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ABSTRACT

There has been a great interest in exploiting the cloud as a plat-
form for database as a service. As with other cloud-based ser-
vices, database services may enjoy cost efficiency through consol-
idation: hosting multiple databases within a single physical server.
Aggressive consolidation, however, may hurt the service quality,
leading to SLA violation penalty, which in turn reduces the total
business profit, called SLA profit. In this paper, we consider the
problem of tenant placement in the cloud for SLA profit maximiza-
tion, which, as will be shown in the paper, is strongly NP-hard. We
propose SLA profit-aware solutions for database tenant placement
based on our model for expected penalty computation for multi-
tenant servers. Specifically, we present two approximation algo-
rithms, which have constant approximation ratios, and we further
discuss improving the quality of tenant placement using a dynamic
programming algorithm. Extensive experiments based on TPC-W
workload verified the performance of the proposed approaches.
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General Terms

Algorithms, Performance

Keywords
Multitenancy, Database, Cloud, SLA, Profit Optimization

1. INTRODUCTION

With the increasing popularity of cloud computing, the benefits
of hosting applications on a cloud service provider (including IaaS,
PaaS and SaaS) becomes more and more apparent and widely ac-
cepted. It not only avoids high capital expenditure, but also min-
imizes the risk of under-provisioning and over-provisioning using
an elastic, pay-as-you-go type approach. From the cloud service
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provider’s perspective, to achieve economies of scale, an impor-
tant practice is to use each physical server to host multiple tenants
(a.k.a. multitenancy). One approach is to use virtual machines with
fixed resources such as Amazon EC2 instances. It provides good
isolations among different tenants, but the downside is the com-
promise of resource sharing. An alternative is that all tenants use
the same resource pool, so that occasional workload bursts from a
few tenants can be gracefully handled. Such a model is often used
in Software as a Service platforms where tenants run Web-based
services that are accessed by Web users [21, 32, 12, 11, 15, 6, 16,
13]. Usually the revenue of a cloud service provider is generated
by delivering the contracted services. The provider negotiates the
service level agreements (SLAs) with each tenant, in terms of vari-
ous criteria such as response time, availability, throughput, etc. [8,
9]. For example, a service level agreement may be that if the re-
sponse time of the query is less than 5 seconds, the tenant pays
the provider for the service, otherwise the provider pays the ten-
ant a penalty. Since maximizing the profit is the ultimate goal of a
cloud service provider, the profit should be the main optimization
criterion of decision-making in multitenant databases.

Cloud service providers have conflicting goals when distributing
the tenants on compute servers. On the one hand, purchasing, rent-
ing or using each server incurs an expense, and thus the provider
is motivated to use as few servers as possible. On the other hand,
if a server hosts too many tenants and is too crowded, the situation
may lead to a high chance of violating the service level agreements,
which incurs penalties. Thus, the placement of tenants should be
carefully planned in order to minimize the total cost.

One may naturally think of the connection between tenant place-
ment and bin packing, a classic NP-hard problem. It is worthwhile
to point out that tenant placement has several additional compli-
cations compared with bin packing. First, in bin packing, each
item has a fixed size, whereas each cloud tenant’s size may vary
with time (e.g., a tenant may have more users on weekdays than
on weekends). Second, in bin packing, a hard constraint is that
the total size of all items in a bin cannot exceed the bin’s capacity.
In tenant placement there is no such constraint, however, the more
tenants a server hosts, the more SLA violations may occur. Lastly,
the optimization goal of bin packing is minimizing the total num-
ber of bins, whereas in tenant placement the goal is to maximize
the profit by minimizing the total cost, which includes the cost of
the servers and the penalty of SLA violations.

There are several existing tenant placement strategies for cloud
service providers [10, 32, 21, 13, 22]. However, none of them is
profit-driven or aims at minimizing the SLA violation penalty. Dis-
cussion of these works is presented in Section 2.

In this paper we propose a new tenant placement strategy with
the following features that previous works do not exhibit: (1) The



resources consumed by a tenant may change with time and is de-
scribed using probabilistic distributions; (2) We do not assume that
historical data is available; (3) Under the described system models,
the total cost (the cost of purchasing/renting servers and the SLA
violation penalties) has a provable constant bound.

Specifically, we will provide two approximation algorithms, one
for the case of uniform query processing time and the SLA penalty
(i.e., all tenants’ queries have the same processing time, and all
SLA penalties are the same), and another algorithm for the general
case. The first algorithm is proved to have an approximation ratio
of 3, and the second is proved to have an approximation ratio of 4.
Besides, we also propose to couple the second approximation algo-
rithm with a dynamic programming procedure, which further im-
proves the quality and reduces the cost. In the end, we will further
discuss how to handle online placement as well as the trade-offs of
the algorithms.

The contributions of the paper are summarized as:

e We propose a solution to the tenant placement problem to
maximize the provider’s profit by minimizing the total cost,
which includes the cost of the servers and the penalty of SLA
violations. Our solution allows the tenants’ resource usage to
vary with time and be described using probabilistic distribu-
tions, and does not rely on historical data.

We provide two approximation algorithms, one for a restricted
case (uniform query processing time and SLA penalty across
tenants) whose approximation ratio is 3, and one for the gen-
eral case whose approximation ratio is 4.

A dynamic programming algorithm is also introduced, which
can be coupled with the approximation algorithm for better
quality and lower cost.

e Experiments verify the effectiveness of the proposed approach.

The remainder of this paper is organized as follows. Related
works are discussed in Section 2. Section 3 explains the system
model used in this paper. The formal problem definition and hard-
ness proof is presented in Section 4. Section 5 illustrates the algo-
rithms for tenant placement, including a greedy algorithm adapted
from Best Fit for bin packing, approximation algorithms for the
uniform processing time/SLA penalty case and the general case,
respectively, as well as a dynamic programming algorithm that can
be coupled with the approximation algorithm. Experimental eval-
uations are reported in Section 6. Section 7 briefly discusses the
complexities of the algorithms as well as online placement, and
Section 8 concludes the paper.

2. RELATED WORK

Multitenancy Models. There are several possible multitenancy
schemes, such as private virtual machine, private DB instance, pri-
vate database, private table, shared table, etc. [20] provides an ex-
cellent overview of these tradeoffs.

Private virtual machine Using virtual machine technology, we
may host multiple virtual machines on a single physical machine.
Each virtual machine, however, hosts only a single database tenant.
This option gives good isolation across tenants, but there is virtual
machine performance overhead, and the number of VMs that can
be hosted within a physical machine is quite limited (i.e. a dozen
or two) using today’s technology.

Private DB instance Within a physical machine, we may start
multiple database instances and let each tenant use one database
instance. Running a DB instance involves a high memory overhead,
so this option also has a limited scalability.
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Private database DBMS allows that multiple databases can be
created within a single instance. Hence we may allow each tenant
to have its own database while sharing the DB instance. In many
DBMS offerings, each database usually comes with its own buffer
pool, so memory isolation is well implemented with this scheme.

Private table In this scheme, multiple tenants share a database,
while each tenant uses its own set of tables. This scheme is attrac-
tive for its relatively low memory overhead of each table compared
to that of a database mentioned above, i.e. 4KB per table in DB2
[3], and 9KB per table in MySQL [19].

Shared table This is the most scalable scheme, since many DBMSs
are specially designed for big tables. Packing many tenants into a
single table to create a big table can nicely exploit the DBMS’ in-
herent capability. The main challenge, however, is the heterogene-
ity of schemas across tenants, which requires a solution for putting
them together into a single table. Several solutions have been pro-
posed and evaluated in [3, 4, 19].

In our implementation of this paper we adopt the private table
scheme. However, we believe that multitenancy models are orthog-
onal to the tenant placement problem, and cloud service providers
should be able to freely choose the best sharing scheme for their
tenants, considering scalability and isolation requirements.

Tenant Placement. There are several existing tenant placement
strategies for cloud service providers [10, 32, 21, 13, 22]. How-
ever, none of them is profit-driven or aims at minimizing the SLA
violation penalties. The optimization goal of [10] is to minimize
the number of servers, subject to the constraint that even when the
tenants’ load reaches maximum (based on historical monitoring),
none of the server’s resources (CPU, memory, disk) should be sat-
urated. There are two problems with this approach. First, no SLA
is considered. As we show in this paper, SLA plays a critical role
in our tenant placement strategy; placing the tenant without consid-
ering their SLAs leads to undesirable performance. Second, even if
some servers are occasionally saturated, as long as the SLA penalty
is smaller than the cost using more servers, there’s no need to use
more. In other words, minimizing the total cost (SLA penalty +
server cost) should be the ultimate goal. [32] assumes that the re-
source consumed by each tenant is fixed and does not vary with
time and the goal is to place tenants on servers such that the re-
source usage on each server is less than 100%, subject to certain
constraints such as the maximum number of application/DB in-
stances installed on each server. [21] uses a very similar approach
except that it adopts a more complicated resource usage model that
needs to be learned from historical data. In both [32] and [21], a
simple best-fit algorithm is used for tenant placement, which finds
the server with the least remaining resource that can accommodate
each tenant, and in case such a server cannot be found, either re-
laxes the constraints gradually or use a new server. [13] starts with
a random placement, then improves it using simulated annealing,
with the aim of optimizing the “fitness” of the system, where “fit-
ness” can be flexibly defined. [22] uses tps (transaction per second)
as the SLO (service level objectives). It assumes a fixed number of
tenant types and, similar as [32, 21], assumes that each tenant’s
tps value doesn’t change. On each server, it assigns tenants of the
same type to the same SQL server instance with a fixed amount of
main memory allocated. The amount of memory allocated to each
SQL server depends on the SLO of the tenant type, as well as the
number of tenants of that type. The tenant placement problem is
formulated as an integer programming problem and solved using a
brute-force solver. In comparison, our approach to be introduced in
this paper does not assume a fixed workload for each tenant, does
not assume a fixed number of tenant types and uses the dollar cost
of the service provider as the ultimate optimization goal.
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Figure 1: Service Level Agreement

Other Multitenancy Aspects. Various other aspects of multite-
nancy have been studied, including load balancing and database/VM
migration and consolidation [12, 11, 5, 15, 6, 16], profit-driven
query scheduling given users’ Service Level Agreements [9, 8],
profit driven query admission control [29], tenant migration with
in-memory databases [27], schema mapping [3], etc. Since these
problems are orthogonal to tenant placement, we omit the detailed
discussion.

3. SYSTEM MODELING

Before formally defining the problem of tenant placement, we
first introduce some important background regarding system mod-
eling.

Service Level Agreement. SLAs in general may be defined in
terms of various criteria, such as service latency, throughput, con-
sistency, security, etc. In this paper, we focus on service latency,
or response time.! Even with response time alone, there can be
multiple specification methods: i) based on the average query re-
sponse time [31], ii) based on the tail distribution of query response
times (or quantile-based)[23], or iii) based on individual query re-
sponse times [17, 28, 8]. We choose the last one, which has the
finest granularity and most accurately captures the performance of
the provider. Also, if preferred, there exist techniques (e.g., [14])
that directly map quantile-based SLAs to per-query SLAs.

In this paper we adopt one-step SLA revenue functions on query
response time. An example is shown in Figure 1(a). The service
provider gets a revenue if a query is processed before a certain
deadline; otherwise the service provider pays a penalty. We adopt
a similar setting as [8, 28, 29], where each tenant has one or more
query classes; each query class is associated with an SLA and one
or more queries associated. Similarly, an SLA cost function can be
defined as the cost paid by the service provider with the increase of
query response time, such as Figure 1(b).

Tenant and Server Load. The load of a tenant t is calculated
by load(t) = avgProc(t)/avgIntv(t), where avgIntv(t) is the
average interval length between two queries submitted by tenant ¢,
which is the inverse of query arrival rate, and avg Proc(t) is the av-
erage query processing time of ¢.> The load of a server in a period
of time is the number of queries received divided by the number
of queries the server is able to process. Equivalently, the load of a
server is the average query processing time of the server divided by
the average interval length between two query arrivals. Thus server
load>100% means that queries arrive at the server faster than the

"'We allow any level of throughput, as we aim to serve them using
flexible cloud infrastructure.

The average query processing time is computed over all queries,
rather than a single query. If each query of tenant ¢ takes 2 seconds
and the server can process 2 queries in parallel, then the average
query processing time of ¢ is 1 second.
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Figure 2: SLA Penalty wrt Server Load

speed the server can process them, indicating an overload situation,
and vice versa.

Note that the execution time of the same query may increase
when more tenants are packed on a server. This is because a server’s
buffer pool size is limited, and with more tenants packed, the com-
petition for buffer pool increases which leads to increased disk I/0.
Thus if we use 7T to denote the set of tenants on a server s, then the
load of server s can be expressed as

load(s) = f(T') x Y _ load(t)

teT

where load(t) is the load of a tenant ¢ if it is the only tenant on the
server (we refer to this load as the base load of a tenant), and f(T')
is a factor that accounts for the increase of execution time when the
set of tenants 7" is packed on the server.

For simplicity, in the remainder of the paper, we use “fenant size”
to refer to the base load of a tenant (analogous to item size in the
bin packing problem).

Tenant Workload. We model the query arrival of a tenant as a
non-homogeneous Poisson process (i.e., the arrival rate may vary
with time), which is widely used to model the arrival of items, e.g.,
customers, phone calls, and queries [7, 24, 28, 25]. Since an appli-
cation may have different numbers of users at different times of day,
days of week, etc., we use normal distribution to model the varia-
tion of arrival rate. It is shown in [2] that the amount of server usage
(measured by the number of requests and amount of CPU usage) of
Flickr servers exhibit normal distribution patterns. Since a tenant
with a high query frequency usually observes a high variance, we
assume that the variance of the normal distribution is proportional
to its mean.

Server Penalty Estimation. A penalty estimation method is
necessary to estimate how often a tenant’s queries miss the SLA
deadline, given the set of tenants on a server. This estimation is
then used to guide the placement strategy. Nevertheless, the esti-
mation method is usually orthogonal to the placement algorithms.
Next we introduce the SLA penalty model we adopt, but it is not
a main focus of the paper, and other SLA penalty models may be
usable.

In this paper we adopt the following SLA penalty model: queries
arrived during server overload (i.e., load>100%) will miss their
SLA deadlines and the service provider needs to pay the penalty;
and other queries will meet their SLA. This is because the load of
a tenant will unlikely change very frequently (e.g., it may remain
near a constant during morning rush hour, and near another con-
stant during the night, etc.), and SLA penalties occur mainly be-
cause of prolonged system overload (e.g. more than 1 min or so),
rather than a temporary burst in query arrival for a short period (e.g.
a little bit dense arrival during 10 millisecond). If a system is over-
load for a long time (compared with the query execution time/SLA
deadline), then the delay of processing the queries becomes longer



and longer, and the vast majority of the queries arrived during this
time should miss the deadline. On the other hand, if the system
is underload for a long time, then the vast majority of the queries
should finish before the deadline (of course, the deadline should
be reasonably longer than the query processing time). Therefore,
the relationship between server penalty and server load should look
like Figure 2. Note that SLA penalty starts to appear before load
goes beyond 1.0. This is because the x-axis shows average load,
while the actual load may fluctuate.

It is worth mentioning that, to make our approach widely appli-
cable, we make no restrictions in the following aspects: (1) ten-
ant sizes: different tenants may have arbitrarily different query fre-
quencies; (2) Query processing times: queries of different tenants
may have arbitrarily different average processing times; (3) SLA
penalties: the SLA penalties for different query classes can be ar-
bitrarily different; (4) Query scheduling algorithm: although we
adopt the first come first served method due to simplicity of dis-
cussion and implementation, other scheduling algorithms such as
cost based scheduling [8] can also be applied, as long as there is a
way to calculate the expected SLA penalty given the information
of tenants on a server.

4. PROBLEM DEFINITION

4.1 Uniform Query Processing Time and SLA
Penalty

We start with discussing a relatively easier case in this section:
all queries have the same execution time and the same SLA penalty.
The only differences among the tenants are the frequencies of their
queries (hence the loads). This scenario is not unrealistic if the
tenants run Web applications, and all queries have similar execution
times (such as a few milliseconds). Next we formally define the
problem.

DEFINITION 4.1 (TP-UNIFORM). We are given a set of ten-
ants; each tenant t; issues queries, such that the arrival of queries
follows non-homogeneous Poisson process with rate \;, where \;
follows normal distribution with mean p; and variance o? = kju;.
Each query has an SLA penalty of L, and each server has a cost of
D per time unit (e.g., hour). Also given in the input are the expected
query execution time of each query when there is only one tenant
on the server, and a function f(T) > 1 that describes how the ex-
ecution time of a tenant increases if a set of tenants T' is packed on
a server. The goal is to place the tenants on the servers, such that
the expected average load of each server is no more than 1, and the
total cost is minimized. The total cost is defined as

cost =mD + L Zp(loadi > 1) - arrival;
i—1

where m is the number of servers used to host all tenants; p(load; >
1) is the probability that server i is overload, arrival; is the aver-
age query arrival rate (number of queries per time unit) of server
i.

Note that due to the uniform query processing time and SLA
penalty, each tenant can be assumed to have only a single query
class.

LEMMA 4.1. TP-UNIFORM is strongly NP-hard.

PROOF. Consider a special case of TP-UNIFORM where the
variance of query arrival rate is 0, i.e., queries of all query classes
have a fixed average arrival rate. Then, each tenant’s average base

445

load is fixed.® Besides, assume f (T) = 1forall T (i.e., the buffer
pool has unlimited size). Then TP-UNIFORM becomes an equiva-
lent problem as bin packing: each tenant corresponds to an item in
the bin packing problem, and the goal is to use the fewest servers
for the tenants, such that the load of each server is no more than 1.
Therefore, bin packing is a special case of TP-UNIFORM, and thus
TP-UNIFORM is strongly NP-hard. [

4.2 Nonuniform Query Processing Time and
SLA Penalty

Similar as TP-UNIFORM, we define the TP-GENERAL problem
as follows.

DEFINITION 4.2 (TP-GENERAL). We are given a set of ten-
ants; each tenant t; issues multiple classes of queries, such that the
arrival of queries in each class j follows non-homogeneous Pois-
son process with rate \ij, where \;; follows normal distribution
with mean p;; and variance a?j = kpij. Queries of the jth query
class of tenant t; have and an SLA penalty of L;;, and each server
has a cost of D per time unit (e.g., hour). Also given in the input are
the expected execution time of each query class when there is only
one tenant on the server, and a function f(T) > 1 that describes
how the execution time of a tenant increases if a set of tenants T' is
packed on a server. The goal is to place the tenants on the servers,
such that the expected average load of each server is no more than
1, and the cost is minimized. The cost is defined as

ST S pere(k ) - Liy)

toEM; j

cost =mD + Z[p(loadi >1)-
i=1

where m is the number of servers used to host all tenants; p(load; >
1) is the probability that server i is overload, perc(k, j) is the per-

centage of queries on server M;, which belong to the jth query

class of tenant ty,.

TP-UNIFORM is a special case of TP-GENERAL, and thus TP-
GENERAL is also strongly NP-hard.

5. TENANT PLACEMENT ALGORITHMS

5.1 Baseline Greedy Algorithm Based on Best
Fit

Due to the similarity of tenant placement and bin packing, one
would naturally consider an adaptation of the bin packing algo-
rithm. For bin packing, a simple yet effective heuristics (Best Fit)
is to place each item in the bin that can fit the item and has the
smallest remaining space, or create a new bin if no existing bin can
fit the item. For any bin packing instance, Best Fit uses at most
twice the number of bins as any other solution.

We can easily use such a strategy for TP-UNIFORM and TP-
GENERAL, with a small modification that we optimize for the cost,
rather than trying to pack each server as full as possible. Specif-
ically, since our goal is to minimize the cost, for each tenant, our
greedy algorithm places it on one of the existing servers, or create a
new server for this tenant, whichever choice minimizes the current
expected cost.

Although the Best Fit algorithm for the bin packing problem has
a constant approximation ratio, we will show that the performance
of such a strategy for either TP-UNIFORM or TP-GENERAL can
be arbitrarily worse than the optimal solution.

3The actual load may still vary due to the Poisson arrival, but based
on the SLA penalty estimation method in Section 3, whether SLAs
are met depends only on the average arrival rate.



EXAMPLE 5.1. Suppose the sizes of all tenants are sufficiently
small, such that even when the load of a server is close to 1, adding
one more tenant is still cheaper than placing this tenant on a new
server. Note that this is possible no matter how high the SLA
penalty of each tenant is: we can always make the tenant sizes
sufficiently small to get this effect. Thus in the output of the greedy
algorithm, each server’s expected load is close to 1. A problem with
such a placement is that, although it costs more to move any single
tenant to a new server, it may cost less if we move multiple tenants
from a server to a new server, which may significantly reduce the
expected SLA penalty of the original server.

Specifically, we can construct a case where in the optimal solu-
tion, each server’s average load is much smaller than 1, e.g., 0.5;
while in the greedy solution, each server’s average load is close to
1, e.g., 0.9. Although the optimal solution uses more servers, the
number of servers cannot be arbitrarily large (in this case, it is no
more than twice the number of servers in the greedy solution). On
the other hand, if the SLA penalty is sufficiently high, then the SLA
penalty of the greedy solution can be arbitrarily larger than that of
the optimal solution (because the optimal solution will try to make
the SLA violation rate, and hence the SLA penalty, close to 0, while
the SLA penalty of the greedy solution is much larger). Therefore,
the greedy solution can be arbitrarily worse than the optimal one.

As we can see, when the tenants are small, the greedy strat-
egy tends to pack each server very full, which incurs a high SLA
penalty due to a high probability that a server goes overload.

5.2 Approximation Algorithm for TP-Uniform

The main problem of the greedy algorithm introduced in Sec-
tion 5.1 is that it tends to pack lots of tenants on a server when the
tenants are small. And in multitenant databases, tenants are indeed
small [26, 18]. Therefore, the idea of improvement is to proactively
create new servers, even if it increases the current expected cost. To
achieve this, we introduce the concept of half full servers. This is
used to measure whether a server is too full and we should create
new servers.

DEFINITION 5.1. A half full server is a server whose total ten-
ant size is Su, such that: if we have another tenant t of size Sy, it
is equally costly to place t on this server, compared with placing t
on a new server.

To compute Sy, we introduce the following lemma.

LEMMA 5.1. Let S(M) denote the average total size (i.e., total
base load) of all tenants on server M. Given four servers M,,
My, M. and Mg, lfS(Ma) + S(Mb) S(M[‘) + S(Md) and
|S(Ma) — S(My)| < |S(M:) — S(Ma)|, then the expected cost of
M, and My, is lower than that of M. and M.

We omit the detailed proof due to space limit. Basically it says
that two servers with skewed loads cost more than two servers with
balanced loads. The reason is the following. In the TP-UNIFORM
case, since all queries have the same SLA and execution time, the
SLA cost of a server depends on the probability of SLA violation,
which in turn depends on the server overload probability. The over-
load probability of a server increases superlinearly with the load.
Intuitively, when the average load of a server increases from 10%
to 20%, the overload probability remains close to 0. But when the
average load of a server increases from 80% to 90%, the overload
probability should have a much bigger increase. And since a server
with higher load has a higher query arrival rate, the SLA viola-
tion penalty increases even more from 80% to 90%, compared with
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Algorithm 1: Approximation Algorithm for TP-UNIFORM

Input : n tenants, the average query arrival rate of each
tenant, query processing time 7, SLA penalty L,
server cost D

Find the value of Sy via binary search in (0, 1)

T = {tl7 cee ,tn} = sorted tenants in decreasing order of size

Create server M; for ¢;

foreach t; € T do

j = arg min; additional Penalty(t;, M;) where M; is

an existing server such that S(M;) + S(¢;) < 2S5y and

additional Penalty(t;, M;) < Penalty(t:;) + D

if j exists then

| Place t; on M;
else
Create a new server M,

Place t; on My,
end

end

from 10% to 20%. Therefore, two servers both with % load cost
less than two servers with (x—9)% and (z+9)% load, respectively.

It follows from the conclusion of Lemma 5.1 that given the cost
of a server and the SLA penalty of a query, the value of Sy can be
computed via binary search in (0, 1).

The approximation algorithm for TP-UNIFORM is shown in Al-
gorithm 1. additionalCost(t;, M;) denotes the additional penalty
of placing ¢; on M, and Penalty(t;) denotes the penalty of plac-
ing t; alone on a server. First, Algorithm 1 finds the value of Sz,
and sort the tenants in decreasing order of size. Then, for each ten-
ant ¢;, it finds an existing server M such that (1) placing ¢; on M
will not make the total tenant size on M; exceed 2Sy; (2) placing
t; on M is cheaper compared with creating a new server for ¢;; (3)
placing ¢; on M is the cheapest among all existing servers. If such
a server M; exists, we place t; on M;. Otherwise, we create a new
server for ¢;.*

Next we prove that Algorithm 1 has an approximation ratio of
3. For an arbitrary instance, let OPT denote the optimal solution
and APP denote the solution of Algorithm 1. Besides, for proof
purpose, we define another problem similar as TP-UNIFORM. In
this problem, a tenant (except those defined below) is allowed to be
split into arbitrary number of parts, and placed on different servers.
For example, a tenant with size 10 can be split into three parts with
sizes 2, 3 and 5, and placed on three servers. However, two types
of tenants are not allowed to be split: (1) the tenants whose sizes
are more than Sy (referred to as large tenants); (2) the tenants
placed on a server that contains a large tenant. Let OPT’ denote the
optimal solution of this problem. Since any solution to the original
problem is also a solution to this problem, we have cost(OPT") <
cost(OPT). We will prove that cost(APP) < 3 - cost(OPT"),
which implies cost(APP) < 3 - cost(OPT).

LEMMA 5.2. APP uses at most 1.5 times the number of servers
as OPT".

PROOF. First, suppose there is no tenant whose size is larger
than 2Sy.

In the APP solution, all servers, except at most one, are at least
half full, i.e., their tenant sizes are at least Sy . Otherwise, if there
are 2 servers that are not half full, the APP algorithm would have
combined the tenants on the two servers.

“If the size of ¢; is greater than 25y, we will always create a new
server for ¢;.



Suppose OPT’ uses x servers, and APP uses y servers. Note that
there are at most x tenants whose sizes are larger than Sy, because
no two such tenants can be placed on the same server in either OPT’
or APP. Since the APP algorithm places tenants in decreasing order
of size, in servers #x + 1 to #y in the APP solution, each tenant’s
size is at most Sz, and thus each of these servers contains at least
two tenants. We refer to these tenants as “extra tenants”.

If y > 1.5z, then y — = > [0.5(x + 1)], which means that
there are at least x extra tenants. None of these z extra tenants can
fit into any of the first x servers in the APP solution. This means
that the total tenant size must be bigger than 2z Sy . Then, since in
the OPT” solution, no server’s tenant size can be bigger than 25H
(otherwise this server should be split), OPT’ uses at least  + 1
servers, which is a contradiction.

Now, suppose that there exist tenants whose sizes are larger than
2Sw. Suppose there are k such tenants. Since no two of them can
be placed together, both OPT’* and APP uses k servers to host them.
In APP, each of these k servers contains a single tenant. In OPT’,
there are 2 cases:

-Case 1: some of these k servers also contain other tenants, say
server M; contains another tenant ¢£. This means that OPT’ only
uses these k£ servers. Otherwise, if there is another server M1,
its tenant size must be smaller than 2.5, and thus the extra tenant
on M; should be moved to M} to balance the load of these two
servers. And since the size of the additional tenants on each server
cannot exceed Sy (otherwise OPT” would have placed it on a new
server), the total size of all extra tenants is at most kSg. APP will
use at most k/2 servers for these tenants, because these additional
tenants cannot be sequentially split, and the additional tenants on
any two OPT’ servers can be packed together on the same server
by APP. Thus the number of APP servers will not exceed 1.5k.

-Case 2: none of these k servers contains any other tenant. Sup-
pose OPT’ uses another &’ servers for all other tenants. From the
previous analysis, APP will use at most 1.5%" servers for these ten-
ants. Thus APP uses at most k + 1.5k’ servers, which is smaller
than 1.5(k + &').

Therefore, APP uses at most 1.5 times the number of the servers
used by OPT". [

THEOREM 1. Forany arbitrary instance of TP-UNIFORM, APP
cannot be more than 3 times worse than OPT, i.e., cost(APP) <
3 - cost(OPT).

PROOF. We use H to denote the expected penalty/cost of a half
full server. In OPT’, all servers have the same SLA penalty, which
is at least H (otherwise, two OPT’ servers can be combined).

Consider the following two cases:

-Case 1: no tenant has a size of 2S5y or larger. Recall that the
APP algorithm no longer places a tenant in a server if the tenant
size of the server will exceed 2Sy. This means that for any APP
server, even if we evenly split its tenant size, the expected cost will
still increase. Note that if we evenly split the tenant size, we will
get two servers; the tenant size in each server is smaller than Sg.
Therefore, for each APP server, the expected cost is at most 2H +
D. Suppose OPT’ uses x servers, then we have

cost(OPT') > zH + xD

cost(APP) < 1.5x(2H + D) + 1.52D < 3 - cost(OPT")

-Case 2: there exist tenants with size at least 2S5 . In this case,
for both OPT’ and APP, each server contains at most one such ten-
ant. Again, we have two cases:

-Case 2.1: some of these k servers also contain other tenants.
From the proof of Lemma 5.2, we know that these k servers are
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all the servers used by OPT’, i.e., & = z. In this case APP uses
at most 1.5z servers, and every APP server’s cost is no larger than
every OPT server’s cost. Therefore, we have cost(APP) < 1.5 -
cost(OPT").

-Case 2.2: none of these k servers contains other tenant. Then
for these k servers, the cost of OPT’ and APP are the same. For the
remaining servers, since none of them has a tenant of size larger
than 2S5, from Case 1, we know that the cost of APP is at most 3
times the cost of OPT’, thus we have cost(APP) < 3-cost(OPT").

Therefore, the cost of APP is at most 3 times the cost of OPT’,
and thus at most 3 times the cost of OPT. [

5.3 Approximation Algorithm for TP-General

For TP-GENERAL, we have the following observation: if we do
not consider the difference of SLA penalty, the performance can be
arbitrarily worse than the optimal solution.

EXAMPLE 5.2. Consider two types of tenants. Type 1: small
size (e.g., s) and large SLA penalty (e.g., xP); Type 2: large size
(e.g., ys) and small SLA penalty (e.g., P). It is possible that one
Type 1 tenant can only be placed together with one Type 2 tenant,
and one Type 2 tenant can only be placed together with one Type 1
tenant (otherwise the cost is so high that we should split them into
multiple servers). Suppose there are n Type 1 tenants and n Type 2
tenants. If we do so, we need n servers. If in the input, each Type
1 tenant is followed by a Type 2 tenant and each Type 2 tenant is
Jollowed by a Type 1 tenant, then the greedy approach introduced
in Section 5.1 will use n servers. For Algorithm 1, even though
it sorts the tenants by size, the problem still remains: suppose we
split each Type 2 tenant into multiple small-size tenants; each one
has the same size as the Type I tenant. Then Algorithm 1 will also
use n servers.

However, it is possible that all Type 1 tenants can be placed in a
single server and all Type 2 tenants can be placed in a single server.
As long as the size of Type 1 tenants are sufficiently small (specifi-
cally, the total size of all Type 1 tenant is much smaller than the size
of a single Type 2 tenant), and the SLA penalty of Type 2 tenants are
sufficiently small (specifically, the SLA penalty of placing all Type
2 tenants together is much smaller than the SLA penalty of placing
one Type 1 tenant and one Type 2 tenant together), the total SLA
penalty of the second placement using 2 servers can be arbitrarily
smaller than the total SLA penalty of the first placement using n
servers. Besides, since n can be arbitrarily large, the server cost
of the second placement can also be arbitrarily smaller than the
server cost of the first placement. Therefore, processing the tenants
either in arbitrary order or in the order of their sizes can lead to
arbitrarily bad performance.

Based on this observation, we must process the tenants in an
order that considers their SLAs. We sort the tenants in the order of
their normalized SLA penalty as defined below.

DEFINITION 5.2. The normalized SLA penalty of a tenant t is
the total expected SLA penalty of t’s queries per time unit, if all
these queries miss the SLA deadline. The normalized SLA penalty
of t can be computed as

NSP(t) = (1 Ly)
J
where i and L; are the average arrival rate and the per-query

SLA penalty of the jth query class of tenant t.

To solve the problem in Example 5.2, we introduce the concept
of sequential split as defined below.



Algorithm 2: Approximation Algorithm for TP-GENERAL

Input : n tenants, the average query arrival rate, processing
time and SLA penalty of each tenant, server cost D

T ={t1, - ,tn} = sorted tenants in the order of L; - A;

(either increasing or decreasing)

Create server M- for t1

foreach t; € T do
M = the last created server
if additional Penalty(t;, M;) < Penalty(t;) + D AND
seqSplit(t;, M;) = false then
| Place t; on M;
else
Create a new server Mj,

Place t; on M},
end

end

DEFINITION 5.3. Given a server M that contains a list of ten-
ants and an algorithm A used to place these tenants on M, a se-
quential split of M separates the tenants on M into two servers
M and Mo, such that all tenants on My were placed by A on M
before all tenants on M2, and moreover, we are allowed to split one
tenant into two parts and place them on different servers.

Due to a similar conclusion as Lemma 5.1 (which we omit here
due to space limit), whether tenants on a server can be sequen-
tially split to make it more profitable can be determined by a binary
search.

The algorithm for TP-GENERAL is shown in Algorithm 2. It
first sorts the tenants in the order of their normalized SLA penalty
(Definition 5.2). We create a new server for the first tenant. For
each subsequent tenant ¢, if the last created server M satisfies: (1)
placing t on M is cheaper compared with creating a new server for
t; (2) after placing ¢ on M, the tenants on M cannot be sequentially
split to make it more profitable, then ¢ is placed on M. Otherwise,
it creates a new server for ¢.

To prove the approximation ratio of Algorithm 2, similar as Sec-

tion 5.2, we introduce the following problem similar as TP-GENERAL:

suppose each tenant can be arbitrarily split, and placed on different
servers, except those tenants whose sizes are large enough, such
that this tenant itself can be sequentially split to reduce the cost.
Let OPT’ denote the optimal solution for this problem, and OPT
denote the optimal solution of the original problem. Apparently
cost(OPT") < cost(OPT).

The following lemma is critical in proving the approximation
ratio.

LEMMA 5.3. In the OPT’ solution, no two servers M; and M
can have the following tenants: there is a tenant on M; whose
normalized SLA penalty is higher than a tenant on M, but lower
than another tenant on Mj.

PROOF. Suppose there’s a tenant a on M;, and tenants b and ¢
on Mj, such that c NSP > a.NSP > b.NSP. Let S(-) denote
the total tenant size of a server. There are two cases:

-Case 1: S(M;) < S(Mj). Then if a.size > c.size, we can
move c to M;, and move the same size of a to M;. At this point,
the expected penalty of ¢ decreases or remains the same; the ex-
pected penalty of the part of a moved to M; increases or remains
the same. Since c. NP > a.N P, the total expected penalty in these
two servers decreases or remains the same. Now, since the average
expected penalty in M; increases and the average expected penalty
in M; decreases, it will reduce the cost if we move a small size
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of tenant from M; to M. Therefore, the original placement is not
optimal; it can be improved, which is contradictory. On the other
hand, if a.size < c.size, then we can move a to M}, and move the
same size of ¢ to M;. For the same reason, the cost can be reduced,
which contradicts with that we started with the optimal solution.

-Case 2: S(M;) > S(Mj). The proof is similar as Case 1.
If b.size > a.size, we can move a to M;, and move the same
size of b to M;, and the total expected penalty will decrease. If
b.size < a.size, then we can move b to M;, and move the same
size of a to M}, and reduce the cost. [

Lemma 5.3 indicates that OPT’ must place the tenant in the order
(either increasing or decreasing) of normalized SLA penalty.

THEOREM 2. For any arbitrary instance of TP-GENERAL, APP
cannot be more than 4 times worse than OPT, i.e., cost(APP) <
4 - cost(OPT).

PROOF. We first prove that APP uses at most twice the number
of servers used by OPT".

First, we assume that no tenant itself can be sequentially split.

Note that both APP and OPT” places tenants in the order of their
normalized SLA penalty. Without loss of generosity, suppose they
both use non-decreasing order. Also note that in the APP solution,
no two adjacent servers can be merged to reduce the cost; otherwise
the APP algorithm would have done so. Therefore, the first OPT’
server must contain less tenant size than the first two APP servers
combined. For similar reasons, the second OPT’ server must con-
tain less tenant size than the third and fourth APP servers combined.
In this way, it is easy to see that APP uses at most twice the number
of servers used by OPT".

When there exist tenants that can be sequentially split (suppose
there are k such tenants, and thus OPT’ uses k servers for them),
we have two cases:

-Case 1: some of these k servers also contain other tenants, say
M; contains another tenant ¢t. This means that OPT’ only uses
these k servers. Otherwise, if there is another server M1, its ten-
ants cannot be sequentially split, and thus the extra tenants on M;
should be moved to My 1 to balance the load of these two servers.
Besides, if we combine the additional tenants on any two of these k
servers, the combined tenants cannot be sequentially split, because
otherwise the original extra tenants should have been sequentially
split from those servers by OPT’. Thus if we place all these extra
tenants using OPT’, it must use at most k/2 servers, and by the
conclusion above, APP will use at most k£ servers. Therefore, in
this case APP uses at most k 4+ k = 2k servers.

-Case 2: none of these k servers contains any other tenant. Sup-
pose OPT’ uses another k' servers for all other tenants. From the
conclusion above, APP will use at most 2k’ servers for these ten-
ants. Thus APP uses at most k + 2k’ servers, which is smaller than
2(k + K').

Now we prove the approximation ratio. To do so, we consider
another solution OPT” to the adapted version of the problem. OPT”
uses more servers than OPT’, but each server contains fewer ten-
ants. Each OPT” server (except the last one) can “just” be com-
bined with the server next to it, i.e., combining any two adjacent
OPT” servers (except the last one) has the same cost as not com-
bining them. Obviously, the tenant penalty of OPT” is smaller than
that of OPT’. We will prove that the tenant penalty of APP is at
most twice that of OPT”.

Again, we first assume that there’s no tenant whose size is large
enough to be sequentially split.

A key observation is that for each APP server, its tenants may
come from at most three adjacent OPT” servers. So, for each APP
server M, we discuss the following three cases:



-Case 1: M’s tenants come from a single OPT” server M'. Then
the penalty of M must be smaller than the penalty of this OPT”
server.

-Case 2: M’s tenants come from two OPT” servers M and M>.
Then M'’s penalty is no larger than combining all tenants on M;
and M>. We refer to servers that can be “just sequentially split” as
“just full” servers. For two “just full” servers, if one has a higher
SLA penalty and smaller tenant size, then it also has a lower cost
(the detailed deduction is omitted due to space limit). Thus the cost
of M will be no larger than twice the SLA penalty of M5 plus D.

-Case 3: M’s tenants come from three OPT” servers My, M2
and M3. Since M has a higher average SLA penalty than combin-
ing M, and M (suppose we use increasing order of SLA penalty),
its tenant size must be smaller than combining M; and Ms. Thus
the cost of M will be smaller than combining M; and Mo, i.e.,
smaller than twice the SLA penalty of M>.

As we can see, for each APP server M, there is a distinct OPT”
server M, such that cost(M) < 2cost(M') + D. Thus it is easy
to see that if APP uses y servers, then

penalty(APP) < 2penalty(OPT")+yD < 2penalty(OPT")+yD

Suppose OPT’ uses x servers and APP uses at most 2x servers,
thus

cost(OPT') > penalty(OPT') + xD

cost(APP) < 2penalty(OPT")+2xD+2xD < 4-cost(OPT")

Now we assume that there exists tenants whose sizes are large
enough to be sequentially split. Suppose there are k such tenants,
and OPT’ uses k servers to host them. We have two cases:

-Case 1: some of these k servers also contain other tenants. Then
these k servers are all the servers used by OPT’, i.e., £ = . In this
case APP uses at most 2x servers, and every APP server’s cost is
no larger than a distinct OPT’ server’s cost. Therefore, we have
cost(APP) < 2 - cost(OPT").

-Case 2: none of these k servers contains other tenant. Then
for these k servers, the cost of OPT” and APP are the same. For
the remaining servers, since none of them has a large tenant, from
Case 1, we know that the cost of APP is at most 4 times the cost of
OPT’, thus we have cost(APP) < 4 - cost(OPT").

Therefore, we have proved that cost(APP) < 4-cost(OPT") <
4. cost(OPT). [

5.4 Quality Improvement Using Dynamic Pro-
gramming

Note that in the approximation algorithm, tenants placed on the
servers have a fixed order, i.e., if two tenants ¢; and ¢; are placed on
servers M, and M, respectively, and ¢ < j, then z < y. Since the
order is fixed, we can use a dynamic programming approach to find
the optimal solution wrt the fixed order and the number of servers.

The dynamic programming procedure is shown in Algorithm 3.
Its input is the list of tenants sorted by their normalized SLA penalty
and the number of servers used by the approximation algorithm
(Algorithm 2), denoted by m.

Let C(4, j) be the expected SLA penalty when co-locating ten-
ants t; through ¢; on a single server. We construct and fill in an
n - m table, where n is the number of tenants and m is the number
of servers. In each cell, we store two information, M P (i, j) and
PrevCut(i,j). MP(i,7) is the minimum total expected penalty
when placing the first ¢ tenants on j servers. PrevCut(s, j) tells
us where the previous cut is, for the setup that realizes the mini-
mum total expected penalty. For example, PrevCut(100,10)=85
means that given one hundred ordered tenants and ten servers, we
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Algorithm 3: Dynamic Programming for TP-GENERAL

Input : n tenants, the average query arrival rate \;,
processing time r; and SLA penalty L; of each tenant
t;, the number of servers m used by Algorithm 2
Find the value of Sy using binary search
T = {t1, - ,tn} = sorted tenants in the order of L; - A;
(either increasing or decreasing)
for i =1tondo
| MP(i,1) = C(1,4)
end
for j =2tomdo
fori = jtondo
l=arg mini<p<;—1(MP(k,j— 1)+ C(k + 1,1))
PrevCut(i,j) =1
MP(i,j) = MP(l,5 — 1)+ C(l+ 1,1)
end
end
Cuts(m — 1) = PrevCut(n,m)
forj =m —2to1do
Cuts(j) = PrevCut(Cuts(j +1),5 + 1)

end
Output the optimal placement based on M P and C'uts

should cut after the 85th tenant (i.e. put tenants 86 through 100 on
the last server).
Algorithm 3 is based on the following recurrence relation:

C(1,4),
ming (MP(k —1,j — 1) + C(k, 1)),

MP(, j) = { 7=
j>1

Algorithm 3 iteratively fills up the cells in the table. In the end,
we compute M P(n,m), and more importantly, we can find all
cuts by following PrevCut(t, 7) in the backward direction, start-
ing from PrevCut(n, m).

As we can see, Algorithm 2 and Algorithm 3 can be coupled. We
first use Algorithm 2 to find the number of servers used by APP,
then use Algorithm 3 to find the placement. In this way, we guar-
antee to output a solution that is no worse than using Algorithm 2
alone.

6. EVALUATION

We compare three tenant placement algorithms presented in this
paper in the experiments. The main comparison metric is the Total
Cost, which is comprised of Server Cost plus SLA Penalty Cost.
The SLA penalty costs are calculated based on the example model
we showed in Section 3. However, as discussed, other SLA penalty
models could be used for different systems. Therefore the impor-
tant aspect of the comparison is the relative performance of the
algorithms. We also present the results for varying capacity con-
straints and the scalability of the algorithms.

6.1 Experimental Setup

6.1.1 Comparison Systems

APP. APP is the approximation algorithm (TP-General) presented
in Section 5.3 (Algorithm 2). Due to space limit, we do not report
the result of uniform query processing time and SLA penalty (Al-
gorithm 1).

Greedy. This is an adaptation of the classic bin packing algo-
rithm (Baseline) as introduced in Section 5.1. It processes the ten-
ants one by one. For each tenant, it either places it on one of the
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Figure 3: Relationship between Average TPC-W Query Pro-
cessing Time and Number of Tenants on a Server

existing servers, or create a new server for this tenant, whichever
choice minimizes the current expected cost.

DP. This is the dynamic programming approach (Algorithm 3).
As we mentioned before, it guarantees to output the optimal solu-
tion if the order to place the tenants and the number of servers are
fixed, thus it should outperform APP in terms of cost (server cost +
SLA penalty). However, due to the higher time complexity of DP,
it is expected to be slower.

6.1.2 Environment

The experiments were performed on a cluster of servers, each
with eight Intel Xeon E5260 2.4GHz cores, 16GB memory, running
CentOS 5.6 and MySQL 5.5.

We generated up to 150 tenants. Each tenant runs the TPC-W
workload according to the ordering mix pattern. Regarding the
sizes of the tenants, we considered the multitenant database set-
tings presented in Microsoft SQL Azure [1] and [30], where a
multitenant server usually hosts a large number of tenants. Ac-
cordingly, we set the data size of each tenant in the experiments
to be 580MB, and each tenant has a base load of up to 3%. (We
also show the effect of tenants that generate larger loads.) We
adopt the shared-database multitenancy model, i.e., on each physi-
cal server, the tenants use separate tables of the same database. We
chose to use MySQL as the DBMS. All tenants on the same server
share a connection pool with multiple connections to the database,
and we use an FCFS queue to process their queries. The buffer
pool size is set as 10GB. A query that finishes before its deadline
(set as 10 times its expected query processing time, or 2 seconds,
whichever is longer) incurs no penalty, otherwise the corresponding
SLA penalty has to be paid.

6.1.3 Query Processing Time Profiling

As explained in Section 3, due to limited buffer pool size, the
load of a server is a superlinear combination of tenants’ base loads,
i.e., it is the sum of the base loads of its tenants, multiplied by a
factor f(T"). According to [10], the number of I/O operations only
depends on the working set size and the update rate. Therefore,
we first conduct a profiling stage to compute this factor, where we
measure how the processing times of the TPC-W queries increase
with the number of tenants on a server.

The result of the profiling stage is shown in Figure 3. When a
server contains no more than 15 tenants, the average query process-
ing time of each tenant is stable. This is consistent with the fact that
the buffer pool size is 10GB and the working set size of each tenant
is roughly 0.6GB. When the number of tenants on a server further
increases, 1/O starts to increase and the query processing time of
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each tenant quickly goes up. This information is passed to the ten-
ant placement algorithms in order to accurately estimate the actual
load of a server in packing the tenants.

If different tenants have very different update rates, then a more
complex profiling stage needs to be performed which measures
query execution time as a function of both working set size and
update rate.

6.1.4 Workload Generation

As mentioned in Section 3, although the tenants’ traffics may ex-
hibit fluctuations, the overall load characteristics of a tenant usually
change gradually, rather than abruptly. Thus we divide the timeline
into consecutive intervals, which is used by all tenants. The queries
from each tenant are randomly assigned a mean arrival rate, vari-
ance of arrival rate and SLA penalty. In each interval, each ten-
ant is assigned a query arrival rate, which is randomly generated
following normal distribution based on its mean and variance val-
ues. Then, queries of each tenant are generated that follows Poisson
process. In the experiment we set the length of each interval as 10
minutes.

6.2 Results and Analysis

The default parameter values are as follows: the cost of a server
is 100 units per minute’; the SLA penalty of the queries of a tenant
is randomly generated between 2 and 20 units; the base load of a
tenant is randomly generated from 1% to 3%.

6.2.1 Performance by Server Cost

We vary the server cost from 100 units per minute to 400 units
per minute and generate Figure 4(a). All approaches chose to use
9 servers, however, how they place the tenants on these 9 servers
are very different. Although Greedy is more “flexible” than APP in
that Greedy does not require a fixed order when placing the tenants,
APP consistently outperforms Greedy and Greedy incurs up to 30%
more cost than APP for two reasons: (1) it does not sort the tenants
in the order of normalized SLA penalty, and thus it may suffer from
the bad performance as exemplified in Example 5.2; (2) it does not
consider sequentially splittable servers. As a result, if a tenant’s
size is sufficiently small, then even if a server is already very full,
it may still be cheaper to place the tenant on this server compared
with creating a new server. This will lead to very full servers with
high probability of going overload and thus high penalties. On the
other hand, as long as placing a tenant on a server makes this server
sequentially splittable, APP will place the tenant on a new server,
which is a key step in achieving the constant approximation ratio,
and also gives a better performance.

We can also observe that although DP uses the same number
of servers and the same order to place the tenants as APP, it has
a significantly lower cost than APP, which suggests that a better
placement makes a big difference for the service provider. DP saves
up to 57% cost compared with APP and up to 67% cost compared
with APP.

For the first test case (server cost = 100 units per minute), we also
monitored the CPU and I/O usage of four servers, which contains
9, 16, 17 and 18 tenants respectively, using collectl utility to
collect the server statistics every second. The mean and standard
deviation of the CPU and I/O statistics are shown in Table 1. As
we can see, when there are 9 tenants on a server, there are very
few reads. When there are 16, 17 and 18 tenants, the number of

>We use the same unit for server cost and SLA penalty. Since the
actual unit is irrelevant, it is omitted. The actual server cost in prac-
tice usually ranges from less than a dollar to several dollars/hour,
e.g., Amazon EC2 standard instances costs $0.08-$0.64/hour.
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Figure 4: Effectiveness of Tenant Placement

CPU Reads KBread Writes KBwrite
Mean | SD Mean | SD Mean SD Mean | SD | Mean | SD
9 tenants 2.6% | 4.4% | 0.9 16.3 13.2 201.5 2.8 6.4 | 14.1 59.6
16 tenants | 8.7% | 6.9% | 210.0 | 380.1 | 13812.3 | 27843.1 | 5.7 99 | 742 236.2
17 tenants | 9.4% | 6.6% | 379.3 | 398.7 | 32535.2 | 37955.8 | 4.8 8.1 | 100.1 | 257.5
18 tenants | 9.1% | 6.3% | 449.9 | 381 38435.3 | 35005.3 | 4.6 7.5 | 124.7 | 246.5

Table 1: Server Statistics

reads explodes, since the buffer pool is not large enough to store
the working sets of that many tenants, and a lot of queries need to
read data from the disk. On the other hand, the number of writes
increases less dramatically, since writes occur when tenants update
their tables. For 16, 17 and 18 tenants, the CPU usage does not
vary much, indicating that I/O is the bottleneck.

6.2.2  Performance by SLA Penalty

We now vary the maximum SLA penalty per query and gener-
ate Figure 4(b). When the maximum SLA penalty is 20, the SLA
penalty of each tenant is randomly generated from 2 to 20. When
the maximum SLA penalty is 40, 60 and 80, we double, triple and
quadruple the SLA penalty of each tenant, such that their SLA
penalties are in the ranges of [4, 40], [6, 60] and [8, 80], respec-
tively. The relative performances of the three algorithms are sim-
ilar as Figure 4(a). Note that when the SLA penalties are higher,
the cost difference between APP and Greedy tends to be bigger,
because Greedy is more reluctant to add new servers, which leads
to some tightly packed machines with relatively high chance of vi-
olating SLAs and hence high penalties. On the other hand, the
APP algorithm proactively places tenants on new machines (using
the sequential split method), thus does not have this problem and
achieves a lower cost.

6.2.3 Performance by Tenant Load

Figure 4(c) is obtained by varying maximum tenant load. When
the maximum tenant load is 3%, the base load of each tenant is ran-
domly generated from 1% to 3%. When the maximum tenant load
is 4% and 5%, the base load of each tenant is increased by 1/3 and
2/3, so that the maximum load of a tenant is 4% and 5%, respec-
tively. The relative performances of the three algorithms are similar
as Figures 4(a) and (b), indicating the consistent good performance
of the proposed algorithms, especially DP. Note that when the max-
imum tenant load is 4%, the total costs of the algorithms are less
than that when maximum tenant load is 3%. This is because when
the maximum load is 4%, all three algorithms use one more server
(10 instead of 9), which lowers the SLA penalty on each server,
and thus the total cost is smaller even though they need to pay for
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an additional server. The cost of Greedy increases when maximum
tenant load is 5%, because it still uses 10 servers and thus some
servers suffer high SLA penalties. APP and DP maintain roughly
the same cost due to better placement strategies.

6.2.4 Performance with Fixed Capacity

Sometimes the service provider may not have the number of
servers recommended by our tenant placement algorithms. In this
case, the service provider has to use fewer servers. To see how this
affects the algorithms, we perform this test in which we only give
each algorithm a certain number of servers to use, which is less
than their recommendations. When all servers have been used, the
algorithms are not allowed to add new servers, but can only place
the remaining tenants on the existing servers.

In our default test case, all algorithms recommend 9 servers.
Thus we test the effect if we allow the algorithms to use a maxi-
mum of 9, 8 and 7 servers, which is shown in Figure 5(a). Note
that APP is not included in this test, since it is not able to use less
servers that it recommends, without violating its placement poli-
cies (i.e., no server can be sequentially split). The cost of DP and
Greedy increases when the number of servers is reduced, and DP
consistently outperforms Greedy by a large margin.

Interestingly, when the number of servers is insufficient, DP and
Greedy uses different strategies. Figure 5(b) and (c) shows the
number of tenants placed on each server, and the SLA violation
penalties of each server when the number of servers is 7. As we
can see, DP saturates only one server (server #7) with 45 low value
tenants (since it first sorts the tenants based on their normalized
SLA penalties), while keeping the loads of the other servers low.
This ensures that the other six servers operate normally and incur
little SLA penalty. Besides, even if server #7 has a relatively high
load, the normalized SLA penalties of the tenants on server #7 are
so low that it does not incur too much SLA penalty. This turns out
to be a good strategy. On the other hand, Greedy tends to evenly
distribute the tenants across servers, and all servers end up having
high SLA penalties, and the total penalty is much higher than that
of DP.

We also report the average load, per-query SLA penalty and
value (i.e., normalized SLA penalty) of tenants on each server for
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all 3 test cases (i.e., number of servers =9, 8, 7) in Figure 6. Since
DP sorts the tenants based on their values, the average value de-
creases with server ID. Since the value is proportional to the prod-
uct of load and per-query SLA penalty, the average load and per-
query SLA penalty also tend to decrease with server ID, although
not necessarily. On the other hand, the average load, per-query
SLA penalty and values of tenants are roughly stable for Greedy.

6.2.5 Scalability

To test the scalability of the algorithms we increase the number
of tenants from 100 to 800. Figure 7 shows the time each algorithm
takes to place certain number of tenants. Each point is the aver-
age time of 10 random test cases. The running times of APP and
Greedy are insignificant, and are below 0.2 second even for 800
tenants. On the other hand, DP takes much longer time as its time
complexity is O(n?m) (as to be shown in Section 7), where n is
the number of tenants and m is the number of servers it uses, which
is essentially O(n?). But since tenant placement algorithms are not
interactive algorithms and their running times are not critical, DP’s
efficiency should generally be acceptable.

6.2.6 Summary

DP is by far the most effective algorithm of the three. It gen-
erally saves more than 50% cost compared with APP and Greedy.
APP is also more effective than Greedy and generally saves 10%
to 20% of the cost. The fact that DP always uses the same number
of servers as well as the same placement order as APP, yet outper-
forms APP by a large margin, shows that even a small alteration of
tenant placement may affect the cost significantly. It is interesting
to study whether the placement of DP can be further improved on
a consistent basis, which is a future research direction.

APP and Greedy are highly efficient, whereas DP is relatively
slower with O(n?m) complexity where n and m are the number
of tenants and servers, respectively. However, generally the tenant
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placement is not a time-sensitive task, unless the scale is very large.
Even with extremely large number of tenants, it is possible to clus-
ter the tenants and execute the algorithm on the clusters. Hence,
such a complexity should generally be acceptable.

7. DISCUSSION
7.1 Complexity Analysis

When all tenants have the same or similar SLA, and issue the
same or similar queries, Algorithm 1 has the best performance, with
a time complexity of O(nm) where n is the number of tenants and
m is the number of servers it uses. To see this, note that for each
tenant, it takes O(m) time to determine which server to place it.
Since m is linear to n, the complexity is essentially O(n?).

Similarly, the placement phase of Algorithm 2 takes O(nm),
or O(n?) time. Since it needs to sort the tenants, the total time
complexity is O(nlogn 4+ nm). It should be used when the tenants



have a large variance on query processing time and/or SLA penalty.

Algorithm 3 guarantees to output a placement no worse than that
output by Algorithm 2, since it computes the optimal placement
given a fixed order of tenants and a fixed number of servers. How-
ever, the time complexity of Algorithm 3 is O(n?m), since it needs
to fill a table that has O(nm) cells, and it takes O(n) time to fill
each cell. This complexity is essentially O(n®).

7.2 Online Placement

Tenants may arrive and depart over time. Both Algorithm 1 and
Algorithm 2 can be adapted to handle incremental arrival of tenants.
For algorithm 1, we have the following lemma.

LEMMA 7.1. If we do not sort the tenant by size in Algorithm 1
and only place each tenant either on the last created server or a
new server, the approximation ratio will be 4.

The idea of the proof is that if the tenants are processed in random
order, the number of servers used by APP will be at most twice,
rather than 1.5 times, the number of servers used by OPT’. The
proof is omitted due to space constraint.

Departure of tenants will involve tenant migration. To determine
which tenant to migrate, a variety of factors should be considered,
including servers’ loads, tenants’ data sizes, query rates, query fre-
quencies, as well as SLA violations due to service interruption.
This is a complicated problem and we do not intend to study it
in this paper, as we focus on achieving a good initial placement.
Nonetheless, it will be an interesting future work to explore.

8. CONCLUSIONS AND FUTURE WORK

Multitenancy supports a large number of tenants economically
by accommodating multiple tenants within a single server. This
paper studies how to find a good tenant placement from the per-
spective of service provider’s profit, which can be an integral part of
a service provider’s strategies. We formalize the problem of tenant
placement for cost minimization, which is strongly NP-hard. We
then provide two approximation algorithms, one for a special case
and one for the general case, with approximation ratios 3 and 4, re-
spectively. We further provide a DP procedure that can be used to
couple the approximation algorithm for better performance. DP is
experimentally shown to consistently outperform the baseline and
the approximation algorithms by a large margin, indicating its ex-
cellent effectiveness. While this paper focuses on the deployment
of multiple tenants at once, an important future work is to study
online placement with dynamic arrivals and departures of tenants,
in more details.
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