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ABSTRACT

Client-server database query processing has become an im-
portant paradigm in many data processing applications to-
day. In cloud-based data services, for example, queries over
structured data are sent to cloud-based servers for processing
and the results relayed back to the client devices. Network
bandwidth between client devices and cloud-based servers is
often a limited resource and the use of data compression to
reduce the amount of query result data transmitted would
not only conserve bandwidth but also help with battery life-
time in the case of mobile client devices. For query result
compression, current data compression methods do not ex-
ploit redundancy information that can be inferred from the
query structure itself for greater compression. In this pa-
per we propose a novel query-aware compression method
for compressing query results sent from database servers to
client applications. Our method is based on two key ideas.
We exploit redundancy information obtained from the query
plan and possibly from the database schema to achieve bet-
ter compression than standard non-query aware compres-
sors. We use a collection of memory-limited dictionaries to
encode attribute values in a lightweight and efficient man-
ner. Each dictionary in the collection of dictionaries are
also dynamically resized to adapt to changing temporal ac-
cess characteristics. We evaluated our method empirically
using the TPC-H benchmark show that this technique is ef-
fective especially when used in conjunction with standard
compressors. Our results show that compression ratios of
up to twice that of gzip are possible.

Categories and Subject Descriptors

E.4 [Coding and information theory]: Data compaction
and compression; H.2.4 [Database Management]: Sys-
tems—Query Processing

General Terms

Algorithms
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1. INTRODUCTION
Client-server database queries form the backbone of many

data-intensive applications ranging from cloud-based appli-
cations and services to parallel/distributed data warehous-
ing systems. In cloud-based services, queries may be sent to
cloud-based database servers from mobile client devices and
the results relayed back to those devices. Such mobile client
devices are often limited by network bandwidth and bat-
tery life. Any effort to reduce the amount of data transmit-
ted across the network would not only conserve bandwidth
but also help with the battery life, because network commu-
nications typically consume significant amounts of energy.
In parallel data warehousing systems, user queries are par-
titioned into sub-queries to be executed on worker nodes.
Results from worker nodes are either transmitted to other
worker nodes for further processing or consolidated to a co-
ordinator to be returned to the user. A reduction in the
amount of data transmitted between worker nodes, say, via
data compression, would have a significant impact on query
latency. Data compression methods and their applications
to data communications and database processing is not new.
A key insight of this paper is that in the case of client-server
style database query processing, the queries themselves offer
clues to the redundancy structure of the query result set that
can be exploited for greater compression of the query results.
That said, not all query results will exhibit the kind of re-
dundancy that can be exploited for compression. For such
query results, standard data compression methods suffices,
but for query results that do exhibit sufficient redundancy
structure, greater compression can be achieved.

In this paper, we propose a novel query-aware (QA) com-
pression method for compressing join query results sent from
database servers to client applications. Our method is based
on two key ideas. First, we exploit redundancy informa-
tion obtained from the query plan and possibly from the
database schema as well. Second, we use a collection of
nested memory-limited dictionaries to encode attribute val-
ues efficiently.

Consider the result set of the SQL query illustrated in
Fig. 1(e) and Fig. 1(d) respectively. The tuples in the re-
sult set contain much redundancy that would be amenable
to compression: in the columns (A,B), the values (a1,b1)

and (a2,b1) are repeated twice; in the columns (B,D), the
value (b1,d1) is repeated four times; in the columns (B,C),
the value (b1,c1) is repeated twice. Standard column-wise
or row-wise dictionary compression techniques would not
be able to capture this type of redundancy, because they
would have no knowledge that the result set tuples are gen-
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A B
a1 b1
a2 b1
a1 b2
a2 b3

(a) R(A,B)

B C
b1 c1
b1 c2
b2 c3
b4 c3

(b) S(B,C)

B D
b1 d1
b2 d2
b4 d3
b5 d3

(c) Q(B,D)

SELECT R.A, R.B, S.C, Q.D
FROM R, S, Q
WHERE R.B=S.B

AND S.B=Q.B
AND Q.B < b5

(d) Query

A B C D
a1 b1 c1 d1
a1 b1 c2 d1
a2 b1 c1 d1
a2 b1 c2 d1
a1 b2 c3 d2
(e) Query Result

Figure 1: The base relations, query and result set
used in the running example.

erated from a join of the three relations R(A,B), S(B,C),
and Q(B,D).

To infer this type of redundancy from the result set tuples
themselves is a combinatorial problem and clearly infeasible
in practice. Instead, our proposed compression scheme ob-
tains the knowledge of this redundancy from the query itself
in the form of a join tree and uses the join tree to compress
the result set using a hierarchy of dictionaries. In the worst
case, the size of the hierarchy of dictionaries may be in the
order of the size of the base relations used in the query.
Since the decompressor at the client needs to materialize
the hierarchy of dictionaries for decompression, the mem-
ory requirements of the decompressor may be impractical
for lightweight clients. To address issue, we use a memory-
limited dictionary data structure for our compression and
decompression algorithms.

Note that the proposed compression method is not equiv-
alent to sending the base relations of the query (after any se-
lection and projection operations) to the client and perform-
ing the joins and any additional projections at the client.
Such an approach would require the client to materialize
all the base relations (albeit after any selections and pro-
jections) and actually evaluate the join conditions. The
proposed compression method does not evaluate the join
conditions at the client : the query is fully evaluated by
the database engine and the result set is compressed by the
proposed method using a hierarchy of dictionaries. More-
over, through the use of our memory-limited dictionary data
structure, the proposed method does not need to materialize
the base relations in their entirety at both the compressor
and the decompressor.

Our QA compression method is applicable in any applica-
tions where database servers need to transmit query result
sets over some network to client applications. The com-
pressed result sets would require less bandwidth for trans-
mission and hence improve query latency at the client as
well. Hence, we envision that the method can be incor-
porated into the ODBC/JDBC layers and the distributed
relational database architecture (DRDA) protocol as well.
In the context of parallel and distributed databases, our
method can be used to compress results of sub-queries that
are executed at (remote) database nodes. Our method is suf-
ficiently general and can be applied on an arbitrary relation
if a lossless-join decomposition of the relation is available.

Contributions.

∙ We designed a novel query-aware (QA) compression method
for query result set by exploiting redundancies obtained
from the query. To the best of our knowledge, the concept
of query-aware compression is new.
∙ We designed a memory-limited dictionary data structure

that bounds the memory requirement upfront thereby en-
abling a more space-efficient (de-)compression algorithms.
∙ We evaluated our compression method experimentally and

demonstrated its effectiveness and efficiency.

The rest of the paper is organized as follows. Related
Work is discussed in Section 2. We describe our algorithm
in detail in Section 3. Experiments testing the efficacy of
QA compression are given in Section 4. Lastly, conclusions
are given in Section 5.

2. RELATED WORK
Several compression schemes have been devised in the

past. Some are generic, some are tailored to specific data
structures, and some are optimized for streaming data. We
will discuss examples for each category in the following.

The most widely used compression schemes are based on
Huffman codes [15], arithmetic coding [25], and dictionary
encoding such as the algorithms devised by Lempel and
Ziv [26, 27]. They use a dictionary to encode arbitrarily
long fragments of data from the input stream. More fre-
quent fragments are typically encoded with fewer bytes via
Huffman encoding for example. Since join results exhibit
complex nested repeating patterns, the dictionary may be-
come very large (and thus decompression costly) or only the
base tuples are encoded (thus losing compression potential).

More recently, grammar-based compression has received
some attention. The input data is replaced by a small context-
free grammar (CFG) that describes the generation of the in-
put. Since finding the smallest CFG is an NP-hard problem,
various heuristics have been proposed. Sakamoto et al. [22]
propose a linear-time algorithm that outperforms dictionary
based algorithms for highly repetitive inputs.

Applying data compression techniques to compress rela-
tional tables and indexes in a relational database system
is a well studied problem. Cormack [7] proposes an al-
gorithm based on Huffman codes designed for databases.
Roth and Van Horn [21] propose a number of ways to ap-
ply compression algorithms in a relational database context.
Ng and Ravishankar [18] provide an algorithm designed to
work well with local decompression, allowing for common
database operations to be performed on compressed data.
Ray et. al [20] argue that improvements in query processing
performance due to the use of compressing databases make it
attractive even when storage capacity is not a concern, and
propose an attribute-level compression algorithm. Shapiro
and Graefe [12] discuss performance improvements gained
by leaving databases compressed during query processing.

Most of the previous work apply compression to either
pages or tuples to reduce the storage requirement of rela-
tional data and the associated indexes. Recent database
compression research [1, 14, 19] apply compression to database
tables with the objective of improving query processing.
Database query processing is often IO-bound, so any tech-
nique that reduces the size of data that needs to be read
or written to disk potentially improves performance. Much
attention has been given to compression inside the storage
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layer of database systems. For example, Antoshenkov et
al. [3] propose compression for string data within tables for
faster query processing. Goldstein et al. [11] and Bhat-
tacharjee et al. [5] propose compression schemes for low
cardinality fields and database indexes. Most commercial
database products provide storage layer compression. How-
ever, compression for query result transmission is mostly
handled outside the database system.

All compression schemes described so far focus mainly on
non-streaming data or offline compression. Compression for
streaming data has traditionally focused on audio and video
data. A prominent example is the MPEG-1 Layer 3 [16] for
audio streaming. Since compression for these applications
is typically lossy, these algorithms cannot be applied to our
use case. One exception is the work by Maruyama et al. [17]
that improve upon Sakamoto’s grammar-based compression
scheme by transforming the algorithm into a true online al-
gorithm that does not require knowledge of the entire data
stream in advance. It may be possible to describe join results
by a CFG and thereby employ grammar-based compression
schemes. However, due to their heuristic nature, no strong
time and space usage guarantees can be given.

ODBC [24] and JDBC [13] provide limited query result
compression capabilities. They typically allow the user to
specify one of the offline compression schemes (such as GZIP [9])
which is then applied to each record or a set of records be-
fore transmission. Chen and Seshadri [6] propose an alge-
braic compression framework for query results in the con-
text of low-bandwith and low-memory query clients. They
analyze the data distribution of query results to detect pat-
terns and functional dependencies that lend themselves to
specific compression techniques. They then derive a “com-
pression plan” that may consist of the application of various
compression algorithms to different parts of the query result.
The important difference to our proposed scheme is the fact
that we exploit the knowledge of the query plan that led to
the result set.

A somewhat related aspect of SQL result compression is
the order in which fields of database records are stored. Tra-
ditionally, database systems employ a row-oriented storage
scheme in which fields of one row are followed by fields of
the next row. Recently, column-oriented storage and query
processing has been proposed [2] in which all values of a
single column are stored, followed by all values of the next
column. Besides accelerating certain query types (e.g., de-
cision support queries), this way of storing records can also
help compression since values of the same column are of the
same type and are more likely to exhibit repetitions [1]. Our
proposed join result compression scheme can be applied to
column-oriented databases equally well.

As opposed to compressing data for the purpose of reduc-
ing storage requirements or for improving query processing
performance, the compression techniques proposed in this
paper specifically address the problem of transmission of
join query result sets. Hence the proposed techniques ex-
ploit redundancy information from the join query plan. To
the best of our knowledge, no prior work has studied this
problem.

The most closely related work is Goh et al. [10] where
association rule mining algorithms are used to obtain asso-
ciation rules from the database tables that are then used
to compress the data. Association rules are quite different
from functional dependencies and the join query tree that
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Figure 2: QA compression in a client-server frame-
work.
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Figure 3: Query execution plan for the SQL query
in Fig. 1(d) and the corresponding join tree.

are exploited in our compression method.

3. QUERY-AWARE (QA) COMPRESSION

3.1 Overview
A schematic diagram of the compression and decompres-

sion process is outlined in Fig. 2. The client sends a query
to the database server. The database engine processes the
query and sends both the result set and the query execu-
tion plan (defined in the next paragraph) to the proposed
compressor. The compressor compresses the result set using
the redundancy information obtained from the query exe-
cution plan and transmits the compressed bit stream over
the network to the client. The client receives compressed
bit stream and forwards it to the decompressor for decom-
pression. The decompressed result set is then made avail-
able to the client applications. The proposed compression
algorithm is symmetric; hence the decompression algorithm
mimics the state of the compression algorithm to decode the
compressed bit stream. We defined several terms next be-
fore giving an overview of the proposed method using our
running example.

A query execution plan (or simply query plan) is a tree of
relational algebra (RA) operators. The root node denote the
result set of the query, the leaf nodes represents the relations
that the query operates on. Internal nodes represent stan-
dard RA operators (�, �,⋈). Edges represent tuple flows
(from bottom up) between nodes. The proposed method
can also apply to extended RA operators such as projections
that allow expressions and the group-by operator as long as
these operators can be pushed down so as to minimize the
number of join operators beneath those operators. Without
loss of generality query plans are assumed to have selection,
projection and extended RA operators pushed down as close
to the base relations as possible1.

1A standard operator push-down rewriting algorithm can
always be applied to ensure that condition.
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A join tree is a binary tree where the internal nodes denote
join operators and the leaf nodes represent relations that
could be actual relations or views in the database or tem-
porary results of some relational operator. A join tree for
the result set of a query is typically obtained from the query
plan of the query by merging each subtree of the query plan
that do not contain the join operator into a (temporary) re-
lation. For query plans that contain extended RA operators,
join operators that are beneath the extended RA operators
in the query plan may not participate in the join tree. Fig. 3
shows a query plan and the corresponding join tree. For the
purpose of this paper, there is no loss of generality if we con-
sider query plans where selection and projection operators
are pushed down close to the leaf nodes.

Our proposed compression method will encode each row
of the query result set using a set of nested dictionaries –
one dictionary for each non-root node of the join tree. In
addition each column of the result set will be encoded using
a column-based dictionary. Since the decompressor is sym-
metric, the join tree and the schema of the leaf relations are
first serialized and sent to the decompressor before sending
any encoding of the result set using the nested dictionar-
ies. The dictionaries at the decompressor are then kept in
sync with those at the compressor as entries are received
and inserted into the dictionaries in exactly the same way
that the compressor is maintaining its dictionaries. For the
join tree in Fig. 3(b), we will initialize four empty dictionar-
ies {D(R), D(S), D(Q′), D(j1)} for each non-root node, and
four empty column dictionaries {D(A), D(B), D(C), D(D)}
for each column in the result set. As new entries are added
to a dictionary, these entries and the dictionary identifier
are also sent to the decompressor, so that the dictionaries
remain in sync at the decompressor. A dictionary entry
flag is sent to denote that the value sent is a dictionary en-
try and not an encoded tuple fragment. Our compression
algorithm loops through each row of the result set and en-
codes the row using the join tree in a bottom up (depth
first search order) sequence. Each field of a row is encoded
using the column dictionaries and the fragment to be en-
coded by each join tree node is constructed either from the
encoded columns (for the leaf nodes) or recursively from the
encoded fragments of the child nodes. For non-root nodes,
the constructed fragment is further encoded using the dic-
tionary associated with that node. For the root node, the
constructed fragment is transmitted without further encod-
ing. For the join tree in Fig. 3(b), we will encode each row
in the result set using the following sequence of dictionaries
⟨D(A), D(B), D(R), D(C), D(S), D(j1), D(D), D(Q′)⟩.

3.2 Compression
The proposed QA compression algorithm is outlined in Al-

gorithm 1. The algorithm takes as input a join tree T and
the result set W produced by the database query execution
engine. The result set W is a set of rows whose schema
conforms to the SELECT clause of the SQL query. The
compressor first serializes the join tree and sends it to the
decompressor. The schemas of the relations associated with
the leaf nodes of the join tree are also transmitted to the de-
compressor. We assume that the schemas are logically part
of the join tree that was supplied as input to the algorithm.
The join tree and schemas are then used to initialize the set
of dictionaries – one for each non-root node of the join tree.
We denote the dictionary associated with a non-root node

Algorithm 1 Compress(T,W )

Input: Join tree T , Result set W
Output: Sends compressed result set to decompressor

1: send join tree T and schema of leaf nodes
2: D ← ∅
3: for all non-root node v ∈ T do
4: initialize dictionary D(v)
5: D ← D ∪D(v)
6: if v is a leaf node then
7: for all columns c of relation v do
8: initialize dictionary D(c)
9: D ← D ∪D(c)
10: for all row r ∈ W do
11: send CompressRow(root(T ),D, r)

Algorithm 2 CompressRow(t,D, r)

Input: Join tree node t, collection of dictionaries D, a row
r to be compressed
Output: Sends dictionary entries to decompressor and re-
turns compressed row

1: rowcode← �
2: if t is a leaf then
3: for all columns c of relation t do
4: code← DictLookup( r[c], D(c))
5: if code = � then
6: code← DictAdd(D(c), r[c])
7: send DENTRY, c, r[c],
8: rowcode← rowcode ⋅ code
9: else
10: leftcode← CompressRow(t.left,D, r)
11: rigℎtcode← CompressRow(t.rigℎt,D, r)
12: rowcode← leftcode ⋅ rigℎtcode
13: if t is non-root then
14: code← DictLookup( rowcode,D(t))
15: if code = � then
16: code← DictAdd(D(t), rowcode)
17: send DENTRY, t, rowcode,
18: rowcode← code
19: return rowcode

v in the join tree as D(v) and the set of dictionaries for the
entire join tree as D. Each of these dictionaries will be used
to encode the relational tuples associated with each non-root
node of the join tree. For leaf nodes of the join tree, addi-
tional dictionaries are initialized for encoding each column
of the relation associated with the leaf node. We use D(c)
to denote the (column) dictionary for a column c (assuming
that column identifiers are unique across all the tables in the
query). We will often refer to the relation associated with
a node in the join tree using just the node identifier. Once
the dictionaries are initialized, the compressor loops through
each tuple in the result set and compresses each tuple using
the join tree and the associated dictionaries.

Note that the dictionaries at the decompressor are main-
tained by receiving entries interlaced with encoded tuple
data sent by the compressor. This allows the QA compres-
sion and decompression algorithm to operate in a streaming
fashion.

Compressing One Row. The steps to compress one row of
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DE, D(A), a1,
DE, D(B), b1,
DE, D(R), 0, 0,
DE, D(C), c1,
DE, D(S), 0,
DE, D(j1), 0, 0,
DE, D(D), d1,
DE, D(Q′), 0
TF, 0, 0

DE, D(C), c2,
DE, D(S), 1,
DE, D(j1), 0, 1,
TF, 1, 0

Figure 4: Logical encoding of the first two rows
of the result set in Fig. 1(e) using the join tree in
Fig. 3(b). The symbol ‘DE’ denotes the dictionary
entry flag, ‘TF’ the tuple fragment flag, and ‘D(i)’
the dictionary identifier for join tree node i.

the result set are outlined in Algorithm 2. CompressRow

is a recursive procedure on the join tree. The algorithm
takes as input a node in the join tree, the set of dictionar-
ies, the row to be compressed, and returns the compressed
representation of the input row encoded according to the in-
put join tree and the associated dictionaries. Let the input
row or tuple r be a sequence of values and let r[t] denote
the sub-sequence of r associated with the join tree node t.
Similarly, let r[c] denote the sub-sequence of r associated
with the column c (of some leaf node). The base case of
the recursion is when the input join tree node is a leaf node
(Line 1-8). The algorithm attempts to compress the input
row column by column using the column dictionaries. This
column compressed row is further compressed using the dic-
tionary D(t) for the current input node t (Line 13-18). In
general dictionary-based encoding, whenever a new value
that is not in the dictionary is encountered, the new value
is added to the dictionary that also assigns a code word for
that new value. The decompressor needs to update its copy
of the same dictionary in the same way; hence, the dictio-
nary identifier and the new value is sent to the decompres-
sor. As long as the dictionary in the decompressor assigns
code words in the same deterministic way as the compressor,
there is no need to send the code word itself.

The recursive case of the CompressRow algorithm occur
when the input join tree node is a non-leaf node. Conceptu-
ally, the algorithm first compresses the sub-sequence of the
input row corresponding to the left and the sub-sequence
corresponding to the right child of the input join tree node
t (denoted t.left, t.rigℎt respectively) recursively. The al-
gorithm then encodes the pair of compressed sub-sequences
using the dictionary D(t) associated with the current input
join tree node (Line 13-18).

Example. Consider encoding the first row of the result set
in Fig. 1(e) according to the join tree in Fig. 3(b). Logi-
cally, each field in the row is first encoded using the column
dictionaries and the encoding tuple fragments proceeds bot-
tom (depth-first search order). The fragment (a1,b1) that
is associated with node R is first processed. Each of the
values of the fragment is encoded using the column dictio-
naries. Assume for ease of exposition that integer codes are
assigned starting from zero. The column-encoded pair 00 is
then encoded using the dictionary D(R) for node R. Since
the dictionaries were initially empty, these encodings all re-
sult in new entries added to the dictionary. In principle, we
should send the code returned by D(R) for the fragment;
however, we can make that implicit with the transmission

Algorithm 3 Decompress

Input: Receives join tree and compressed result set from
compressor
Output: Returns the uncompressed result set

1: T ← receives join tree and schema of leaf nodes
2: D ← ∅
3: for all non-root node v ∈ T do
4: initialize dictionary D(v)
5: D ← D ∪D(v)
6: if v is a leaf node then
7: for all columns c of relation v do
8: initialize dictionary D(c)
9: D ← D ∪D(c)
10: W ← ∅
11: while receives message m from compressor do
12: if m.flag = DENTRY then
13: DictAdd(D(m.nodeID),m.value)
14: else
15: W ← W ∪ DecompressRow(T,D, m.value)
16: return W

of the dictionary entry for D(R). The fragment (c1) is then
encoded resulting in a new entry for D(C) and D(S), fol-
lowed by the fragment for the join node j1. The fragment
to be encoded by D(j1) is constructed from the previously
encoded fragments associated with the children of join tree
node j1. Again, since D(j1) is initially empty, a new entry is
sent. Finally, the fragment for node j2 is constructed from
the previously encoded children fragments and transmitted
without additional encoding. The sequence of (logical) codes
are showed in the first column of Fig. 4. The second row of
the result set is encoded similarly. The only difference in
the second row is the value in the column for C. The values
for other columns remain the same. Therefore, the only new
dictionary entries we see are from the column dictionary for
C and all of the dictionaries on the path from S to the root
in the join tree, from the leaf up. So, we see a new dictio-
nary entry for D(C) for the new value c2. Then, we see an
entry D(S), which is the table dictionary entry for the new
value c2. Lastly, we see an entry for D(j1). The new value
is (0,1), which indicates the entry for 0 in D(R) and the
entry for 1 in D(S). Finally, we transmit the tuple fragment
(1,0), which denotes the entry for 1 in D(j1) and the entry
for 0 in D(Q′).

3.3 Decompression
The decompression process is symmetric. The decompres-

sor rebuilds the structure of the join tree it receives from the
compressor, proceeds to populate dictionaries as it receives
entries from the compressor, and uses them to decompress
the encoded tuples.

Algorithm 3 outlines the pseudo-code for the decompres-
sion of a compressed result stream. The procedure for de-
compressing a single row within the results stream is given
in Algorithm 4. The latter uses a method called Reverse-

DictLookup(D, i), which returns the value associated with
codeword i in D.

Example. Suppose the compressed message given in Fig. 4
is received. When decoding a row, the decoder first receives
all of the dictionary entries that it is missing. After pop-
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Algorithm 4 DecompressRow(t,D, e)

Input: Join tree node t, collection of dictionaries D, a
tuple of dictionary codes e
Output: Returns the decompressed row

1: if t is a leaf node then
2: row← ∅
3: for all columns c in relation t do
4: row ← row ∪ ReverseDictLookup(D(c), e[c])
5: return row
6: else
7: l← ReverseDictLookup(D(t.left), e[0])
8: r ← ReverseDictLookup(D(t.rigℎt), e[1])
9: row← DecompressRow(t.left, D, l)
10: row ← row ∪ DecompressRow(t.rigℎt, D, r)
11: return row

ulating its dictionaries, the entries are as shown in column
1 of Fig. 5. Subsequent to processing dictionary entries,
the decoder receives the tuple fragment for the first row:
(0,0). Using the join tree, the decoder is able to determine
that the tuple fragment (0,0) refers to the concatenation of
the values for the 0-th entry of D(j1) and the 0-th entry of
D(Q′). The rest of the decompression process is shown in
detail below. We use D(X):n to denote the n-th entry in
the dictionary D(x), and D(X):n = x to denote that the
value for the n-th entry in the dictionary D(X) is “x”.

1. TF = (0, 0)
2. (D(j1):0 = (0, 0), D(Q′):0 = (0))
3. (D(R):0 = (0, 0), D(S):0 = (0), D(D):0 = d1)
4. (D(A):0 = a1, D(B):0 = b1, D(C):0 = c1, d1)
5. (a1, b1, c1, d1)

In step 2, the decoder expands the tuple fragment (0, 0)
by doing dictionary lookups in D(j1) and D(Q′), finding
that the values are (0, 0) and (0), respectively. In step 3,
the decoder determines from the join tree that the value
D(j1):0 = (0, 0) corresponds to the concatenation of the
0-th entry from D(R), and the 0-th entry from D(S). Sim-
ilarly, it finds that D(Q′):0 = (0) specifies the 0-th entry
from D(D), which is d1. The remaining steps follow the
same process to arrive at the first row: (a1, b1, c1, d1).

When receiving the commands for the decompression of
the second row, the decoder is only missing three of the
needed dictionary entries. This is because the only new value
in the second row is in the C column. Thus, D(C) and
every dictionary on the path to the root of the join tree
must be updated with a new value. Other than D(C), these
dictionaries areD(S), andD(j1). The new entries are shown
in column 2 of Fig. 5. Decompression follows exactly the
same steps that were taken for the first row:

1. TF = (1, 0)
2. (D(j1):1 = (0, 1), D(Q′):0 = (0))
3. (D(R):0 = (0, 0), D(S):1 = (1), D(D):0 = a1)
4. (D(A):0 = a1, D(B):0 = b2, D(C):1 = c2, d1)
5. (a1, b1, c2, d1)

3.4 Space Limited Dictionaries
So far we have described the proposed QA compression al-

gorithm assuming that there is no limit on the size of the dic-

Row 1 Row 2
D(A) 0 = a1
D(B) 0 = b1
D(C) 0 = c1 1 = c2
D(D) 0 = d1
D(R) 0 = (0,0)

D(S) 0 = (0) 1 = (1)

D(Q′) 0 = (0)

D(j1) 0 = (0,0) 1 = (0,1)

Figure 5: Dictionaries reconstructed during decom-
pression. Values added after decoding the first row
are in the column labeled “Row 1”. Those added
after decoding the second row are under the “Row
2” column.

tionaries. For large result sets with large number of distinct
values, the size of each dictionary can be significantly large
and put a strain on the client’s resources. Conceptually, a
dictionary is a mapping of tuple fragments to their codes.
Consider a result set from a simple two-way join R ⋈ S. If
all rows of R are distinct, the dictionary D(R) could be as
large as the number of rows in R if the join operator did not
filter any rows of R. For very large relations, the dictionary
may not even fit in memory! For the proposed QA com-
pression scheme to be practical, the space required by each
dictionary cannot be allowed to grow without restraint.

We propose a simple solution – space limited dictionar-
ies. A space limited dictionary uses a fixed amount of space
which can either be specified in bytes or in the number of
entries. For ease of exposition, we will use number of en-
tries. A space limited dictionary with n slots would be able
to hold at most n entries. Each entry would be associated
with a code between 0 and n − 1. We use integer code for
ease of exposition, in practice Huffman codes can be used. It
is possible to make use of Huffman codes because the com-
pressor and decompressor are symmetric and maintaining
the same dictionaries. As long as the decompressor is made
aware that the compressor has decided to optimize its codes,
it can mimic the same optimization. Initially, the n slots are
empty. As new (previously unseen) entries arrive, they fill
up the n slots. Thereafter the dictionary behaves somewhat
like a cache. The arrival of a new entry would trigger the
eviction of an existing entry and the new entry would use
the code associated with the evicted entry. As long as the
dictionary at the decompressor behaves in exactly the same
way, decoding is possible and correct.

As with caching, several eviction policies are possible in-
cluding least recently used (LRU), least frequently used (LFU),
least recently added (LRA) etc. The LRA policy would evict
the oldest dictionary entry (see Fig. 6) and LFU would evict
the least frequently used entry. Both of these policies would
require maintaining a timestamp or frequency count for each
entry. In addition to an eviction policy, space limited dic-
tionaries can also have a code assignment policy that deter-
mines when and how to reassign codes to the n entries. For
example, in conjunction with LFU, a code assignment pol-
icy can reassign shorter codes to the more frequently used
entries at every other eviction.

3.5 Dynamic Allocation of Dictionary Space
Our QA compression algorithm relies on a hierarchy of
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value code time
a1b1 0 11
a2b1 1 13
(a) After 3 rows

value code time
a1b2 0 15
a2b1 1 13
(b) After 5 rows

Figure 6: Example of encoding the fragment of the
result set of Fig. 1(e) associated with join tree node
R using a space limited dictionary with two slots.
When encoding the 5-th row with value ‘(a1,b2)’,
the oldest entry with code 0 is evicted.

disjoint dictionaries to encode result tuple fragments. Each
dictionary in the collection or hierarchy may have different
demands for memory at different times giving rise to the
space allocation problem: Given a memory budget of M
bytes and a collection of N dictionaries, how should the M
bytes of memory be allocated to each of the N dictionaries?
In this section, we discuss several solutions for this problem.

Näıve Solution. Given a set of N dictionaries which is
limited to M bytes of memory, we can allot each dictionary
M/N bytes. This is often suboptimal, because the space
demand distribution of the N dictionaries are often skewed.
Using an uniform allocation results in high-demand dictio-
naries not getting enough space, and low-demand dictionar-
ies not using all the space allocated to them.

Static Solution. DBMSs often collect cardinality statistics
on relations for query optimization. We could exploit such
statistics to compute a static allocation to the dictionaries.
For example, the size of a dictionary that is associated with
a base table (in the join tree) can be bounded from above by
the distinct count of tuples of that base table. Hence we can
estimate the relative demand each dictionary has for space
by looking at count statistics for the relation, column, or
partial result it corresponds to in the join tree. A dictionary
corresponding to a table with tuple fragments of average size
n bytes and k distinct tuples would get double the space of
a dictionary for a table with tuple fragments of average size
1

2
n and k distinct tuples.

Dynamic Solution. While the static solution is an im-
provement over the näıve solution, it is still possible for the
allocated space to be “wasted”. Consider the case when
there are many distinct values, but at any one window of
time only a small number of distinct values are accessed,
i.e., the entry insertion and entry access pattern for a par-
ticular dictionary exhibit strong temporal locality. The dy-
namic solution attempts to exploit this temporal locality by
observing and maintaining statistics on the access patterns
and re-assigning space to the dictionaries periodically. This
approach requires each dictionary to spend some of the space
budget to maintain the insertion order for its entries, and
the number of times each entry has been accessed since in-
sertion. We first allow the dictionary set to grow to its initial
capacity of M bytes. Each of its dictionaries are allowed to
grow as long as the total memory consumption is less than
M bytes. When the capacity is reached, we use the relative
sizes of the dictionaries to measure demand, and use the
access counts and insertion order to measure the degree of
temporal locality.

In order to quantify temporal locality, we follow this intu-
ition: if access counts for older entries are not significantly

Older −−−−−−−→ Newer

Index 0 1 2 3 4 5
Value a b c d e f

Access Count 10 10 10 8 5 4

Figure 7: Visualization of a dictionary after several
insertions and accesses. Notice that the three old-
est entries are accessed the same number of times,
indicating temporal locality.

higher than those for more recent entries, then it is likely
that the older entries are no longer being used. Fig. 7 de-
picts a dictionary having evidence of temporal locality.

More formally, suppose that for a dictionary D, ei refers
to its i-th oldest entry. Further, let c(ei) denote the number
of times ei has been accessed since its insertion. Given a
parameter �, we find the largest n for which the relative
distance between c(e0) and c(en) is < �. That is, (c(e0) −
c(en))/c(e0) < �. We then label all entries ei with i ≤ n
as waste. Finally, we compute S, the sum of all memory
consumed by entries labeled as waste.

After computing Sj for each dictionary Dj having a total
memory consumption of Nj , we compute its new capacity
as:

M ⋅
Nj − Sj∑
(Ni − Si)

,

where M is the total capacity available to the entire dictio-
nary set. We find in the experiments to follow in Sec. 4.6,
this approach makes better use of allotted space than the
näıve approach.

4. EXPERIMENTS

Implementation. We implemented the query-aware com-
pression algorithm in C++, using sqlite3 as the relational
database backend. The stream produced by the implemen-
tation uses a few optimizations not specified by the algo-
rithm. Most importantly, dictionary indexes are encoded in
a variable byte length format to minimize overhead.

Dataset. In each of the experiments to follow, we use the
TPC-H [8] dataset. We use the provided dbgen program,
and vary the scale factor parameter to control dataset sizes.
For example, a scale factor of 0.25 results in a dataset oc-
cupying approximately 344MB of disk with indexes, and
273MB without. The query with the most tuples in its re-
sult set occupies approximately 1GB of disk when executed
on the aforementioned database.

Performance Metrics. We measure the compression ratio
defined as

Compression Ratio =
Raw data size in bytes

Compressed data size in bytes
.

Raw sizes are collected by writing results to disk in CSV
format and measuring the file size. We measure gzipped sizes
using the gzip program included with most UNIX-based
operating systems with the --best flag. When measuring
execution time, we use wall-clock time, omitting any IO by
writing to a null output device.

QA compression offers its users a tradeoff: space or band-
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width savings for extra CPU cycles and memory. Although
we do not use an end-to-end metric in these experiments, we
note that a boost in compression ratio will see a proportional
drop in power consumed by, for example, a wireless devices.
Unless we see significantly greater gains in execution time,
improvements in compression ratio are strong evidence that
our algorithm will improve more tangible measures such as
latency or energy consumption. This is because the energy
saved from spending n fewer seconds using a network device
outweighs the extra energy consumed from spending m ≈ n
extra seconds of CPU execution time[23, 4].

Algorithms and variants. Our experiments evaluate the
following algorithms and variants:

∙ gzip : The raw result set in CSV is compressed using
gzip.
∙ query-aware-gzip: The result set is compressed using

the proposed query aware algorithm followed by gzip

We do not compare QA compression alone to gzip because
it is meant as a supplement to, and not a replacement for
existing compression algorithms. As previously mentioned,
we find that QA compression is highly orthogonal to tech-
niques unable to take into account the redundancy revealed
by the join tree model.

Queries. We derived a suite of queries from those provided
with the TPC-H dataset. We remove filtering conditions,
aggregators, and ordering. The following join orders are
used:

1. customer ⊳⊲ (orders ⊳⊲ lineitem)
2. (part ⊳⊲ partsupp) ⊳⊲ (supplier ⊳⊲ nation)
3. supplier ⊳⊲ lineitem (Note: only suppkey is used.)
4. customer ⊳⊲ orders
5. ((customer ⊳⊲ orders) ⊳⊲ lineitem) ⊳⊲ (supplier ⊳⊲ (nation

⊳⊲ region))
6. (part ⊳⊲ partsupp) ⊳⊲ (supplier ⊳⊲ (nation ⊳⊲ region))

We focus entirely on queries involving only joins because
selections and projections do not affect compression ratios.
Figure 8 shows how each of these queries grow as the scale
factor increases.

In the experiments to follow, we measure how dictionary
sizes and number of rows resulting from the queries above
affect the compression ratios. The dictionary size gives the
maximum number of entries in each of the dictionaries used
in the algorithm. The number of rows in the query results
is determined by the scale factor argument in the dbgen

program provided with the TPC-H toolset.

4.1 Overall Compression Rate
We begin by examining the compression ratios for each of

the queries using fixed values for both result and dictionary
sizes. Each dictionary used in the algorithm is allotted 50K
entries, and the scale factor is fixed at 0.21. Results are
shown in Figure 9. The vertical axis specifies compression
ratio, so a higher number is better.

Notice that for most queries, QA compression combined
with gzip nearly doubles the compression ratio of gzip by
itself. In the case of Query 5, QA+gzip reduces the raw
result set from approximately 840MB to 68MB, which is a
12x reduction. With gzip by itself, we see a reduction of only
5x, resulting in a compressed result set of approximately
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Figure 8: Depiction of query result growth rates,
specified in terms of the size growth (in GB) when
increasing dbgen’s scale factor parameter by 1.0.
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Figure 9: Compression ratios with dictionary sizes
fixed at 50K and scale factor fixed at 0.21.

163MB.

4.2 Varying Data Size
This experiment varies the number of rows in the query

results while fixing the dictionary size. This shows us how
well the algorithm scales with the size of the result set and
the underlying database. Here, it is easy to observe the point
at which dictionaries become full and older entries have to
be cleared to make room for new ones. We refer to this as
dictionary saturation. Figure 10 depicts dictionary satura-
tion for dictionaries containing no more than 10K entries.
Notice that Queries 1 and 4 exhibit the sharpest decline of
compression ratio. We can attribute this to these being rel-
atively simple queries, meaning there is less redundancy for
the compression to exploit. Query 3 performs relatively well
because we only use one of two available join keys, which
introduces additional redundancy.

Figure 11 shows compression ratios when dictionaries are
limited to 20K entries. Notice that this delays the occur-

36



rence of dictionary saturation in Query 4 by a 0.10 increase
in scale factor. If we increase the maximum dictionary size
to 30K, we delay dictionary saturation by another 0.10 in-
crease in scale factor. This linear pattern is not surprising,
as both the original tables and the join results are increasing
linearly with scale factor.

4.3 Varying Dictionary Size
Finally, we vary the dictionary size and fix the query result

size. This gives a rough idea how much memory the algo-
rithm requires to perform well when run on large datasets.
The dictionary size specifies the maximum number of entries
in every dictionary used in the algorithm. Figure 12 shows
compression ratios when the scale factor is fixed at 0.35.
Notice that 10K entries is enough to prevent dictionary sat-
uration for all except for Queries 1, 4, and 5. In the case
of 5 we still see relatively good performance. In Queries 1
and 4, we see that 40K entries is enough to produce optimal
performance.

In Query 1, notice that QA+gzip performs worse than
gzip by itself when we limit dictionaries to a maximum of
10K entries. This is likely due to severe dictionary satura-
tion. We expect this behavior if an entry is pushed onto the
dictionary and evicted before it is referenced again. In this
case, we only introduce extra bytes into the result stream
and put extra space between text, which harms gzip’s per-
formance. We can see from this that it is important to allow
dictionaries to be large enough to prevent this from happen-
ing.

4.4 Sensitivity to Join Order in gzip
When analyzing preliminary results, we noticed that the

result sizes would vary when changing the order in which ta-
bles were joined, and by the left-right relationship between
the nodes in the join tree. With the database engine we
used, the left-right relationship is determined by the struc-
ture of the query. For example, SELECT * FROM a, b WHERE

a.c = b.c produces different results than SELECT * FROM

b,a WHERE b.c = a.c. In particular, the order in which the
result tuples appear is affected.

Clearly, compression algorithms tend to be very sensitive
to the order of the data they are acting on. If redundancy
is spaced far apart in the result stream, compression algo-
rithms generally have to use more memory to exploit it with-
out suffering a loss in performance.

Figure 13 is the result of generating all possible ways to
order the tables in Query 2 (23 = 8). Notice that there are
two classes of results: one where gzip does only slightly worse
than QA+gzip, and one where gzip’s compression ratio is
roughly half of QA+gzip. This is determined by the left-
right relationship between the results in the highest level
join. That is, which of (part ⊳⊲ partsupp) or (supplier ⊳⊲
nation) is on the left, and which is on the right. Note that
applying query-aware compression before gzip in this case
makes up for the lost performance in gzip. In particular,
the compression ratio for QA+gzip in this case is relatively
unaffected by the join order.

Figure 14 shows the same result when varying the join or-
ders of Query 4. Notice that in the first ordering, QA+gzip
performs slightly worse than gzip by itself. In examining the
result stream, we discovered that tuples with redundancy
exploitable by QA compression were all grouped together.
This means that the redundancy is highly localized and ex-
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Figure 13: Compression ratios for each of the pos-
sible join orders for Query 2. A scale factor of 0.20
and dictionary sizes of 100K are used.

ploitable by gzip. Using QA before gzip does very little be-
yond delocalizing coincidental redundancy that gzip could
otherwise exploit. In the second result, however, similar tu-
ples are spaced far away in the result set, and gzip suffers as
a result of this. Applying QA compression beforehand helps
to reorder the redundancy that gzip can exploit.

From this, we can see that with sufficiently large dictio-
naries, order does not not affect the performance of our al-
gorithm. gzip, however, suffers significantly when similar
tuples are spaced far apart in the result stream. If we ap-
ply query-aware compression with large enough dictionaries,
followed by gzip to a result stream with poor ordering of re-
dundant tuples, it tends to make up for the lost performance.
Figure 13 evidences this especially well.

Ideally, a future implementation integrated with a database
management system would allow for the query optimizer to
predict whether tuples with redundancy will be adjacent to
one another in the result stream. If so, our algorithm may
offer only marginal improvement on top of gzip. The query
planner could then intelligently decide to employ our algo-
rithm rather than re-ordering the result stream.

4.5 Execution Time
In each of the previously discussed queries, we measure

execution time for iterating through the result set without
any additional operations, and for compressing the result
set using query-aware compression. This gives us a good
idea of how much overhead using query-aware compression
introduces. The results were collected on a machine with
a 2.2 GHz Intel R⃝ CoreTM i7 processor and 8 GB of 1333
MHz DDR3 RAM.

Results for Query 5 (the most complicated query we tried)
are shown in Figure 15. Results for Query 2 are shown in
Figure 16. For these measurements, we fixed dictionary sizes
to a maximum of 100K entries and report the average over
10 runs. Here, all output operations are replaced with no-
ops to allow for a more accurate representation of overhead.

These results suggest that overhead scales linearly with
result size. This is what we expect, as this algorithm per-
forms a nonzero amount of work for each tuple. So, in a
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Figure 10: Compression ratios with dictionary sizes fixed at 10K entries.
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Figure 11: Compression ratios with dictionary sizes fixed at 20K entries.

stream containing n tuples, our algorithm performs O(n)
work. Therefore, should see an increase in the linear growth
rate for execution time.

4.6 Dictionary Allocation Strategies
In this section, we compare the capacity allocation strate-

gies introduced in Sec. 3.5. We run Query 5 from the previ-
ous experiments while varying the scale factor. We fix three
different dictionary capacities: 50KB, 100KB, and 200KB.
The results are shown in Fig. 17

Observe that the dynamic allocation approach makes bet-
ter use of the available space. Notice that for a capacity of
M bytes, if M/N bytes is enough to prevent the dictionaries
from avoiding saturation, we see that the näıve and dynamic
strategies have the same performance. However, if M/N
bytes is not sufficient for some of the dictionaries, we see
that the dynamic strategy outperforms the näıve strategy.

Finally, notice that the scale factor at which dynamic par-
titioning begins to outperform näıve partitioning increases
as the available capacity increases. This is expected, as
M/N bytes for each dictionary is sufficient for longer as M
increases.

5. CONCLUSION
In this paper, we provide a recursive compression algo-

rithm applicable to results of join queries. Section 3 de-
scribes our algorithm in detail, and includes examples of its
application to a small dataset. We show that the associated
decompression algorithm is symmetric. We find that simply
evicting old dictionary entries is an effective means for lim-
iting resource consumption without compromising improve-
ments in compression ratio.

We find that in the best case, query-aware compression
can improve compression ratios by more than a factor of two,
as seen in Figure 9. In this case, raw query results occupy
approximately 1GB of disk, while the stream compressed
with QA+gzip occupies only 86MB.

As discussed in Section 4.4, we find that changing the left-
right relationship of tables in a join query strongly influences
the order of the result stream. Because compression algo-
rithms tend to behave optimally when redundant data are
close together in the result stream, the left-right relation-
ship indirectly affects the achievable compression ratios of a
result set. We find that with sufficiently large dictionaries,
query-aware compression is able to alleviate all or most of
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Figure 12: Compression ratios with scale factor fixed at 0.35.
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Figure 17: A comparison of compression ratios when using the näıve and dynamic (labeled “smart”. gzip is
also included as a baseline.) partitioning strategies

the lost compression performance in gzip due to disorder in
the data.

Figures 15 and 16 show that overhead introduced by our
algorithm grows linearly with the size of results stream.

In the future, our algorithm might be improved by using
alternative dictionary eviction techniques. As mentioned in
Section 3.4, there are a variety of alternative approaches that
might be employed to improve performance. These include
least frequently used (instead of least recently used), and the
use of Huffman codes to reduce the size of index references
in the result stream.

We conclude that query-aware compression is a promising
technique to reduce the size of join results.
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