, the IF method is more efficient when total time
is concerned. On the contrary, when taking only CPU time
into account, IB is better. This is due to a lot of I/Os on
the R-tree, more than what a linear scan on the actual data
set requires.

Even more interesting is the case when we vary the dimen-
sionality, as shown in Figures 9(c) and 9(d). In particular,
for ANT data sets, low dimensionality favors the IF ap-
proach. In this case, the costs are mostly due to I/Os. How-
ever, as dimensionality increases, more dominance checks are
executed, which IF performs näıvely. On the other hand, IB
saves on CPU costs, by utilizing the index. For IND data,
IB and IF differ marginally for few dimensions and as d
increases, IB is favored. For 2D, the R-tree saves several
I/O operations, and the overall cost of IB is much lower.
However, for average dimensionality, the I/O cost sharply
increases for IB, making it less suitable. Basically, partial
dominations of MBRs have dramatically increased, which
necessitate that we decompose them further, resulting in
additional I/Os. Specifically, we observe an ∼ 70× increase
in the number of I/Os from 2D to 3D, but the I/O increase is
niche as d increases from that point onwards. A big part of
the R-tree has to be traversed when d ≥ 3, yet several dom-
inance checks are saved, explaining why CPU-costs do not
follow this trend. Given the efficiency when the signature
size is set to 100 and the fact that we achieve good quality
(Figure 12), as we discuss in the next paragraphs, we adopt
it as the default signature size for the rest of our evaluation.

User Guide. We propose the following scheme which is
experimentally validated: The IB method should be consid-
ered: i) when the R-tree can be memory resident, assuming
enough resources, whereas for a disk-resident index ii) for
average and high-dimensional data (d ≥ 4) and iii) when
d = 2, provided we are dealing with IND data. In the few
remaining cases, IF should be favored.

Runtime VS Dimensionality. We now turn to the ef-
ficiency of the techniques for selecting the k-most diverse
skyline points. Figures 10(a)-(d) demonstrate their perfor-
mance on all data sets, for varying dimensionalities. In par-
ticular, we have plotted the overall time taken to compute
the 10-most diverse skyline points, including the time for
signature generation (for MH and LSH). As expected, BF
shows the worst performance, given that it searches exhaus-
tively for the optimal solution. By increasing the dimension-
ality, the number of skyline points increases too and, con-
sequently, so does the number of

(
m
k

)
enumerations. More-

over, unlike the other techniques, BF’s reported times are
for k = 2; k = 10 yields even more enumerations, since the
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Figure 9: Time for generating MinHash signatures of size 100 for synthetic data sets.
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Figure 10: Runtime for k = 10 diverse skyline points vs dimensionality.
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Figure 11: Runtime vs number of diverse points (k).

skyline contains a few hundred points at best. We even ran
BF for k = 5, but at the time of writing the experiments
have not finished yet. Not surprisingly, BF is inappropri-
ate for practical applications, even when dealing with small
skyline sets and reasonable values of k. For this reason, we
omit it from subsequent experiments.
The greedy algorithm SG is inferior to MH and LSH by,

approximately 2-3 orders of magnitude. Note that we have
boosted SG, by maintaining in-memory the minimum dis-
tance of each non-selected skyline point. Even so, most of
the time is spent on I/Os due to range queries for Jaccard
distance computations, whereas CPU cost is only a fraction.
This validates our goal to keep range queries to a minimum.
SG performs better only for the IND data set and d = 2,
where there are very few skyline points (∼ 5− 10) and sig-
nature creation phase places enough overhead to make the
signature-based techniques slightly worse. In all other occa-
sions, SG’s performance is worse; in fact it did not complete
for the ANT 6D setting. Finally, though MH and LSH differ
slightly, at this granularity their difference is not discernible.

Runtime VS Number of Points (k). Figures 11(a)-(d)

portray the efficiency of the techniques with respect to the
number of requested points. The graphs clearly support our
earlier findings that MH and LSH are superior to SG by
orders of magnitude, for reasonable values of k. All three
algorithms exhibit a consistent behavior in all data sets and
k values: MH and LSH perform almost identically for all
k values, with LSH being slightly better as shown in Fig-
ure 11(c)-(d), which is one of the main reasons to consider
it over MH. CPU costs are minimal for these techniques,
accounting for no more than 45 sec for ANT, and at most
2 seconds for the other data sets, with k=50 and default
values for the other parameters. On the other hand, for all
k values, SG is burdened with an excessive number of I/Os,
due to range queries, despite being boosted. The technique
also shows a noticeable increase in runtime for k=50, across
all data sets, as a result of increased CPU costs. This is
because when increasing k, the pair-wise Jaccard distance
computations add-up to a more noticeable amount, given
that range queries require O(d) checks, and recursively de-
scend the R-tree if needed, to compute the intersection.

Quality of Results. We now turn our attention to the ef-
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Figure 12: Quality vs number of diverse points (k).
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Figure 13: LSH vs MinHashing, for k = 10 diverse skyline points, with signature size fixed to 100

fectiveness aspect of our approach. Figures 12(a)-(d) demon-
strate the diversity score, i.e., the minimum Jaccard distance
in the original space, of the selected set of skyline points,
for different values of k (number of selected points). As
expected, by increasing k, the minimum Jaccard distance
is reduced. SG performs better than MH and LSH in gen-
eral, however, the latter two achieve very good performance,
given their efficiency savings. With the exception of REC
data set, MH is only slightly worse than SG for k values
up to 10. In constrast, LSH has a steeper decline in the
diversity score, but requires less memory, as shown in Fig-
ure 13(a)-(b) and explained in the sequel.

MinHashing VS LSH. Figure 13 depicts a comparison
between MH and LSH, demonstrating the memory vs ac-
curacy trade-off. In particular, we have performed a series
of experiments with a fixed k value (k=10), while varying
the parameters ξ (threshold) and B (number of buckets per
zone) for LSH, and (varying) the signature size for Min-
Hash. By increasing ξ, the number of zones ζ is reduced,
which increases memory savings. In addition, maintaining
fewer buckets per zone reduces memory consumption fur-
ther. The price we pay in this case is a drop in accuracy.
As expected, the accuracy of LSH is lower than that of MH
as shown in Figure 13(c)-(d), whereas the savings in storage
are more sensitive to the value of ξ, due to the high corre-
lation between ξ and ζ as shown in Figure 13(a)-(b). For
example, by using LSH with ξ = 0.2 and B=20, we need
around 300Kb for the FC data set, whereas MH requires
almost 600Kb. Moreover, the corresponding diversity score
obtained by LSH is 0.88 when MH performs marginally bet-
ter obtaining a diversity score of 0.93. Overall, the signif-
icant reduction in memory requirements make LSH a very
attractive alternative, in cases where we are willing to sac-
rifice accuracy, up to an acceptable level.
Another key observation is that by simply reducing the

signature size in MinHashing does not give promising results.
For example, using a threshold of 0.2, with 10 buckets per
zone, LSH obtains results of similar or better quality, while
requiring less memory than MH50. In general, the accuracy
of MinHashing drops rapidly by decreasing the signature
size, whereas by carefully controlling the threshold and the
number of buckets per zone, LSH can be tuned better.

6. CONCLUSIONS
In this article, we have studied the problem of selecting

k skyline points that best diversify the skyline result. Our
proposal is entirely based on the dominance relationships be-
tween points and therefore, no artificial distance functions
are required. In particular, we quantify the diversity be-
tween two skyline points as the Jaccard distance of their cor-
responding domination sets, capturing dataset characteris-
tics in the process. To confront the NP-hardness of the prob-
lem, we employ MinHash signatures and Locality Sensitive
Hashing along with a 2-approximation greedy heuristic. Our
techniques work in an index-free or index-based (R-tree-like)
case, achieve a controlled error and demonstrate a significant
performance improvement compared with straight-forward
approaches. In addition, our framework supports a memory
consumption vs accuracy trade-off. We also experimentally
validated the performance of our approach based on real-life
and synthetic data sets, achieving orders of magnitude bet-
ter runtime performance in comparison to straight-forward
techniques.

Interesting future directions include: i) the diversification
of a data set A based on (dominance) relationships over an-
other set B, where A is not necessarily a Pareto optimal set
(as in the skyline case), as well as ii) parallelization aspects
of our methodology, aiming for scalable skyline diversifica-
tion over massive data.
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