
Panorama: A Semantic-Aware
Application Search Framework

Di Jiang, Jan Vosecky, Kenneth Wai-Ting Leung, Wilfred Ng
Department of Computer Science and Engineering

The Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

{dijiang, jvosecky, kwtleung, wilfred}@cse.ust.hk

ABSTRACT
Third-party applications (or commonly referred to the apps)
proliferate on the web and mobile platforms in recent years.
The tremendous amount of available apps in app market-
places suggests the necessity of designing effective app search
engines. However, existing app search engines typically ig-
nore the latent semantics in the app corpus and thus usu-
ally fail to provide high-quality app snippets and effective
app rankings. In this paper, we present a novel framework
named Panorama to provide independent search results for
Android apps with semantic awareness. We first propose the
App Topic Model (ATM) to discover the latent semantics
from the app corpus. Based on the discovered semantics, we
tackle two central challenges that are faced by current app
search engines: (1) how to generate concise and informa-
tive snippets for apps and (2) how to rank apps effectively
with respect to search queries. To handle the first challenge,
we propose several new metrics for measuring the quality
of the sentences in app description and develop a greedy
algorithm with fixed probability guarantee of near-optimal
performance for app snippet generation. To handle the sec-
ond challenge, we propose a variety of new features for app
ranking and also design a new type of inverted index to
support efficient Top-k app retrieval. We conduct extensive
experiments on a large-scale data collection of Android apps
and build an app search engine prototype for human-based
performance evaluation. The proposed framework demon-
strates superior performance against several strong baselines
with respect to different metrics.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Text Mining

General Terms
Algorithms, Experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT/ICDT ’13, March 18 - 22 2013, Genoa, Italy.
Copyright 2013 ACM 978-1-4503-1597-5/13/03 ...$15.00.

Keywords
App, Topic Model, Query Processing

1. INTRODUCTION
In recent years, apps that are developed for the web and

mobile devices have quickly become a million-dollar indus-
try. Apple, Google and Microsoft have already opened their
own app marketplaces. The absolute number of apps in ex-
istence, as well their rates of growth, are remarkable. For ex-
ample, at the time of writing this paper, Google Play1 claims
that there are 400,000 apps available for the Android plat-
form and the app growth rates are nearly 81% on a yearly
basis. Given the potential of the market of apps, it is nec-
essary to develop effective app search engines for the users,
since 85% of app downloads are discovered through search2.
However, we observe that two problems have not been satis-
factorily solved in current app search engines. Consider the
following two motivating examples:

Table 1: Google Play Snippet of Angry Bird Seasons

Angry Birds Seasons: Cherry Blossom
Festival! Angry Birds Seasons takes
the captivating game play of the

original to a whole new level! From
Description Halloween to Chinese New Year, the

birds are celebrating different
festive seasons around the world!

With more than 260 levels and regular
free updates, these special episodes

offer more challenging levels of pig-popping
action and golden eggs to discover. ...
Angry Birds Seasons: Cherry Blossom

Snippet Festival! Angry Birds Seasons takes the
captivating game play of the original

to a wh...

Problem 1. (App Snippets)
App snippet is the summary of the app’s description. It
needs to be concise and representative of the theme of the
app description. However, since the app description is typ-
ically informal and lacks of careful organization, it is chal-
lenging to generate high-quality snippets. Commercial app
search engines such as Google Play select the first several
(about 166) characters of the app description as the app’s
snippet. Although this simple approach is workable in prac-
tice, it fails to guarantee generating high-quality app snippet
1Previously known as Android Market.
2http://blog.quixey.com/2012/02/02/search-is-king/.

371

Figure 1: Google Play Search Result of air fight

in many cases. Consider the example shown in Table 1.
The theme of the description is to highlight the app’s differ-
ences from the previous versions. The last sentence in the
description is highly relevant to the theme, however, it fails
to be included in the snippet generated by Google Play. In
contrast, the snippet generated by Google Play is not closely
related to the theme and is not effective to reveal the real
features of the app.

Problem 2. (App Ranking)
App ranking is critical for app search engines. The high-
ranked apps should be highly relevant to the user’s infor-
mation need. However, it is reported that mainstream app
search engines still rely on the simplistic term matching tech-
nique in IR3. This approach usually fails in the app search
scenario, where the text information of many relevant apps
only contains terms that have similar semantic meaning with
the query terms. Consider a user who is looking for an app
to emulate fighter jets and searches “air fight”, the top seven
results returned by Google Play of “air fight” is presented in
Figure 1. The 7th app is a perfect match to the user’s search
intent. Although the description of the 7th app contains “air
combat”, Google Play fails to see the semantic similarity be-
tween the terms “fight” and “combat”, thus, some irrelevant
apps about air control are ranked higher than the relevant
one.

Although we only provide the motivating examples from
Google Play, these two problems are also common in other
commercial app search engines. In order to solve the prob-
lems, the semantics between words are needed to help cap-
ture the themes of app descriptions as well as provide effec-
tive app rankings. Although semantics can be obtained from
information sources such as ontology or so, they are usually
costly to obtain and cannot easily adapt to the highly dy-
namic app ecosystem. In this paper, we constrain “seman-
tics” as the latent word relations that can be automatically
obtained from the app corpus. We develop a semantic-aware
app search framework named Panorama, which solves the

3http://www.wired.com/gadgetlab/2012/02/chomp-apple-
app-store/

challenging issues of how to discover the semantics from the
app corpus as well as how to utilize the discovered semantics
to solve the two aforementioned problems.

The Panorama framework is highlighted by three major
components: the App Topic Model Component, the App
Snippet Generation Component and the App Ranking Com-
ponent. The App Topic Model Component contains the App
Topic Model (ATM), which is specialized in app analysis.
Since topic modeling has been shown effective to find the
latent relations in data [3], the ATM is designed to discover
the latent semantic by seamlessly integrating the text, the
link as well as the category information in the app corpus.
The App Snippet Generation Component utilizes different
features to evaluate the quality of the sentences in app de-
scription and then employs a greedy algorithm to choose
the high-quality sentences with redundancy reduction. The
greedy algorithm is guaranteed to perform near-optimally
with a fixed probability. In the App Ranking Component, we
propose 12 features to evaluate an app’s static quality from
the three perspectives of app popularity, developer reputa-
tion and link prestige. Then the traditional TF-IDF score
and topic score are further utilized to evaluate the relevancy
of an app with respect to a search query. Since the tradi-
tional inverted index does not support the topic information,
we design a new type of inverted index, which supports effi-
cient Top-k app retrieval by evaluating the app’s static qual-
ity, TF-IDF score and topic score simultaneously. Although
we focus on Android apps in this paper, the techniques we
proposed can be easily adapted to apps in other market-
places. The contributions of this paper are summarized as
follows:

• First, we propose the App Topic Model (ATM) that
integrates the text, the link and the category infor-
mation in order to discover the latent semantics from
apps. To the best of our knowledge, it is the first topic
model specialized in app analysis.

• Second, we propose three metrics to evaluate the qual-
ity of the sentences in app description. Based on the
wide spectrum of metrics, a greedy algorithm which
has nearly-optimal performance with a fixed probabil-
ity is proposed to generate app snippets with redun-
dancy reduction.

• Third, we propose 12 features to evaluate an app’s
static quality and utilize the TF-IDF score and the
topic score to evaluate an app’s relevance with respect
to a search query. A new kind of inverted index is
also proposed to support efficient Top-k query process-
ing by evaluating the static quality score, the TF-IDF
score and the topic score simultaneously.

• Fourth, we conduct extensive experiments on a large
collection of Android apps and develop an app search
engine prototype to perform human-based evaluations.
Compared with some commercial app search engines,
the proposed framework demonstrates comparable or
even superior performance with regards to different
metrics.

The rest of the paper is organized as follows. In Section
2, we review the related work. In Section 3, we discuss the
app topic model. In Sections 4 and 5, we discuss the app
snippet generation and app ranking. In Section 6, we present

372

Table 2: Example of Crawled App Information

Title Angry Bird Seasons
Description Angry Birds Seasons: Cherry Blossom Festival! Angry Birds Seasons takes the captivating

game play of the original to a whole new level! From Halloween to Chinese New Year,
the birds are celebrating different festive seasons around the world! With more than
260 levels and regular free updates, these special episodes offer more challenging levels

of pig-popping action and golden eggs to discover. ...
Category Arcade&Action
Developer Rovio Mobile Ltd.

Average Rating 4.5
Rating Users 467,557

Price Free
Installs 50,000,000 - 100,000,000 last 30 days

Same Developer Angry Birds, Angry Birds Rio, Angry Birds Space Premium, ...
Also Viewed Angry Monkey, Squibble, Angry Gran Free Game,...
Also Installed AngryBirdsBackup Free, 3 Stars in Angry Birds, Save The Bird, ...

the experimental results. Finally, the paper is concluded in
Section 7.

2. RELATED WORK
The paper is essentially related to three research fields:

topic modeling, document summarization and inverted in-
dex. We now review them in the following three subsections.

2.1 Topic Modeling
Topic modeling is gaining momentum in text mining in

recent years. Latent Dirichlet Allocation (LDA) is first pro-
posed in [3] to analyze electronic documents. Topic models
are reported to be effective to discover topics from academic
articles [8] and web search query log [11]. Our work is also
closely related to topic models that capture the links be-
tween documents. A generative model for hypertext doc-
ument collections that explicitly models the generation of
links is proposed in [9]. In [6], a joint probabilistic model is
proposed for modeling the contents and inter-connectivity of
document collections. Recently, Xia et al. [28] proposed the
PLink-LDA, which utilizes the citation information as prior
knowledge in the generative process of topic modeling. The
ATM is essentially different from the previous ones, since it
needs to incorporate three kinds of information: the text,
the link and the category. Moreover, there are three dif-
ferent types of links in ATM while previous models usually
have only one kind of link.

2.2 Document Summarization
Document summarization has been intensively studied in

IR. Neto et al. [18] present a summarization procedure
based on trainable machine learning algorithms which em-
ploys a set of features extracted directly from the original
text. Varadarajan et al. [25] present a method to cre-
ate query-specific summaries by identifying the most query-
relevant fragments and combining them using the semantic
associations within the document. Lin et al. [14] proposed a
class of submodular functions for document summarization
tasks. Shen et al. [23] proposed a new principled and ver-
satile framework for multi-document summarization using
the minimum dominating set. Our app snippet generation
method is different in that some new metrics are proposed to
handle the unique challenges in app analysis and our method

has near-optimal performance guarantee with a fixed prob-
ability.

2.3 Inverted Index
The inverted index is a widely used data structure in

search engines. The latest advancement of inverted index
is to design new query processing paradigms to improve the
efficiency. [24] shows how new accumulator trimming tech-
niques combined with inverted list skipping can produce
extremely high performance retrieval systems. Broder et
al. [4] present an efficient query evaluation method based
on a two level approach, which utilize early termination to
achieve faster query processing. Recently, a set of new al-
gorithms [7] [22] is proposed by utilizing an augmented in-
verted index structure called a block-max index to conduct
high-performance query processing. We introduce the topic
information into the traditional inverted index to build a
new kind of inverted index. To the best of our knowledge,
our work is the first one that discusses indexing the results
of topic models.

3. APP TOPIC MODEL
Although it is reported in industry that topic modeling is

useful for app search4, little information has been published
to reveal how to apply topic modeling to analyze apps. In
this section, we propose the App Topic Model (ATM), which
utilizes the crawled app information to discover the latent
semantics, the topics, from the app corpus. To illustrate our
ideas, we present an example of the crawled app information
in Table 2 and the generative process of ATM in Algorithm
1. ATM makes use of the text information of app descrip-
tion, the link information (i.e., Same Developer, Also Viewed
and Also Installed) and the category information (e.g., En-
tertainment, Communication, etc). When generating a sen-
tence, the probability of choosing a specific topic subjects to
the present app’s topic distribution as well as the topic dis-
tributions of the apps that the present app is linked to. The
line 22 of Algorithm 1 depicts how to generate the category
information. We assume that there exists C app categories,
η1:C = [η1, ..., ηC]

T is a matrix with C K-dimensional lo-
gistic regression parameters as the rows, where ηC is a zero
vector by default, so we only use η1:C−1 as the parameters to

4http://chomp.com/us/about

373

be estimated. z is an average of z1:N over all observed words,
where each zn is a K-dimensional unit vector with only the
ith entry being 1 if it denotes the ith topic. The category
variable y can be considered as a sample generated from
the discrete distribution (p1, ...pC−1, 1 −

∑C−1
i=1 pi), where

pi =
exp(ηT

i z)

1+
∑C−1

i=1 (ηT
i z)

.

Algorithm 1 Generative Process of App Topic Model

1: for each topic k ∈ 1, ...,K do
2: draw a word distribution ϕk ∼ Dirichlet(β);
3: end for
4: for each app d ∈ 1, ..., D do
5: draw d’s topic distribution θd ∼ Dirichlet(α);
6: draw d’s link type distribution θ′d ∼ Dirichlet(Ω);
7: for each sentence s in d do
8: if the link existence indicator Id > 0 then
9: draw b ∼ Bernoulli(o);
10: draw link type c ∼ Multinomial(θ′d)
11: draw link l ∼ Uniform(πc);
12: if b = 1 then
13: draw a topic z ∼ Multinomial(θd);
14: else
15: draw a topic z ∼ Multinomial(θdl);
16: end if
17: else
18: choose a topic z ∼ Multinomial(θd);
19: end if
20: generate words w ∼ Multinomial(ϕz);
21: end for
22: choose the app category y according to multi-class lo-

gistic regression y ∼ LR(exp(ηT
i z)

1+
∑C−1

i=1 (ηT
i z)

), i ∈ [1, ..., C−
1]

23: end for

We utilize the mean field variational inference method [26]
to estimate the parameters of ATM. The joint likelihood of
generating the whole corpus D given the hyper-parameters
is as follows:

P (D|α, β,Ω, o) =
∫ D∏

d=1

p(θd|α)×
D∏

d=1

p(θ′d|Ω)×

D∏
d=1

Sd∏
s=1

∑
bds

p(bds|o)
∑
cds

p(cds|θ′d)
∑
lds

p(lds|πdcds)∑
zds

(
p(zds|θd)bdsp(zds|θdlds)

1−bds
)
×

D∏
d=1

Sd∏
s=1

Wds∏
n=1

p(wdsn|ϕzds)×
K∏

k=1

p(ϕk|β)×
D∏

d=1

p(yd|Zd, η1:C−1)dθd.

(1)

We then minimize the KL-divergence between factorized
variational posterior distribution and true posterior proba-
bility of the corpus by taking derivatives of the loss function
with respect to variational parameters. The solution is listed
as follows:
E-step:

γdk = αk +

Sd∑
s=1

ρdsϕ̂dsk

+
D∑

d′=1

Cd′∑
c=1

Ld′c∑
l=1

I[l = d]

Sd∑
s=1

ψd′scl · (1− ρd′s)ϕ̂d′sk,

(2)

where γ is the posterior Dirichlet parameter corresponding
to the representations of documents in the topic simplex.

ϕ̂dsk = exp
{
ρds(Ψ(γdk)−Ψ(

K∑
k=1

γdk))+

(1− ρds)
C∑

c=1

Ldc∑
l=1

ψdscl

Wds∑
n=1

(
Ψ(λ̂kwn)−Ψ(

V∑
v=1

λ̂kv)

+
1

N

C−1∑
i=1

(ηikyi − exp(ηik)/ξd)
)
,

(3)

where ϕ̂ is the variational parameter corresponds to z and
Ψ(·) is the digamma function, i.e., the first derivative of the
log Gamma function.

ρds =
(
1 +

(
X
)−1)−1

, (4)

where ρ is the variational parameter corresponds to b and
X is defined as follows:

X = exp{
K∑

k=1

(
Ψ(γdk)−Ψ(

K∑
k

γdk)
)
ϕ̂dsk

− log o
K∑

k=1

C∑
c=1

Ldc∑
l=1

ψdsclϕ̂dsk
(
Ψ(γdlk)−Ψ(

K∑
k

γdlk)
)

+ log o− log(1− o)}.

(5)

ψdscl = πdcl exp {(1− ρds)
K∑

k=1

(
Ψ(γdlk)−Ψ(

K∑
k

γdlk)
)
ϕ̂dlsk},

(6)

where ψ is the variational parameter corresponds to l.

∆dc = Ωc +

Sd∑
s=1

vdsc, (7)

where ∆ is the variational parameter corresponds to θ′.

vdsc = exp{Ψ(∆dc)−Ψ(
C∑

c=1

∆dc)

+
K∑

k=1

(1− ρds)
Ldc∑
l′
ψdscl′ (Ψ(γdl′k)−Ψ(

K∑
k=1

γdl′k))ϕ̂dl′sk − 1},

(8)

where v is the variational parameter corresponds to c.

ξd = 1 +
1

N

C−1∑
i=1

K∑
k=1

Sd∑
s=1

ϕ̂dsk exp(ηik), (9)

where ξ is the variational parameter corresponds to y.
M-step:

λ̂kv = βv +
D∑

d=1

Sd∑
s=1

Wds∑
n=1

I(wdsn = v)ϕ̂dsk, (10)

where λ̂ is the variational parameter corresponds to ϕ.

ηik = log

∑D
d=1

∑Sd
s=1 ydiϕ̂dsk/Sd∑D

d=1

∑Sd
s=1 ϕ̂dsk/(Sdξd)

. (11)

Through applying the ATM to the app corpus, each app
is represented by a topic vector (θ1, θ2, ..., θn) where θk is

374

a real number that indicates the app’s endorsement for the
kth topic. The discovered topics (ϕ1, ϕ2, ..., ϕk) are different
multinomial distributions over the terms in the corpus. In
the following two sections, we discuss how to utilize the re-
sults of ATM for semantic-aware app snippet generation as
well as semantic-aware app ranking.

4. APP SNIPPET GENERATION
In this section, we discuss the approach of generating high-

quality app snippets. We propose three metrics (namely,
centrality, formality and usefulness) in Subsections 4.1, 4.2
and 4.3. In Subsection 4.4, we proposed a greedy algorithm
to generate app snippets and discuss its performance guar-
antee.

4.1 Centrality
Centrality assumes that the most central sentences in the

app description give the necessary and sufficient amount of
information related to the theme of the app description. In
this metric, each sentence is represented by the TF-ISF5vectors
of all words and the TF-ISF value of a term t is calculated
as follows:

TF − ISF (t) =
√
Ft ×

(
log(

|S|
|St|+ 1

) + 1
)
, (12)

where Ft is the frequency of t in the sentence, |S| is the total
number of sentences in the app description and |St| is the
number of sentences containing t. Finally, the centrality of
a sentence s is obtained by averaging the cosine similarities
between the present sentence and all other sentences.

Centrality(s) =

∑
s′∈S∧s′ ̸=s Sim(s, s′)

|S| − 1
. (13)

4.2 Formality
The informal sentences usually contain subjective com-

ments and are usually irrelevant to the app’s functionality.
Thus, a metric is needed to distinguish the formal sentences
from the informal ones, since The formality metric assumes
that formal sentences are more informative [10]. The non-
deictic (ND) category of words, whose frequency is expected
to increase with the formality of a text, includes the nouns,
adjectives, prepositions and articles. The deictic category
(D), whose frequency is expected to decrease with increasing
formality of speech-styles, consists of the pronouns, verbs,
adverbs, and interjections. The formality metric is obtained
by adding up the frequencies of the formal categories, sub-
tracting the frequencies of the deictic categories and nor-
malize to a value between 0 and 1. Specifically, we design
a normalized version of the formula proposed in [10] and
calculate the formality of a sentence s as follows:

Formality(s) =
(
∑

x∈ND freq(sx)−
∑

y∈D freq(sy) + 100)

100 + length(s)
.

(14)

4.3 Usefulness
The usefulness metric evaluates whether or not a sentence

discusses the description’s theme from the perspective of
topics [1]. To determine whether a sentence s is on-theme,

5TF is short for term frequency and the ISF is short for
inverse sentence frequency.

we evaluate the probability that it is generated by the corre-
sponding app’s topic distribution. This metric is essentially
different from centrality and formality, since this metric not
only utilizes the local information but also incorporates the
global semantics. We formulate the following equation to
gauge the usefulness of the sentence s.

Usefulness(s) =
(
∑

t∈s

∑K
k=1 P (t|ϕk) · θk)
length(s)

, (15)

where θk is the app’s endorsement for the kth topic. length(s)
is the number of terms in the sentences and provides length
normalization so that sentences having different lengths are
comparable.

4.4 App Snippet Generation Algorithm
In this subsection, we discuss an algorithm of generating

the snippet for an app. Besides the three proposed metrics,
we also use some conventional metrics that are intensively
used in text summarization to evaluate the quality of a sen-
tence. Overall, we utilize the following seven factors:

• Centrality.

• Formality.

• Usefullness.

• Whether starts with the app name.

• Cosine similarity with the app name.

• The sequence of the sentence in description.

• Sentence length.

The weight of each factor listed above is determined by the
training data prepared by human judges (see Section 6). We
then utilize a linear function to combine these factors and
calculate the quality of the sentence s, Quality(s), which
is further normalized between to a real number between 0
and 1. App snippet generation aims to select a small set
of sentences, which are representative of the app’s theme
and diverse to cover different facets of the app’s features.
Therefore, we formulate it as a maximization problem:

maximize:

OBJ(S′)S′∈S =
∑
s∈S′

Quality(s)− λ
∑

i,j∈S′:i ̸=j

Sim(i, j),

subject to: ∑
i∈S′

li ≤ L.

where S is the set of all sentences in the app description. S′

is the set of selected sentences, λ is a positive number deter-
mining the weight of redundancy penalty, li is the length of
the ith sentence and L is the length limit. Sim(i, j) evalu-
ates the cosine similarity between sentences si and sj . Find-
ing the optimal solution of the maximization problem is NP-
hard [16], thus, we propose a greedy approach of Algorithm
2 to solve it. The algorithm sequentially finds sentence x
with the largest ratio of objective function gain to cost, the
length of the sentence. If adding x increases the objective
function value while not violating the length limit, it is then
selected and otherwise bypassed. After the sequential se-
lection, set G is compared to the singleton that is within

375

Algorithm 2 App Snippet Generation Algorithm

1: G = ∅
2: U = S
3: while U ̸= ∅ do
4: x← argmaxs∈U

OBJ(G∪{s})−OBJ(G)
ls

5: if
∑

i∈G li + lx ≤ L and OBJ(G ∪ {x}) − OBJ(G) ≥ 0
then

6: G← G ∪ {x}
7: U ← U\{x}
8: end if
9: end while
10: s∗ ← argmaxs∈S,ls≤LOBJ(s)

11: return G = argmaxS∈{{s∗},G}OBJ(S)

the length limit and has the largest objective value, and the
larger of the two becomes the final output.
The last step of Algorithm 2 ensures that we are able to

obtain a constant approximation factor if the objective func-
tion is monotone and submodular. If OBJ is monotone and
submodular, it is easy to prove that the greedy algorithm
has a near-optimal performance and a constant approxima-

tion ratio of
(
1 − e−

1
2
)
. However, OBJ is submodular but

does not guarantee to be always monotone, we show that the
greedy algorithm can work nearly-optimally with a bounded
probability. Let SL be the largest number of sentences of a
feasible solution, the value of Sim is bounded and are inde-
pendently identically distributed with mean µ and the value
of Quality(s) is independently identically distributed with
mean µ′. Algorithm 2 works near-optimally with a proba-

bility of at least 1− exp
{−2(µ′−λ(2SL−1)µ)2

(1+λ(2SL−1))2
+ lnSL

}
.

5. APP RANKING
In this section, we discuss how to rank the apps with

respect to a search query. In Section 5.1, we discuss the
features that are used to evaluate an app’s static quality.
In Sections 5.2 and 5.3, we discuss the TF-IDF score and
the topic score in order to evaluate the app’s relevance to a
search query. Finally, in Section 5.4, we discuss the struc-
ture of the inverted index to support efficient online query
processing.

5.1 Static Quality Score
Similar to the documents in general web search, each app

also has their own static quality that is independent of any
search query. In this subsection, we study the apps’ static
quality from three different perspectives: the apps’ popular-
ity, the corresponding developer’s reputation and the apps’
prestige in the app network.

5.1.1 App Popularity
We evaluate an app’s popularity by the rating, the amount

of users as well as the last 30 days installment. Among the
three popularity factors, the rating needs to be further pro-
cessed. App marketplaces usually use the raw average rating
to evaluate the quality of the app. However, this indicator
is easily skewed by a small number of ratings (or even a sin-
gle rating) given to any particular app. Therefore, we use
Bayesian average (BA) to incorporate the “wisdom of the
crowd”. The logic of Bayesian average is as follows. When
an app has received many ratings, that data is considered
more “reliable”. When an app has received very few ratings,

its rating should approximate the average rating for all apps.
The equation of BA rating is given by:

BA =
AN ·AR + Sum

N +AN
, (16)

where N is the number of ratings given to this app, Sum is
the sum of all ratings given to this app, AN is is the average
number of ratings for all apps and AR is the average rating
for all apps. In summary, we use the following three features
to evaluate an app’s popularity:

• BA Rating: the Bayesian average rating.

• User Amount: the original value.

• Last 30 Days Installments: the original value.

5.1.2 Developer Reputation
We now consider the static quality factors that originate

from the app developers. It is straightforward that the qual-
ity of an app subjects to the expertise of the developers.
Therefore, incorporating the developer’s information help
obtain a more objective perception of an app’s quality. We
include the developer’s reputation in an implicit way, i.e,
we do not compute a reputation score for each developer.
Instead, we use Bayesian average to update the original rat-
ing, user amount and last 30 days installment. Equation
(17) naturally incorporates the developer’s information by
considering all the apps that the developer has developed so
far.

BA =
ÂN · ÂR + Sum

N + ÂN

, (17)

where the definitions of N and Sum are the same as Equa-
tion (16). ÂN is is the average number of ratings, user
amounts or last 30 days installments for all apps from the
same developer and ÂR is the average ratings, average user
amounts or average last 30 days installments for all apps
from the same developer.

Given that each developer has some expertise in develop-
ing a specific type of apps such as Entertainment or Commu-
nication, a strategy with even finer granularity is to calculate
Bayesian average based on both developers and categories.
In this case, the ÂN in Equation (17) is the average num-
ber of ratings, user amounts or last 30 days installments
for all apps from both the same developer and the same
category as the present app. ÂR is the average ratings, av-
erage user amounts or average last 30 days installments for
all apps from the same developer and the same category as
the present app. In summary, we use the following features
to evaluate an app’s static quality from the perspective of
developer reputation:

• D-BA Rating.

• D-BA User Amount.

• D-BA Last 30 Days Installments.

• DC-BA Rating.

• DC-BA User Amount.

• DC-BA Last 30 Days Installments.

where D-BA denotes the Bayesian average based on the de-
velopers and DC-BA denotes the Bayesian average based on
both the developers and the categories.

376

5.1.3 Link Prestige
Three app relation graphs are established from the three

perspectives of Same Developer, Also Viewed and Also In-
stalled. We apply the standard PageRank algorithm on each
graph to obtain the app’s link prestige. We get the following
three PageRank values for an app:

• PD
r : PageRank value obtained from the Same Devel-

oper graph.

• PV
r : PageRank value obtained from the Also Viewed

graph.

• P I
r : PageRank value obtained from the Also Installed

graph.

By combining all the 12 features from app popularity, de-
veloper reputation and link prestige by a linear function,
we can obtain the static quality score of each app, which is
further normalized by the maximum one in the corpus.

5.2 TF-IDF Score
Now we discuss how to evaluate the relevance of an app

with regard to a search query through the traditional IR
techinques. The TF-IDF score is based on the conventional
term matching technique commonly used in IR. Specifically,
we utilize the BM25F [5] model to evaluate the relevancy of
an app a with respect to a query term t. The BM25F score
of a with respect to t is calculated by Equation (18):

ScoreBM25F (t, a) = IDFt · TFBM25F (t, a), (18)

IDFt = log(
N

Nt
), (19)

where N is the number of apps in the corpus and Nt is the
number of apps containing the term t.

TFBM25F (t, a) =
∑
r

wr · TFBM25F (t, a, r), (20)

where r contains the fields of app name and app description.
wr is the weight of the field r. Similar to [19], we assign
wname = 3 and wdescription = 1.

TFBM25F (t, a, r) =
ft,a,r × (k1 + 1)

ft,a,r + k1 × ((1− br) + br × (la,r/lr))
,

(21)

where ft,a,r is the frequency of term t is a’s region r, la,r
is the length of a’s region r and lr is the average length
of region r in the corpus. k1 and br are set to be default
value 1.2 and 0.75 respectively [5]. Given a query q, the
normalized TF-IDF score of a is calculated as follows:

ScoreBM25F (q, a) =

∑
t∈q IDFt · TFBM25F (t, a)∑

t∈q 4 · IDFt · (k1 + 1)
. (22)

5.3 Topic Score
TF-IDF score evaluates the apps’ relevancy through the

exact matching of the query terms. However, many relevant
apps only have terms that have similar semantic meaning
with the query terms. Recall the example in the introduc-
tion, when the query term is fight, the apps that contain
the term combat can also be good candidates for the results.
Now we discuss how to utilize the topics discovered by ATM

10

angry

10

bird

0.88, 0.2, 0.2

App17

0.88, 0.8, 0.8

App28

18

0.22, 0.2, 0.2

App17

0.22, 0.2, 0.2

App20

4.5

Figure 2: Example of the inverted index structure. The
index contains the inverted lists of angry and bird. In the
inverted list of bird, the IDFbird is 10. Postings App17 and
App20 form the first block. In App20, 0.22, 0.2 and 0.2
are TFBM25F (bird, App20), ScoreATM (bird, App20) and
Quality(App20), respectively.

to retrieve these apps as well. We use the following equation
to calculate the topic score of app a with respect to a query
term t:

ScoreATM (t, a) = P (a|t) ∝ P (t|a)P (a), (23)

where

P (t|a) =
K∑

k=1

P (t|ϕk) · θak. (24)

Without any prior knowledge, we consider P (a) to be equal
for all apps. Thus, with respect to q, the normalized topic
score of a is as follows:

ScoreATM (q, a) =

∑
t∈q

∑K
k=1 P (t|ϕk) · θak
length(q)

, (25)

where length(q) is the total number of terms in the query.

5.4 Structure of Inverted Index
Search engines perform query processing based on the

inverted index, which is a simple and efficient data struc-
ture that supports finding documents that contain a par-
ticular term. However, traditional inverted indices do not
support the topic information. Although the query pro-
cessing can be performed in a naive manner by aggregat-
ing the search results from traditional inverted indices and
the topic information, this method would be very inefficient
because significantly larger numbers of apps are needed to
be retrieved in the intermediate results. We now discuss
a new inverted index structure by incorporating the static
quality score, TF-IDF score and topic score together. The
new inverted index consists of many inverted lists (see Fig-
ure 2). Each inverted list is a list of postings and stores
the IDFt for the term t. Each posting takes the form
of (ai, TFBM25F (t, ai), ScoreATM (t, ai), Quality(ai)), where
ai is the app ID, TFBM25F (t, ai) is the term frequency score,
ScoreATM (t, ai) is the topic score and Quality(ai) is the
app’s static quality score. Similarly to the general web
search engine, we assume that the query terms are disjunc-
tive in default. We build the inverted index in the block-max
paradigm [7] and utilize the local block-maxWAND strategy
[22] for query processing.

The important operation of efficient query processing is to
estimate the upper bound score of the candidate document
and skip the candidate document if it failed to be included

377

(a) Panorama Homepage

(b) Panorama Search Result of
bird

(c) Panorama Search Result of daily
news

Figure 3: User Interface of Panorama App Search Engine

in the Top-k results. This goal is achieved by grouping a
number of documents as a block, which store the information
about the upper bound of the impact of the postings in it.
The scoring function can be rewritten as follows:

Score(q, a) = w1 · Quality(a)

+w2 · (
∑
t∈q

·ScoreBM25F (t, a))/(
∑
t∈q

4 · IDFt · (k1 + 1))

+w3 ·
∑
t∈q

ScoreATM (t, a)/length(q)

≤
(∑
t∈q

(w1 · 4 · IDFt · Quality(d) + w2 · IDFt ·
TFBM25F (t, a)

k1 + 1

+w3 · 4 · IDFmax · ScoreATM (t, a)
)
/

∑
t∈q

4 · IDFt,

(26)

where IDFmax is the largest IDF score in the inverted index.
Specifically, we calculate the impact of a posting (a,
TFBM25F (t, a), ScoreATM (t, a), Quality(a)) in the inverted
index by Equation(27). We then store the maximum impact
of the postings in a block as the upper bound impact and
store it as the meta information in the block.

w1 · 4 · IDF t ·Quality(d) + w2 · IDF t ·
TFBM25F (t, a)

k1 + 1

+w3 · 4 · IDFmax · ScoreATM (t, a)

(27)

During query processing, the upper bound score of an app
in the block can be dynamically estimated via bound∑

t∈q 4·IDF t
.

Empirically, the strategy discussed above achieves a good
performance in upper bound estimation. However, an app’s
upper bound can be underestimated in two cases: (1) when
one inverted list ends up and the other inverted lists still
have candidates. (2) when one app’s static quality score
is much larger than the block’s combined score. Figure 2
shows an example of this scenario. Assume that the weights
for TF-IDF score, topic score and static quality score be
0.5, 0.3 and 0.2, respectively. It is straightforward to obtain
that the upper bounds of the first blocks of angry and bird
are 18 and 4.5, respectively. When utilizing the two block
upper bound to estimate a document’s upper bound, we
get 18+4.5

40+40
= 0.28125. However, the real score of App28 is

0.5× 0.88×10
4×10×2.2×2

+0.3× 0.8
2

+0.2× 0.8 = 0.305. So App28’s
upper bound score is underestimated. This case happens
when a document’s static quality score is much larger than
a block’s combined score. App28’s static quality score is
0.2 × 0.8 = 0.16. In contrast, the combined score of bird ’s
first block is 0.07625. Thus, we also store the maximum
static score and maximum topic score in blocks to check

whether this situation actually happens. If this happens, we
use the maximum static score and maximum topic score to
estimate the upper bound score, otherwise, we use the score
given by Equation (27).

6. EXPERIMENTS
In this section, we present the experimental results. The

experimental data are crawled from commercial app search
engines such as Google Play6, appgravity7 and AppBrain8 in
March 2012. In Section 6.1, we present some topics discov-
ered by ATM and quantitatively compare ATM with some
existing topic models. In Section 6.2, we compare the pro-
posed app snippets generation algorithm with open source
software and several commercial app search engines. In Sec-
tion 6.3, we compare the app ranking of the proposed frame-
work with those generated by conventional IR models and
several commercial app search engines. Finally, in Section
6.4, we evaluate the query processing efficiency of the pro-
posed inverted index structure.

6.1 Evaluation of ATM
An informal but important measure of the success of prob-

abilistic topic models is the plausibility of the discovered
search topics. For simplicity, we use the fixed symmetric
Dirichlet distribution like [8], which demonstrates good per-
formance in our experiments. Hyperparameter setting is
well studied in probabilistic topic modeling and is beyond
the scope of this paper. Interested readers are invited to
refer [27] to find a more detailed discussion. Some topics
discovered by ATM are presented in Table 3. We can see
that the discovered topics consist of semantically coherent
terms and is effective to cover different facets of the apps’
features.

We further quantitatively evaluate the performance of ATM
by the metric of perplexity [21]. Perplexity is a measure of
the ability of a model to generalize to unseen data. Better
generalization performance is indicated by a lower perplex-
ity. Through an extensive survey, we do not find any proba-
bilistic models that are designed for analyzing apps, thus we
carefully choose several state-of-the-art models that are gen-
eral enough to be applied to app analysis. Specifically, we
choose the LDA [3], JPMCC model [6], Link-LDA [17] and
PLink-LDA [28] as the baselines. We compare ATM with

6https://play.google.com/store
7http://appgravity.com/.
8http://www.appbrain.com/.

378

Table 3: Examples of Topics Discovered by ATM.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

water 0.16628 battery 0.08196 aging 0.05714 messages 0.04268 sniper 0.07575
shower 0.06572 settings 0.02732 photo 0.04285 contacts 0.03658 game 0.06060
ooze 0.04814 saving 0.02185 camera 0.02857 send 0.03048 shooting 0.04545
flow 0.04757 mode 0.02185 face 0.02857 friends 0.03048 gun 0.04545
drop 0.02258 background 0.01639 mustache 0.02857 messenger 0.03048 camp 0.04545
splash 0.02155 power 0.01092 glasses 0.02857 chat 0.02439 score 0.03030
fluid 0.02152 screen 0.00546 wrinkles 0.01428 sms 0.02439 head 0.01515
ducky 0.02132 brightness 0.00546 skin 0.01428 notifications 0.01219 rifle 0.01515
rubber 0.02067 restore 0.00546 beard 0.01428 group 0.01219 weapons 0.01515
games 0.02032 consuming 0.00546 monocle 0.01428 voice 0.00609 reloaded 0.01515

the baselines by a ten-fold cross validation on a dataset of
10,000 apps and use Equation (28) to calculate the perplex-
ity of each model.

Perplexity(M) = (
D∏

d=1

Nd∏
i=1

p(wi|M))

−1∑D
d=1

(Nd) , (28)

where M is the model that is learned from the training
process and wi is the word in the document. Figure 4(a)
shows the average perplexity for each model. We can observe
that ATM achieves significantly lower perplexity, indicating
that ATM provides a better fit for the app data than other
models.
Like [29], we also use KL-divergence to evaluate the dis-

tinctiveness of the discovered topics. The larger the average
KL-divergence is, the more distinct the search topics are. We
show the average distance of term distributions of all pairs
of search topics measured by KL-divergence in Figure 4(b).
We find that the topics discovered by ATM show the highest
KL-divergence than those of the baselines. By incorporating
both the three kinds of link information and the category in-
formation, the word distributions in the topics discovered by
ATM are more distinctive. The result indicates that ATM
is superior in finding different facets of an app’s theme.

6.2 App Snippet Quality
We compare the app snippet generation algorithm with

the open source software Classifier4J 9 and three commercial
app search engines: Google Play, appgravity and AppBrain.
We choose the three app search engines because they are
focused on searching Android apps and thus is comparable
with the proposed framework. By the time of writing this
paper, Google Play and appgravity simply utilize the first
several characters (about 166 characters for Google Play and
about 220 characters for appgravity) as an app’s snippet.
AppBrain seems to utilize a more sophisticated algorithm
to generate the app snippet, which typically has a length of
about 83 characters. In summary, we compare the following
five methods in the experiments:

1. CJ: The summarizer algorithm implemented in Clas-
sifier4J. The number in the parentheses is the amount
of characters in the snippet.

2. GP: App snippet of Google Play.

3. AG: App snippet of appgravity.

4. AB: App snippet of AppBrain.

9classifier4j.sourceforge.net

5. P: Panorama’s app snippet generation algorithm. The
number in the parentheses is the amount of characters
in the snippet.

The experimental data is prepared by crawling the in-
formation of the top 50 apps of 1,000 search queries from
Google Play, appgravity and AppBrain. Then we select
1,000 apps which appear in all the three search engines’
search results as the experimental data. The ground truth
of the sentence quality is prepared by four human judges,
who manually rate each sentence in the app description by
a scale ranging from 0 to 5, where 0 indicates that the sen-
tence is totally useless and 5 indicates that the sentence has
very high quality and is representative of the app’s real func-
tionality. Besides assigning a quality score to each sentence,
we also assign a a facet label to each sentence in order to in-
dicate which facet this sentence covers. For example, if the
sentences s1 and s2 are about the app’s UI design while the
sentence s3 is about the app’s battery consumption, then s1
and s2 are assigned the same facet label while s3 is assigned
a different one. Out of the 1,000 manually prepared apps,
we utilize 200 apps as the training data of RankSVM [12] to
estimate the weight of each metric of sentence quality. The
remaining 800 apps are further utilized to compare the pro-
posed algorithm with the baselines in terms of the snippets’
quality and facet diversity.

From the learned weights in Table 4, we observe that all
the three proposed metrics have relatively large absolute
values, showing that they are effective in estimating a sen-
tence’s quality. In our experiments, the snippet’s quality is
calculated as the sum of the quality score of the sentences
in the snippet. From Figure 4(c), we can observe that the
proposed app snippet generation algorithm achieves the best
performance against the baselines which generate snippets of
the same length. The result again verifies that the features
we utilize are effective to reveal a sentence’s real quality.
Meanwhile, the greedy algorithm is effective to select the
high-quality sentences as the snippet. The result also shows
that by including the penalty on redundant information, the
sentences in the resultant snippet of the proposed algorithm
are essentially more diverse than those selected by the three
commercial search engines. Since the snippets of the base-
lines are different in length, longer snippet tends to have a
larger quality score and facet diversity. Therefore, we also
calculate the two metrics on a character basis, i.e., divid-
ing the original values of the two metrics by the amount of
the characters in the snippet. The results of character-wise
evaluation are presented in Figure 4(d). It is shown that
Panorama also achieves the best performances when using
the character-wise metrics. This result further verifies the

379

(a) Perplexity Evaluation (b) KL-Divergence Evaluation(c) Quality and Facet Diver-
sity of App Snippet

(d) Character-wise Quality
and Facet Diversity of App
Snippet

(e) Snippet Quality (f) Character-wise Snippet
Quality

(g) Facet Diversity (h) Character-wise Facet Di-
versity

Figure 4: Performance Comparison

superiority of the proposed app snippet algorithm in gener-
ating character-limited app snippets.

Table 4: Parameter Setting of Sentence Quality

Metrics Weight

Centrality 1.0346936
Formality 0.5272671
Usefulness 1.0134872

Starts with Name 0.5581256
Cosine Similarity with Name 0.3146386
The sequence of sentence -0.071374
The length of sentence 0.0063199

The parameter λ is the weight of the redundancy penalty
in app snippet generation. Figure 4 (e) to (h) present the re-
sults of Panorama’s snippet quality and facet diversity with
different λ. The larger the value of λ, the lower the snippet
quality and the higher the facet diversity. In our experi-
ments, we set λ = 0.1, which achieves the highest character-
wise quality and fairly good character-wise facet diversity.

6.3 App Ranking Quality
In this section, we evaluate the performance of Panorama

in app rankings. The baselines we choose are as follows:

1. VSM: The traditional vector space model, using BM25F
to calculate the relevance score.

2. Google Play: The app ranking of Google Play.

3. appgravity: The app ranking of appgravity.

4. AppBrain: The app ranking of AppBrain.

We build the VSM baseline and Panorama with a corpus
of 2,2974 apps. In order to set the parameters of static

quality score, four human judges are invited to rate 1,000
apps on a score scale of 0 to 5. Based on the manually rated
apps, we train a RankSVM model to obtain the weights of
different features (see Table 5).

We first prepare the pseudo ground truth by ranking ag-
gregation. We utilize the Border’s method [20] to aggre-
gate the app ranking lists of the three commercial search
engines for each search query. The apps in the aggregated
rank list are ranked by their Border scores. We then uti-
lize the aggregated ranking list as the pseudo ground truth
of the corresponding query. Out of the total 1,000 search
queries, we choose 200 of the aggregated ranking lists to
train a RankSVM model to estimate the weights of static
quality score, TF-IDF score and topic score. The remain-
ing 800 search queries’ ranking lists are further utilized to
compare the Panorama with the baselines. We employ the
generalized Kendall’s Tau distance [15] to evaluate the cor-
relation between the pseudo ground truth and the ranking
lists generated by the methods under study. The larger the
generalized Kendall’s Tau distance, the smaller the correla-
tion between the pseudo ground truth and the ranking list
under study. The comparison result is presented in Figure
5(a). We observe that AppBrain demonstrates the high-
est correlation with the pseudo ground truth and achieves
the lowest Kendall’s Tau distance. From the Top-5 to Top-
20 results, Panorama outperforms VSM, Google Play and
appgravity. The result shows that Panorama can perform
high-quality app rankings by combining the static quality
score, TF-IDF score and topic score. The obtained weights
of the three scores also verify that the static quality score
and topic score are important features for determining the
final rank of an app.

Since the pseudo ground truth is essentially biased towards
the results of three commercial search engines, we also con-

380

(a) Ranking Quality (Pseudo
Ground Truth)

(b) Ranking Quality (Human
Judgment)

(c) Average Query Processing
Time

(d) Average Evaluated Apps

Figure 5: Evaluation of App Ranking and Query Processing

duct a user-based evaluation similar to [13]. Each user is
invited to conduct 50 searches on the four baseline search
engines as well as the Panorama. The users are also asked
to perform relevance judgment on the top 50 results for each
query by filling in a score for each app to reflect the rele-
vance of the app to the user’s underlying need. The score
indicates three levels of relevancy (Good, Fair and Poor).
Apps rated as Good are considered relevant (positive sam-
ples), while those rated as Poor are considered irrelevant
to the user’s needs (negative samples). The apps rated as
Fair are treated as unlabeled. Apps rated as Good (rele-
vant apps) are used to compute Top-k precisions. The av-
erage Top-k precision of different approaches are presented
in Figure 5 (b). From the result, we observe that Panorama
significantly outperforms VSM and generates comparable or
even better ranking quality with commercial search engines
such as Google Play and AppBrain.

Table 5: Parameter Setting of App Static Quality

Features Weight

BA-Rating 1.0343661
User Amount 2.3543382

Last 30 Days Installments 2.9078324
D-BA Rating 0.4830251

D-BA User Amount 0.6597734
D-BA 30 days installments 2.0066383

DC-BA Rating 0.4037651
DC-BA User Amount 0.6243585

DC-BA 30 days installments 1.9364556
PD
r 0.0125456
PV
r 0.2149537
P I
r 0.2745393

6.4 Query Processing Efficiency
We proceed to evaluate the efficiency of the proposed in-

verted index. We prepare the baselines by a separate-index
organization. Specifically, we first build an inverted index
based on the TF-IDF information, i.e., constructing the tra-
ditional inverted index. Meanwhile, we build another in-
verted index based on the topic information. When a search
query is submitted, we first retrieve the relevant documents
from the two inverted indexes separately. Then we combine
the two intermediate results with the static quality scores to
generate the final Top-k results. Certainly, in this scenario,
we need to retrieve more apps than k in the intermediate re-

sults, in order to guarantee that the scores of the real Top-k
apps are correctly computed. Note that in this paper, we fo-
cus on returning the results that are exactly the same as the
OR exhaustive query processing. When applying the base-
lines based on the separate-index organization, we gradually
increase the number of apps retrieved in the intermediate re-
sults until the final result is the same as that of the exhaus-
tive query processing, and then we gauge the corresponding
method’s efficiency in query processing. In summary, we
compare the Panorama with the following query processing
strategies. OR: The exhaustive disjunctive query process-
ing [2]. BMW : The block-max WAND pruning strategy [7].
LBMW : The local block-max WAND strategy [22] on the
separate-index organization.

We utilize 1,000 search queries whose length ranges from 1
to 10 terms to evaluate the average query processing time of
the aforementioned methods. The results of average query
processing time are presented in Figure 5(c). The results
show that Panorama significantly outperforms the methods
using the incremental index. The Panorama framework per-
forms quite well even when k is equal to 1000, and the in-
crease in consumed time is fairly moderate. The result veri-
fies that simply adding another new inverted index based on
the topic information is not efficient enough for online query
processing, since the tedious two-phase computing paradigm
consumes much time. The comparison results of average
evaluated documents are presented in Figure 5(d). We ob-
serve that considerable performance gain can be obtained
from Panorama’s query processing strategy. The result indi-
cates that the proposed method for document upper bound
score estimation can achieve a large amount of skipping.
Thus, the Panorama evaluates the least number of apps to
generate the final Top-k results, indicating that more docu-
ments are effectively skipped on the new index structure.

7. CONCLUSION
The rapid growth rate of apps calls for a need of develop-

ing effective app search engines. In this paper, we propose a
semantic-aware app search framework named Panorama to
tackle two challenging problems in existing app searching:
generating high-quality app snippet and generating good
app ranking with respect to search queries. Panorama uses
the App Topic Model (ATM) to discover the latent seman-
tics from the app corpus. Based on the discovered semantics
we propose a greedy algorithm with a bounded performance
guarantee to generate concise and informative app snip-

381

pets. Panorama goes beyond the conventional term match-
ing techniques and extends the horizon of app search by
incorporating the latent semantics for app ranking. In order
to support efficient query processing, a new index structure
consisting of static app quality, TF-IDF score and topic score
are further proposed. Extensive experiments on a large-scale
dataset verify the effectiveness of the Panorama framework,
which demonstrates superior performance against some com-
mercial app search engines with respect to different metrics.

8. ACKNOWLEDGEMENTS
This work is partially supported by GRF under grant

numbers HKUST 617610 and 618509. We are grateful to
Heng Wang and Hao Li for the help with the experiments.
We also wish to thank the anonymous reviewers for their
comments.

9. REFERENCES
[1] J. Allan, R. Gupta, and V. Khandelwal, Topic models for

summarizing novelty, ARDA Workshop on Language
Modeling and Information Retrieval. Pittsburgh,
Pennsylvania, 2001.

[2] V. Anh and A. Moffat, Structured index organizations for
high-throughput text querying, String Processing and
Information Retrieval, Springer, 2006, pp. 304–315.

[3] D. M. Blei, A. Y. Ng, and M. I. Jordan, Latent dirichlet
allocation, The Journal of Machine Learning Research
(2003).

[4] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and
J. Zien, Efficient query evaluation using a two-level
retrieval process, Proceedings of the CIKM conference,
2003.

[5] S. Buttcher, C. Clarke, and G. V. Cormack, Information
retrieval: Implementing and evaluating search engines, The
MIT Press, 2010.

[6] D. Cohn and T. Hofmann, The missing link-a probabilistic
model of document content and hypertext connectivity,
Advances in neural information processing systems (2001),
430–436.

[7] S. Ding and T. Suel, Faster top-k document retrieval using
block-max indexes, Proceedings of the SIGIR conference,
2011.

[8] T. L. Griffiths and M. Steyvers, Finding scientific topics,
Proceedings of the National Academy of Sciences of the
United States of America 101 (2004).

[9] A. Gruber, M. Rosen-Zvi, and Y. Weiss, Latent topic
models for hypertext, Proceedings of the 24th Conference
on Uncertainty in Artificial Intelligence, 2008.

[10] F. Heylighen and J. M. Dewaele, Formality of language:
definition, measurement and behavioral determinants,
Interner Bericht, Center Leo Apostel, Vrije Universiteit
Brussel (1999).

[11] D. Jiang, J. Vosecky, K.W.T. Leung, and W. Ng, G-wstd:
A framework for geographic web search topic discovery,
Proceedings of the 21st ACM international conference on
Information and knowledge management, ACM, 2012,
pp. 1143–1152.

[12] T. Joachims, Optimizing search engines using clickthrough
data, Proc. of the SIGKDD Conference, 2002.

[13] K. W. T. Leung, D. L. Lee, and W. C. Lee, Personalized
web search with location preferences, Data Engineering
(ICDE), 2010 IEEE 26th International Conference on,
IEEE, 2010, pp. 701–712.

[14] H. Lin and J. Bilmes, A class of submodular functions for
document summarization, The 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies (ACL-HLT), Portland, OR, June,
2011.

[15] J. Mazurek, Evaluation of ranking similarity in ordinal
ranking problems, Acta academica karviniensia, 119–128.

[16] R. McDonald, A study of global inference algorithms in
multi-document summarization, Advances in Information
Retrieval (2007), 557–564.

[17] R. Nallapati and W. Cohen, Link-plsa-lda: A new
unsupervised model for topics and influence of blogs,
International Conference for Weblogs and Social Media,
2008.

[18] J. Neto, A. Freitas, and C. Kaestner, Automatic text
summarization using a machine learning approach,
Advances in Artificial Intelligence (2002), 205–215.

[19] J. R. Perez-Aguera, J. Arroyo, J. Greenberg, J. P. Iglesias,
and V. Fresno, Using bm25f for semantic search,
Proceedings of the 3rd International Semantic Search
Workshop, ACM, 2010, p. 2.

[20] M. E. Renda and U. Straccia, Web metasearch: rank vs.
score based rank aggregation methods, Proceedings of the
2003 ACM symposium on Applied computing, ACM, 2003,
pp. 841–846.

[21] M. Rosen-Zvi, T. Griffiths, M. Steyvers, and P. Smyth, The
author-topic model for authors and documents, Proceedings
of the UAI conference, 2004.

[22] D. Shan, S. Ding, J. He, H. Yan, and X. Li, Optimized
top-k processing with global page scores on block-max
indexes, Proceedings of the WSDM conference, 2012.

[23] C. Shen and T. Li, Multi-document summarization via the
minimum dominating set, Proceedings of the 23rd
International Conference on Computational Linguistics,
Association for Computational Linguistics, 2010,
pp. 984–992.

[24] T. Strohman and W. B. Croft, Efficient document retrieval
in main memory, Proceedings of the SIGIR conference,
2007.

[25] R. Varadarajan and V. Hristidis, A system for
query-specific document summarization, Proceedings of the
15th ACM international conference on Information and
knowledge management, ACM, 2006, pp. 622–631.

[26] M. J. Wainwright and M. I. Jordan, Graphical models,
exponential families, and variational inference,

Foundations and TrendsÂő in Machine Learning 1 (2008),
no. 1-2, 1–305.

[27] H. M. Wallach, Structured topic models for language,
Unpublished doctoral dissertation, Univ.of Cambridge
(2008).

[28] H. Xia, J. Li, J. Tang, and M. F. Moens, Plink-lda: Using
link as prior information in topic modeling, Database
Systems for Advanced Applications, Springer, 2012,
pp. 213–227.

[29] Z. Yin, L. Cao, J. Han, C. Zhai, and T. Huang,
Geographical topic discovery and comparison, Proceedings
of the WWW conference, 2011.

382

