
Efficient Privacy-Aware Record Integration

Mehmet Kuzu
Dept. of Computer Science
University of Texas at Dallas
Richardson, TX, 75080, USA

mehmet.kuzu@utdallas.edu

Murat Kantarcioglu
Dept. of Computer Science
University of Texas at Dallas
Richardson, TX, 75080, USA

muratk@utdallas.edu

Ali Inan
Dept. of Computer

Engineering
Isik University

Istanbul, Turkey
ali.inan@isikun.edu.tr

Elisa Bertino
Dept. of Computer Science

Purdue University
W. Lafayette, IN, 47907, USA
bertino@cs.purdue.edu

Elizabeth Durham
Dept. of Biomedical

Informatics
Vanderbilt University

Nashville, TN, 37232, USA
ea.durham@vanderbilt.edu

Bradley Malin
Dept. of Biomedical

Informatics
Vanderbilt University

Nashville, TN, 37232, USA
b.malin@vanderbilt.edu

ABSTRACT

The integration of information dispersed among multiple
repositories is a crucial step for accurate data analysis in
various domains. In support of this goal, it is critical to
devise procedures for identifying similar records across dis-
tinct data sources. At the same time, to adhere to pri-
vacy regulations and policies, such procedures should pro-
tect the confidentiality of the individuals to whom the infor-
mation corresponds. Various private record linkage (PRL)
protocols have been proposed to achieve this goal, involv-
ing secure multi-party computation (SMC) and similarity
preserving data transformation techniques. SMC methods
provide secure and accurate solutions to the PRL problem,
but are prohibitively expensive in practice, mainly due to
excessive computational requirements. Data transformation
techniques offer more practical solutions, but incur the cost
of information leakage and false matches.

In this paper, we introduce a novel model for practical
PRL, which 1) affords controlled and limited information
leakage, 2) avoids false matches resulting from data transfor-
mation. Initially, we partition the data sources into blocks
to eliminate comparisons for records that are unlikely to
match. Then, to identify matches, we apply an efficient SMC
technique between the candidate record pairs. To enable ef-
ficiency and privacy, our model leaks a controlled amount
of obfuscated data prior to the secure computations. Ap-
plied obfuscation relies on differential privacy which provides
strong privacy guarantees against adversaries with arbitrary
background knowledge. In addition, we illustrate the prac-
tical nature of our approach through an empirical analysis
with data derived from public voter records.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
EDBT/ICDT ’13, March 18 - 22 2013, Genoa, Italy
Copyright 2013 ACM 978-1-4503-1597-5/13/03 ...$15.00.

Categories and Subject Descriptors

H.2.7 [Database Administration]: Security, integrity, and
protection; H.3.3 [Information Search and Retrieval]:
Information filtering; H.2.8 [Database Applications]: Sta-
tistical databases

General Terms

Security, Experimentation, Performance

Keywords

Privacy, Security, Record linkage, Differential privacy

1. INTRODUCTION
Modern decentralized environments make it easy for an in-

dividual’s personal information to be dispersed among data
sources managed by independent organizations. This phe-
nomenon arises in wide array of societal contexts, and influ-
ences application domains ranging from homeland security
to biomedical research [9]. To ensure accurate and robust
analytics, it is critical to integrate information that corre-
sponds to the same individual. Already, a substantial quan-
tity of funding, policy, and research effort has been invested
to develop record linkage techniques to support this task [9].
At the same time, such techniques have traditionally been
applied on personal identifiers (e.g., forename), which can
lead to concerns about personal privacy.

To mitigate such concerns, the past decade has witnessed
a rise in private record linkage (PRL) frameworks. These
techniques strive to enable data integration without reveal-
ing the explicit identifiers of the corresponding individuals.
To achieve their goal, PRL protocols must be resistant to
typographical errors (e.g., “john” vs. “jonh”) that can arise
in real world data sources [14, 15]. Previous PRL algorithms
[1, 16, 17, 25, 28] achieve this feat by computing the simi-
larity of record pairs via two fundamental mechanisms: 1)
secure multi-party computation (SMC) [2, 10] and 2) simi-
larity preserving data transformation [24, 25, 30].

SMC approaches enable the identification of final match
results without leaking information through accurate and
secure similarity computations, but their current instanti-
ations are computationally too expensive. According to a

167

recent survey [6], secure edit distance computations [2] re-
quire over two years on a commodity server to compare
two datasets of 1000 strings each. Alternatively, approaches
based on data transformation are more practical but they
have several drawbacks. First, the transformed records can
leak uncontrolled information to an adversary that, under
some circumstances, can be leveraged to attack the system
and infer the original sensitive information [21]. Second, al-
most all transformation techniques map records into a met-
ric space through an approximation strategy. This process
induces some information loss, which in turn introduces false
positives (i.e., a pair of records that are unmatched in the
original space, but is classified as a match in the transformed
space). For instance, in [24] records are embedded into Eu-
clidean space by reporting their distance to a set of reference
points. The approach preserves similarity to a certain ex-
tent, but strings that are expected to be highly dissimilar
may become sufficiently close to look like they match [24].

The primary goal of this paper is to enable accurate and
efficient similarity computations for practical PRL with strong
privacy guarantees on individual records. To achieve this
goal, we propose a three-step process. First, we construct
local “blocks” on the data sources to eliminate secure simi-
larity computations for record pairs that are expected to be
non-matches. To form blocks on distinct data sources with-
out any information leakage, we partition the data space
using publicly available identifiers1. After blocking, local
blocks are released in such a way that their release leaks
only differentially private information. Finally, we apply an
efficient SMC technique on the reduced set of candidate pairs
to identify which records are sufficiently similar to match. In
this setting, any information that is useful to the adversary
is controlled according to the rigorous definition of differen-
tial privacy (DP) [7] and secure similarity computations are
performed on the original data space. In summary, there are
several notable contributions of this study:

Approximate Matching with Controlled Leakage:

Almost all practical PRL approaches that enable approxi-
mate record matching leak information (e.g., relative simi-
larity between each record) without any precise control. Al-
though few studies [16, 17] controls this leakage, they are
designed for numeric data only. Hence, they cannot handle
approximate matching for string fields (e.g., forename) that
are common in real data sources. In this study, we propose
a practical PRL protocol that enables approximate match-
ing for both string and numeric fields with controlled and
limited information leakage. Specifically, any information
leaked prior to secure similarity computations is obfuscated
according to DP to ensure strong privacy guarantees.

Space Partitioning using Public Resources: Record
linkage is typically performed with personal identifiers (e.g.,
names and addresses), that can be found in publicly avail-
able resources such as voter registration lists. We propose
utilization of such resources to improve the linkage efficiency
without leaking any information. Specifically, we divide the
data space using public identifiers to form identical space
representation for distinct parties. This enables the con-
struction of common blocks on separate data sources to re-
duce the amount of secure similarity computations.

1If public identifiers are unavailable, both data sources are
mapped to a single block. This increments the computa-
tional burden but the proposed approach is still applicable.

Efficient SMC Protocol for PRL: We propose an effi-
cient SMC approach based on a semantically secure Paillier
encryption scheme [22] for secure similarity computations.

The remainder of the paper is organized as follows. Sec-
tion 2 formulates the problem and Section 3 provides back-
ground information. Then, we present our solution in Sec-
tion 4 and its information leakage in Section 5. In Section
6, we report our experimental analysis. Finally, we review
related work in Section 7 and conclude in Section 8.

2. PROBLEM FORMULATION
Imagine Alice and Bob want to identify and share similar

records in their respective datasets A and B without reveal-
ing the identities of the corresponding individuals. In this
context, the identification of similar records is equivalent to
building a classifier that labels record pairs as “Match” or
“Non-match”. In the private record linkage problem, an ac-
curate classifier is assumed to be available. Hence, the goal
is to execute the classifier in a private, accurate and efficient
manner. Without loss of generality, we assume that A and
B have the same schema with attributes {R1, ..., Rd}. We
also assume that the characteristics of the classifier (f) can
be expressed as a decision rule.

Decision Rule (f) : Let sim : dom(Ri) × dom(Ri) 7→
R be a similarity function defined over the domain of Ri; αi

be the weight for attribute Ri and θ be the matching thresh-
old such that θ > 0. Then, f : a(R1, ..., Rd) × b(R1, ..., Rd)
7→ {match, nonmatch} is defined as follows :

f(a, b) =

8

<

:

match, if
d

P

i=1

αi · sim(a.Ri, b.Ri) ≥ θ

nonmatch, otherwise

9

=

;

The above definition of f is based on the Fellegi-Sunter
(FS) model [11] which is a commonly applied decision rule
construction mechanism for record linkage [9]. In the FS
model, the attribute weight of Ri (αi) is identified using the
conditional probabilities of agreement on Ri given the match
status. Suppose that mRi

and nRi
represent the conditional

probabilities, such that mRi
= P [a.Ri = b.Ri | a ∈ A, b ∈

B, (a, b) ∈ Match] and nRi
= P [a.Ri = b.Ri | a ∈ A, b ∈

B, (a, b) ∈ Nonmatch]. Then, αi is defined as follows:

αi = log(
mRi

nRi

)− log(
1−mRi

1− nRi

)

Once f is executed in a privacy preserving manner, Alice and
Bob share the matching record pairs with each other. Any
record of A and B that does not satisfy the match condition
remains undisclosed.

In the protocol setting, Alice does not have any access to
dataset B and Bob does not have any access to dataset A.
The computation of f is facilitated through a third party,
Charlie2, who helps the execution of the protocol without
learning any record from either A or B. We assume the
participants of the protocol are semi-honest. As such, Alice,
Bob and Charlie will follow the protocol as it is defined, but
they may try to infer private information based on the mes-
sages they receive during the execution. We further adopt
the standard assumption that participants do not collude.

2The utilization of the third party is a common practice for
privacy preserving data sharing [6].

168

3. BACKGROUND
In Section 3.1, we briefly outline some basic concepts re-

lated to differential privacy. Then, in Section 3.2, we sum-
marize the properties of Paillier cryptosystem.

3.1 Differential Privacy
Every privacy protection mechanism is vulnerable to some

type of background knowledge known to a hypothetical ad-
versary [7]. As a result, undesirable disclosures for an indi-
vidual can occur regardless of whether or not the correspond-
ing individual is included in the attacked database. Thus, it
has been recommended that, instead of tailoring privacy def-
initions against different types of background knowledge, a
data owner should minimize the risk of disclosure that arises
from participation in a database. This notion is captured by
the differential privacy (DP) protection mechanism [7]. DP
is designed to address the case of statistical databases where
users are allowed to ask only aggregate queries.

To protect privacy, DP adds random noise to each query
result. The magnitude of the noise depends on a privacy
parameter ǫ and sensitivity of the query set Q. Denoting
the response to query Q over data set T with QT , sensitivity
[8] is defined as follows:

L1-sensitivity : Over any sibling datasets T1, T2 such
that |T1| = |T2| and T1, T2 differ in only one record, the
L1-sensitivity of query set, Q = {Q1, . . . , Qq}, is measured
as:

S(Q) = max
∀T1,T2

q
X

i=1

|QT1

i −QT2

i |.

Theorem 3.1 provides a sufficient condition to satisfy
ǫ-differential privacy [8].

Theorem 3.1. Let Q be a set of queries, and S(Q) be
the L1-sensitivity of Q. Then, ǫ-differential privacy can be
achieved by adding random noise X to each query result (i.e.,
QT

i ← QT
i +X), where X is a random, i.i.d. variable drawn

from a Laplace distribution with magnitude b ≥ S(Q)/ǫ.

3.2 Paillier Cryptosystem
Paillier cryptosystem [22] is a semantically secure asym-

metric encryption scheme with some homomorphic features.
Homomorphic features enable execution of certain opera-
tions on the ciphertexts as if they are performed on their
plain versions. In the Paillier cryptosystem, if the same
message is encrypted multiple times, the ciphertexts are
not equal with very high probability. More formally, let
EncKpub

and DecKpriv
be the Paillier encryption and de-

cryption functions with keys Kpub and Kpriv, m1 and m2

be messages, cm1
and cm2

be ciphertexts such that cm1
=

EncKpub
(m1), cm2

= EncKpub
(m2). Then, cm1

6= cm2
, even

if m1 = m2 with very high probability. Furthermore, the
Paillier cryptosystem is homomorphicly additive. Given ci-
phertexts cm1

, cm2
and a constant γ, there exists efficient

algorithms to compute the encryption of m1+m2 and γ ·m1.
We represent homomorphic addition and constant multi-
plication by operators ⊕h and ⊙h respectively such that
EncKpub

(m1 + m2) = cm1
⊕h cm2

and EncKpub
(γ ·m1) =

γ ⊙h cm1
.

4. OVERVIEW OF THE SOLUTION
In this section, we provide an overview of our solution,

which is visually summarized in Figure 1. It consists of
three main steps: 1) local block construction, 2) block re-
lease and 3) integration via SMC. We present each step in
detail through Sections 4.1 to 4.3. In the blocking step,
a data partitioning is performed to reduce the number of
candidate record pairs for linkage evaluation. Then, Alice
release her blocks with encrypted contents to Bob. Finally,
the decision rule for the record linkage is executed over the
records of corresponding blocks of A and B through SMC.

4.1 Local Block Construction
The local block construction phase partitions the records

into blocks to eliminate secure similarity computations for
record pairs that are expected to be non-matches. To con-
struct blocks on distinct data sources without leaking any
private information, our model utilizes publicly available in-
formation such as voter registration lists. Specifically, the
data space is partitioned using public identifiers (e.g., fore-
names) to generate an identical space representation for both
Alice and Bob who forms blocks on their respective datasets
using this representation3. In this phase, Charlie clusters
public identifiers to form a global basis for block construc-
tion. Once Charlie shares this basis with Alice and Bob,
they map their records to the blocks according to the basis.
More formally, suppose Idpub = {Ii, . . . , Ij} represents the
set of publicly available identifiers that are included in the
schema of the datasets to be linked and {αi, . . . , αj} rep-
resents their Fellegi-Sunter weights. Then, the identifier Ip

with the maximum weight in Idpub is selected as the parti-
tioning identifier such that Ip = arg maxIk∈Idpub

αk

Once Ip is selected, Charlie partitions the values that are
in the public domain of Ip. Suppose domain(Ip) represents
the set of values in the public domain of Ip, sim(a, b) repre-
sents the similarity between a and b where a, b ∈ domain(Ip)
and nB represents the desired number of blocks. Then
Charlie applies agglomerative hierarchical clustering [29] on
domain(Ip). Specifically, each value in domain(Ip) is ini-
tially specified as a separate cluster. Then closest clusters
are successively combined until the number of clusters is re-
duced to nB . In this setting, closeness between clusters Cρ

and Cℓ denoted as closeness(Cρ, Cℓ) is computed as follows:

closeness(Cρ, Cℓ) =

P

a∈Cρ

P

b∈Cℓ
sim(a, b)

|Cρ| · |Cℓ|
Once values in domain(Ip) are placed into clusters C1 to

CnB
, Charlie transfers the populated clusters to the data

owners as a global block basis. Then, data owners locally
map their records to these clusters. Specifically, suppose ri

is a record in a local dataset with value ri.Ip on the par-
titioning identifier and Cℓ is a cluster that contains public
domain values {vℓ[1], ..., vℓ[z]}. Then the similarity between
ri and Cℓ denoted as simcls(ri, Cℓ) is computed as follows:

simcls(ri, Cℓ) = max
vℓ[j] ∈ Cℓ

sim(ri.Ip, vℓ[j])

3Space partitioning with public identifiers is reasonable, be-
cause record linkage is typically performed with personal
identifiers, which can be found in public resources such as
voter registration lists and dictionaries.

169

Figure 1: Outline of the proposed PRL protocol

After the similarities between ri and clusters C1 to CnB

are computed, ri is mapped to the most similar cluster. In
this setting, Alice and Bob map each record in their re-
spective datasets A and B to the available clusters. After
mapping, each cluster Cℓ with records of A (B) constitutes
a local block for A (B).

We note that our model is applicable even when public
identifiers are unavailable. In such a case, each distinct
record in A and B is mapped to a single local block. Our ex-
perimental analysis (see Section 6) quantifies the additional
cost of resource consumption such a practice entails.

4.2 Block Release
The local block construction results in blocks, such that

the linkage decision rule will be evaluated only among records
of the same blocks via SMC. To do so, blocks should be re-
leased by at least one data owner. Without loss of general-
ity, suppose Alice releases her blocks to Bob after encrypting
their contents. Although the records are in their encrypted
form, direct release of the blocks discloses the number of
records in each block. Hence, Bob may infer some informa-
tion regarding the records of Alice by inspecting their dis-
tribution. In particular, Bob can compare their distribution
against his data that are mapped to the same blocks.

To ensure individual privacy against any inference due to
block release, our protocol protects blocks with a strong pri-
vacy protection mechanism called differential privacy (DP).
Instead of releasing the original blocks of A, another version
perturbed with DP is passed to Bob. Hence, Bob cannot
infer the existence of a particular individual in A by the
guarantees provided by DP. More formally, let Ci be a block
label known to both Alice and Bob, and suppose A is divided
into blocks as described in Section 4.1. Then, a differentially
private block release corresponds to the issuing count queries
of the following form:

select count(*) from A where Block = Ci

Given a set of queries Q = {Q1, . . . , Qq}, differential
privacy adds noise drawn from Laplace distribution with
magnitude b to the true response value. b is determined by
two parameters: 1) a privacy parameter ǫ and 2) the sensi-

tivity of the query set S(Q). We assume ǫ is set by the data
owner (i.e., Alice). To determine S(Q), we need to identify
the sensitivity of block release. In this context, it is known
that each query Qi has a disjoint range by the construction
of the blocks (e.g., each record is placed into a single block).
Hence, with a single record update, we can change the result
of at most two count queries by a magnitude of at most one.

Theorem 4.1. Let Q be the query set necessary for block
release, then S(Q) = 2.

Proof. Let r be an arbitrary record of dataset T in block
Ci. Suppose some sibling dataset T ′ contains record r′ in-
stead of r, which is placed in block Cj . Then, there are two
mutually exclusive cases.

Case I (Ci = Cj): The response to each query over T and
T ′ will be the same (i.e., ∀Qz∈QQz(T) = Qz(T

′)). Hence,
P

|Q|

z=1
|QT

z −QT ′

z | = 0.
Case II (Ci 6= Cj): Responses to queries Qi and Qj both

will differ by 1 over T and T ′ (i.e., |Qz(T)−Qz(T
′)| = 1 for

z = i, j). Hence, using I(.) as an indicator function:

|Q|
X

z=1

|QT
z −QT ′

z | =
|Q|
X

z=1

0× I(z 6= i ∧ z 6= j)

+ 1× I(z = i) + 1× I(z = j) = 2.

Therefore, S(Q) = max[0, 2] = 2

Since S(Q) = 2, Alice adds Laplace noise to each par-
tition with b = 2/ǫ. It should be noted that Laplace noise
can take on positive and negative values and is not necessar-
ily integral.4 Positive noise is incorporated by adding fake
records to the dataset, while negative noise requires sup-
pressing original records. For instance, in Figure 2-a, a3 is
removed from block C1 because random noise is equal to -1.
On the other hand, fake records r1 and r2 are added to C2

and C3, respectively, because random noise is equal to 1 for
each. The generation of fake records and the encryption of
block contents are discussed in Section 4.3.
4Integrality can be addressed by rounding-up to the closest
integer value.

170

Figure 2: Block release

Once noisy blocks are transferred to Bob, linkage decision
rule is evaluated securely (see Section 4.3) between record
pairs of the same blocks. For illustration, in Figure 2-b,
notice b1 ∈ B is compared with only a1, a2 ∈ A, whereas the
suppressed record a3 ∈ A is not compared with any record
in B. Similarly, b2 ∈ B will be compared against a4, a5 ∈ A
and fake record r1.

In the record linkage setting, it is important to recognize
that the effect of positive and negative noise is different.
Consider, for each unit of positive noise, an additional fake
record is inserted into a block, which causes more compar-
isons to be performed. On the other hand, negative noise
results in suppressed records (e.g., a3) which cannot appear
in the final match set, even if there is a corresponding record
in B. As a result, negative noise leads to degradation in
the quality of the record linkage in terms of lower recall.
Therefore, we assume Alice and Bob prefer will fake over
suppressed records. Next, we show how this preference can
be realized using a parameter, wn, that indicates how many
comparisons of [fake, original] record pairs the parties are
willing to tolerate to prevent a single suppression.

Let E[Y] represent the average number of records in a
single block of dataset B. Bob needs to perform approxi-
mately E[Y] comparisons for each fake record Alice inserts
into her dataset. E[Y] depends only on the total number
of records in B and the number of blocks, neither of which
differ between two sibling datasets. This implies zero L1-
sensitivity for E[Y] release, such that Bob can release E[Y]
without adding noise. We use E[Y] and wn to determine
the optimal noise addition strategy.

As explained in Section 3.1, ǫ-differential privacy is satis-
fied if the noise is drawn from a Laplace distribution with
magnitude b ≥ SL1

(Q)/ǫ. There is no restriction on how the
mean µ is selected. Hence, in our solution, we select µ in or-
der to (i) minimize the expected number of comparisons and
(ii) optimize the number of suppressed records according to
wn

5. If wn >> E[Y], the number of suppressed records will
be minimized and the matching quality will be enhanced
considerably at the expense of some additional [fake, origi-
nal] record comparisons. Figure 3 provides a visual depiction
of how the shifted mean will affect the noise distribution.

The cost associated with every unit of negative noise is
proportional to wn, while the cost for every unit of positive
noise is proportional to E[Y]. Therefore, the optimal mean

5Suppression can be eliminated only if µ = ∞. Therefore,
we use wn as a control parameter.

Figure 3: The mean shift for optimal cost

is the one that minimizes the following objective function:

arg min
µ

wn

2b

Z

0

−∞

|x|e−|x−µ|/b dx

+
E[Y]

2b

Z

+∞

0

|x|e−|x−µ|/b dx

Theorem 4.2. Let Lap(µ, 2/ǫ) represent the distribution
of Laplace noise for ǫ-differential privacy. Then, the optimal
mean (µ) for record linkage is

µ = −b ln(
2E[Y]

E[Y] + wn

)

Proof.

u = wn

2b

R

0

−∞
|x|e−|x−µ|/b dx + E[Y]

2b

R

+∞

0
|x|e−|x−µ|/b dx

du
dµ

= d
dµ

[be−µ/b

2
(wn + E[Y]) + E[Y]µ] = 0 ∧ d2u

dµ
> 0

=⇒ µ = −b ln(2E[Y]

E[Y]+wn
)

Once the cardinalities of noisy blocks are determined via
Lap(µ, b), Alice transfers the perturbed blocks with encrypted
records to Bob. Note that, though the DP model is applied
to compute count queries, Alice outputs noisy sets of cipher-
texts (e.g., encrypted version of each record). This is due to
the fact that it is computationally infeasible for Bob to infer
any information from the noisy sets except for their counts.
This protection is based on the properties of the semanti-
cally secure encryption scheme we adopt for the protocol,
further details of which are presented in Section 4.3.

4.3 Integration via SMC
The SMC step involves private evaluation of the deci-

sion rule on encrypted pairs of records in the same block.
The evaluation requires calculating similarity over every at-
tribute of the pair. As such, it is necessary to securely
compute the similarity between ri.Rι and rj .Rι for each at-
tribute Rι, where ri and rj are records of a candidate pair.

We adopt different similarity functions for different types
of attributes. For string-based attributes (e.g., forename),
we use Jaccard similarity on their bigram bit vectors. This
measure has been widely used for approximate string match-
ing in the literature [19]. For numeric attributes (e.g., age),
we use normalized Euclidean distance [17]. Based on these
measures, Alice and Bob can evaluate the decision rule se-
curely using generic SMC circuit evaluation techniques [12].
However, generic SMC techniques are computationally too
expensive. In this study, we propose a relatively more effi-
cient solution that utilizes the third party Charlie.

To compute similarity functions, we employ the Paillier
cryptosystem [22] (see Section 3.2). In our setting, Charlie

171

generates a Paillier private/public key pair and transfers the
public key to Alice and Bob. Alice encrypts her records
and Bob performs some homomorphic operations with this
key. Prior to encryption, Alice forms bit vectors for string
attributes. Initially, she forms a bit vector of zeros that
contains a single bit for each distinct bigram. Then, the
string is divided into its bigrams and the bit locations that
corresponds to its bigrams are set to one. Finally, each bit
of the vectors and the number of ones in the vectors are
encrypted as demonstrated in Figure 4.

Figure 4: An example of the bitwise encryption

Formally, let Rs be a string attribute with correspond-
ing bit vector representation ~Rs of size | ~Rs|. Then the en-
crypted form of the attribute value for record r on Rs, de-
noted as πr.Rs

, consists of a bitwise encrypted vector (π
r. ~Rs

)
and encrypted cardinality of the bit locations with value one
(π1′s

r. ~Rs

) such that:

πr.Rs
= [π

r. ~Rs
, π1′s

r. ~Rs

]

π
r. ~Rs

[i] = EncKpub
(r. ~Rs[i]) for 1 ≤ i ≤ | ~Rs|

π1′s
r. ~Rs

= EncKpub
(

| ~Rs|
X

i=1

~r.Rs[i])

For numeric attributes, Alice encrypts two pieces of infor-
mation which are necessary for the computation of Euclidean
distance. These are the original value itself and its square.
Suppose Rn is a numeric attribute with the domain [x, y]
and EncKpub

is the Paillier encryption function. Then the
encryption of the attribute value of record r on Rn (r.Rn),
and its square are formed as follows:

πr.Rn
= EncKpub

(r.Rn)

π
(r.Rn)

2 = EncKpub
((r.Rn)2)

After encryption of the original records, Alice adds the
encrypted fake records to each block. To do so, Alice encodes
the bit vector of a string attribute Rs of a fake record ω as
a bit vector of all zeros (e.g., ω. ~Rs = [0....0]). Additionally,
Alice encodes numeric attribute Rn of ω with range [x, y] as
ω.Rn = −(y−x). This encoding is repeated for all attributes
of ω to prevent matching between an original and a fake
record in the following steps of the protocol. Finally, Alice
encrypts the encoded fake records.

To compute the Jaccard similarity between the bit vec-
tors of strings ai.Rs and bj .Rs, it is necessary to compute

c∩ = |ai. ~Rs ∩ bj . ~Rs| and c∪ = |ai. ~Rs ∪ bj . ~Rs|. These
cardinalities can be computed on the encrypted data using
the additive homomorphic property of the Paillier encryp-
tion scheme. Suppose [π

ai. ~Rs
, π1′s

ai. ~Rs

] represents the en-

cryption of attribute Rs for record ai. Similarly, suppose
bj . ~Rs denotes the plain bit vector form of Rs for record bj

and L
bj . ~Rs

= {ℓ1, .., ℓn} is the set of its bit locations with

value one respectively. Then, Bob computes the following
encrypted cardinalities for Rs:

πc∩ = π
ai. ~Rs

[ℓ1]⊕h ...⊕h π
ai. ~Rs

[ℓn]

π(c∩ + c∪) = EncKpub
(

| ~Rs|
X

z=1

bj . ~Rs[z]) ⊕h π1′s
ai. ~Rs

πc∪ = π(c∩ + c∪) ⊕h (−1 ⊙h πc∩)

For each numeric attribute Rn, Bob computes the encrypted
form of the Euclidean distance between ai.Rn and bj .Rn

([ai.Rn − bj .Rn]2) as follows:

π(ai.Rn−bj .Rn)2 = π(ai.Rn)2 ⊕h EncKpub
((bj .Rn)2)

⊕h ((−2 · bj .Rn) ⊙h πai.Rn
)

Once the encrypted cardinalities have been computed for
each attribute of the candidate pair (ai, bj), Bob assigns a
pair identifier pij to the pair. Then, he can send the cardinal-
ities along with the pair identifier to Charlie. Since Charlie
holds the private key to decrypt the encrypted cardinalities
and the decision rule, he can identify matching pairs. To do
so, Charlie can compute the Jaccard similarity for a string
attribute Rs as follows:

simRs
(ai. ~Rs, bj . ~Rs) =

DecKpriv
(π

(|ai. ~Rs ∩ bj . ~Rs|)
)

DecKpriv
(π

(|ai. ~Rs ∪ bj . ~Rs|)
)

For a numeric attribute Rn with range [x, y], Charlie can
compute similarity according to the normalized Euclidean
distance as follows:

simRn
= 1−DecKpriv

(π(ai.Rc−bj .Rc)2)/(y − x)2

It is guaranteed that simRs
(ai. ~Rs, bj . ~Rs) = 0 for any string

attribute Rs if ai is a fake record. By construction, ai. ~Rs =
[0, . . . , 0], and thus ai. ~Rs ∩ bj . ~Rs = 0. Notably, by the
encoding of numeric attributes of the fake records, similarity
between any numeric attribute of a fake and a real record
will always be non-positive.

Suppose that records ai and bj are compared using the
SMC protocol presented above. Then, Charlie observes nei-
ther a.Rι nor b.Rι but sim(ai.Rι, bj .Rι). To prevent leak-
age of any information except for the final match decision,
we employ a random perturbation on the sim(ai.Rι, bj .Rι)
which we call similarity blinding. Employed perturbation is
an SMC approach (e.g., [18, 27]) that relies on the impossi-
bility of solving linear equations with too many unknowns.

Similarity Blinding: The linkage decision rule derived
from the Fellegi-Sunter model [11] classifies a record pair

(ai, bj) as a match if and only if
Pd

z=1
αz ·sim(ai.Rz, bj .Rz)

≥ θ. The basic idea behind similarity blinding is to per-
turb sim(ai.Rz, bj .Rz) with random values so that Charlie

172

cannot infer its exact value. To do so without preventing
correct evaluation of the decision rule, we must perturb the
matching threshold, θ, accordingly. We perturb every pair
of records (ai, bj) independently. Therefore, perturbed θ val-
ues will differ between distinct record pairs. The perturbed
threshold of pair (ai, bj) is referred with θai,bj

.
Blinding is an incremental process performed by Bob over

all attributes. θai,bj
is initially set equal to θ, such that

manipulation of each attribute will further change its value.
Once all attributes are blinded, Bob sends θai,bj

and the
encrypted cardinalities to Charlie so that he can evaluate
the decision rule correctly. We discuss the cases of a string
attribute Rs and a numerical attribute Rn below.

Suppose Rs is a string attribute with weight αRs
and c∩,

c∪ denote |ai. ~Rs ∩ bj . ~Rs| and |ai. ~Rs ∪ bj . ~Rs| respectively,

such that sim(ai. ~Rs, bj . ~Rs) = c∩/c∪. Note that, according
to the protocol, Bob can compute the encryptions πc∩ and
πc∪ of c∩ and c∪ respectively.

Now, to blind the similarity on Rs, Bob first generates
random values rij1

, rij2
such that rij2

6= 0 and rij1
, rij2

∈
Zn. Then, he updates πc∩ and πc∪ to ensure Charlie will
observe the following blinded similarity value:

sim(ai. ~Rs, bj . ~Rs) +
rij1

rij2

=
c∩
c∪

+
rij1

rij2

=
rij2
· c∩ + rij1

· c∪
rij2
· c∪

This is achieved through the following homomorphic opera-
tions:

πc∩ ← (rij2
⊙h πc∩) ⊕h (rij1

⊙h πc∪)

πc∪ ← rij2
⊙h πc∪

To ensure that the matching decision will not be affected,
Bob also increments θai,bj

by αRs
· rij1

/rij2
. Here, multi-

plication by αRs
adjusts for the attribute weight of Rs.

The case of numeric attributes is simpler. Suppose Rn is
a numeric attribute with weight αRn

and range [x, y]. Bob
generates a random number rij and homomorphicly adds it
to the encryption of (ai.Rn − bj .Rn)2:

π(ai.Rn−bj .Rn)2 ← EncKpub
(rij) ⊕h π(ai.Rn−bj .Rn)2

To ensure that the matching decision will not be affected,
Bob also decrements θai,bj

by αRn
· (rij/(y − x)2). In this

equation, the multiplication by αRn
adjusts for the attribute

weight and the division by (y − x)2 is for normalization.

The security provided by similarity blinding is based on a
SMC approach that relies on the inability of solving a linear
equation with more than one unknowns [18, 27]. In fact,
attribute similarity extraction for a candidate pair from the
perturbed similarities and perturbed threshold corresponds
to solving a single linear equation with ‘d’ unknowns where
‘d’ represents the number of attributes. If d = 1, similar-
ity blinding should be applied in a slightly different manner
to generate at least two unknowns for a single equation.
Specifically, suppose Rι represents the single attribute, θ
represents the matching threshold where θ > 0, rij1 and
rij2 are random numbers such that rij1 , rij2 ∈ Zn. Then
sim(ai.Rι, bj .Rι) is set to rij1 · sim(ai.Rι, bj .Rι) + rij2 and
matching threshold θai,bj

is set to rij1 · θ + rij2 through the
homomorphic operations. Note that, for each distinct can-
didate pair, a distinct matching threshold is generated with

fresh randomness. Hence, each linear equation is indepen-
dent from each other.

After Charlie executes the decision rule with perturbed
similarities and matching thresholds, the pair identifiers of
the matches are sent to Bob who maps them to the cor-
responding record identifiers. Finally, Alice and Bob share
matching records with each other.

5. LEAKAGE ANALYSIS
We assume Alice, Bob and Charlie will follow the protocol

honestly, but may try to infer private information based on
messages they receive during the execution without collu-
sion. The semi-honest model without collusion is a common
assumption for multi-party protocols [21]. Next we summa-
rize the information that our solution discloses to each of
the participants and the inherent risks associated with such
disclosures (if any).

Alice: This party does not receive any messages regarding
Bob’s dataset other than the final result.

Bob: This party observes the final results and the blocks
of Alice’s dataset with encrypted contents. It is compu-
tationally infeasible for Bob to infer anything from these
records because they are encrypted with a semantically se-
cure encryption scheme [13]. Hence, the only possible infor-
mation leakage is the cardinality of A’s blocks. Here, block
cardinalities disclose the record distribution of A on the data
space representation that is generated through clustering of
publicly available identifiers (see Section 4.1). To ensure
individual privacy against any adversary that may utilize
this distribution, the proposed model perturbs block car-
dinalities according to the rigorous definition of differential
privacy (DP). Hence, individual privacy is ensured by the
strong guarantees of DP.

Charlie: This party participates in the blocking and the
SMC steps. In the blocking step, he does not receive any
messages regarding the datasets of Alice and Bob. In the
SMC step, he does not receive any messages regarding the
individual records in A or B but receives the perturbed sim-
ilarities for each candidate pair. To keep the attribute simi-
larities of candidate pairs secret from Charlie, the proposed
model randomize both attribute similarities and the match-
ing threshold in such a way that actual similarity extraction
necessitates solving a single linear equation with at least two
unknowns (see Section 4.3). Random perturbation that re-
lies on the impossibility of solving linear equations with too
many unknowns is a common SMC approach to hide the ac-
tual input [18, 27]. Here, Charlie executes the decision rule
with perturbed input to identify if the received candidate is
a match without learning actual similarities.

6. EXPERIMENTAL EVALUATION
In this section, we present an experimental evaluation6

of the proposed private record linkage protocol. In Section
6.1, we present the experimental design. Then, in Sections
6.2 and 6.3, we present the evaluation of blocking and SMC
steps of the proposed scheme. Finally, we present the record
linkage efficiency in Section 6.4.

6All experiments were conducted on a server with two quad-
core 2.5 GHz Intel Xeon processor and 32 GB RAM.

173

6.1 Experimental Design
To perform the experimental analysis, we selected a pub-

licly available dataset of real personal identifiers, derived
from the North Carolina voter registration list (NCVR) [5].
We investigated the effectiveness of the scheme with fore-
name (F), surname (S), city (C), race (R) and gender (G)
attributes. To construct the record linkage decision rule
with these attributes, we computed their Fellegi-Sunter (FS)
weights (see Section 2): αF = 0.3, αS = 0.35, αC = 0.22,
αR = 0.06 and αG = 0.07. Here, FS weights indicate the
relative importance of the utilized attributes on the linkage
decision.

For blocking evaluation, we initially formed a public dataset
(P) of size 10,000 by random record selection from NCVR.
Then, we generated 10 dataset pairs (Ai, Bi) to be linked
such that P ∩ Ai = ∅ and P ∩ Bi = ∅. To form dataset
pairs, we initially selected 10 datasets by randomly drawing
5,000 records for each from NCVR (excluding those in P),
which we refer to as A1, . . . , A10. For each Ai, we generated
a partner Bi composed of 5000 records as well. Of these
records, 4000 were randomly selected from NCVR (exclud-
ing those in Ai and P), while 1000 were randomly selected
from Ai and subjected to random perturbation. For pertur-
bation, we introduced a typographical error to each distinct
attribute 25% of the time7 via a publicly available typo gen-
erator [26] which produces a variety of spelling errors (e.g.,
insertions, deletions, and transpositions). The goal was to
privately identify the 1000 matching records between Ai and
Bi. We use reduction ratio (RR) and pair completeness
(PC) as evaluation metrics for our blocking scheme. Specif-
ically, suppose c is the number of candidate record pairs
produced by the blocking scheme, cm is the number of true
matches among c candidate pairs, n = |Ai| · |Bi| is the num-
ber of all possible pairs and nm is the number of true matches
among all pairs. Then, RR and PC are defined as follows:

RR = 1− c/n, PC = cm/nm

For SMC evaluation, we investigated the computational
requirement (i.e., time and transferred data) of the SMC
protocol with respect to varying input size and number of
attributes. Time is reported as the computation time for
cryptographic operations8 (e.g., encryption and homomor-
phic addition). Transferred data corresponds to the amount
of data transmitted between two distinct parties during pro-
tocol execution. For the SMC experiments, we initially
generated dataset pairs (Ai, Bi) from NCVR with different
sizes and number of attributes. The default input size is
|Ai| = 5000, |Bi| = 5000 and the default attributes include
forename, surname, city, race and gender.

6.2 Blocking Evaluation
We analyzed the influence of the number of blocks (nB),

differential privacy parameter ǫ, suppression cost (wn) for
the weighted noise cost model and utilized public identifier
(Ip) for data space partitioning on the blocking performance.
The default parameters are as follows: nB = 500, ǫ = 0.3,

7As pointed out in [20], statistics collected by Google for
the search input “Britney Spears” indicates that users mis-
spell the input 23% of the time. Hence, we chose 25% as a
reasonable error rate for our experiments.
8For this set of experiments, Paillier encryption was per-
formed with a 512-bit public key.

wn = 5000, Ip = surname. Below, we report the average
measurements over the 10 dataset pairs.

Figure 5 summarizes the blocking performance for differ-
ent numbers of blocks. As expected, when the number of
blocks is small, RR is limited. As the number of blocks in-
creases, RR increases with the cost of slight decrease in PC.
In this set of experiments, 500 blocks provide approximately
98% savings in the number of comparisons with a cost of 4%
loss in matching pair identification.

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 500 1000 1500 2000 2500

pe
rf

or
m

an
ce

 (R
R

, P
C

)

number of blocks

RR PC

Figure 5: Effect of the number of blocks on the

blocking performance

Figure 6 shows the effect of differential privacy parameter
ǫ. PC is the same for all values of ǫ. This is because the de-
fault suppression cost leads to only positive noise and there
is no suppression. On the other hand, RR improves with
increasing ǫ. This is because larger ǫ results in less noise
and less fake records in the blocks.

 0.95

 0.96

 0.97

 0.98

 0.99

 1

0.1 0.2 0.3 0.4 0.5

pe
rf

or
m

an
ce

 (R
R

, P
C

)

 ε

RR PC

Figure 6: Effect of differential privacy parameter ǫ
on the blocking performance

We proposed a weighted noise cost model for differen-
tial privacy because negative noise results in suppression of
records and a subsequent decrease in matching quality. To
mitigate this loss, we shifted the noise distribution accord-
ing to a control parameter wn (see Section 4.2). Figure 7
shows the effect of wn on performance. For higher wn, PC
increases due to a reduced number of suppressions at the
expense of some decrease in RR. After a certain point, ad-
ditional increments in wn lead to decreases in RR without
any changes in PC. This is because we start adding only
positive noise. In this setting, if standard Laplace mecha-
nism with zero mean is applied, PC reduces approximately
to 0.7. This considerably degrades the linkage quality and
indicates the importance of the proposed weighted noise cost
model.

174

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 2000 4000 6000 8000 10000

pe
rf

or
m

an
ce

 (R
R

, P
C

)

suppression cost

RR PC

Figure 7: Effect of suppression cost for weighted

Laplace noise on the blocking performance

Identifier RR PC

Forename 0.9822 0.9476
Surname 0.9845 0.9596
City 0.9740 0.9910

Table 1: Effect of selected public identifier on the

blocking performance

Table 1 shows the effect of the selected public identifier
(forename [F], surname [S], city [C]) for the global block ba-
sis construction. Here, RR depends on the attribute impor-
tance for the linkage decision. In fact, observed RR values
are compliant with the FS weights of the attributes. Among
the available identifiers, surname has the largest FS weight
and provides the highest RR. In this setting, identifiers
with very low FS weights (e.g., race) are not effective. The
race provides approximately 40% RR while surname pro-
vides 98% RR. In this context, PC depends on the domain
size of the attributes. The domain size for forename, sur-
name and city in the public dataset are approximately 5000,
2500, and 600. With decreasing domain size, PC increases
since global block basis represents space more precisely.

Blocking could be performed efficiently without signifi-
cant computational cost. During blocking, Charlie forms the
global block basis through a hierarchical clustering over the
domain of the selected public identifier. The computational
complexity of this operation is O(m2 ·log(m))9 where m rep-
resents the domain size of the selected identifier. Once global
block clusters are formed, Alice and Bob map their respec-
tive records to these clusters. The computational complexity
of map operation is O(mn) where m and n correspond to
the domain size of the selected public identifier in global
and local datasets, respectively. In the default experimental
setting, blocking is performed in a few minutes. The main
bottleneck of the protocol is the SMC step, the performance
of which is discussed in further detail below.

6.3 SMC Evaluation
Here, we present the computational requirements of our

SMC protocol. In the proposed approach, Alice encrypts her
records in each block and transfers the blocks to Bob. Then,
Bob computes encrypted similarities for candidate pairs us-
ing the properties of the encryption scheme. Finally, Bob

9O(m2 · log(m)) complexity is due to the priority queue im-
plementation of agglomerative hierarchical clustering.

sends similarity values to Charlie who decrypts them to
execute the decision rule. For this set of experiments, we
applied blocking on the datasets with the default blocking
setting. Then, we executed SMC on the blocks.

Figure 8 reports the execution time for encryption of the
records in Ai and the amount of data transferred from Alice
to Bob. With increasing input size, denoted as Λ (Λ =
|Ai| = |Bi| for this experiment), the computational cost
increases almost linearly. This is because the number of
encryptions performed, as well as the amount of data trans-
ferred, is proportional to |Ai|.

0

2

4

6

8

tr
an

sf
er

re
d

da
ta

 (
gb

.)

0

400

800

1200

1K 2.5K 5K 7.5K 10K

ti
m

e
(m

in
.)

input size

Figure 8: Load of Alice with distinct dataset size

Figure 9 reports the time required for Bob to perform the
secure operations and the amount of data transferred from
Bob to Charlie. As the number of records in Ai and Bi

increases, computational demand increases proportionally to
|Ai| · |Bi| · RR where RR represents the reduction ratio. It
is clear that blocking provides considerable savings in the
computation. For instance, to link datasets of size (10K ×
10K), Bob transfers only 1.1 GBs of data instead of 55 GBs
through a 98% RR achieved through the blocking step.

0

0.4

0.8

1.2

tr
an

sf
er

re
d

 d
at

a
(g

b
.)

0

50

100

150

200

1K 2.5K 5K 7.5K 10K

ti
m

e
(m

in
.)

input size

Figure 9: Load of Bob with distinct dataset size

Figure 10 shows the computational demand of Alice with
distinct attributes (forename (F): string, surname (S): string,
city (C): string, race (R): numeric, gender (G): numeric). As
expected, the computational demand for numeric attributes
is much less than for string attributes. This is because,
for each string attribute, bitwise encryption is applied on
their bit vector representation which corresponds to 676 (i.e.,
number of bigrams) distinct encryptions. For numeric at-
tributes only a single encryption is performed.

175

0

2

4

6

8

tr
an

sf
er

re
d

da
ta

 (
gb

.)

0

400

800

1200

FS FSC FSCR FSCRG

ti
m

e
(m

in
.)

attributes

Figure 10: Load of Alice with distinct attribute set

Figure 11 demonstrates the load for Bob with distinct
attributes. The amount of data transferred, as well as the
amount of time spent on cryptographic operations increases
almost linearly with the number of attributes. The string
attributes do not dominate the computation for Bob. This
is because Bob performs cryptographic operations for only a
small number of bit locations, instead of all 676 distinct bit
locations due to sparsity of the vectors (i.e., the bit vector
of strings contains limited number of ones). In addition,
Bob sends only encrypted cardinalities to Charlie instead of
encrypted data. Specifically, he sends two cardinalities for
each string attribute and one cardinality for each numeric
attribute. Hence, the cost is similar for distinct data types.

0

0.1

0.2

0.3

0.4

tr
an

sf
er

re
d

 d
at

a
(g

b
.)

0

20

40

60

80

FS FSC FSCR FSCRG

ti
m

e
(m

in
.)

attributes

Figure 11: Load of Bob with distinct attribute set

Once Charlie receives the candidate pairs and the en-
crypted cardinalities for distinct attributes, he decrypts them
for decision rule evaluation. Decryption of a single cardinal-
ity can be performed quite efficiently, on the order of roughly
4 milliseconds. Since this is a marginal cost in the overall
protocol, we neglect Charlie’s contribution to the computa-
tional complexity in the following assessment.

Finally, we present the performance of the approach for
a scenario where publicly available identifiers are not avail-
able for blocking. In such a case, Alice and Bob map their
records to a single block. The influence of blocking on the
computational load of Alice and Bob in default experimen-
tal setting (|Ai| = 5000, |Bi| = 5000, ǫ = 0.3, nB = 500,
wn = 5000, Ip = surname) is presented in Table 2. Notice
that when a single block is formed instead of 500 blocks,
the computational load for Alice slightly decreases. This

Default Blocks Single Block
Time (A) 970 min. 205 min.
Storage (A) 5.7 G. 1.2 G.
Time (B) 123 min. 4166 min.
Storage (B) 0.7 G. 23.8 G.

Table 2: Influence of Blocking on the SMC Load

is because, the computational load of Alice is due to the
record encryption, which depends only on the total number
of records in A (including fake records). The noise is added
to each block independently, so the number of fake records is
linearly proportional to the number of blocks. On the other
hand, the single block setting significantly increases the com-
putational load for Bob. This is because the load is based on
the amount of secure similarity computations between the
record pairs which is proportional to (1 − RR) · |Ai| · |Bi|.
With single block, RR is zero and the load of Bob is much
higher in comparison to the setting with multiple blocks.

6.4 Record Linkage Efficiency
In the context of this study, we assume that a record link-

age (RL) decision rule is available. Our goal is to provide
a method for the private execution of the rule on the origi-
nal data space in an efficient manner. For comparison, it is
important to recognize that the most private and accurate
techniques are based on SMC [6]. However, these solutions
[2, 10] are computationally inefficient for large datasets. In
a recent study [6], it was shown that a highly-cited SMC
approach for PRL requires over 2 years to compare two
datasets of 1K strings each. On the other hand, our ap-
proach can handle the same process in only several hours.

Computationally efficient PRL solutions [1, 24, 25, 30]
generally execute the decision rule after applying a trans-
formation to the data. Among such approaches, PRL tech-
niques of [24] and [30] are the only ones that enable ap-
proximate data matching for records with both string and
numerical attributes (see Section 7 for the details of other
approaches). Both techniques execute the decision rule after
transforming data into an Euclidean space through a refer-
ence value embedding technique, called SparseMap.

We investigated the linkage accuracy with our approach
and SparseMap based approaches. To measure the accu-
racy, we utilized precision (i.e., the ratio of correctly linked
records among all linkages) and recall (i.e., the ratio of cor-
rectly linked records to all matches between linked datasets)
metrics. We investigated the success with forename and sur-
name attributes as in [24]. To do so, we generated 10 dataset
pairs with two attributes via the data generation mechanism
of Section 6.1 such that each dataset contains 5000 distinct
records. Then, we embedded records of each dataset into
Euclidean space via SparseMap algorithm. With respect
to the parameters of the algorithm, we followed the recom-
mendations in [24]. We generated 30 reference sets to embed
records into 30-dimensional space which provided the best
accuracy in [24]. The length of the reference strings in the
sets was 15, which was approximately equal to the average
length of the strings (forename + surname) in the dataset
to be embedded. With respect to the heuristics of the al-
gorithm, we disabled both greedy resampling and distance
approximation heuristics to improve the quality of the em-

176

beddings (see [24] for details). Once the records were em-
bedded, we linked each record in Ai to the closest record
in Bi using Euclidean distance in the new space. Then, we
applied our algorithm on the original space. After block-
ing with default blocking parameters (nB = 500, ǫ = 0.3,
wn = 5000, Ip = surname), we computed Jaccard similar-
ity between the candidate records pairs. According to the
computed similarities, we linked each record in Ai to the
closest candidate record in Bi.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

pr
ec

is
io

n

recall

SMC-Jaccard SparseMap

Figure 12: Record matching accuracy of the pro-

posed approach in compare to SparseMap

In Figure 12, we report the accuracy of the linkage re-
sults of our approach and the SparseMap approach [24, 30].
The reported values are the averages over the 10 linked
dataset pairs. Our approach provides higher precision than
SparseMap at the same recall level. This is because some
dissimilar records in the original space become close in the
Euclidean space due to information loss incurred during the
embedding. By contrast, our approach does not suffer from
false positives arising from the transformation.

7. RELATEDWORK
Record linkage procedures have been refined over decades

to integrate data in the face of dirty records [9]. At the same
time, privacy concerns for sharing personal records has led
to the development of private record linkage (PRL) proto-
cols [3, 4, 16, 17, 23, 24, 28, 30]. PRL protocols tend to use
two primary mechanisms to integrate data while protect-
ing the privacy of the sensitive information: secure multi-
party computation (SMC) and data transformation. SMC
approaches offer accurate similarity evaluation to identify
matching pairs with rigorous security guarantees. Various
distance measures such as edit distance [2] and an approxi-
mation of Hamming distance [10] can be computed securely.
Also, a recent fully homomorphic encryption scheme [12]
enables secure computation of a wide range of functions.
However, these methods are computationally intensive and
do not scale for the integration of large data sets [6].

As an alternative, there are approaches to selectively re-
veal information through transformation [1, 16, 24, 25]. In
[24], records are embedded into Euclidean space through a
technique based on reference strings. Records are compared
in the new space by a third party to identify matching pairs.
As we illustrate in our experiments, this approach results in
some false positives due to the approximations incurred dur-
ing the embedding. In [30], the approach of [24] is extended
to perform record linkage without the assistance of a third-
party. In [23], public reference tables are used to form en-

coding for names. Specifically, a name is represented by its
distance to all reference points. After encoding, the distance
between pairs are estimated by a third-party. However, this
approach leaks the distances between each record. As a re-
sult, the third party may exploit the residual information
to disclose the names of the corresponding encodings (e.g.,
the distribution of distances may allow identification of rare
names). In [1], a blocking-aware PRL algorithm was pro-
posed. Their approach maps records into bit vectors accord-
ing to term frequency / inverse document frequency scores
of individual words in the records without considering the
existence of errors. In [25], attributes of records are em-
bedded into Bloom filters via a set of cryptographic hash
functions. The encoded records are then compared via a
set-based similarity measure. Although Bloom filter encod-
ing tolerates errors in strings and offers relatively accurate
linkage results, if not parameterized appropriately, it leaks
uncontrolled information (e.g., the frequency distribution of
individual attributes of the encoded records). In fact, under
certain conditions, a cryptanalysis can be applied to retrieve
the original records [21]. Additionally, [25] does not consider
numeric attributes for record linkage.

In [16], a hybrid method for PRL that combines cryp-
tographic and anonymization methods is proposed. This
approach is based on anonymizing the datasets and linking
record pairs through their anonymous versions. In [17], a
similar hybrid approach is proposed which invoked differ-
ential privacy. However, the approach of [17] is designed
only for numeric data. Hence, it cannot handle approx-
imate string matching. Moreover, its differential privacy
model does not discriminate against negative noise and suf-
fers from excessive losses in identifying matching pairs.

8. CONCLUSIONS AND FUTUREWORK
In this paper, we proposed a practical private record link-

age protocol (PRL) with rigorous privacy guarantees that is
resilient to dirty records in real world data sources. The
proposed approach combines blocking with secure multi-
party computation through a differentially private integra-
tion mechanism. To execute the protocol, public identifiers
are clustered to form a common space representation for the
parties contributing records to the linkage process. Based
on these clusters, each party constructs blocks on their lo-
cal datasets. The block construction enables a considerable
reduction in the number of costly secure similarity computa-
tions that must be performed for each candidate record pair.
After blocking, an efficient SMC technique is applied on the
records of the same blocks to accurately identify matching
pairs. In this setting, to integrate the blocking and SMC
steps in a privacy preserving manner, we proposed a differ-
entially private block release mechanism. Finally, we illus-
trated the success of the proposed scheme with an empirical
analysis on a dataset that contains real personal identifiers.

In future work, we plan to extend the blocking scheme
with fuzzy blocks (e.g., a record will be mapped to multiple
blocks) to improve pair completeness (PC) of the blocking.
Specifically, we’ll use multiple attributes to generate multi-
ple space representations for distinct parties. Fuzzy blocks
will improve PC but at the same time it will lead to in-
crease in the sensitivity of the differentially private block
release. We’ll formulate the balance between increase in PC
and noise due to the differentially private block release ana-
lytically to find the best fuzzy block generation strategy.

177

9. ACKNOWLEDGMENTS
This work was partially supported by the Air Force Of-

fice of Scientific Research MURI-Grant FA-9550-08-1-0265
and Grant FA-9550-12-1-0082, National Institute of Health
Grant 1R01LM009989, National Science Foundation (NSF)
Grant Career-CNS-0845803, NSF Grants CNS-0964350,
CNS-1016343, CNS-1111529 and CNS-1228198, Army Re-
search Office Grant 58345-CS.

10. REFERENCES

[1] A. Al-Lawati, D. Lee, and P. McDaniel.
Blocking-aware private record linkage. In IQIS ’05,
pages 59–68, 2005.

[2] M. Atallah, F. Kerschbaum, and W. Du. Secure and
private sequence comparisons. In WPES’03, pages
39–44, 2003.

[3] T. Churces and P. Christen. Some methods for
blindfolded record linkage. Med. Informatics and
Decision Making, 4(9), 2004.

[4] C. Clifton, M. Kantarcioglu, A. Doan, G. Schadow,
J. Vaidya, A. Elmagarmid, and D. Suciu.
Privacy-preserving data integration and sharing. In
DMKD’04, pages 19–26, 2004.

[5] N. C. V. R. Database.
ftp://www.app.sboe.state.nc.us/data, 2011.

[6] E. Durham, Y. Xue, M. Kantarcioglu, and B. Malin.
Quantifying the correctness, computational
complexity, and security of privacy-preserving string
comparators for record linkage. Information Fusion,
13(4):245–249, 2012.

[7] C. Dwork. Differential privacy. In ICALP (2), pages
1–12, 2006.

[8] C. Dwork, K. McSherry, F.and Nissim, and A. Smith.
Calibrating noise to sensitivity in private data
analysis. In TCC, pages 265–284, 2006.

[9] A. Elmagarmid, P. Ipeirotis, and V. Verykios.
Duplicate record detection: a survey. TKDE,
19(1):1–16, 2007.

[10] J. Feigenbaum, Y. Ishai, K. Nissim, M. Strauss, and
R. Wright. Secure multiparty computation of
approximations. TALG, 2(3):435–472, 2006.

[11] I. Fellegi and A. Sunter. A theory for record linkage.
JASA, 64(328):1183–1210, 1969.

[12] C. Gentry. Fully homomorphic encryption using ideal
lattices. In 41st STOC, pages 169–178, 2009.

[13] S. Goldwasser and M. Bellare. Lecture Notes on
Cryptography,
http://cseweb.ucsd.edu/ mihir/papers/gb.html. 2008.

[14] M. Hernandez and S. Stolfo. Real-world data is dirty:
data cleansing and the merge/purge problem. DMKD,
2(1):9–37, 1998.

[15] T. Herzog, F. Scheueren, and W. Winkler. Data
quality and record linkage techniques. Springer, 2007.

[16] A. Inan, M. Kantarcioglu, E. Bertino, and
M. Scannapieco. A hybrid approach to private record
linkage. In ICDE ’08, pages 496–505, 2008.

[17] A. Inan, M. Kantarcioglu, G. Ghinita, and E. Bertino.
Private record matching using differential privacy. In
EDBT ’10, pages 123–134, 2010.

[18] W. Jiang, M. Murugesan, C. Clifton, and L. Si.
Similar document detection with limited information

disclosure. In ICDE’08, pages 735–743, 2008.

[19] H. Kim and D. Lee. Harra: Fast iterative hashed
record linkage for large-scale data collections. In
EDBT’10, pages 525–536, 2010.

[20] M. Kuzu, M. Islam, and M. Kantarcioglu. Efficient
similarity search over encrypted data. In ICDE ’12,
pages 1156–1167, 2012.

[21] M. Kuzu, M. Kantarcioglu, E. Durham, and B. Malin.
A constraint satisfaction cryptanalysis of Bloom filters
in private record linkage. In PETS’11, pages 226–245,
2011.

[22] P. Paillier. Public-key cryptosystems based on
composite degree residuosity classes. In
EUROCRYPT’99, pages 223–238, 1999.

[23] C. Pang, L. Gu, D. Hansen, and A. Maeder.
Privacy-preserving fuzzy matching using a public
reference table. Intelligent Patient Management,
189:71–89, 2009.

[24] M. Scannapieco, I. Figotin, E. Bertino, and
A. Elmagarmid. Privacy preserving schema and data
matching. In SIGMOD ’07, pages 653–664, 2007.

[25] R. Schnell, T. Bachteler, and J. Reiher.
Privacy-preserving record linkage using Bloom filters.
Med. Informatics and Decision Making, 9(1):41, 2009.

[26] TypoGenerator.
https://dbappserv.cis.upenn.edu/spell/, 2011.

[27] J. Vaidya and C. Clifton. Privacy preserving
association rule mining in vertically partitioned data.
In SIGKDD’02, pages 639–644, 2002.

[28] V. Verykios, A. Karakasidis, and V. Mitrogiannis.
Privacy preserving record linkage approaches.
IJDMMM, 1:206–221, 2009.

[29] R. Xu and W. I. D. Survey of clustering algorithms.
16(3):645–678, 2005.

[30] M. Yakout, M. Atallah, and A. Elmagarmid. Efficient
private record linkage. In ICDE ’09, pages 1283–1286,
2009.

178

