
Near Real-Time Analytics with IBM DB2 Analytics
Accelerator

Daniel Martin
IBM DB2 Analytics Accelerator

Development
IBM Deutschland Research &

Development GmbH
Schoenaicherstrasse 220

71032 Boeblingen, Germany
danmartin@de.ibm.com

Oliver Koeth
IBM DB2 Analytics Accelerator

Development
IBM Deutschland Research &

Development GmbH
Schoenaicherstrasse 220

71032 Boeblingen, Germany
okoeth@de.ibm.com

Johannes Kern
IBM DB2 Analytics Accelerator

Development
IBM Deutschland Research &

Development GmbH
Schoenaicherstrasse 220

71032 Boeblingen, Germany
johker@de.ibm.com

Iliyana Ivanova
IBM DB2 Analytics Accelerator

Development
IBM Deutschland Research &

Development GmbH
Schoenaicherstrasse 220

71032 Boeblingen, Germany
iivanova@de.ibm.com

ABSTRACT
The IBM DB2 Analytics Accelerator (IDAA) implements
the vision of a universal relational DBMS that processes
OLTP and analytical-type queries in a single system, but on
two fundamentally different query engines. Based on heuris-
tics in DB2 for z/OS, the DB2 optimizer decides if a query
should be executed by “mainline” DB2 or if it is beneficial
to offload it to the attached IBM DB2 Analytics Accelerator
that operates on copies of the DB2 tables. In this paper, we
introduce the “incremental update” functionality of IDAA
that keeps these copy tables in sync by employing replica-
tion technology that monitors the DB2 transaction log and
asynchronously applies the changes to IDAA. This enables
near real-time analytics over online data, effectively marry-
ing traditionally separated OLTP and data warehouse en-
vironments. With IDAA, analytic queries can access data
that is constantly refreshed in contrast to traditional ware-
houses that are updated on a daily or even weekly basis.
Without any changes to the applications and without the
need to introduce cross-system ETL flows, an existing oper-
ational data store can be used for data warehousing as well.
The analytic query performance provided by IDAA makes
it possible to execute reports directly against the transac-
tional schema, thus avoiding the need for costly design and
maintenance of a separate reporting schema. Additionally,
the Accelerator shields DB2 for z/OS as the transactional
system from performance degradation caused by the analyt-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT/ICDT ’13 March 18 - 22 2013, Genoa, Italy
Copyright 2013 ACM 978-1-4503-1597-5/13/03 ...$15.00.

ical workload and the replication component synchronizes
all data changes in near real-time. We present the architec-
ture of the integrated replication component of IDAA and
discuss design decisions that we made when combining the
different technologies as well as performance characteristics
of the resulting system.

Categories and Subject Descriptors
H.2.4 [Systems]: Relational databases; C.2.4 [Distributed
Systems]: Distributed databases

General Terms
Design

Keywords
db2, idaa, replication, analytics, reporting, OLTP

1. INTRODUCTION
IBM DB2 Analytics Accelerator (IDAA)1 is an evolution

of IBM Smart Analytics Optimizer (ISAO)[13] which was
using the BLINK in-memory query engine[11, 3]. As a re-
sult of a re-design from ISAO, IDAA is now using the “IBM
PureData System for Analytics”2 as its foundation. Figure 1
gives an overview of the system: the Accelerator is an appli-
ance add-on to DB2 for z/OS running on an IBM zEnterprise
196 or EC12 mainframe; it comes in form of a purpose-built
software and hardware combination that is attached to the
mainframe via redundant 10GB fiber channel connections
to allow DB2 to dynamically offload scan-intensive queries.

1http://www-01.ibm.com/software/data/db2/zos/
analytics-accelerator/
2http://www-01.ibm.com/software/data/puredata/
analytics/system/

579

http://www-01.ibm.com/software/data/db2/zos/analytics-accelerator/
http://www-01.ibm.com/software/data/db2/zos/analytics-accelerator/
http://www-01.ibm.com/software/data/puredata/analytics/system/
http://www-01.ibm.com/software/data/puredata/analytics/system/

OSA-Express 4S

10 GbE

Primary

Backup

IBM zEnterprise EC12 IBM PureData System for Analytics

Figure 1: IDAA Hardware and Connectivity Overview

The Accelerator enhances the DB2 database with the ca-
pability to efficiently process all types of data warehousing
workloads, standardized reports as well as ad-hoc queries
and also extraction of pre-transformed data for data marts
in specialized cubing applications. At the same time, the
combined hybrid database retains the superior transactional
query performance of DB2 for z/OS. Query access as well as
administration use a common interface – from the outside,
the hybrid system appears almost like a single database.

The acceleration factor compared to DB2 for z/OS stan-
dalone for such analytic queries is very significant, because
IDAA processes table scans on all of its disks in parallel,
leveraging FPGAs to apply decompression, projection and
restriction operations before the data hits the main proces-
sors of the cluster nodes (called “SPU” in Figure 2). On
the Accelerator, tables are hash-distributed across all nodes
and disks based on a selected column (to facilitate co-located
joins) or in a random fashion. A query is decomposed into
so-called “snippets” that execute the scan portions on all 92
active disks (on a single-rack system) in parallel, resulting
in a total scan rate of about 9GB/s (36GB/s with compres-
sion). The cost-based optimizer is aware of the throughput
of the internal network fabric and decides for instance if a
table is to be broadcast to all nodes or redistributed (based
on the join column) between individual nodes before the
actual join operation is executed. The engine itself is opti-
mized for scans, besides Zone Maps (a form of skip-lists to
avoid the overhead of scanning non-matching blocks on disk)
there are no other structures (e.g. indices) that optimize the
processing of predicates.

Table maintenance operations (e.g. RUNSTATS or RE-
ORG) are fully automated and scheduled autonomically in
the background based on internal disorganization measures
or if bulk table changes, such as a table re-load, have oc-
curred. An IDAA installation inherits all System Z at-
tributes known from DB2 for z/OS itself: the data is“owned”
by DB2, i.e. security and access control, backup, data gov-
ernance etc. are all managed by DB2 itself; the Accelerator
does not change any of the existing procedures or violate
any of the existing concepts. As a result, the combination
DB2 for z/OS and the Accelerator is a hybrid system that
consists of two architecturally very different databases sys-
tems: DB2 as a traditional RDBMS that has its strengths at
processing highly concurrent OLTP workloads, using tradi-
tional serialization and indexing concepts, and IDAA as an
accelerator engine available to DB2 to offload scan-intensive
queries, which do not benefit from indices but essentially

require a scan of all or a large fraction of the rows of all
referenced tables.

Naturally, the design principles behind both systems are
drastically different: DB2 for z/OS is based on a “shared
everything” approach, i.e. all members of a so called “Data
Sharing Group”have access to the same data. DB2 members
use the System Z Sysplex facilities that offer e.g. distributed
lock and buffer management to coordinate the work. The
Accelerator, in contrast, is based on a shared nothing archi-
tecture, where each node is responsible for a fraction of the
data and a centralized component (a so called “host” com-
puter) orchestrates and distributes the work across all of the
nodes. The main difference between these architectures is
that, in the DB2 case, a single query can never occupy all
resources of the system because it will get dispatched to a
single data sharing group member and it will solely be pro-
cessed by this member. DB2 has very efficient code paths
to find and process the data from the storage subsystem so
that a single member can process hundreds of queries at a
time while still providing a very low response time. A single
query in IDAA, in contrast, occupies all resources of the sys-
tem because it is decomposed into snippets where the scan
part is processed on all disks in parallel. Because it uses a
distributed architecture where network interaction with all
nodes of the cluster is required to process a single query, it
is not possible to achieve very low response times. If there
would not be any caches, a single query would take up all
(scan-) resources of the system; running the same query 2-
way parallel would result in twice the response time of that
query.

Clearly, both systems not only complement each other
perfectly, but can also shield each other from workloads that
may have a negative impact like exhaustive use of resources
if dispatched to the“wrong”system. For these query routing
decisions, the DB2 optimizer implements a heuristic that de-
cides if a given query should be processed by“mainline”DB2
or if it should be offloaded to the Accelerator. Because the
Accelerator is a scan-optimized system, the heuristic bases
its decisions on an estimate of the number of required fetches
and how well existing indices match the predicates of that
query.

It is very important to understand that nothing has to be
changed on existing applications that are already using DB2
in order to get the benefits of the acceleration: they are still
connecting only to DB2 and are using the DB2 SQL syntax.
In fact, there is no indication to an application whether a
query was processed by “mainline” DB2 or if it was offloaded

580

IBM DB2 Analytics
Accelerator

SPU

Netezza
Process

HW
Monitoring

OS
Security

SPU SPU ...

Queries & heartbeat via DRDA
Queries and

Maint. Tasks
HW Failure

Notifications
Service

Access

Stored Procedures

DDF

C
a

ta
lo

gMatching

SQL Rewrite

Admin tasks (i.e. LOAD) via DRDA

OLTP workload

Analytical workload

Administration

Figure 2: IDAA Architecture

to the Accelerator. Deep integration into existing DB2 com-
ponents ensures that only little specific training is required
to operate the Accelerator. DB2 remains the owner of the
data; data maintenance, backup and monitoring procedures
do not change.

Because IDAA operates on copies of the tables in DB2,
any changes to these tables must also be reflected on the
Accelerator. This is normally done by running an IDAA
LOAD procedure that refreshes either an entire table or
just the changed partitions of that table on the Accelerator.
This refresh mechanism matches many use-cases of IDAA,
as data warehouses are traditionally updated by ETL jobs
that run in batch mode so that changes are applied in bulk
on a scheduled basis. Users typically add another step to
these batch procedures to invoke the IDAA LOAD proce-
dures so that - alongside the data in DB2 - the data on the
Accelerator is updated by either refreshing the entire table
or by refreshing the changed partitions of a table.

Another use case, however, is to allow reporting over “on-
line” data, providing a solution that combines the features
of traditionally separated OLTP and reporting systems that
are connected by aforementioned ETL jobs. For such scenar-
ios, the granularity of the refresh mechanisms is too coarse:
if the total size of the changes is very low but the changes
themselves are spread over multiple partitions (or the tables
themselves are not partitioned), then re-loading the major-
ity of partitions or an entire table causes a lot of unnecessary
work (in the form of MIPS consumption). Also, the practi-
cal minimum latency that can be achieved by running the
refresh procedures is in the range of hours; it is impractical
to run the UNLOAD-based refresh procedures every hour or
even more often. As a result, we are introducing a comple-
mentary table refresh method called “Incremental Update”
that offers a mechanism to refresh the copy tables on the Ac-
celerator by asynchronously monitoring the DB2 transaction
log for changes. The changes are staged in memory and are
transferred over the network to the Accelerator once their
associated unit of work has been committed. For efficiency
reasons, the received changes are applied in “micro batches”
that typically contain data from all transactions that com-
mitted during the last 60 seconds. Multiple changes to a
row within a micro batch are consolidated to a single change
during the 60 seconds collection phase.

For providing this functionality, we tightly integrate an
existing IBM replication product called IBM Infosphere
Change Data Capture (CDC)3 into IDAA. While this in-
tegration does not break new ground for the actual repli-
cation technology, as we are using an existing product, it
offers a much simpler administration compared to the man-
ual set-up and maintenance of a general-purpose database
replication product. In addition, since we build on existing
IDAA data management features, we are able to integrate
row-based log replication technology – which performs best
for small, dispersed changes in the data – with batch-load
data transfer, which is much more efficient for large-scale
changes in the data. In this paper, we introduce the ar-
chitecture of the integration of the replication components,
discuss the properties of the resulting system and provide
measurements that highlight the properties of the different
table refresh mechanisms.

2. RELATED WORK
Relational database system vendors have been focusing on

analytical DBMS appliances since a while; popular examples
are Oracle Exadata4, the Teradata appliance5 EXASOL’s
EXASolution Appliance6 and SAP’s HANA7 [7, 10]. Sim-
ilarly, appliances running MapReduce implementations to-
gether with an analytical DBMS are becoming increasingly
popular, sometimes under the name of “Big Data Analyt-
ics Platform”. They use MapReduce programs for analytics
on unstructured data and add additional ETL flows into an
analytical DBMS that runs on the same appliance for re-
porting and prediction on cleansed, structured data. Essen-
tially these systems promise an all-in-one solution for data
transformation and analytics of high-volumes of structured
and unstructured data. Examples are the EMC Greenplum

3http://www-01.ibm.com/software/data/infosphere/
change-data-capture/
4http://www.oracle.com/us/products/database/
exadata/overview/index.html
5http://www.teradata.com/data-appliance/
6http://www.exasol.com/en/exasolution/
data-warehouse-appliance.html
7http://www.sap.com/solutions/technology/
in-memory-computing-platform/hana/overview/index.
epx

581

http://www-01.ibm.com/software/data/infosphere/change-data-capture/
http://www-01.ibm.com/software/data/infosphere/change-data-capture/
http://www.oracle.com/us/products/database/exadata/overview/index.html
http://www.oracle.com/us/products/database/exadata/overview/index.html
http://www.teradata.com/data-appliance/
http://www.exasol.com/en/exasolution/data-warehouse-appliance.html
http://www.exasol.com/en/exasolution/data-warehouse-appliance.html
http://www.sap.com/solutions/technology/in-memory-computing-platform/hana/overview/index.epx
http://www.sap.com/solutions/technology/in-memory-computing-platform/hana/overview/index.epx
http://www.sap.com/solutions/technology/in-memory-computing-platform/hana/overview/index.epx

DCA8 and the “Aster Big Analytics Appliance”9.
Common to all of these products is a shared nothing ar-

chitecture that hash-partitions the data of each table and
distributes it across the available compute nodes of the clus-
ter. There is a strong focus on the optimization of long-
running, scan-heavy queries and analytical functions. Data
access is mostly read-only and data modifications are done in
large batches through bulk load interfaces. The distributed,
shared nothing architecture makes these systems unsuitable
for OLTP with a mixed read/write workload and the require-
ment for very low response times. Clearly, it is impossible
to achieve the short access path and thus the low response
times of a traditional OLTP architecture (shared everything)
because these systems require a query to go through all
nodes of a cluster for scanning a table and a coordinator
node to combine intermediate results and to synchronize
and possibly re-distribute work at runtime. By design, these
systems have a minimum response time of several hundred
milliseconds, as opposed to OLTP systems where the lowest
response times typically are in the single digit milliseconds
range.

This is the reason why OLTP and analytics require sep-
arate software and hardware architectures. IDAA is no ex-
ception to this – it also comes in form of two fundamentally
different systems. However, IDAA is based on the notion of
an “analytics accelerator”, a transparent attachment to an
OLTP system that automatically classifies analytical work-
loads and chooses the“best”platform for the work to be pro-
cessed. In contrast to other systems, DB2 for z/OS and the
Accelerator are tightly integrated so that users experience
a single coherent system in terms of management, backup,
monitoring, SQL dialect and connectivity.

There are several proposals of architectures in the research
community that resemble the hybrid design of IDAA: [1,
2] propose an RDBMS that uses the MapReduce paradigm
for the communication and coordination layer and a modi-
fied PostgreSQL database for the individual nodes. In [4],
a review of the feasibility of architectures and implementa-
tion methods to achieve real-time data analysis is presented,
[5] proposes a theoretical architecture for a hybrid OLTP /
OLAP system. [12] proposes a hybrid row-column store to
avoid having to operate on duplicate data and deal with con-
sistency and data coherence problems. HYRISE [9, 8] is an
in-memory column store that automatically partitions tables
based on data access patterns to optimize for cache locality.
OLTP-style access yields to partitions with a higher num-
ber of columns vs. analytical access that yields to smaller
partitions.

In contrast to these approaches that all propose a single,
unified system architecture for a hybrid DBMS, we believe
that the required properties for OLTP and analytics are fun-
damentally different and in some cases even mutually exclu-
sive as noted in Section 1. Existing analytics systems are
based on a shared nothing architecture whereas traditional
OLTP systems use a shared everything design. The transac-
tions costs per query (network i/o, scheduling, etc.) as ex-
posed by the different designs are so different that we believe
that a single system can never fit analytical and OLTP access
patterns equally well. As a result, the IDAA approach is to
implement separate systems, using the OLTP system at the

8http://www.greenplum.com/products/greenplum-dca
9http://www.asterdata.com/product/
big-analytics-appliance.php

front (so that the performance characteristic of OLTP work-
loads does not change) and to use query routing (somewhat
comparable to what has been proposed in [6]) and data syn-
chronization mechanisms to integrate the analytics system.
Of course, this means that the data may not be perfectly
in sync, but IDAA provides several mechanisms to achieve
coherency at the application level, i.e. although there are
temporary inconsistencies, applications will not notice this
because the refresh mechanisms have been chosen and inte-
grated into the application’s data loading mechanisms (see
Section 3.3 for details).

3. DESIGN AND OPERATION OF INCRE-
MENTAL UPDATE

The following section describes the architecture of the
IDAA incremental update solution and discusses significant
aspects that had to be considered when integrating the CDC
product that implements the log reading and change repli-
cation.

3.1 Architecture and Basic Assumptions
The CDC product consists of multiple components that

are installed on different systems. On the source system –
the z/OS installation running DB2 – a “capture agent” is
responsible for reading the transaction logs, extracting the
relevant update information, and buffering it until the corre-
sponding transaction has committed. When the changes are
committed, they are handed over to an “apply agent”, which
consolidates the changes into micro-batches to improve ef-
ficiency and then applies them to the target tables using a
bulk load interface via JDBC. Both capture and apply agent
are configured and controlled by the “access server” process,
which is not involved in the actual log shipping, but serves
as the management end-point for replication configuration
and monitoring.

For our design, a basic requirement was to re-use these
product components unchanged rather than modify them
or extract and re-use only the relevant part’s functionality.
The main benefits of this approach are the following:

• The code and data flow for the actual data replica-
tion is not modified at all, but the IDAA integration
happens only on the configuration and management
level. We completely re-use the established function-
ality of CDC and there is almost no chance of introduc-
ing functional errors into the actual replication process
that could lead to corrupted data on the Accelerator.

• By re-using complete, well-tested components, we were
able to ship an industry-strength solution for log-based
replication in relatively short time (6 months from first
design to first customer beta) and with comparatively
moderate testing effort. For example, there is no need
to re-test the complete matrix of various factors that
influence the writing of transaction log records on DB2.

Figure 3 depicts how these parts integrate into the existing
IDAA architecture.

The placement of the capture agent on the z/OS side is
dictated by the overall solution design. The apply agent and
access server components can technically be installed on any
system that has network connectivity to the target database.
We found that it was possible to install the components on
the Accelerator “host” server (cf. Section 1), as performance

582

http://www.greenplum.com/products/greenplum-dca
http://www.asterdata.com/product/big-analytics-appliance.php
http://www.asterdata.com/product/big-analytics-appliance.php

IBM PureData System for AnalyticsIBM PureData System for AnalyticsDB2 for z/OS
on IBM zEnterprise EC12

DB2 for z/OS
on IBM zEnterprise EC12

insert

delete

update

CDC Agent for
DB2 for z/OS

(Log reading)

CDC Agent for
DB2 for z/OS

(Log reading)

IDAA
Database

IDAA
Database

CDC Agent for NZ
(Get log events)

CDC Agent for NZ
(Get log events)

APIAPI

IDAA SERVERIDAA SERVER

CDC Access Server
(manage agents and

subscriptions)

CDC Access Server
(manage agents and

subscriptions)

(private 10 GB
fiber network)

Catalog
information

Catalog
information

IDAA Stored Procedures

ACCEL_SET_TABLES_REPLICATION
ACCEL_CONTROL_ACCELERATOR
...

IDAA Stored Procedures

ACCEL_SET_TABLES_REPLICATION
ACCEL_CONTROL_ACCELERATOR
...

JCLJCL
Automation code
(creates data sources,

subscriptions, mappings, ...)

Automation code
(creates data sources,

subscriptions, mappings, ...)

ControllerController

IDAA
Studio
IDAA
Studio

Figure 3: Architecture of the “Incremental Update” Feature

testing proved that the host system had sufficient resources
to handle these additional processes under normal workload
conditions. By keeping the components tightly integrated
on the same server that also runs the IDAA server software
connecting to DB2, we can minimize network communica-
tion and shield the installation and management of these
components. So the administrator of the IDAA system –
who works on z/OS with skills for that platform – only needs
to install the CDC capture agent for DB2 and does not need
to explicitly manage other systems.

3.2 Management Interface
In a stand-alone CDC installation, the setup is explicitly

managed from a Windows GUI connecting to the CDC ac-
cess server. This GUI allows the administrator, for example,
to define which tables should be replicated (including col-
umn mappings), to start and stop replication and to monitor
the process for errors. In the IDAA context, administration
of the replication function should be integrated with the
general administration of the Accelerator and the number
of necessary tasks should be reduced to a minimum. There-
fore the CDC administrative GUI is replaced by automation
code that directly calls the same underlying APIs. Some of
the CDC administrative operations can be fully automated;
for example it is not necessary to define column mappings
any more, since the schema of the tables on the Acceler-
ator is fully controlled by IDAA code so the mapping can
be automatically configured in CDC. Two important new
explicit actions that were added to the existing IDAA stu-
dio admin GUI for incremental update support are defining
which tables should be replicated and starting and stopping
the replication process. A screenshot can be seen in Figure
4.

All administrative actions in the IDAA GUI are executed

by calling IDAA administrative stored procedures, which are
deployed in DB2 and communicate internally with the Ac-
celerator server. It is also possible to call these stored proce-
dures directly from batch environments using the z/OS job
control language (JCL). This allows to integrate the con-
trol of IDAA incremental updates into batch processing, for
example with ETL flows that create new tables or make
schema modifications which cannot be handled automati-
cally.

In addition to these explicit new actions, several of the ex-
isting administrative operations in IDAA had to be extended
to allow seamless interaction with the new CDC processes,
because the unchanged CDC apply agent is not aware of
the IDAA server code and operates directly on the underly-
ing database. Most importantly, any schema manipulations
(like modifying the key for table distribution across SPUs)
must be blocked for copy tables that are currently being
modified by the apply agent – for replicated tables, these
actions only become available when replication is stopped.
Note that stopping replication does not “lose” any updates;
once replication is restarted, it will pick up at the DB2 log
position where it left off so any changes that happened in
the meantime are then propagated.

3.3 Integration with Bulk Load Mechanisms
Another important aspect is the integration with the ex-

isting IDAA LOAD mechanism. CDC would itself support
transferring the contents of an entire table, e.g. after it has
been first defined. However, for cases where large amounts
of data have to be transferred, it still makes sense to use the
existing IDAA LOAD mechanisms: These have been highly
tuned to maximize performance, e.g. by using the DB2 UN-
LOAD utility that bypasses normal SQL handling and by
handling multiple partitions in parallel, so that data trans-

583

Figure 4: Screenshot of the IDAA Studio User Interface

fer rates greater than 1TB/hr can be achieved. In addition,
IDAA LOAD minimizes CPU consumption on the System
Z side because rows are extracted in DB2 internal format
and directly sent over the network, so that no transforma-
tions occur on System Z; all decoding work is handled on
the Accelerator.

Therefore IDAA allows to combine both mechanisms in
the following fashion:

1. IDAA LOAD is used for the initial transfer of the full
table data from DB2 to the Accelerator. When LOAD
completes, it sets a “capture point” for CDC so that
only subsequent updates are propagated (changes dur-
ing LOAD are prevented by a table lock in DB2).

2. After that, CDC-based incremental updates keep the
offloaded table data in sync with DB2 as it is modified
by inserts, updates and deletes.

3. When large scale changes for the table occur or the ta-
ble is modified by DB2 utilities that bypass the log (so
CDC cannot capture the changes), the administrator
can temporarily suspend replication and reload the ta-
ble or the affected partitions with IDAA LOAD which
will then set a new capture point for CDC. Replication
must remain stopped while the table is loaded to avoid
the risk of applying an update twice (once as part of
the IDAA load and again via CDC).

4. Once the table has been synchronized, replication is re-
activated so that all changes occurring after the new
capture point can again be replicated by CDC.

This way, IDAA offers a “best of both worlds” approach
where log-based replication is used for continuous propaga-
tion of small, dispersed changes while efficient full table or
partition-level transfer is used after bulk changes or oper-
ations that bypass the log. As long as the IDAA LOAD
is used for full table reloads only, the integration guaran-
tees that no changes can be “lost” or accidentally applied
twice. However, if the administrator chooses to perform

only a partition-level update in step 3, it is her responsibil-
ity to ensure that no updates on other partitions have been
missed. All refresh options allow concurrent query access to
the table, i.e. the old data of the table is still available for
query access while the refresh is in progress.

To actually enable this level of integration, an enhance-
ment of the base CDC product was necessary: The IDAA
LOAD operates at the granularity of DB2 table partitions
because this is the smallest unit of data which can be ef-
ficiently unloaded from DB2 (technically, a table partition
corresponds to a single data set/file in z/OS). In order to
map the partition granularity to the copy database in IDAA,
which does not provide a corresponding explicit manage-
ment unit, the table copies created on the Accelerator are
augmented with a hidden column that IDAA uses to record
the DB2 partition ID for each row, thus allowing reason-
ably efficient deletion of one or more partitions that have
to be reloaded. In order to keep this partition replacement
logic functional even in the presence of incremental updates,
CDC needs to maintain the hidden partition ID column as
updates are propagated from DB2. For example, updates
affecting the partition key column in a range-partitioned ta-
ble might move the updated rows into a different partition.
The partitioning information for each modified row can be
deduced from DB2 transaction log information, since it is re-
quired for “normal” rollback or log replay in DB2, but CDC
had to be extended to allow mapping this information into
an explicit column.

3.4 Other Integration Aspects
Monitoring of operations is an aspect where a seamless

integration of the underlying CDC product presents partic-
ular difficulties. On the user-interface level, this integration
has been achieved by providing access to the CDC event
log via IDAA administration mechanisms. CDC events are
presented in the IDAA Studio GUI, which can serve as a sin-
gle point of access for monitoring. In addition, some mon-
itoring information is also available in the job log of the
capture agent running on z/OS which integrates well with

584

established monitoring procedures of customers. However,
the actual event messages are provided by CDC and are of
course at a lower level of abstraction than the administra-
tion, which is wrapped by IDAA. For example, the events
may refer to CDC administrative concepts that are not ap-
parent to the user (because they are implicitly managed by
IDAA) or they may show internal errors that are irrelevant
because they have been recovered at the IDAA administra-
tion level (like stopping replication again “to be safe” even if
it appears to be already stopped). Further integration work
remains to be done in this area.

For the software management side, on the other hand, in-
tegration into IDAA works seamlessly and automates almost
all of the work that an administrator would have to perform
in a stand-alone installation of the CDC product: High avail-
ability of the access server and apply agent is guaranteed by
the integration into the high availability mechanisms of the
Accelerator – failing processes are automatically restarted
and if the entire Accelerator host system should become un-
available, the Accelerator will automatically fail over to a
second stand-by host. IDAA supplies the necessary mecha-
nisms to restart all affected software, including CDC access
server and apply agent. The existing error handling of CDC
will then cause the apply agent to re-connect to the capture
agent on z/OS and request retransmission of all changes that
have not been committed in the target database.

Management of software updates is also integrated with
IDAA and is handled the same way as all other software
updates for the Accelerator server. The update packages
are deployed in the z/OS file system and the IDAA Studio
GUI is then used to transfer the update packages to the Ac-
celerator and activate the new software versions. To do so,
IDAA wraps the installation images for CDC and provides
the necessary scripting to allow a fully-automated“headless”
invocation of the CDC install and update functionality.

For the query processing on IDAA, the introduction of in-
cremental update means literally no change. The decision
to offload queries is based only on the availability of data on
the Accelerator and not on the currency of the data, so the
heuristics are not affected. As transactions are continuously
propagated from DB2 to the Accelerator, they are isolated
from concurrently running queries by the normal transaction
mechanisms on IDAA. Of course, the fact that data continu-
ously changes shows up at the application level, e.g. running
the same analytic report twice on the Accelerator may now
return different results – the same way as if the report query
had been executed twice on DB2. In other words, the Accel-
erator cannot serve as a mechanism to isolate the reporting
facilities from changing data, as some customers like to use
it. Instead, if snapshot semantics are desired in combina-
tion with incremental updates, they can only be achieved
by modifying the queries accordingly, for example by not
running them against a changing fact table but against a
view that restricts on a time dimension. By updating the
view definition, the range of data that becomes visible to a
particular class of reports can be explicitly controlled. This
way, the Accelerator again becomes fully transparent and
the decision whether a query is offloaded does not carry any
semantic consequences and can be done purely on perfor-
mance considerations.

4. ADMINISTRATION DECISIONS AFFECT-
ING INCREMENTAL UPDATE

As shown, the introduction of incremental updates in
IDAA requires very few additional administrative steps.
Still, there are some particular aspects that an administrator
should take into consideration in order to obtain the desired
query semantics as well as optimal performance.

4.1 Configuring Table Keys for Replication
One important aspect of incremental updates in IDAA

is the need for tuning to achieve good update/delete per-
formance. In general, for any log-based database replica-
tion solution, transferring inserts is straightforward, while
for updates and deletes it must rely on unique table keys
combined with an efficient lookup mechanism to locate the
affected rows in the target table. For traditional transac-
tional RDBMSs, this means that the rows in the target ta-
ble should be indexed by a unique key from the source table.
The Accelerator database is optimized for scan-based ana-
lytical query processing and therefore does not use or sup-
port indices. Reasonably efficient row update/delete per-
formance can still be achieved by the use of Organizing
Keys and Zone Maps (cf. Section 1): Organizing keys define
columns that are used to cluster rows with similar column
values together in the physical table organization on disk.
Zone maps record the min/max column values for table ex-
tents on disk, allowing a table scan to quickly skip over all
extents that are known to contain no matching rows for a
given scan predicate.

In the context of IDAA incremental updates, we try to
exploit these concepts by configuring CDC so that it uses a
unique key on the source DB2 table (and a corresponding
predicate for a delete or update on the target table copy)
that matches the clustering of the target table and there-
fore allows for reasonably efficient update and delete per-
formance. The problem is also somewhat alleviated by the
fact that updates are not propagated row-wise but in micro-
batches, so that a single table scan is sufficient to handle all
the updates and deletes of a single batch. Also the largest
tables in a warehousing or ODS context are usually fact ta-
bles which are almost exclusively modified by inserts, while
updates and deletes are relatively rare. Still, cases of large
dimension tables with high update frequencies, like accounts
or marketing campaign members, do occur, and those re-
quire an appropriate choice of organizing keys to achieve
good performance with incremental updates.

The selection of a unique key for propagating row updates
is performed automatically and requires no manual tuning,
but, of course, this approach requires that organizing keys
on the target table have been defined at all and that a unique
key on the source table exists which matches some subset of
the organizing keys, so explicit setup by the administrator
is still required. Organizing keys are also used to optimize
query performance – by selecting organizing key columns
that occur frequently as selection predicate in queries, the
corresponding query scans can be accelerated – so there ex-
ists a conflict of objectives concerning the choice of orga-
nizing keys. Fortunately, IDAA allows up to four organiz-
ing key columns which are independent, because the table
clustering follows a Hilbert space filling curve with regard
to all organizing keys (instead of a lexicographical order-
ing which would first order by the leftmost key column and
only then by the second etc.). In practice, most warehous-
ing and ODS schemas use single-column surrogate primary

585

keys, so for these cases, it is possible to use these as one
of the organizing keys and reserve the other three for query
optimization.

5. MANAGING DATA COHERENCE IN
IDAA

As discussed before, IDAA now offers two complementary
and integrated mechanisms to keep the data on DB2 in sync
with the data on the Accelerator – IDAA LOAD and incre-
mental update. It is important to understand the properties
of each of these mechanisms to be able to architect a solution
that does not expose data latency issues to the applications
that offload queries to IDAA. In most use-cases, it is not
important that the data is synchronized at all times; it is
important however that the “application perceived latency”
is zero. If, for instance, an application does risk reports over
a period that is at least a week in the past, it is sufficient to
refresh the tables in the Accelerator every week. If such a re-
port is run constantly every hour to analyze all transactions
that occurred during the last 24 hours, there usually is no
impact on the quality of the report if it misses the data that
occurred during the last couple of seconds. IDAA in this
case can be refreshed constantly using incremental update
that operates at an average latency of about 60 seconds.

If however, a report requires “read your own writes” se-
mantics – i.e. it must read data that was written right before
the report was submitted – IDAA provides special support
with its administrative stored procedures: A stored proce-
dure call has been added that records the current transaction
log position in DB2 and then blocks until all transactions
that were committed at that log position have been repli-
cated on the Accelerator. The procedure fails with an error
if the transactions have not been applied on the Accelerator
within a given timeout. In a SQL processing flow that con-
tains both update transactions and reports (queries), such a
stored procedure call effectively acts as a barrier that guar-
antees that the effects of preceding updates will be visible to
subsequent queries. Only when the report must run in the
same Unit of Work as previous update, query offloading to
the Accelerator must be prevented because all data update
mechanisms only transfer committed DB2 transactions.

The most significant differences of the data update mech-
anisms are the following:

• Incremental update works on the granularity of a single
row, regardless of the partitioning scheme of a table.
Cost and performance are relative to the number of
changed rows.

• IDAA LOAD works only at the granularity of parti-
tions or unpartitioned tables. It offers significantly
better throughput and lower processing cost per trans-
ferred row, but cost and throughput are relative to the
size of the modified tables or partitions (regardless of
the number of affected rows).

• Incremental update continuously updates tables on the
Accelerator with changes captured from the DB2 for
z/OS log. Change propagation can be temporarily sus-
pended by the administrator.

• IDAA LOAD must be triggered explicitly. DB2 real-
time statistics are used to inform the user about tables
or partitions that have been changed since the table

was last loaded into the Accelerator. It is possible to
set up automated procedures that periodically trigger
a reload of all modified tables or partitions.

• Incremental update has a typical latency of about one
minute and informs the user what the current latency
of the replication process is, i.e. how far behind is the
table on the Accelerator in comparison to the table on
DB2.

• The minimally feasible latency for periodic refresh
with IDAA LOAD is in the range of hours, depend-
ing on the size of the modified tables or partitions.
The last refresh time of each table is visible in DB2
catalog tables.

The decision when to use which table refresh method can
be taken on the level of individual tables. It is heavily in-
fluenced by the application(s) that drives the changes that
need to be reflected in the Accelerator and the application(s)
that offload queries to IDAA. Note that there are many fac-
tors that influence that decision, e.g. the total volume of
changes, the distribution of updates across partitions, la-
tency requirements, etc. Figure 5 provides a generic deci-
sion tree that suggests a table refresh method based on the
aforementioned factors.

Figure 5: Decision Tree that Proposes a Table Re-
fresh Method Based on Application Requirements
and Table Characteristics

Sometimes you end at a split decision where a subset of
the available refresh options would be applicable and it is
not clear which one would be the better option for your use-
case. In order to be able to make an informed decision we
measured the CPU costs (very important because of System
Z’s utilization-based pricing model) and throughput of in-
cremental update IDAA LOAD and present the results in
the following section.

6. EVALUATION

586

Table 1 presents the results of a series of tests we con-
ducted with an IBM zEnterprise 196 mainframe running
DB2 for z/OS on an LPAR that has 4 dedicated CPs as-
signed and that is connected to IDAA using OSA Express
4S 10 GB Ethernet adapters. The IDAA hardware being
used is a full-rack system that internally uses 96 1TB disks,
12 IBM HS-22 blades with 2 Intel Westmere 2.4Ghz 4-core
CPUs each and 12 FPGA daughter-boards on the Intel-
blades with 4 2-core Xilinx FPGAs each. Communications
in this FPGA-x86 cluster are coordinated using two IBM
3650 M3 hosts with 2 Intel Nehalem 2.4 Ghz CPUs each.
In total, the system has 112 Intel processor cores, 96 FPGA
cores and 96 TB of raw disk capacity.

For the incremental update throughput measurement
we created 8 tables on two different DB2 subsystems
and ran a workload generator application that was run-
ning 8 connections in parallel that were doing INSERTs
in the form INSERT INTO TABLE tab1 SELECT ... FROM

source_table WHERE (...) with the WHERE-clause qual-
ifying 10.000 rows averaging 159 bytes of length. For
IDAA LOAD we used a partitioned TPC-DS10 fact table
(STORE SALES) with 8 UNLOAD utilities working on the
table in parallel. Both of these scenarios produce a through-
put that is in the upper range of what we measured in other
tests for the respective refresh methods.

Table 1: Comparison of the IDAA Refresh Options

Incremental
Update

IDAA LOAD

Throughput <= 18 GB/h <= 1200 GB/h
Latency ∼ 60 seconds > 1 hour
CPU usage
per 100 MB

∼ 130 CPU sec-
onds

∼ 0.4 CPU sec-
onds

To measure the CPU usage of each of the refresh mech-
anisms, we generated 100 MB of changes on a table and
loaded these changes to IDAA using both methods. By de-
sign, IDAA LOAD uses a lot less CPU in comparison to
incremental update because it directly reads the table data
in internal DB2 format. Incremental update in contrast
scrapes the DB2 log and filters and extracts the changes
from the log records – a far more expensive operation.

6.1 Impact of Incremental Update on Concur-
rently Running Queries

In order to measure the impact of incremental update
on concurrently running queries, we conducted a series of
tests with different query characteristics and incremental
update workload profiles. We ran 10 queries in parallel,
5x a query that is sending large result-sets back to DB2 (a
so called “streaming query”) and 5x a query with aggregates
and GROUP BYs over a high number of rows. In parallel to this
query workload, we either did not run incremental update at
all (“No-CDC-LOAD”), a medium incremental update work-
load (“Medium-CDC-LOAD”), or a heavy incremental up-
date workload (“Full-CDC-LOAD”). The “medium” work-
load was about 300.000 INSERTs and 200 UPDATEs per
minute from one DB2 subsystem into the Accelerator. The

10http://www.tpc.org/tpcds/default.asp

“full” workload was about 1.000.000 INSERTs and 600 UP-
DATEs per minute from two DB2 subsystems in parallel,
resulting in a sustained workload of 2.000.000 INSERTs and
1.200 UPDATEs worth of changes per minute in total on
the Accelerator.

� �

���������	��ABCD

E

F

�

�

�

�E

�F

��

��

��

FE

�C��������� ���B	���������� �	�����������

�����C��

�
B�

�
�B
D
��
�

C
D
�
!

�A����BD�

�������ABCD"#�C	$�%&

Figure 6: Impact of “Incremental Update” on Con-
currently Running Queries

The response times for the two query characteristics under
these incremental update workloads are presented in Figure
6: we see a very low impact on the response times for both
kinds of queries, even with heavy incremental update traffic
being applied concurrently to query execution on the Accel-
erator, the response times of the streaming and aggregation-
type queries changed only marginally in comparison to run-
ning them alone on IDAA without replicating changes at the
same time.

7. CONCLUSION AND FUTURE WORK
In this article, we have shown how incremental update

capabilities were added to the IBM DB2 Analytics Acceler-
ator that integrate seamlessly with the existing product and
open up significant new usage scenarios. IDAA already ex-
cels at managing combined transactional and analytic work-
loads: data for both purposes can be stored in the same
database management system and, depending on its partic-
ular characteristics, each query is executed on an execution
engine that is either optimized for highly concurrent read-
/write workloads with index access (mainline DB2) or high-
performance execution of complex, scan-intensive queries
(Accelerator). Keeping both operational and analytic data
in the same system can greatly simplify Extract-Transform-
Load (ETL) processing – in the extreme case, analytical
reports can even run on the very same tables as daily oper-
ations, because the offloading of analytical queries to IDAA
protects the transactional workload from negative perfor-
mance impacts by business analytics processing.

In such scenarios, incremental update can show its full
strength. On a technical level the separation of transac-
tional and analytic processing and data (in DB2 vs. on
the Accelerator) is still maintained, so the transactional
workload stays protected. From an application and admin-
istrative viewpoint, the separation becomes almost invisi-
ble, as the latency for propagating updates is reduced from

587

hours or days to minutes. Of course, having a well-designed,
physically separated data warehouse with star or snowflake
schemas has distinctive merits, both on a conceptual and
integrity level and also with regard to performance of ana-
lytical operations, and we are not disputing that. Still, the
high up-front cost for doing a full warehouse design and ETL
implementation is often prohibitive from a business and/or
cost perspective. In these cases, running analytic reports di-
rectly on the operational schema becomes a possibility with
IDAA and incremental updates. There are some modeling
deficiencies that cannot be solved easily in an operational
schema (e.g. modeling changes without losing history data
is usually not possible) and there is a higher cost for running
analytical queries in a non-optimized schema, but this is still
a better option than renouncing analytic queries altogether.

For “operational analytics” scenarios, where analytic
queries are integrated with specific business flows, IDAA
with incremental updates is a perfect match. A prototypi-
cal example is the customer representative that can see the
latest up-to-date aggregate information for her clients and
region as she is handling her calls – in such situations, even
a one-day time lag in reporting can be hard to tolerate. For
example, we have encountered a customer situation where
legal requirements dictated that a“no advertising”policy re-
quest from their clients was to be “immediately” propagated
through to the reporting facilities.

As we have laid out in previous sections, there are still
shortcomings in the current solution that we want to over-
come in the future. Currently, we need to establish a read
lock on tables during an initial or update IDAA LOAD if the
tables should afterwards be replicated to avoid the possibil-
ity of “lost updates” or “double inserts”. This can be solved
by integrating deeper with the replication technology, which
would allow us to merge the changes that happened dur-
ing unload into the offloaded table after the unload phase
completes without risking “double inserts” for those changes
that were already picked up in the initial transfer.

Another potential future enhancement is consideration of
data latency in offloading decisions. As stated previously,
the current query processing logic does not consider the cur-
rency of offloaded data in the offloading decision, but it is
a conceivable improvement to allow routing policies like “of-
fload this query only if all affected tables have been syn-
chronized within the last 5 minutes, otherwise execute on
DB2 data”. To facilitate such decisions, information about
the current incremental update latency must be passed back
to the DB2 optimizer – latency is usually stable around 1
minute, but it may temporarily increase due to heavy change
activity in DB2 or replication may be temporarily suspended
due to administrative actions.

As the IDAA incremental update feature is now moving
from beta into full availability, we are looking forward to
learn more from our customers about new application sce-
narios that they see and enhancements that can be added
to support them.

8. NOTICES
IBM, DB2, and z/OS are trademarks of International

Business Machines Corporation in USA and/or other coun-
tries. Other company, product or service names may be
trademarks, or service marks of others. All trademarks are
copyright of their respective owners.

9. REFERENCES
[1] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi,

A. Silberschatz, and A. Rasin. HadoopDB: An
Architectural Hybrid of MapReduce and DBMS
Technologies for Analytical Workloads. Proceedings of
the 35th International Conference on Very Large Data
Bases (VLDB), 2009.

[2] K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and
E. Paulson. Efficient Processing of Data Warehousing
Queries in a Split Execution Environment. In
Proceedings of the 2011 international conference on
Management of data, 2011.

[3] R. Barber, P. Bendel, M. Czech, O. Draese, F. Ho,
N. Hrle, S. Idreos, M. Kim, O. Koeth, and J. Lee.
Business Analytics in (a) Blink. IEEE Data
Engineering Bulletin, 2012.

[4] S. Conn. OLTP and OLAP Data Integration: A
Review of Feasible Implementation Methods and
Architectures for Real Time Data Analysis. In
SoutheastCon, 2005. Proceedings. IEEE, 2005.

[5] J. Dittrich and A. Jindal. Towards a One Size Fits All
Database Architecture. In Outrageous Ideas and
Vision Track, 5th Biennial Conference on Innovative
Data Systems Research, CIDR, 2011.

[6] S. Elnaffar. A Methodology for Auto-Recognizing
DBMS Workloads. In Proceedings of the 2002
conference of the Centre for Advanced Studies on
Collaborative research, 2002.

[7] F. Färber, S. Cha, J. Primsch, C. Bornhövd, S. Sigg,
and W. Lehner. Sap hana database: data management
for modern business applications. ACM Sigmod
Record, 2012.

[8] M. Grund, P. Cudre-Mauroux, J. Krüger, S. Madden,
and H. Plattner. An overview of hyrise-a main
memory hybrid storage engine. Bulletin of the IEEE
Computer Society Technical Committee on Data
Engineering, 2012.

[9] M. Grund, J. Krüger, H. Plattner, A. Zeier,
P. Cudre-Mauroux, and S. Madden. Hyrise: a main
memory hybrid storage engine. Proceedings of the 36th
International Conference on Very Large Data Bases
(VLDB), 2010.

[10] H. Plattner. A Common Database Approach for OLTP
and OLAP Using an In-Memory Column Database. In
Proceedings of the 35th SIGMOD international
conference on Management of data, 2009.

[11] V. Raman, G. Swart, L. Qiao, F. Reiss, V. Dialani,
D. Kossmann, I. Narang, and R. Sidle. Constant-Time
Query Processing. In IEEE 24th International
Conference on Data Engineering (ICDE), 2008.

[12] J. Schaffner, A. Bog, J. Krüger, and A. Zeier. A
Hybrid Row-Column OLTP Database Architecture for
Operational Reporting. Business Intelligence for the
Real-Time Enterprise, 2009.

[13] K. Stolze, F. Beier, K. Sattler, S. Sprenger,
C. Grolimund, and M. Czech. Architecture of a Highly
Scalable Data Warehouse Appliance Integrated to
Mainframe Database Systems. Database Systems for
Business, Technology, and the Web (BTW), 2011.

588

