
Anomaly Management using Complex Event Processing

Extending Data Base Technology Paper

Bastian Hoßbach, Bernhard Seeger
Department of Mathematics and Computer Science

University of Marburg, Germany
{bhossbach,seeger}@mathematik.uni-marburg.de

ABSTRACT
During the last decade, complex event processing (CEP) has
emerged as a technological foundation for many time-critical
monitoring applications. CEP is powerful, effective, easy to
use and low in costs at the same time. Common CEP appli-
cations are for example stock-market analysis, detection of
fraudulent credit card use, traffic monitoring and consump-
tion forecasting in power grids. Many application domains
are still hard to target by CEP, because state of the art
CEP technology is characterized by a static behavior and
by a signature-based detection paradigm. In this paper, we
motivate substantial improvements of CEP technology by
making the behavior of the infrastructure dynamic and by
switching the detection paradigm from signatures to anoma-
lies. This leads to multiple changes in the infrastructure that
raise interesting and challenging research questions. The re-
sulting dynamic CEP infrastructure not only makes existing
applications more powerful and easier to maintain but also
enables novel application domains.

1. INTRODUCTION
Huge or complex systems and processes require monitor-

ing to run smoothly. The most suitable monitoring is con-
tinuous and in real-time. For this reason, complex event
processing (CEP) has been developed and implemented in
many application domains during the last decade. Today,
CEP is used as back-end in monitoring solutions that e.g.
analyze stock markets, search for fraudulent use of credit
cards or mobile phones and perform forecasting in traffic
networks or power grids [14, 20, 22, 24, 27].

One of the most important tasks of CEP is the detection
of risks and chances, summarized under the term situations
of interest (SOI). This kind of use can be found in nearly
every CEP application in practice. Because the detection is
done in near real-time, it is possible to react immediately
in order to minimize the imminent damage of risks or to
maximize the arising benefit of chances. Typically, SOI are
specified in the form of signatures (blacklist approach). On

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2013, March 18–22, 2013, Genoa, Italy.
Copyright 2013 ACM 978-1-4503-1597-5/13/03$15.00.

the one hand, this strategy is expensive (each single SOI
has to be specified as a signature), potentially incomplete
(there might exist unknown or unexpected SOI without an
active signature) and hard to maintain. On the other hand,
this method detects every SOI for that a signature exists
and produces no false positives. A well-known example of
signature-based systems is antivirus software.

A different way of detecting SOI is searching for anoma-
lies. Anomalies are significant differences from a normal
state and behind each anomaly a risk or a chance could
be concealed (whitelist approach) [7]. This strategy can
produce false positives, but is inexpensive, complete (every
anomaly is detected) and easy to maintain. Additionally and
in comparison to the signature-based strategy, the detection
of anomalies discovers unknown SOI automatically.

The state of the art CEP technology follows the signature-
based approach. Users define one or more continuous queries
(in terms of signatures) for each SOI and execute them in
a CEP infrastructure that searches for all specified SOI.
In some important application domains, e.g. information
security monitoring, the anomaly-based approach will be-
come more important than the signature-based approach
[12]. Therefore, CEP infrastructures should also support the
anomaly-based approach besides the signature-based one.

In this overview paper, we study limitations of current
CEP technology in supporting anomaly management. We
discuss possible solutions for each limitation and present
some initial ideas. Overall, we propose the extension and
improvement of the CEP infrastructure. The proposed dy-
namic CEP infrastructure is able to capture the normal be-
havior of monitored objects and to create all necessary con-
tinuous queries for the detection of anomalies automatically.
Additionally, the infrastructure is adaptive to changes in the
application context at runtime. This dramatically reduces
the effort of building and maintaining CEP applications and
ensures a high quality at any time. The user has still the
opportunity to define queries and can so extend the mon-
itoring logic. This results in the best of both worlds: an
automatically created anomaly-based monitoring setup that
can be extended by the user with little effort.

In Section 2, we present state of the art CEP technology.
We introduce important application domains that require
anomaly-based, adaptive and reactive monitoring tools in
Section 3. In Section 4, we discuss limitations of the current
CEP infrastructure in supporting these monitoring tools and
propose specific improvements. We conclude the main re-
sults of the paper and outline ongoing work in Section 5.

149

EPA
EPA

EPA
EPA

Event
Source

Event
Source

Event
Source

Event
Sink

Event
Sink

Event
Sink

...
...

...

Figure 1: General CEP Infrastructure

2. CEP TECHNOLOGY
The current state of CEP technology has been developed

and established mainly in the area of stream processing dur-
ing the last decade. Stream processing engines (SPE) are
used in addition to traditional database systems to support
the analysis of streaming data in near real-time. The main
aim of CEP is the detection of SOI in streaming data rather
than manipulating data streams [26]. Besides tailor-made
CEP systems (e.g. Cayuga [6], ZStream [18]) that only sup-
port the needed functionality, general-purpose SPE (e.g. Es-
per [11], Odysseus [2]) can also be used to implement CEP
applications, because they are extensible or powerful enough
to support all necessary CEP functions.

All available CEP systems and SPE provide the same in-
frastructure to build CEP applications. So it is possible to
define state of the art CEP technology based on a general
and abstract infrastructure. This CEP infrastructure, shown
in Figure 1, is completely independent of specific systems.

The general CEP infrastructure consists of three main
components: a set of event sources, a set of event processing
agents (EPA) and a set of event sinks. EPA are continuous
queries that perform typical CEP tasks like filtering, aggre-
gating and correlating events or searching for event patterns.
They are connected to event sources or other EPA and event
sinks are connected to EPA. The implementation of a CEP
application comprises three steps: First, each event source is
registered at the system. Then, EPA are defined on the reg-
istered event sources. Finally, event sinks are registered at
the system and connected to the created EPA to consume
their results. Once a CEP application has been deployed
and started, no changes in the sets of event sources and sinks
are expected and the behavior of each event source is also
expected to be stable. So there is no reason why the moni-
toring logic (that is the set of EPA) should be dynamic. In
fact, adding and removing of event sources, EPA and event
sinks are supported by most CEP systems and SPE, but all
changes have to be done manually by the user. For the best
of our knowledge, there is no system that supports arbitrary
updates of the definitions of EPA at runtime. This is why
we call this kind of CEP technology static.

In practice, almost all CEP applications, which run for
months or years, are context-sensitive. This point gets more
important in an anomaly-based perspective. For example,
the normal behavior of a temperature sensor changes from
one season to another and the total network traffic of inter-
net service providers at weekends differs significantly from
the one during the week. In nearly every application domain
it is impossible to define a static normal behavior. Instead,

the normal behavior of an object changes over time [23] and
depends on other objects. The realization of anomaly-based
monitoring tools with the current CEP infrastructure is a
difficult task because of its static structure and behavior.

3. MOTIVATING EXAMPLES
In the following, we review some traditional application

domains of CEP and show how better capabilities for the
management of anomalies can improve existing applications.
After this, we describe novel application domains from the
field of information security that can only be addressed ad-
equately by anomaly-based CEP technology.

Fraud Detection: Systems for the detection of fraud
are needed for example in the areas of credit cards and
mobile phones. The aim is to protect customers in case
of stolen credit cards or mobile phones against financial
damage. Because a fraudulent use differs from a non
fraudulent one, real-time anomaly detection is an ideal
monitoring concept. A challenging problem in realiz-
ing such systems is that individual customers have dif-
ferent normal behaviors that can vary over time. An-
other domain, where fraud detection is necessary, are
social online games that are free to play and financed
by advertising. There is a need in the detection of bots
(players controlled by software), because they lead to
costs (e.g. servers and network traffic) but produce
no income by consuming the advertising. Bots can be
detected based on their behavior that differs from the
behavior of human players.

Healthcare: Critically ill patients are often separated
in intensive care units, where multiple sensors on the
body of the patient measure important vital signs like
heart rate, temperature and blood pressure. The con-
tinuous measurements are visualized for healthcare pro-
fessionals on screens. Recently, the utilization of the
data streams has been increased by adding a CEP sys-
tem for continuous and automated analysis, especially
in the absence of medical staff [15]. It is very im-
portant that every change in the physiological state is
detected and reported to healthcare professionals in a
timely fashion. Anomaly detection is the best suitable
approach for the monitoring.

JIT-Logistics: In just-in-time (JIT) logistics goods are
delivered at the very moment when they are needed.
For example, the car manufacture Volkswagen in Ger-
many gets roofs for cabriolets delivered by Webasto
from Portugal just-in-time [5]. Typically, JIT-logistics
are implemented in supply chains like in the previous
example. In JIT-logistics there is no need for stores.
This significantly reduces costs, but every difference in
the logistic processes can cause problems very fast in a
depending manufacture (e.g. no cabriolet can be com-
pleted without a roof). In the worst case, the whole
production comes to a standstill. This results in huge
financial damage. So the real-time monitoring of all
involved transporters of a logistic process (e.g. ships,
trucks, airplanes) is very important. Anomaly man-
agement is the right monitoring paradigm, because ev-
ery difference in processes of JIT-logistics is usually
sub-optimal and can cause economic loss.

150

SLA Monitoring: To guarantee customers, for exam-
ple of a cloud web service, some quality of the service,
service level agreements (SLA) are used. SLA have
to be monitored in real-time, because violations nor-
mally results in contractual penalties for the provider.
The correct execution of a service can be easily de-
fined as the compliance with all associated SLA. There-
fore, anomaly-based monitoring tools are more suitable
than signature-based ones again.

Stock Market Analysis: Participants and players in
the stock markets are highly interested in information
about SOI as fast as possible, because they commonly
arise unpredictably and suddenly. Continuous and au-
tomated anomaly management is a solid foundation
for the exploration of SOI at stock markets.

A novel and challenging application domain of CEP is
the management of security anomalies in computer systems.
We discuss this domain in more detail, because it is an on-
going project in our research group. This is the reason why
we have identified limitations in the application of current
CEP technology in this domain. The goal of our ACCEPT
project [1] is the development of novel security monitoring
tools for computer systems. Because such tools have to an-
alyze enormous amounts of streaming data in a timely man-
ner, the use of CEP for the analysis is advisable. In informa-
tion security the detection of anomalies instead of predefined
signatures has become important today and will be critical
in the future. For example, in the last quarter of 2011 more
than 33 % of all web malware was zero-day malware [8].
Zero-day means that the malware infected numerous com-
puter systems before signatures and patches could have been
developed and distributed. The ratio of zero-day malware
is growing. So today’s signature-based monitoring systems
will become less effective and important [12].

But malware is not the only reason why tools like
ACCEPT are required in information security. We want to
master the detection of every security anomaly. This could
also be an intruder or a SQL injection. Intruders are hard to
detect, especially when they use valid (stolen) credentials to
get access to a computer system or network. In such cases,
the only possibility to detect intruders is based on their be-
havior. For example, regular users would never delete log-
files, install root-kits or scan the whole network for open
ports. SQL injections are another good example and one
of the most dangerous security risks nowadays (number one
security risk in the CWE/SANS Top 25 [10] in 2011). The
normal behavior of an (web) application that interacts with
a database can be defined by a set of SQL patterns that de-
scribe all normal SQL queries the application usually sends
to the database or by simple metadata (e.g. tables and at-
tributes that are queried). SQL injections will not match the
patterns and metadata (e.g. the database catalog is queried)
and this is how to detect them. Future security monitoring
tools should not need to be configured by thousands of sig-
natures. Instead, they should learn the normal behavior of
monitored objects (e.g. applications, users, processes) by
themselves and detect suspicious behavior automatically.

All examples have in common that there exist many ob-
jects of the same type (e.g customers, patients, processes,
trucks, SLA, stocks) with individual normal behaviors that
can vary over time.

DEPA
DEPA

DEPA

DEPA

Event
Source

Event
Source

Event
Source

Event
Sink

Event
Sink

Action
Framework

SimulatorEvent
Store Model

Store

Input M
atchm

aker

O
utput M

atchm
aker

...

......

Figure 2: Proposed Dynamic CEP Infrastructure

4. ISSUES AND CHALLENGES
In this section, we discuss all limitations of the general

CEP infrastructure we already have identified during the
design phase of ACCEPT . The most limiting issues in sup-
porting anomaly management are its inflexibility and static
behavior. This makes it hard to create applications (every-
thing has to be defined manually like connections and EPA)
as well as to maintain their lifecycles. In fact, applications
are not intended to have a lifecycle because of the static in-
frastructure. To target this issue, we propose the extension
of the infrastructure by a more flexible event flow manage-
ment instead of hard-wired connections and to allow EPA
to change their definitions at runtime. Additional changes
concern improvements in the adaptive and reactive capabili-
ties. Lastly, we bring earlier proposals for a standardization
of stream processing back into use. The final dynamic CEP
infrastructure that we propose is shown in Figure 2 and dis-
cussed in the following.

4.1 Matchmakers
In order to achieve a more flexible event flow, all static

connections are replaced by components that decide for each
incoming event individually to which consumers it should be
forwarded to. We call these components matchmakers. For
each side (input side and output side) there is exactly one
matchmaker needed.

The input matchmaker establishes connections between
event sources and EPA. Each event source and each EPA has
exactly one connection to the input matchmaker. EPA are
now defined on the basis of content rather than on the basis
of sources (this concerns e.g. the from-clause in SQL-based
event processing languages). The task of the input match-
maker is to forward each incoming event to all EPA that are
interested in some information contained in the event. The
input matchmaker also identifies differences in the schemas
(data types, names, metrics, ...) between an incoming event
and an interested EPA and solves the conflict through a
transformation of the event before forwarding it (analogous
to data fusion [19] in data warehouses or schema evolutions
[9]). This allows event sources to send different types of
information without having a fixed schema and to send in-
complete information.

The output matchmaker is similar to the input match-
maker. Each EPA and each event sink has exactly one con-
nection to the output matchmaker and the definition of con-
nections by hand becomes superfluous again. The task of the
output matchmaker is to take each result from the EPA and
to forward it to all interested event sinks. Like EPA, event

151

sinks are now defined on the basis of content instead of spe-
cific EPA. Transformation techniques are also an integrated
part of the output matchmaker.

Because efficient filtering and transforming are the main
tasks of the matchmakers, it might be possible to realize
them completely or in parts by EPA again. This approach
would benefit from internal optimization techniques. It also
raises some interesting research questions (declarative lan-
guages for the configuration of matchmakers and procedures
for automatic creation of the EPA are required).

4.2 Dynamic EPA
Once an EPA has been defined and started in current

systems, the only actions that can be taken afterwards are
stopping and restarting it. In dynamic environments that
are the rule rather than the exception every change in the
context (this concerns not only the time dimension but also
all other dimensions of the application as for instance the
location or the states of objects) affects the behavior of the
EPA immediately [23]. As a consequence, a CEP applica-
tions should be able to adapt to changes in its context. A
natural way to target this issue is to allow the definitions of
EPA to be modified at runtime. Therefore, we propose up-
datable EPA and call them dynamic event processing agents
(DEPA). Algorithms have to be developed that on the one
hand are able to make the new definition of an EPA avail-
able as fast as possible and that on the other hand preserve
clear and deterministic semantics of the monitoring logic.

4.3 Event Store
The event store is a highly optimized and append-only

database for recording all incoming events. It has the best
possible write performance. At least on the time dimen-
sion of stored event streams an index is required in order
to support fast temporal point and range queries. In the
best case, events are stored direct in multi-version indexes
that not only support the time dimension but also all other
dimensions of event streams. Because event streams are po-
tentially unbounded, old events are aggregated or deleted
after some lifetime. The main purpose of the event store is
to hold the history of all incoming event streams. This data
is needed by the model store, the simulator and the action
framework of the dynamic CEP infrastructure.

4.4 Model Store
Anomaly detection is the search for abnormalities that

can be only defined if there exists a specification of the
usual. For this reason, the event store is analyzed in or-
der to derive models that describe the normal behavior of
monitored objects. Suitable models can be simple statis-
tics (e.g. averages or histograms) as well as more complex
models (e.g. Bayesian networks, support vector machines or
hidden Markov models). The model store is responsible for
storing and managing such models. The selection and pro-
duction of models should be done automatically rather than
by the user. In order to achieve this goal, challenging and
comprehensive tasks have to be mastered. First of all, the
whole event store has to be analyzed to figure out what mod-
els can be learned from specific stored events. For example,
individual objects and spatial data have to be detected. This
step can use methods from the areas of knowledge discovery
and data mining. Second, instances of all possible model
types have to be produced for each event stream. In most

cases, multiple instances of the same model type have to be
learned, because model types (especially complex ones) are
parameterized and each parameter has to be guessed. Fi-
nally, the produced models have to be evaluated (test data
is taken from the event store again). Only accurate models
are added to the model store. Because the normal behav-
ior of monitored objects can change, the creation of models
is no one-time task. Instead, models are produced continu-
ously. Inaccurate models in the model store are updated or
removed and new models are added.

The CEP system of the infrastructure consumes the stored
models. For each model there are running DEPA that mon-
itor the normal behavior and report all anomalies. The cre-
ation of these DEPA is done automatically. For each model
type there have to be multiple DEPA with free variables
predefined. Then, each instance of a model type creates its
predefined DEPA and replaces all free variables by constant
values. DEPA are necessary instead of EPA, because the
normal behavior is usually context-sensitive. Every time a
stored model is updated or it predicts a change in the normal
behavior, all associated DEPA are adapted (that is, former
free variables are replaced by new constant values). For ex-
ample, a simple predefined DEPA that can monitor time
series data is given by:

SELECT ∗ FROM [value:Number IN Celsius]
WHERE value < normal_value - tolerance
OR value > normal_value + tolerance;

The DEPA above is defined on events that contain a nu-
meric attribute named “value” that is measured in the unit
of celsius temperature. It also contains two free variables
that specify the expected value of incoming measurements
(normal value) and a distance (tolerance) by that they are
allowed to differ from the expected value before they are
classified as anomalous. The incoming measurements could
be produced by temperature sensors for example. Based on
the historical data in the event store, a model that specifies
the expected temperature for different periods of time (e.g.
25 during the day and 12 at night) could have been learned.
It is also possible to compute the variance of the tempera-
ture (to set the tolerance) in all time periods. This model is
now used to maintain the free variables.

The power of DEPA is not limited to thresholds. Other
parts of DEPA are also updatable at runtime (e.g. event
patterns, aggregates, predicates or the size of time win-
dows). Besides the challenges in building the model store
and managing all active models, we do not believe that ex-
isting model types can be easily reused. Because we want the
model types to be both generally applicable (usually results
in many model parameters) and automatically produceable
(only possible in the presence of very few model parame-
ters), they have to be tailor-made to fulfill all requirements.
This raises new challenges in machine learning.

4.5 Simulator
The simulator is used for executing DEPA inside a secure

and isolated environment. Real data is taken from the event
store to perform the execution. This component is needed
for several reasons. First of all, the simulator can be used
during the design phase of DEPA to test and debug them.
Especially defining parameters like event patterns, thresh-
olds and sizes of time windows is complicated in most cases
and users have to try several configurations until they find
a well-working setting. The second task of the simulator is

152

supporting what-if analyses. Every time a CEP application
has not detected a SOI, the SOI in question can be replayed
from the event store in order to find the missing DEPA that
is able to detect it. Additionally, the simulator is needed
after changes on one or more DEPA to ensure that they
are still able to find all SOI (that is, the changes have not
decreased the quality of the monitoring logic).

The third function of the simulator is continuous and auto-
mated meta-monitoring of the CEP application itself. Each
DEPA is defined within the scope of a specific context that
can change. It is important to detect every change in these
contexts, because the definition of associated DEPA might
become obsolete. Therefore, every time a new or updated
DEPA gets active, it is executed inside the simulator on
the freshest data in the event store. Afterwards, metadata
that describe the behavior of the DEPA with respect to the
actual context (e.g. produced results per time period) are
computed and stored in the model store. During the ex-
ecution of the CEP application, the simulator periodically
takes a copy of every active DEPA, executes it on the fresh-
est data from the event store and recomputes the metadata.
After this, the recomputed metadata are compared to the
stored ones. If the deviation between the different versions
of metadata is significant, the context might have changed.
In cases of a context switch, the system can inform the user
or try to solve the conflict automatically (e.g. changing the
size of time windows if the output size has become much
bigger/smaller). The most interesting questions are: What
metadata are suitable to describe the behavior of an arbi-
trary DEPA with respect to its context? Is it possible to
define strategies to solve conflicts automatically?

4.6 Action Framework
Real-time detection of SOI without real-time reaction is

a toothless tiger. In some cases, only immediate reactions
to the occurrence of a SOI can minimize damage or maxi-
mize benefit and the opportunity for optimal reactions lapses
quickly. In other cases, there are reactions needed very fre-
quently. The current CEP infrastructure simply forwards
the results from EPA to event sinks. At this point its re-
sponsibility ends. Nearly all CEP applications we studied
in practice use messaging (e.g. E-Mail, SMS or pager) or
logging as event sinks. This contradicts the real-time re-
quirements of many CEP applications.

We propose for future CEP infrastructures reactive capa-
bilities. One solution could be an action framework besides
traditional event sinks on the output side. Inside the action
framework, actions are defined for specific SOI. Every time
an action gets informed about a SOI it is responsible for,
it triggers predefined reactions (e.g. cancel a credit card,
ban a player, buy/sell a stock or stop/restart a process).
The action framework poses interesting questions: how to
prevent detect-react-cycles? This means that a SOI triggers
one or more reactions that change the context, the changed
context produces new SOI that trigger reactions again and
so on (in the worst case, the CEP application collapses).
Additionally, it should not be possible to start actions that
are in conflict with other actions or that are harmful. Be-
sides techniques from the active databases community (e.g.
event-condition-action triggers), which have currently been
successfully adopted by CEP [25], methods of program ver-
ification and model checking are also needed. Whenever an
application is allowed to make decisions by itself, it is impor-

tant to be able to reproduce afterwards why the application
has made a certain decision. For this reason, the event store
is required to replay periods in history. Additionally, the
semantics of all (D)EPA and actions have to be determinis-
tic. Provenance is an upcoming and interesting topic in the
stream processing community and indispensable for reactive
CEP applications.

4.7 Quality
The following topic concerns not only CEP but also stream

processing in general. In traditional database applications a
lot of work has been done in managing data quality. There
are textbooks (e.g. [17]), best practices, tools and tech-
niques (e.g. entity-relationship models or normal forms) to
measure, preserve and increase data quality. In stream pro-
cessing applications the roles of queries and data are re-
versed in comparison to database applications [13]. Contin-
uous queries represent the most important asset of stream
processing applications. Therefore, we propose the manage-
ment of their quality with the same effort as quality of data
is managed in database applications. Most quality dimen-
sions for data [21] can be reused unchanged for continuous
queries: the set of all running queries should be e.g. com-
plete, free of error, up-to-date and value-adding. We would
like to see more work that helps users to create stream pro-
cessing applications with such attributes. This issue opens
an interesting field of research. In a broader sense, it also
includes automatic creation of queries based on the desired
output [3]. In the best case, the complete and minimal set
of required queries is created automatically.

4.8 Standardization
Another significant difference between databases and SPE

is the degree of standardization. Database systems are highly
standardized. The syntax and semantics of the query lan-
guage SQL are defined in an international standard and all
SQL database systems support this standard. Addition-
ally, the API of database systems can be highly abstracted.
This results in interfaces (e.g. ODBC/JDBC) that provide
database functionality completely independent of specific
database products. Each professional database system can
be used and easily exchanged behind these interfaces.

In the area of stream processing the reverse is true. Nearly
every SPE has its own query language. The different lan-
guages vary in syntax, semantics and expressiveness [4, 16].
Once a specific SPE has been integrated in an application,
it is very hard and expensive to replace it by another. The
API and internal data models differ so strongly that the
application code has to be completely rewritten. Besides
the technical difficulties, all continuous queries have to be
entirely redefined because of differences in syntax and espe-
cially in semantics of the query languages. So the exchange
of SPE products not only is expensive but also introduces
errors with high probability. We propose the introduction
of standards for both the query language and the API.

Besides the benefits of standards for the success of com-
mercial products, also the research community could profit
from. Only in the presence of standards benchmarking and
testing is absolutely objective and comparable. The research
on new systems, concepts, models and algorithms would be-
come easier to evaluate and proof. Lastly, standards can
be the missing piece of great success stories (just recall the
important meaning of SQL for database systems).

153

Integration and
Evaluation

Models and Knowledge
Transformation

 Dynamic CEP
Framework

1st year 2nd year 3rd year

Figure 3: Schedule of the ACCEPT Project

5. CONCLUSION AND FUTURE WORK
Motivated by challenging and future monitoring applica-

tions, we have suggested an extended and improved complex
event processing (CEP) infrastructure that is able to fulfill
all their requirements. The proposed draft is structured into
different sections. In each section interesting research ques-
tions are revealed and for some of them we have presented
initial ideas.

During the next years, we will work on a subset of the
presented research problems. Figure 3 shows the planned
schedule of our ACCEPT project. In the first year, we want
to develop an abstract event processing framework that run
on top of different stream processing engines (SPE). The
framework serves a dual purpose. First, it abstracts from
the specific query language and API of SPE so that we can
use different SPE beneath and easily exchange them. Sec-
ond, the framework extends the API by a method to update
the definitions of arbitrary continuous queries at runtime in
a fast and safe way. We prefer to implement an abstract
framework, because implementing yet another SPE would
not provide any additional value. After the first year, we
plan to have a running prototype that allows dynamically
changing its monitoring logic. In the second year, we will
integrate techniques from knowledge discovery, data mining
and machine learning. The system will derive and update
models that describe the normal behavior with respect to
the context (e.g. time) automatically. Furthermore, the
creation and modification of continuous queries will be trig-
gered by models from a model store. Therefore, we have
to define mappings between specific model types and con-
tinuous queries. In the last year, we will build tools for
information security monitoring using our dynamic CEP in-
frastructure. Integrated in these tools, we will be able to
evaluate them and the new kind of CEP infrastructure si-
multaneously.

6. ACKNOWLEDGMENTS
This work has been supported by the German Federal

Ministry of Education and Research (Bundesministerium für
Bildung und Forschung, BMBF) under grant no. 01BY1206A.

7. REFERENCES
[1] ACCEPT.

http://www.accept-projekt.de/

[2] H. Appelrath et al. Odysseus: a highly customizable
framework for creating efficient event stream
management systems. In DEBS, pages 367–368, 2012.

[3] C. Binnig, D. Kossmann and E. Lo. Towards
automatic test database generation. In IEEE Data
Engineering Bulletin, 31(1), pages 28–35, 2008.

[4] I. Botan et al. SECRET: a model for analysis of the
execution semantics of stream processing systems. In
PVLDB, 3(1), pages 232–243, 2010.

[5] G. Brar and G. Saini. Milk run logistics: literature
review and directions. In WCE, pages 797–801, 2011.

[6] L. Brenna et al. Cayuga: a high-performance event
processing engine. In SIGMOD, pages 1100–1102,
2007.

[7] V. Chandola, A. Banerjee and V. Kumar. Anomaly
detection: a survey. In ACM Computing Surveys,
41(3), pages 15:1–15:58, 2009.

[8] Cisco Systems Inc. Cisco 4Q11 global threat report.
Technical report, 2012.

[9] C. Curino, H. Moon, A. Deutsch and C. Zaniolo.
Update rewriting and integrity constraint maintenance
in a schema evolution support system: PRISM++. In
PVLDB, 4(2), pages 117–128, 2010.

[10] CWE/SANS Top 25.
http://cwe.mitre.org/top25/

[11] Esper.
http://esper.codehaus.org/

[12] Gartner Inc. Effective security monitoring requires
context. Technical report G00227893, 2012.

[13] L. Golab and M. Özsu. Data stream management.
Morgan & Claypool Publishers, 2010.

[14] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez
and P. Valduriez. StreamCloud: a large scale data
streaming system. In ICDCS, pages 126–137, 2010.

[15] H. Han, H. Ryoo and H. Patrick. An infrastructure of
stream data mining, fusion and management for
monitored patients. In CBMS, pages 461–468, 2006.

[16] N. Jain et al. Towards a streaming SQL standard. In
PVLDB, 1(2), pages 1379–1390, 2008.

[17] Y. Lee, L. Pipino, J. Funk and R. Wang. Journey to
data quality. The MIT Press, 2006.

[18] Y. Mei and S. Madden. ZStream: a cost-based query
processor for adaptively detecting composite events. In
SIGMOD, pages 193–206, 2009.

[19] F. Naumann, A. Bilke, J. Bleiholder, M. Weis. Data
fusion in three steps: resolving inconsistencies at
schema-, tuple-, and value-level. In IEEE Data
Engineering Bulletin, 29(2), pages 21–31, 2006.

[20] K. Patroumpas and T. Sellis. Event processing and
real-time monitoring over streaming traffic data. In
W2GIS, pages 116–133, 2012.

[21] L. Pipino, Y. Lee and R. Wang. Data quality
assessment. In Communications of the ACM, 45(4),
pages 211–218, 2002.

[22] N. Schultz-Møller, M. Migliavacca and P. Pietzuch.
Distributed complex event processing with query
rewriting. In DEBS, pages 4:1–4:12, 2009.

[23] Y. Tan, X. Gu and H. Wang. Adaptive system
anomaly prediction for large-scale hosting
infrastructures. In PODC, pages 173–182, 2010.

[24] K. Teymourian, M. Rohde and A. Paschke.
Knowledge-based processing of complex stock market
events. In EDBT, pages 594–597, 2012.

[25] D. Wang, E. Rundensteiner, R. Ellison. Active
complex event processing: applications in real-time
health care. In PVLDB, 3(2), pages 1545–1548, 2010.

[26] L. Woods, J. Teubner and G. Alonso. Complex event
detection at wire speed with FPGAs. In PVLDB, 3(1),
pages 660–669, 2010.

[27] Q. Zhou, Y. Simmhan and V. Prasanna. Towards an
inexact semantic complex event processing framework.
In DEBS, pages 401–402, 2011.

154

