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ABSTRACT

With the ever increasing quantities of electronic data, there
is a growing need to make sense out of the data. Many ad-
vanced database applications are beginning to support this
need by integrating domain knowledge encoded as ontolo-
gies into queries over relational data. However, it is ex-
tremely difficult to express queries against graph structured
ontology in the relational SQL query language or its exten-
sions. Moreover, semantic queries are usually not precise,
especially when data and its related ontology are compli-
cated. Users often only have a vague notion of their infor-
mation needs and are not able to specify queries precisely.
In this paper, we address these challenges by introducing
a novel method to support semantic queries in relational
databases with ease. Instead of casting ontology into rela-
tional form and creating new language constructs to express
such queries, we ask the user to provide a small number
of examples that satisfy the query she has in mind. Using
those examples as seeds, the system infers the exact query
automatically, and the user is therefore shielded from the
complexity of interfacing with the ontology. Our approach
consists of three steps. In the first step, the user provides
several examples that satisfy the query. In the second step,
we use machine learning techniques to mine the semantics
of the query from the given examples and related ontolo-
gies. Finally, we apply the query semantics on the data to
generate the full query result. We also implement an op-
tional active learning mechanism to find the query seman-
tics accurately and quickly. Our experiments validate the
effectiveness of our approach.
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1. INTRODUCTION
A growing number of advanced applications such as prod-

uct information management (PIM) systems, customer re-
lationship management (CRM) systems, electronic medical
records (EMRs) systems are recognizing the need to incor-
porate ontology into the realm of object relational databases
(ORDBMs) so that the user can query data and its related
ontology in a consistent manner [7, 14, 22]. However, it is
extremely tedious and time consuming to understand ontol-
ogy, and use ontology in database queries [15]. Such queries
that leverage the semantic information stored in ontologies
to filter and retrieve data from relational tables are called
semantic queries. The success of the relational database
technology is at least partly due to the spartan simplicity
of its data model and query language, which insulate the
user from the physical implementation of the database. But
for semantic queries, users are often exposed to the full com-
plexity of the ontology. Still, integrating data and its related
ontology is a challenge too important to ignore. There are
two major approaches in attacking this problem. One is to
flatten graph-structured ontologies into relational form [7,
22], and the other is to extend ORDBMSs and SQL to han-
dle non-relational data directly [13, 14]. However, both ap-
proaches incur tremendous system cost, but have limited
success in taking the tediousness out of handling semantic
queries. In many cases the complexity of expressing seman-
tic queries is almost prohibitive to allow for widespread use
of such query mechanisms.

The future success of incorporating ontologies into prac-
tical database query processing depends on whether we can
find automatic or semi-automatic methods to help users ex-
press semantic queries. In this paper, we introduce a novel
approach that insulates the users from the complexity of
the ontology, yet still enables them to ask every possible se-
mantic query. The semi-automatic framework we develop
bridges the gap between a query in a user’s mind and the
final result of the query. Furthermore, since users do not
handle the ontology directly, there is no need to map the
ontology into relational form, which means our approach
does not incur expensive cost of extending database engines
and query languages.

Before we dive into the details of our approach, we use
some examples to illustrate the task on our hand. Con-
sider an EMR (electronic medical records) system. Clini-
cians recording the diagnosis of a patient visit may choose
different disease codes for the same symptoms that the pa-
tient is exhibiting. One clinician might describe a patient
diagnosis using the code for “Tumor of the Uvea”, while an-
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vID date patientID diagnosis

1 20080201 3243 Brain Neoplasm
2 20080202 4722 Stomatitis
3 20080202 2973 Tumor of the Uvea
4 20080204 9437 Corneal Intraepithelial Neoplasia
5 20080205 2437 Choroid Tumor
... ... ... ...

Figure 1: The table visit recording patient visits

other might use the code for“Iris Neoplasm”. In the patient’s
EMR a generic term like “Eye Neoplasm”might be recorded
instead of the more specific “Tumor of the Uvea” (we will
use the more descriptive terms instead of the corresponding
codes in this paper in the interest of readability). Hence, in
order to obtain meaningful results from querying an EMR
database, the query processing system needs to understand
the semantics of the query and the data.
The growing demand for processing data and its meaning

has spurred the increasing use of ontology in various appli-
cations. Continuing with the EMR example, many ontolo-
gies have been developed to capture the semantics of various
sub-components of EMR data. For example, the National
Cancer Institute (NCI) Thesaurus [17] is a collection of on-
tologies spanning the following areas: Drugs and Chemicals,
Diseases Disorders and Findings, Anatomic Structure Sys-
tem or Substance, Gene, Chemotherapy Regimen etc. Fig-
ure 2 shows a fragment of the NCI Thesaurus in graphical
form. Moreover, many of these ontologies are well integrated
with existing data coding terminologies (eg, SNOMED [10],
ICD9 [9]) used by industry EMR formats such as HL7 [8]
and CCR [5]. With the confluence of ontologies, coding
terminologies, and data standards, the need for querying re-
lational data together with its related ontology has become
even more urgent.
However, there are two fundamental challenges in this

task. First, it is extremely difficult to express queries against
a graph structured ontology in SQL as the following example
illustrates.

Example 1 (Running Example). Suppose we have a
table of patient visit records as shown in Figure 1, of which
the diagnosis column is associated with the NCI Thesaurus
ontology (Figure 2). Consider the query to find all patients
diagnosed with eye tumor.

Using existing RDF-like data models [22], we could store the
ontology as triples in the Thesaurus(src,rel,tgt) relation
and attempt to write the query in Example 1 using recursive
SQL as follows.

WITH Traversed (src) AS (
(SELECT src
FROM Thesaurus
WHERE tgt = ’Eye Tumor’ AND rel=’Synonym’)

UNION ALL

(SELECT CH.tgt
FROM Traversed PR, Thesaurus CH
WHERE PR.src = CH.src AND CH.rel=’is a’))

SELECT DISTINCT V.*
FROM Thesaurus T, Visit V
WHERE src IN

(SELECT DISTINCT src FROM Traversed)
AND T.rel = ’Synonym’
AND T.tgt = V.diagnosis

Alternatively, if we write the same query against the original
XML format of the NCI Thesaurus, we have the following.

WITH Traversed (cls,syn) AS (
(SELECT R.cls, R.syn
FROM XMLTABLE (’Document(”Thesaurus.xml”)

/terminology/conceptDef/properties
[property/name/text()=”Synonym” and
property/value/text()=”Eye Tumor”]
/property[name/text()=”Synonym”]/value’
COLUMNS

cls CHAR(64) PATH ’./parent::*/parent::*
/parent::*/name’,

tgt CHAR(64) PATH’.’) AS R)
UNION ALL

(SELECT CH.cls,CH.syn
FROM Traversed PR,

XMLTABLE (’Document(”Thesaurus.xml”)
/terminology/conceptDef/definingConcepts/
concept[./text()=$parent]/parent::*/parent::*/
properties/property[name/text()=”Synonym”]/value’
PASSING PR.cls AS ”parent”
COLUMNS

cls CHAR(64) PATH ’./parent::*/
parent::*/parent::*/name’,

syn CHAR(64) PATH’.’) AS CH ))
SELECT DISTINCT V.*
FROM Visit V
WHERE V.diagnosis IN

(SELECT DISTINCT syn FROM Traversed)

In both instances, it is not straight-forward to write the
query and the user needs to have an intimate knowledge of
the structure or schema of the ontology such as existence of
“synonym”, and “is a” edges.

The second fundamental challenge is the inherent fuzzi-
ness in the semantics of the query. In most practical ap-
plications, the data and the ontology behind it are quite
complicated and consequently the queries are no longer ex-
act, that is, users often have no more than a vague notion,
rather than a clear understanding and definition, of what
they are looking for. In other words, even if the users have
intimate knowledge of the structure of the ontology, they
might not be able to precisely specify what they want to
find.

Example 2. Find all patients diagnosed with some dis-
ease in the choroid, which is part of the eye.

Intuitively, the user wants to find patients with some disease
that affects or is located in the choroid (Figure 3 shows one
possible processing workflow for this query). In the NCI
Thesaurus, there are 3 separate types of relationship linking
disease concepts to anatomic locations:

1. Disease Has Primary Anatomic Site

2. Disease Has Associated Anatomic Site

3. Disease Has Metastatic Anatomic Site

Even if the user knows the structure of the NCI Thesaurus
ontology, i.e., he knows about the three types of relationships
that are relevant to the query, without looking at the results,
the user still may not know whether the query should use one
of these relationships to “choroid” or all of them. If the user
does not know the structure of the ontology at all, then he
certainly would not know how to specify the query exactly.
The query semantics is certainly not crisp and hence not
easily expressed in SQL especially when the structure of the
ontology is not well-known to the user.

Our approach. In this paper, we present a novel method
to address the two challenges we identified above. Instead of
endeavoring to incorporate ontology into relational form and
create new language constructs to express such queries, our
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Figure 2: A three level fragment of the NCI Thesaurus ontology. Elliptical nodes denote concepts. Rectan-
gular nodes denote property values. Edges between concepts denote subsumption relationships.

approach takes advantage of user-provided examples that
satisfy the query as seeds to automate the query process.
Specifically, our method consists of three steps. In the

first step, the user provides several examples that satisfy
the query he has in mind. In the second step, the system
uses machine learning techniques to mine the semantics of
the query from the given examples and their related ontolo-
gies. In the third step, the system applies the semantics on
the data to generate the entire query result and return it
to the user. In the query processing process, as an optional
active learning mechanism, the user will be probed system-
atically to determine whether certain tuples satisfy his query
in order to help clarify his intention and speed up the query
processing process. False positive errors in the query results
can be detected by the user and fed back to the system as
part of the active learning process. Since a semantic query
is inherently fuzzy, the user typically expects only a subset
of the full results, false negative errors can be ameliorated
by doing active learning until the desired number of result
tuples are obtained.
Using our method for Example 1, the user no longer needs

to write the unwieldy SQL queries, but instead provides ex-
amples of tuples, say tuples with vID 4 & 5, that satisfy
the query he has in mind. Our method then uses machine-
learning techniques to learn a model from the examples, and

generate the query results by applying the model on the en-
tire base table. In other words, our method insulates the
user entirely from the complexity of understanding and us-
ing ontologies. Consequently, there is no need to map on-
tologies into relational form.

2. RELATED WORK
Query by Example (QBE) is a well-known concept in

database community. It was first proposed by Moshé M.
Zloof in the mid 1970s [27, 28] as a query language that
can be used by database users to define and query a rela-
tional database. It is quite different from SQL in that it is
a graphical query language. Its interface is usually virtual
tables where the user could enter commands, examples, etc.
After QBE was presented, most research work around QBE
has been focused on enrichment and extension of QBE as a
query language and developing efficient methods for generat-
ing and processing the queries defined by the examples [12].

In commercial database products, QBE is widely used as
graphical front-end for RDBMSs [1]. It is also used as a
convenient interface for users to specify queries for image,
video, and document databases, and various techniques have
been studied [2, 3, 4, 20].

There are two common characteristics for all the previous
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Figure 3: One possible processing workflow for
Example 2 is to start from the user-given term
“Choroid” (on extreme right), find the correspond-
ing concept node, find all the disease nodes (on
far left) that are linked to the Choroid con-
cept via a “Disease Has Primary Anatomic Site”
or “Disease Has Associated Anatomic Site” or “Dis-
ease Has Metastatic Anatomic Site” edge, and ex-
pand these disease nodes to find all subsumed con-
cepts and their synonyms.

QBE work: (a) the examples are used to specify a query that
will be generated (b) the generated query is a“normal”query
in terms that all the query conditions (may be in the forms
of similarity measures) are defined on the base attributes in
the underlying tables in the databases.
The semantic QBE framework proposed in this paper is

very different from the traditional QBE framework. First,
due to the complexity of the semantic information associated
with the data in the base relational tables, the real query
associated with the user’s intention which is specified by the
input examples is really hard (or impossible) to capture by a
traditional SQL query. As a result, our method tries to learn
the query processing directly without learning the query first,
in contrast to the traditional QBE framework. Secondly,
in our work, the underlying “query” is defined not only on
the base attributes in the relational table, but also on the
semantics of the base data encoded in the ontology and the
connections between the relational data and the ontology
data.
It is worth mentioning the Query By Semantic Example

(QBSE) work presented in [20]. While it looks very similar
to our work in name, it still falls into the category of the
traditional QBE work: the semantic information related to
the images is in the form of a vocabulary that is used to train
and label the base data during a off-line pre-processing stage.
In other words, once the pre-processing is done, QBSE is not
different from the traditional QBE.
Managing ontology data alone is not a new topic and sev-

eral systems have been developed [16, 18, 19, 23, 24] during
the past years. Some of these systems store ontology data
in a file system, making querying them very hard [19]. The
other systems transform the ontology data into RDF form
and store the RDF triples in a relational database. Process-

ing of ontology-related queries in these systems is typically
done by an external middle-ware (wrapper) layer built on
top of a DBMS engine, and DBMS users cannot really ref-
erence ontology data directly.

Querying relational data together with their semantics en-
coded in ontology is an emerging topic that has attracted a
lot of attention recently. Das et al. [7] proposed a method to
support ontology-based semantic matching in RDBMS using
SQL directly. Ontology data are pre-processed and stored
in a set of system-defined tables. Several special operators
and a new indexing scheme are introduced. A database user
can thus reference the ontology data directly using the new
operators. The main drawback of this approach is that se-
mantic queries involving the ontology data are usually hard
to write and costly to process (in terms of both processing
time and storage overhead) due to the graphical structure of
the ontology data and the need for reasoning (i.e., transitive
closure computation) on the ontology data.

In [14], virtual view is proposed as a way to represent re-
lational data together with their related ontology data in
a relational view. However, there are three requirements
to apply the virtual view idea: (a)language extensions to
SQL to support the creation and use of the virtual view,
(b) the DBMS engine must support native XML data (to-
gether with relational data) and the processing of the virtual
view related operators, and (c) to create a virtual view, the
user must understand the complex ontology data and their
relationship with the base relational data completely.

The problems and challenges of expressing semantic queries
over relational data have also been described in [15]; how-
ever, the authors did not propose any concrete solution.
This paper proposes a semantic query by example frame-
work that addresses the challenges outline in [15].

3. SEMANTIC QUERY BY EXAMPLE
Suppose the semantic queries Q we consider are posed

against a base table (or a view) D, and each record in D is
of the following form:

(X, OID)

where X is a feature vector and OID is the ID of an ontology
instance related to X. For instance, X represents a patient,
and OID is the disease code of the patient. In practice, D
can be the outcome of a query, or a view, and each tuple of
D can have multiple OID columns referring to multiple nodes
in an ontology.

An important question is what semantic queries Q we can
ask against D. Standard relational queries, which treat OID
as a standard relational column, are unable to express the
semantic structure in the ontology. Alternatively, we can
employ non-relational languages such as XQuery and XPath
to explore the semantic structure. However, it is extremely
tedious to form a query.

Our method consists of an off-line phase and and online
phase. In the off-line phase, the base table data is scanned
once to compute the feature vector associated with the OID

in each record. In the on-line phase, a user poses a query on
the base table by giving a set of example tuples that satisfy
the query he has in mind. The on-line phase uses a machine
learning method, in this case, the support vector machine
(SVM) method, to learn a model from the examples supplied
by the user. Once the model is learned, the base tuple is
scanned again, and the model decides what are the tuples
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satisfy the query. The user-provided training dataset may be
of small size and/or low quality, which incur negative impact
on the accuracy of the model. In this case, the user is probed
systematically to determine whether predictions made by
the system is accurate for an additional small number of
tuples. We use a more advanced active learning algorithm
for this purpose.

3.1 Feature Extraction
Before we can model a semantic query, we must first ex-

pand the base data to include related information in the
ontology. In other words, for each record of (X, OID) ∈ D,
we need to expand it into

(X,Y)

where Y = f(OID) is a vector of features returned by a
feature extraction function f . Our goal is to design the
function f so that it captures enough ontological information
related to the ontology object OID for modeling the query.
Challenges. In general learning problems, objects are

represented as vectors in a feature space. For complex ob-
jects such as sequences, trees, and graphs, it is not a trivial
task to find a suitable feature space: On the one hand, the
feature space must capture enough information about the
objects so that all discriminative features about an object
are covered. However, in most cases, considering all possible
features is prohibitive since it often leads to combinatorial
explosion.
In our case, we want to vectorize the local hierarchical

structure of an ontology node, as the local structure captures
most semantic information of the node. Let o be the node
whose id is OID in the ontology graph. The problem is,
what information related to o in the ontology is important
in classifying examples where OID is part of the data.
There are a large number of options: we can include o’s

immediate child nodes, immediate parent nodes, the paths
to some nodes we consider important in the ontology, etc.
These naive schemes are flawed for two reasons. First, the
nodes and paths themselves are still complex structures, and
for example we need to further vectorize the paths. Second,
and more importantly, the approach is not general enough.
As an instance, in Example 1, the critical information about
the query consists of the synonyms of any descendant con-
cepts of “Eye Tumor” – such information is not captured by
the naive scheme mentioned above.
Alternatively, we can perform feature extraction after the

query is given. For Example 2, we might want to include the
information about whether there is a path to the anatomic
site “Choroid” in the feature extraction process. But this
approach is also flawed. First, feature extraction is an ex-
pensive process, and in most cases we cannot afford doing
that for each query. Second, it undoes the purpose of query
by example, as it requires the user to know what part of
ontology is relevant and important in answering the query.
Shortest distance based feature extraction. In this

paper, we adopt a simple and effective feature extraction
method. Our approach is general. Although there is no
guarantee that all queries can be answered accurately based
on the features extracted by our approach, it endeavors to
include as much information as possible while keeping the
data size small and the extraction process simple.
More specifically, assume the ontology has a set of con-

cepts C = {c1, ⋅ ⋅ ⋅ , ck}. The feature extraction function we

concept A

concept D

concept Cconcept C

concept B

concept E

1

2

4

6

5

3

Figure 4: An ontology graph consisting of 5 concepts
and 6 nodes

A B C D E
1 0 1 2 3 3
2 1 0 1 2 2
3 3 2 1 0 4
4 2 1 0 3 1
5 2 1 0 1 3
6 3 2 1 4 0

Table 1: Extracted features

adopt is in the following form

f(OID) = ⟨y1, ⋅ ⋅ ⋅ , yk⟩

where k is the total number of unique concepts in the on-
tology graph, and yi is the shortest distance from node o
(whose id is OID) to any node whose label or concept is ci.

As an example, Figure 4 is a snippet of an ontology graph.
Each node has its id and a label which indicates an onto-
logical concept represented by the node. We omit the edge
label here, as labeled edges can be transformed into labeled
nodes. Table 1 shows the extracted features for the nodes.
Here, each row represents a node and each column a concept
in the ontology graph. An element fij in the table indicates
the shortest distance between node i and concept j.

The size of the dataset is n ⋅k, where n is the total number
of nodes and k is the total number of concepts. Given usually
k ≪ n, we know the total size is less than n2. Unlike other
graph feature extraction methods that result in information
exponential in the size of the graph, this method is clearly
more tractable.

Expressive power of the feature extraction method.
The important question is whether the feature extraction
method retains enough useful information about the local
structure of each node. Clearly, it omits much information
in the ontology. For instance, it treats the ontology as an
undirected graph; it disregards the labels of the edges and
concentrate on the labels of the nodes only.

Although it is not possible to rebuild the entire graph
from the extracted data, we argue that the feature extrac-
tion method effectively captures the local structures of a
node in the ontology. First of all, it tells us how close a
node is to different concepts. Furthermore, we can infer
much hierarchical information from the extracted features.
The reason is because the distribution of different concepts
in a graph is not uniformly random. In most cases, the con-
cepts alone include rich hierarchical information. Typically,
nodes belong to the same concept cluster together, or ap-
pear on the same hierarchical level in an ontology. Thus,
from feature distributions of the nodes, we can roughly tell
their hierarchical positions in the graph.

For example, assume a user wants to find nodes that
are parent of any concept C nodes. Instead of expressing
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A B C D E label

1 0 1 2 3 3 -1
2 1 0 1 2 2 +1
3 3 2 1 0 4 +1
4 2 1 0 3 1 -1
5 2 1 0 1 3 -1
6 3 2 1 4 0 -1

Table 2: Training dataset for query ‘find nodes that
are parent nodes of any node of concept C’

C=1 ?

E>0 ?

Y

Y N

N

  -1

-1+1

Figure 5: Decision tree classifier learned from the
training dataset

the query explicitly, the user gives us the following train-
ing dataset, where node 2 and 3 are positive (satisfying the
query), and the rest are negative. The question is, can we
learn the query from the training dataset?
The answer is yes. A possible decision tree learned from

the above data is shown in Figure 5. Given a node to clas-
sify, it first tests if the shortest distance from the node to
concept C is 1. Nodes that satisfy the test are either par-
ent or child nodes of concept C node, while other nodes are
classified as negative immediately. To exclude child nodes of
concept C node, the second test checks the shortest distance
to concept E node. Because the distribution of concepts is
not uniformly random, we have reason to believe that child
nodes of concept C nodes are closer to concept E node than
parent nodes. Thus, the decision tree learned should gener-
alize well over testing data.
Certainly, it is highly possible that the user-provided train-

ing dataset, which is usually small, cannot fully characterize
the query (for example, if the last record in Table 2 is not
in the training dataset, then the decision tree will over gen-
eralize the query and classify both child and parent nodes
of concept C nodes as positive). To make sure that the
model we learn eventually has high accuracy, we resort to
active learning, that is, we select records that are impor-
tant to characterizing the query and ask the user to label
these records in the learning process. We give the detail in
Section 3.3.
Implementation. Algorithm 1 outlines the steps for the

off-line phase. The OfflinePhase procedure takes as in-
put the table D which is a collection of tuples, the ontology
graph G, and a parameter dmax that is used for the approx-
imate feature extraction procedure GetApproxFeatures.
The for-loop at Line 2 iterates over each tuple in the base
table. ConceptNodes(t) denotes the set of concept nodes
associated with tuple t of the base table. More than one
column of a base table tuple may be associated with on-
tologies and the value of a column in the tuple may be as-
sociated with more than one concept node in the ontology.
Hence a single tuple may be associated with multiple con-
cept nodes in the ontology. The feature vector ft for tuple t
is the union of all the features associated with each concept
node in ConceptNodes(t). The feature vectors for a given

Algorithm 1 OfflinePhase(D,G, dmax )

Input: s set D of tuples from the base table, concept graph G,
maximum depth dmax

Output: a set F of feature vectors for the tuples in
D

1: F ← ∅ /* init */
2: for all t ∈ D do

3: ft ← vector(∞) /* init */
4: for all c ∈ ConceptNodes(t) do

5: GetApproxFeatures(G, c, 0, dmax , ft)
6: F ← F ∪ {ft}

Algorithm 2 GetApproxFeatures(G, c, d, dmax , f)

Input: concept graph G, current concept c, current depth d ,
maximum depth dmax , the current feature vector f
Output: approximate feature f

1: if d = dmax then

2: return
3: d ← d + 1
4: for all p ∈ PropertySet(c) do

5: f [p]← min(f [p], d)
6: for all child ∈ Adj (G, c) do

7: GetApproxFeatures(G, child , d , dmax , f)

table only needs to be computed once. Although the Of-

flinePhase procedure is a batch processing procedure, the
feature vector computation could also be done once for each
tuple, when the tuple is inserted into the table.

To find the shortest distance between any node and any
concept, the simplest way is to invoke the all pairs shortest
distance algorithm. The Floyd-Warshall algorithm [6] com-
pares all possible paths through the graph between each pair
of vertices. For a graph with V vertices, it is able to do this
with O(V 3) comparisons.

For small ontologies, the cubic running time is acceptable;
however, for large ontologies such as the NCI Thesaurus that
has 64,000 concept nodes, computing the shortest path for
all pairs still takes a prohibitive amount of time. In order
for our method to be practical, we propose using a depth-
first search based algorithm to compute approximate feature
vectors. The approximation is based on the intuition that
the features most relevant to a given node are usually the
nodes that are relatively nearby. Hence, the algorithm for
finding the approximate feature vector for a given node c
is to traverse the graph starting from c for a maximum of
dmax steps and maintain the shortest distance for the nodes
thus traversed. Algorithm 2 outlines the recursive GetAp-

proxFeatures procedure that implements this approxima-
tion. Prior to the first call to GetApproxFeatures, the
feature vector f should be initialized to a vector of infinity,
i.e., MAXINT, because each entry f [n] stores the (current)
shortest distance of the starting node to the node n. As
the procedure traversed the graph starting from the given
concept node c, the shortest distance stored in f will be
updated via Line 5. Adj (G, c) denotes the set of concept
nodes adjacent to the given concept c in concept graph G.
PropertySet(c) denotes the set of properties ( terminal non-
concept nodes ) adjacent to concept c in graph G. Note
that a breadth-first search implementation is also possible,
but requires more space and bookkeeping. Using such depth-
limited traversals to compute approximate feature vectors is
significantly more efficient for large ontologies, because each
feature vector requires a depth-limited traversal that covers
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Algorithm 3 OnlineQueryByExample(F,P, ntrg)

Input: a set F of feature vectors for the tuples in the base table,
a set P of positive examples from the user
Output: a set R of query results

1: N ← RandomSample(F, ntrg − ∣P ∣)
2: label N as negative
3: Initialize training set X ← P ∪N
4: model M ← svm learn( X )
5: R← svm classify ( F,M )
6: map the labels in R back to base table tuples

an asymptotically constant number of nodes and the num-
ber of such traversals is at most the size of the base table.
As long as the size of the base table is significantly smaller
than O(V 3), GetApproxFeatures will be more efficient.

3.2 Learning Query Semantics
Instead of expressing a query explicitly in SQL or any

other query language, the user uses a few examples to char-
acterize the query. It is the responsibility of the system to
figure out the query semantics. Machine learning techniques
are used here to solve the problem.
Training dataset preparation. When the user forms

a query in his mind against the base table D, he provides
us with a small dataset T where each record in T has the
following form:

(X, OID, label)

where label ∈ {+1, -1} indicates whether tuple (X, OID) ∈
D satisfies the query or not. Note that the user-supplied
examples may or may not be part of the base table D.
In order to train a classifier, the training dataset must

have both positive and negative examples. But it might be
counter-intuitive to ask the users to provide negative exam-
ples. In the case where examples provided by the user are all
positive (i.e., label = +1), we need to generate some nega-
tive examples on our own. To do this, we randomly pick a
set of tuples Pn ⊂ D and label each tuple in Pn as negative
(label = −1). The training dataset thus consists of Pn and
the user-provided, all positive examples. Certainly, there is
always the possibility that some tuples in Pn actually satisfy
the query. But assuming that the tuples satisfying the query
account for a small proportion of tuples in D, the classifier
usually can overcome such ‘noise’ in the data.
The OnlineQueryByExample procedure takes as input

this set P of positive examples, the set F of feature vectors
associated with the base table, and a parameter for the total
number of training examples to use. Algorithm 3 outlines
the steps of the OnlineQueryByExample procedure.
The algorithm first constructs a set of negative examples

for training by taking a random sample of the base table
(Line 1) and labeling the corresponding feature vectors as
negative (Line 2). Line 3 constructs the training set as the
union of the positive and the negative examples. We then
learn a model from the training set and apply this model to
classify the feature vectors associated with the base table.
Note that Line 6 is required, because the mapping between
base table tuples to feature vectors is often many-to-one.
The learning and the classification occur in the space of fea-
ture vectors; hence, we need to map the labels from the
classification operation back to the tuples in the base table.
We use support vector machines (SVMs), which we de-

scribe below, as the base learner in our work. We then

Figure 6: SVM: maximize the margin

use SVMs to support active learning, which improves our
query by example system by reducing the human cost (Sec-
tion 3.3).

Support Vector Machines. Support Vector Machines
(SVMs) are a class of supervised learning algorithms intro-
duced by Vapnik [26]. Given a set of training data (posi-
tive and negative examples), SVMs learn a linear decision
boundary to discriminate between the two classes. The re-
sult is a linear classification rule that can be used to classify
new test examples. SVMs have demonstrated excellent gen-
eralization performance (accuracy on unlabeled data sets)
in many domains and have strong theoretical motivation in
statistical learning theory [26].

Given a dataset of (Xi,Yi, labeli) where Xi is the orig-
inal features, Yi is the features derived from the ontology,
and label ∈ {+1,−1} is the class label, SVMs learn a deci-
sion boundary in the combined feature space of Xi and Yi

to separate the two classes. To make our discussion sim-
ple, we use xi to represent the combined features, that is,
xi = ⟨Xi,Yi⟩, and we assume xi ∈ RN .

An SVM trained from the dataset (xi, labeli) specifies a
linear classification rule f by a pair (w, b), where w ∈ RN

and b ∈ R, via

f(x) = w ⋅ x+ b

where a point x is classified as positive if f(x) > 0, or neg-
ative if f(x) < 0. Geometrically, the decision boundary is
the hyperplane

{x ∈ RN : w ⋅ x+ b = 0}

where w is a normal vector to the hyperplane and b is the
bias.

Figure 6 illustrates a decision boundary that separates ex-
amples of the positive and negative classes. Clearly, there
are many such decision boundaries. The optimal one is the
unique boundary that separates positive and negative exam-
ples for which the margin is maximized:

max
w,b

{
minxi

{∣∣x− xi∣∣ : x ∈ RN ,w ⋅ x+ b = 0}
}

The decision boundary shown in Figure 6 is the optimal
boundary.

3.3 Active Learning for QBE
We learn a model from the extended dataset of (Xi,Yi,

labeli)(i = 1 ⋅ ⋅ ⋅n), and use the model to classify the re-
maining data. One potential challenge is the quality of the
labeled examples provided by the user. The user usually
provides a very small number of such examples (say 2-5 ex-
amples), and it is very likely that classifiers built from such
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Figure 7: Intuition for active learning heuristic.
The solid line represents the decision boundary, the
shaded region denotes the margin, and ‘X’ and ‘O’
denote the positive and the negative support vec-
tors.

small datasets have large variance, which affects the classi-
fication accuracy.
In this section, we propose to use active learning to solve

this problem. Using the user-provided examples as seeds,
we choose a small number of additional examples that are
informative in terms of separating the two classes, and ask
the user to label the examples.
The size of the training dataset clearly affects the quality

of the trained classifier. A larger training dataset reduces
model over fitting and improves its accuracy. The goal of
active learning is to iteratively select the best example to
incorporate into the training dataset so as to obtain a high
quality classifier. In our case, we assume that the user has
initially provided a small set of labeled examples and our
system has computed a set of query results using the al-
gorithms described in Section 3.2. If the user now wants to
further refine the query results by labeling, say one more ex-
ample, our system should use active learning techniques to
find the best example for the user to label. For SVMs, sev-
eral active learning techniques have been proposed in [21,
25]. The problem with many of these techniques is that
they require computing the SVM for each possible labeling
of a candidate example in order to choose the best example.
This is usually impractical in our case, because the number
of candidates to consider is the size of the table (usually in
the order of thousands) less the labeled examples (usually
a handful). Hence, we adapt the simple heuristic approach
in [21] for our scenario.
The intuition for the heuristic is illustrated in Figure 7.

Suppose the candidate pool of examples consists of points
a and b as shown in Figure 7(a). If we pick a and suppose
the user labels a as negative, then the SVM and the margin
do not change, because the current support vectors are still
valid. If we pick b which is closer to the decision boundary
and suppose the user labels b as negative (see Figure 7(b),
then the margin of the new SVM would have shrunk. Sim-
ilarly, suppose the user labels b as positive, the margin of
the new SVM would also have shrunk. The heuristic pro-
posed in [21] picks the example that is closest to the decision
boundary which would ensure that the margin of the SVM
gets shrunk by nearly half whether the example is labeled
positive or negative.
In order to apply this heuristic, we need compute the dis-

tance of each example in the candidate pool to the decision
boundary. The distance between any given point x and the
decision boundary of a SVM specified by unit vector w and

Algorithm 4 GetBestExample(X,F,M)

Input: set of current labeled examples X, set of all examples F ,
current SVM model M
Output: the best example f ∈ F −X to present to the user for
labeling

1: F ′ ← F −X
2: for all f ∈ F ′ do

3: d(f) ← calculate the distance from the boundary of M
using Equation (1).

4: return argminf d(f)

scalar b is given by,

d(x) = ∣w ⋅ x− b∣. (1)

At each iteration of user feedback, our system needs to select
the optimal example from the set of unlabeled examples (tu-
ples from the base table) to present to the user for feedback.
Algorithm 4 outlines the steps for choosing the best example.
The GetBestExample procedure takes as input the set of
currently labeled examples, the set of all examples from the
base table, and the SVM model obtained from the last it-
eration. Line 1 finds the set of unlabeled examples. The
for-loop at Line 2 iterates over the set of unlabeled exam-
ples and compute the their distance to the decision boundary
of the current SVM model. The procedure then returns the
example that is closest to the boundary. Note that near-
est neighbor search techniques do not apply directly to this
problem, because the criteria here is searching for points
nearest to a given hyperplane. However, quantization tech-
niques can be used on the pool of unlabeled examples to
reduce the number of distance computations.

After the best example is selected by the system, it is
presented to the user. The user will label the example and
the labeled example will be added to the current pool of
labeled examples. To form the training set for the SVM
learning algorithm, we again may optionally augment the
labeled examples with randomly sampled negative examples.
The resultant SVM is then used to generate the query result.
The user may choose to stop if the results are satisfactory,
or request for another iteration of refinement.

4. EXPERIMENTS
We implemented our query by example system using SVM-

Light [11] with a linear kernel. For the feature extraction
step we used the GetApproxFeatures procedure (Algo-
rithm 2) with the maximum depth set to 7. Our experiments
are designed to answer several important questions:

∙ How does the system perform over different queries?

∙ How many positive examples does the user need to
provide to get reasonable result quality?

∙ How many negative examples should the system auto-
matically augment?

∙ How does query selectivity affect result quality?

∙ How does size of the table affect result quality?

∙ What kind of response time to expect?

Queries. For the subset of experimental results we present
in this paper, we used six queries based on Example 2, vary-
ing the anatomic site. Varying the anatomic sites means
that each query will be associated with a different subgraph
in the ontology with a different number of concept nodes,
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Query Anatomic Site Nodes Edges Properties

Q1 Gastrointestinal System 1063 1503 10264
Q2 Respiratory System 752 952 6841
Q3 Urinary System 401 528 3765
Q4 Hematopoietic and 1142 1831 12174

Lymphatic System
Q5 Reproductive System 1176 1614 10833
Q6 Head and Neck 1080 1584 11279

Table 3: Queries used in the experiments.

concept edges, and concept properties in the subgraph. The
characteristics of the six queries are summarized in Table 3.
Dataset. We used a real ontology in our experiments,

namely, the NCI Thesaurus [17] and generated synthetic
base table data using values from the NCI Thesaurus. The
NCI Thesaurus is a DAG with 63,924 concept nodes, 72,466
concept edges, and 540,298 properties. The schema of the
base table follows that of Figure 1. Given a particular query,
a table size and a target query selectivity, we generate the
base table as follows. Use the query to generate the two
sets of diagnosis terms: the positive set contains all dis-
tinct possible terms that satisfy the query, and the nega-
tive set contains all distinct terms that do not satisfy the
query. Pick randomly with replacement from the positive
set enough number of terms to fulfill the target query selec-
tivity. Pick randomly with replacement from the negative
set to fill up the rest of the table. For each table and query
we also store the ground truth, i.e., which tuples satisfy the
query, which do not.
In order to simulate a real user supplying only a few pos-

itive examples, we generate the training data for a given
table and query as follows. Using the ground truth for that
query and table, extract the positive tuples from the table.
Pick randomly without replacement the required number of
positive examples from the positive tuples. To make up
the required number of training examples, pick the required
number of examples from the table and assume that they are
negative examples. We will show in one of our experiments
the effect of this assumption.
Performance Metrics. In addition to processing time

which consists of time to learn the model, and time to clas-
sify the tuples in the table using the model, we measure the
result quality returned by our query by example system. Re-
sult quality is measured using three metrics. Accuracy is the
percentage of tuples in the table classified correctly. False
positive rate is the percentage of tuples in the table classified
as positive even though they do not satisfy the query. False
negative rate is the percentage of tuples in the table classi-
fied as negative even though they do satisfy the query. The
measurement of these metrics are averaged over 10 random
runs. Each run uses a different randomly generated training
dataset.

4.1 Varying the number of positive examples
In this experiment, we investigate how the number of pos-

itive examples supplied by the user affects the result quality.
Figure 8 shows the result quality measurements for all six
queries as the number of positive examples vary from 2 to 16.
The size of the table is fixed at 10,000, the query selectivity1

at 10%, the size of the training data at 40 examples. Note

1Query selectivity is the size of the query result as a per-
centage of the size of the table.

that we purposely chose rather small numbers of positive
examples, because it is not practical to expect a human user
to supply tens or hundreds of examples. Figure 8(a) shows
that accuracy generally improves with more positive exam-
ples. Even with two positive examples, our system is able
to achieve 90% accuracy. Figure 8(b) shows that the false
positive rate is generally quite stable and very close to zero
(note the scale on the y-axis). Figure 8(c) shows that the
false negative rate decreases significantly with more positive
examples thus contributing to the increase in accuracy. This
result is expected, since the SVM would be able to learn a
better model for the positive examples if there are more of
them and would then be able to more correctly classify a
positive example as positive. Note also that the empirical
results are consistent over all six queries.

4.2 Varying the number of training examples
In this experiment, we study how the number of train-

ing examples and the number of randomly selected negative
examples affect the query result quality. We fixed the num-
ber of positive examples at 8, and vary the total number
of training examples from 40 to 160. The size of the ta-
ble and the query selectivity remains at 10,000 and 10%
respectively. Figure 9 shows the results of our study for a
representative query Q2. Figure 9(a) shows that accuracy
drops by about 5% as the number of training examples are
increased. This result seems counter-intuitive, since we ex-
pect higher accuracy with more examples even if they are
negative examples. However, recall that since we do not ex-
pect the user to supply any negative examples, our system
automatically generate negative examples by random sam-
pling from the table and assigning negative labels no matter
what the ground truth might be. Hence the randomly gen-
erated negative examples might contain labeling errors.

To corroborate this reasoning, we re-generated the train-
ing data by picking the negative examples not randomly
from the table, but from the true negative set of examples
computed using the ground truth. Figure 9(b) shows the
result quality using these perfect training data. With the
perfect training data, the result quality remains stable as
the number of training examples are increased which sug-
gests that the increase in errors in Figure 9(b) are due to
the randomly generated negative examples introduced by
our system. Since these negative examples are generated
via random sampling, the number of mislabeled negative
examples should be proportional to the query selectivity for
that table and query. Figure 10 plots the accuracy and the
false negative rate against number of training examples for 4
different query selectivity. The plots clearly show that when
the query selectivity is high, increasing the number of train-
ing examples (and hence the number of randomly generated
negative examples) will increase the false negative rate. The
false positive rates remain very low and the corresponding
plot is omitted for brevity.

4.3 Varying the query selectivity
The previous experiment motivates the need to under-

stand the relationship between query result quality and the
query selectivity. Figure 11 plots query result quality against
query selectivity where the table size is held constant at
10,000, the number of training examples at 160, and the
number of positive examples at 8. The plot suggests that
the relationship between query selectivity and result quality
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Figure 8: Query result quality over 6 queries and varying numbers of positive examples.
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Figure 9: Query result quality for Q2 over varying training data size. Accuracy is plotted against the left
axis, and false positive and negative error rates are plotted against the error axes on the right.

 70

 75

 80

 85

 90

 95

 100

 105

 110

 40  60  80  100  120  140  160

A
c
c
u
ra

c
y
 (

%
)

Number of training examples

Q2 qsel=5K
Q2 qsel=10K
Q2 qsel=15K
Q2 qsel=20K

(a) Accuracy across query selectivity

 0

 5

 10

 15

 20

 25

 30

 40  60  80  100  120  140  160

F
a
ls

e
 N

e
g
a
ti
v
e
 E

rr
o
r 

(%
)

Number of training examples

Q2 qsel=5K
Q2 qsel=10K
Q2 qsel=15K
Q2 qsel=20K

(b) False negative rate across query selectiv-

ity

Figure 10: Query result for Q2 over varying training data size and
4 different query selectivity values.
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Area of Expertise Number of users

Medical 2
Database 4
Ontology 2
Database + Ontology 1

Table 4: Background of the nine users in our study.

is only linear.

4.4 Varying the table size
In this experiment we investigate the effect of table size on

the query result quality. Figure 12 shows our query result
quality measurements for different table sizes, holding the
query selectivity constant at 5%, the number of training
examples at 160, the number of positive examples at 16. It
is somewhat surprising to observe that the size of the table
does not have any significant effect on the result quality.
The small training data set is enough to completely capture
the query semantics even when the underlying set of tuples
is large.

4.5 Processing time
We require the query result to be produced in a reason-

able amount of time. In this experiment, we investigate the
response time characteristics of our system. We measured
the time for the system to learn a model from the training
data and the time for the classifier to classify all the tuples
in the base table. Figure 13 shows the learning time and
the classification time for query Q2 on an Intel Xeon 3.2
GHz machine running Linux. Note that the running time
includes reading and writing the base data and the result
file from and to disk. Even so, the learning time is negli-
gible, and the classification time is linear in the size of the
base table. Processing a query by example on a table of
size 10,000 takes only a quarter of a second (including disk
access). Note the current prototype has not incorporated
several possible optimizations, such as performing classifi-
cation only on the distinct feature vectors from the base
tables, and hence we expect even better processing times in
the optimized version.

5. USER STUDY
In order to demonstrate the usability of the concept of

semantic query by example using our proposed method, we
conducted a user study on nine users with different levels of
expertise in terms of information technology, medical knowl-
edge, and knowledge representation. Table 4 summarizes
the background of our subjects. Our user study is based on
the EMR scenario introduced in Section 1. The goals of our
study are to validate if our proposed method is indeed user
friendly and to evaluate the accuracy of our method when
it is used by different users.
User tasks. Each user is asked to perform three tasks.

Each task is associated with a particular information need.
In our study we used the first three queries in Table 3 as the
information need for the three tasks.
For each task, the user is given an explanation of the EMR

database and the information need associated with the task
(eg., find all patients with some disease in the gastrointesti-
nal system), and then asked to perform two steps. In the
first step, the user is asked to write down her best effort SQL
query to retrieve the required records from the database.

In the second step, the user is asked to identify approxi-
mately 10-15 records that satisfy the information need from
a pool of about 40 randomly picked records from the EMR
database. For medical experts, we also asked them to pro-
vide diagnosis terms that are associated with the informa-
tion need.

Methodology. We interviewed the users about their ex-
perience in order to get a qualitative answer to the usability
of the two steps, and we timed the users for each task and
each step in order to quantify the “ease of use” of the two
steps. After we obtained the positive examples from each
user (for step 2 of each task), we ran our SVM-based algo-
rithm to obtain the required results for each task (i.e. query)
and computed the accuracy, false positive and false negative
rates. These measurements are averaged over all the user
subjects and are tabulated in Table 5 along with their stan-
dard deviation. The measurements associated with each of
the three task are collated in one row. For each task, we
present the accuracy of our approach when using the 15
user-marked positive examples from each of the nine users
as input. The accuracy is measured by false positive rate
and false negative rate. We compute the mean and standard
deviation for each accuracy measurement. We also present
the time (in minute) it took for the users to write down the
best-effort SQL query and to mark the positive examples.
We compute the mean and standard deviation for the each
time measurement.

Observations. Eight out of the nine users reported dif-
ficulty in writing down the SQL query and dissatisfaction
with the query they finally wrote since they intuitively knew
that their query is not the “right” query. One user (who is
an ontology and database expert) chose to write a two-page
program for each task. It took about four minutes on aver-
age for a user to write down her best-effort query for each
task. All nine users reported a pleasant experience marking
the qualified tuples. It took about two minutes in average
for a user to mark the 15 qualified tuples for each task. It
took a medical expert about three minutes to came up with
a small set of her own positive examples for each task. We
tried to run the SQL queries that the user subjects wrote,
but unfortunately all of them do not run without significant
corrections (hence we are not able to quantify the accuracy
of these queries rigorously). Even when we ran the corrected
versions of these queries, we found that the accuracy of our
learning-based approach is still much higher than that of the
best-effort SQL query written by any user during the study
regardless of the fact that some of the users are database ex-
perts. In summary, our user study demonstrates that iden-
tifying positive examples from a pool is more user friendly
than writing SQL queries (even very simple keyword-based
filtering queries) and that the quality of the results com-
puted by our semantic query by example method is quite
reasonable and acceptable in most non-critical applications.

6. CONCLUSION
In this paper, we introduce a machine learning approach

to support semantic queries in relational database. In se-
mantic query processing, the biggest hurdle is to represent
ontological data in relational form so that the relational
database engine can manipulate the ontology in a way con-
sistent with manipulating the data. Previous approaches in-
clude transforming the graph ontological data into tabular
form, or representing ontological data in XML and lever-
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Accuracy False Positive False Negative Time (min) to Write SQL Time (min) to Mark Examples
Task Mean Std.dev. Mean Std.dev. Mean Std.dev. Mean Std.dev. Mean Std.dev.
1 89.9 0.028 0.098 0.028 10.000 0 5.25 2.31 2.00 0.93
2 89.9 0.011 0.085 0.011 10.001 0 4.13 2.10 2.25 0.76
3 89.8 0.033 0.176 0.036 10.000 0 3.63 2.45 2.06 1.27

Table 5: Accuracy rate, false positive rate, false negative rate and timing measurements for our user study.

aging database extenders on XML such as DB2’s Viper.
These approaches, however, are either expensive (materi-
alizing a transitive relationship represented by a graph may
increase the data size exponentially) or requiring changes
in the database engine and new extensions to SQL. Our ap-
proach shields the user from the necessity of dealing with the
ontology directly. Indeed, as our user study indicates, the
difficulty of expressing ontology-based query semantics in a
query language is the major hurdle of promoting semantic
query processing. With our approach, the users do not even
need to know ontology representation. All that is required
is that the user gives some examples that satisfy the query
he has in mind. The system then automatically finds the
answer to the query. In this process, semantics, which is a
concept usually hard to express, remains as a concept in the
mind of user, without having to be expressed explicitly in
a query language. Our experiments and user study results
show that the approach is efficient, effective, and general in
supporting semantic queries in terms of both accuracy and
usability.
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