
HIL: A High-Level Scripting Language for Entity Integration

Mauricio Hernández
IBM Research – Almaden

mahernan@us.ibm.com

Georgia Koutrika
HP Labs

koutrika@hp.com

Rajasekar Krishnamurthy
IBM Research – Almaden
rajase@us.ibm.com

Lucian Popa
IBM Research – Almaden
lpopa@us.ibm.com

Ryan Wisnesky
Harvard University

ryan@cs.harvard.edu

ABSTRACT
We introduce HIL, a high-level scripting language for entity res-
olution and integration. HIL aims at providing the core logic for
complex data processing flows that aggregate facts from large col-
lections of structured or unstructured data into clean, unified enti-
ties. Such flows typically include many stages of processing that
start from the outcome of information extraction and continue with
entity resolution, mapping and fusion. A HIL program captures the
overall integration flow through a combination of SQL-like rules
that link, map, fuse and aggregate entities. A salient feature of
HIL is the use of logical indexes in its data model to facilitate the
modular construction and aggregation of complex entities. Another
feature is the presence of a flexible, open type system that allows
HIL to handle input data that is irregular, sparse or partially known.

As a result, HIL can accurately express complex integration tasks,
while still being high-level and focused on the logical entities (rather
than the physical operations). Compilation algorithms translate the
HIL specification into efficient run-time queries that can execute
in parallel on Hadoop. We show how our framework is applied to
real-world integration of entities in the financial domain, based on
public filings archived by the U.S. Securities and Exchange Com-
mission (SEC). Furthermore, we apply HIL on a larger-scale sce-
nario that performs fusion of data from hundreds of millions of
Twitter messages into tens of millions of structured entities.

1. INTRODUCTION
In recent years, data integration has largely moved outside the

enterprise. There is now a plethora of publicly available sources
of data that can provide valuable information. Examples include:
bibliographic repositories (DBLP, Cora, Citeseer), movie databases
(IMDB), knowledge bases (Wikipedia, DBPedia, Freebase), social
media data (Twitter, blogs). Additionally, a number of specialized
public repositories are starting to play an increasingly important
role. These repositories include, for example, U.S. federal govern-
ment data, congress and census data, as well as financial reports
archived by the U.S. Securities and Exchange Commission (SEC).

To enable systematic analysis of such data at the aggregated-
level, one needs to build an entity or concept-centric view of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT/ICDT ’13 March 18 - 22 2013, Genoa, Italy
Copyright 2013 ACM 978-1-4503-1597-5/13/03 ...$15.00.

domain [5, 7], where the important entities and their relationships
are extracted and integrated from the underlying documents. We
refer to the process of extracting data from documents, integrating
the information, and then building domain-specific entities, as en-
tity integration. Enabling such integration in practice is a challenge,
and there is a great need for tools and languages that are high-level
but still expressive enough to facilitate the end-to-end development
and maintenance of complex integration flows.

There are several techniques that are relevant, at various levels,
for entity integration: information extraction [9], schema match-
ing [20], schema mapping [11], entity resolution [10], data fu-
sion [3]. These techniques have received significant attention in the
literature, although most often they have been treated separately. In
many complex scenarios, all of these techniques have to be used in
cooperation (in a flow), since data poses various challenges. Con-
cretely, the data can be unstructured (hence, it requires extraction
to produce structured records), it has variations in the format and
the accompanying attributes (hence, it requires repeated mapping
and transformation), and has variations in the identifying attributes
of entities (hence, it requires entity resolution, that is, the iden-
tification of the same real-world entity across different records).
Moreover, fusion is needed to merge all the facts about the same
real-world entity into one integrated, clean object.

The HIL Language. In this paper, we introduce HIL (High-
level Integration Language), a programming (scripting) language
to specify the structured part of complex integration flows. HIL
captures in one framework the mapping, fusion, and entity reso-
lution types of operations. High-level languages for information
extraction already exist (e.g., AQL [6]) and are complementary to
HIL. The main design goal for HIL is to provide the precise logic
of a structured integration flow while leaving out the execution de-
tails that may be particular to a run-time engine. The target users
for HIL are developers that perform complex, industrial-strength
entity integration and analysis. Our goal is to offer a more fo-
cused, more uniform and higher-level alternative than program-
ming in general purpose languages (e.g., Java, Perl, Scala), us-
ing ETL tools, or using general data manipulation languages (e.g.,
Jaql [2], Pig Latin [18], XQuery).

HIL exposes a data model and constructs that are specific for
the various tasks in entity integration flows. First, HIL defines the
main entity types, which are the logical objects that a user intends
to create and manipulate. Each entity type represents a collection
of entities, possibly indexed by certain attributes. Indexes are logi-
cal structures that form an essential part of the design of HIL; they
facilitate the hierarchical, modular construction of entities from the
ground up. The philosophy of HIL is that entities are built or ag-
gregated from simpler, lower-level entities. A key feature of HIL is
the use of record polymorphism and type inference [19], allowing

549

schemas to be partially specified. In turn, this enables incremental
development where entity types evolve and increase in complexity.

HIL consists of two main types of rules that use a SQL-like syn-
tax. Entity population rules express the mapping and transforma-
tion of data from one type into another, as well as fusion and ag-
gregation of data. Entity resolution rules express the matching and
linking of entities, by capturing all possible ways of matching en-
tities, and by using constraints to declare properties on the desired
output (e.g., one-to-one or one-to-many types of matches).

The entity population rules borrow features from schema map-
ping formalisms (e.g., s-t tgds [12] or second-order tgds [13]); how-
ever, our design is aimed at making the language intuitive, efficient
and easy to use by the practitioners. As such, HIL drops features
such as Skolem functions and complex quantifiers, it does not re-
quire any a priori schemas, it is polymorphic (to address hetero-
geneity and complexity in the input data), and includes user-defined
functions that can be used for aggregation and data cleaning (e.g.,
normalization). Furthermore, indexes are perhaps the most impor-
tant differentiating aspect of HIL, as they allow the decorrelation of
complex integration tasks into simple and efficient rules. It is the
presence of indexes that enables the true scalability of HIL in terms
of both the design (e.g., creating and maintaining the rules) and
execution (e.g., on large amounts of data such as in social media).

With regard to entity resolution, HIL is not a replacement of the
many physical algorithms or operators for matching of entities that
have been developed in the literature over the years. Instead, HIL
entity resolution rules are declarative statements that can express
the common patterns used in practice (e.g., blocking, matching,
constraints), while making use of specialized functions for string
similarity, record matching, or for normalization of values. Fur-
thermore, entity resolution rules in HIL are used in conjunction
with the entity population rules in order to achieve fusion of the
matched or linked entities into the final, integrated entities.

Our motivating example, which we introduce next, will show
how the combination of entity resolution rules together with rules
for mapping, fusion and aggregation of data gives HIL enough ex-
pressive power to achieve complex, end-to-end integration tasks.
At the same time, we will use the example to show the relative ease
and simplicity of HIL when compared to the alternatives.

1.1 A Motivating Example
As a motivating scenario, we use the financial integration from

SEC that was described as part of the Midas system [5]. A different
scenario that integrates entities from social media will be described
and used for a larger-scale experimental evaluation in Section 6.

In the SEC scenario, company and people entities, together with
their relationships, are extracted and integrated from regulatory SEC
filings that are in semi-structured or unstructured (text) form. While
SEC integration is one example application out of many, it is a
good illustration of the kind of integration that is performed in real-
life, not only in Midas but also by financial data providers1. These
providers often use a combination of manual methods (e.g., copy-
and-paste then clean) and low-level coding to achieve a reasonable
level of clean integrated data. In Midas, information extraction re-
lies on SystemT [6] and its high-level language AQL. However, the
subsequent, structured part of entity integration is a complex mix-
ture of domain-specific rules for entity resolution, mapping and
fusion. These rules were expressed mostly using Jaql [2], a gen-
eral data manipulation language for JSON, which in turn compiles
into Map/Reduce jobs on Hadoop. As noted in [5], the integration
process required a high cost of development and maintenance; the

1http://en.wikipedia.org/wiki/Financial_data_vendor

Figure 1: Example Integration Flow

need for a high-level language to specify what needs to be done
rather than how was identified as a key issue. Ideally, one would
like to focus on the logical entities and the logical integration steps,
declaratively, in the same way SQL is a higher-level alternative to
a physical plan based on relational algebra operators.

Given the public availability of the SEC data, and its wide use
by financial data providers, analysts, and regulators, we are re-
examining in this paper the SEC integration scenario, but from the
perspective of using a high-level language. We will use this sce-
nario to illustrate the functionality of HIL, and also to later evaluate
HIL. We start by showing a simplified portion of the SEC integra-
tion flow in Figure 1. The goal of this flow is to construct an entity
type Person, representing the key people of major U.S. companies.

The flow uses two input data sets: InsiderReportPerson (or, IRP
in short) and JobChange. The first is a set of records extracted from
XML insider reports. These reports are filed periodically by com-
panies to state compensation-related aspects about their officers and
directors. Each extracted record includes the person name, a central
identification key (cik, a global SEC-assigned key for that person),
a company identifier, the reporting date, and whether the person is
an officer or a director. If the person is an officer, the title attribute
contains the executive position (e.g., “CEO", “CFO", etc).

The second data set, JobChange, consists of records extracted
from textual reports that disclose job changes or new appointments
in a company. These records exhibit high variability in the qual-
ity of data (e.g., people names, positions). A record in JobChange
includes the extracted person name, the appointment date, the posi-
tion (appointedAs), and the appointing company. However, it does
not include any key identifying the person. The attributes docid and
span identify the document and the position within the document
where the person name has been extracted from. Together, they
serve as an identifier for the particular person occurence. (Note
that the same real-world person may occur in many documents or
many places in the same document.)

The first step in the flow is a transformation that constructs an
initial instantiation of Person from insider reports. Since data from
IRP is relatively clean and each person has a key, the resulting Per-
son entities will form a reference data set to be used and further
enriched in subsequent steps. For each person key (cik), we create
a unique person entity that includes top-level attributes such as the
person name and the key itself. Then, for each person, we must
construct an employment history by aggregating from many input
records. This history includes the companies for which the person
worked over the years, and for each company, a list of positions
held by that person. Since a position is a string that varies from
record to record (e.g., “CEO” and “Chief Exec. Officer”), normal-
ization code must be used to identify and fuse the same position.
Moreover, for each position, we must capture the earliest known
date and the latest known date for that position. These attributes,
earliest_date and latest_date, are the result of a temporal aggrega-

550

1. Person =
2. join preserve Person, PeopleLink, JobChange
3. where Person.cik == PeopleLink.cik
4. and PeopleLink.docID == JobChange.docID
5. and PeopleLink.span == JobChange.span
6. and isOfficer (JobChange.appointedAs)
7. into { name: Person.name,
8. cik: Person.cik,
9. emp: Person.emp,
10. delta_emp:
11. { company: JobChange.company,
12. title: normTitle (JobChange.appointedAs),
13. date: JobChange.apptDate }
14. }
15. o group by c = $.cik into {
16. // copy name, cik, previous emp
17. name: $[0].name,
18. cik: c,
19. emp: $[0].emp,
20. // process new emp items
21. delta_emp:
22. ($[*].delta_emp
23. o group by comp = $.company into
24. { company: comp,
25. positions:
26. ($ o transform { $.title,
27. $.date })})
28. }
29. o transform { // copy name, cik, merge employments
30. name: $.name,
31. cik: $.cik,
32. emp:
33. ([$.emp, $.delta_emp]
34. o expand // union of the two employment arrays
35. o group by comp = $.company into
36. { company: comp,
37. positions: ([$[0].positions, $[1].positions]
38. o expand // another deep union
39. ... // further processing

Figure 2: Snippet of fusion code in Jaql.

tion that considers all the IRP records that refer to the same person,
company and position.

The second step in the flow starts the integration of the second
data set, JobChange, by linking its records to corresponding Per-
son entities. This entity resolution step produces a PeopleLink table
that relates each person occurrence (identified by docid and span)
in JobChange with an actual person (identified by cik) in Person.
In the third step, we join JobChange with PeopleLink in order to
“retrieve" the person cik, and then insert or “fuse" appropriate data
into the employment history for that person entity. This fusion step
is non-trivial since it may affect data at several levels in the Person
structure. We may either insert a new company into the employ-
ment history or modify the set of positions in an existing company.
In turn, the latter step either inserts a new position or modifies an
existing one (in which case, earliest_date and latest_date may be
changed, by reapplying the temporal aggregation).

1.2 Advantages of HIL
We now discuss and contrast two approaches to express the above

type of functionality. The first approach is based on general script-
ing languages for data manipulation that are currently available. We
use Jaqll [2] here for illustration, but the same comparison applies
for languages such as Pig Latin [18] or XQuery. The second ap-
proach, which we take in this paper, is based on HIL. We illustrate
our discussion using the fusion step of our example.

Figure 2 gives a snippet of the Jaql code needed to fuse the new
employment facts derived from our second data set, JobChange,
into Person. We do not assume the reader’s familiarity with Jaql
syntax here, but assume some understanding of the basic operations
to manipulate data (e.g., join, record projection, group by, etc.).
Jaql, like many other scripting languages, is a functional language
with no direct facilities for updates or fusion of data. Thus, the
typical code that one writes takes as input a previous copy of the
data (e.g., Person), and includes several stages of data processing,
where the result of each stage is pipelined (using → in Jaql) to the

rule m5:
insert into Employment ! [cik: l.cik]
select [company: j.company,

positions: Positions ! [cik: l.cik, company: j.company]
]

from JobChange j, PeopleLink l
where j.docID = l.docID and j.span = l.span and isOfficer (j.appointedAs);

rule m6:
insert into Positions ! [cik: l.cik, company: j.company]
select [title: normTitle (j.appointedAs),

…
]

from JobChange j, PeopleLink l
where j.docID = l.docID and j.span = l.span and isOfficer (j.appointedAs);

Figure 3: Fusion via HIL rules.

next stage. The final stage produces a new version of Person.
In more details, the first stage (lines 2 - 14) has the role of join-

ing the existing Person data with “delta" employment facts from
JobChange. This stage exploits the links (PeopleLink) that were
established by entity resolution, and extends the existing Person
records to include a new delta_emp field with data from the cor-
responding JobChange record. The keyword preserve in front of
Person ensures that all existing Person records are in the output, ir-
regardless of whether there is a matching JobChange record. (This
is similar to an outer-join.) Since the first stage breaks the nor-
malization of the data (i.e., there may be multiple records per per-
son, one for each delta_emp fact), the second stage (lines 15 - 28)
groups first by cik to reconstruct Person entities. As a result of this
operation, all the delta_emp facts for a person cik are accumulated
together. These records are then processed in lines 22-27 into a hi-
erarchical structure (i.e., grouped by company). We are now ready
to go into the next stage, and merge the two employment sets (emp
and delta_emp for each person (lines 33 and beyond). The merging
process involves a deep union of hierarchical sets, to merge first the
records at the company level, and then at the positions level.

As one can see from the example, the code is relatively low-level,
with many physical operations involved. Since data needs to be
carried around between stages, there is repeated copying of data, as
well as grouping and renesting of the data. Fusion is accomplished
by using union (which is often deeply nested and requires appro-
priate data alignment). As the code evolves and becomes more
complex (i.e., while fusing more sources), the higher-level logic of
the integration task is lost in the implementation details.

In contrast to the lower-level approach, in HIL we can use just
two entity population rules (shown in Figure 3) to capture the logic
of the fusion in this example, without going through any of the
low-level physical operations (e.g., copy the data, group and re-
group, deep-union, etc.). We give below a few high-level details on
these rules, while leaving the full discussion on the HIL language
(including the additional rules for the SEC example) for Section 2.

Each HIL rule inserts data into a single entity, and these entities
are part of the logical model that governs the integration task. In
our scenario, Employment and Positions are entities, and they are
used to index two types of information: employment (of a given
person), and positions (of a given person and company). There is
another top-level entity, Person (to be shown later), but the above
fusion rules need not touch that; they need only insert the new em-
ployment facts and positions.

A HIL rule states where the data comes from, where it goes into
(i.e., the target entity, and key if it is an index), and the actual con-
struction of the tuples being inserted. In our example, the first rule
joins JobChange with PeopleLink to retrieve the relevant cik, which
is then used as a key to access the Employment index (via the ! oper-
ation) and insert new tuples. The rule relies on the Positions index,
which is populated by a separate rule. In general, other rules may

551

further populate into the same indexes as well as combine these in-
dexes to form other entities (e.g., as we see later, Employment is a
building block towards the main Person entity). The HIL compiler
will take all the specified rules and evaluate them in the right order.

HIL rules are naturally decorrelated (via indexes), which, in turn,
enables the scalability of the design. Each rule is an independent
unit that captures a particular piece of the integration logic and that
can be understood in isolation. For example, when writing the rule
to insert new records into Employment based on JobChange and
PeopleLink, one need not worry about other rules for the top-level
Person entity, or for Positions, or for any other indexes that may
participate in the final construction of a Person entity. Furthermore,
the decorrelation of the integration task via HIL indexes plays an
important role for the scalability of the runtime itself, as will be
demonstrated later by our optimization techniques and by the ex-
periments on social media data.

1.3 Contributions and Paper Outline
The main contributions of this paper are as follows:

• We give, in Section 2, a high-level language (HIL) that cov-
ers the major information integration components (mapping,
fusion, entity resolution). HIL naturally decorrelates a complex
integration task into multiple high-level rules, which offers both
increased usability and potential for better optimization.

• We give, in Sections 3 and 4, algorithms to compile a declara-
tive HIL program into lower-level, efficient operations.
• We exploit general (i.e., platform-independent) optimiza-

tion techniques that implement logical indexes as binary
tables, and map large fragments of HIL rules (both entity
population and entity resolution) into joins.

• We also develop optimization techniques that are targeted
towards Hadoop (Map/Reduce). In particular, we use a
co-group technique to fuse multiple HIL indexes in paral-
lel and access them as one, thus facilitating the fusion of
complexly structured entities from large amounts of data.

• We evaluate the resulting framework, in Section 5, by first ap-
plying it to the SEC financial integration scenario.

• We further evaluate, in Section 6, the performance of HIL on
a large-scale integration scenario that fuses data from hundreds
of millions of Twitter posts into tens of millions of entities.

We note that HIL is extensively used within IBM for entity in-
tegration applications that are targeted towards public unstructured
data (the SEC data and social media being two primary examples)
.

2. SCRIPTING IN HIL
In this section, we give an example-driven overview of the HIL

language. The main ingredients of HIL are: (1) entities, defining
the logical objects (including the data sources), (2) rules, for either
populating the entities or linking among the entities, and (3) user-
defined functions, which accompany rules and perform operations
such as string-similarity or cleansing and normalization of values.
A special form of entities in HIL are indexes, which can be shared
among the rules and facilitate the hierarchical, modular specifica-
tion of the integration flow, as well as various forms of aggregation.

2.1 Entity Population Rules
We start by describing the first of the two main types of entity

rules in HIL, namely the rules to populate the target entities. We
use the mapping task from IRP to Person as an illustration. We
will give the entity types that are used, as well as the rules that

map between the various entities. There are multiple steps, which
gradually increase in complexity as the specification progresses.

Top-level Mapping. We start by declaring the input and output
entities needed at this point (IRP and Person), by giving a partial
specification of their types. More entities will be added later, to
describe additional data structures (e.g., indexes). We also express
now a first rule to populate the top-level attributes of Person.

IRP: set [name: string, cik: int, ?];
Person: set [name: ?, cik: ?, emp: set ?, ?];
rule m1: insert into Person

select [name: i.name, cik: i.cik]
from IRP i;

We first explain the entity declarations and then the rule. First, the
data model of HIL allows for sets and records that can be arbitrar-
ily nested. In the above, IRP and Person are both sets of records.
An important feature of the type system of HIL is that one can give
an unspecified type (denoted by ?) in any place where a type can
appear (i.e., as the type of an attribute or as the type of the elements
in a set). Moreover, records themselves can be left open, meaning
that there can be more fields that are unknown or not relevant at this
point. (See the ? at the end of the record types for IRP and Person.)
Open records are especially useful when schemas are complex but
only some fields are relevant to the current transformation. As more
rules and declarations are added, HIL dynamically refines the types
of the entities, by inferring the most general types that are consis-
tent with all the declarations.

An entity population rule uses a select-from-where pattern to
specify a query over one or more input entities; this query extracts
data that is then used to populate (partially) the entity in the insert
clause. For our example, rule m1 specifies that for each record i
from IRP, we select the name and cik fields and use them to popu-
late corresponding attributes of Person. The select clause of a rule
contains, in general, a record expression (possibly composite).

The semantics of an entity population rule is one of containment:
for each tuple that is produced by the select-from-where statement,
there must be a tuple in the target entity (in the insert clause) with
corresponding attributes and values. Thus, like types, entity pop-
ulation rules are open; for our example, Person may contain addi-
tional data (e.g., more records or even more attributes for the same
record) that will be specified via other rules. This is consistent with
the usual open-world assumption in data integration [16]. Since
rules define only partially the target entities, it is the role of the
HIL compiler (described in Section 3) to take all the declarations
and create executable code that produces the final entities.

Using Finite Maps (Indexes). We now introduce indexes, which
are central to HIL and allow the modular and hierarchical construc-
tion of entities. The above rule m1 specifies how to map the top
part of Person, but is silent about the nested set emp, which rep-
resents the employment history of a person. One of HIL design
choices, motivated by simplicity, is that entity population rules can
only map tuples into one target set. Any nested set (e.g., emp) is
populated separately via a finite map or index. Similarly, any ag-
gregated value that needs to appear in an entity will be computed
via an index, which is populated separately. An index is declared
as a finite map: fmap T1 to T2, where T1 is the type of keys and
T2 is the type of entries. In many cases, T2 is a set type itself. In
our example, we declare Employment to be an index that associates
a person identifier (i.e., cik) with the employment history of that
person (i.e., a set of companies, each with a set of positions):

Employment: fmap [cik: int]
to set [company: string, positions: set ?];

We now modify the earlier rule m1 to specify that the nested emp
set of Person is the result of an index lookup on Employment (we
use ! for the lookup operation):

552

rule m1′: insert into Person
select [name: i.name, cik: i.cik,

emp: Employment![cik: i.cik]]
from IRP i;

Intuitively, the rule assumes that Employment is constructed sepa-
rately and here we simply access its entries.

The above bits of specification do not state how to populate Em-
ployment but rather how it is used in Person. Separate rules can
now be used to populate Employment. In particular, the following
rule populates Employment based on data from IRP:

rule m2: insert into Employment![cik: i.cik]
select [company: i.company,

positions: Positions![cik: i.cik, company: i.company]]
from IRP i where i.isOfficer = true;

Following the general pattern discussed above, to populate the posi-
tions field, rule m2 relies on a separate entity, Positions, indexed by
person cik and company. The other notable thing about m2 is that it
populates an index. For each record i in IRP where isOfficer is true,
we insert a tuple in the Employment index entry that is associated
with the key i.cik. Different entries in Employment, corresponding
to different cik values, may be touched. Also, multiple tuples may
be inserted in the same Employment entry, corresponding to multi-
ple input records with the same cik but different company values.

Indexes are important data structures in themselves, and often re-
flect the natural way in which logical entities need to be accessed.
In this example, employment histories need to be looked up by per-
son key, while positions represent a finer-grained view that is in-
dexed by both person key and company. Furthermore, indexes are
a convenient mechanism that allows to decorrelate and decompose
what would otherwise be complex rules into much simpler rules. In
particular, the rules that populate a top-level entity (e.g., a person)
are decorrelated from the rules that populate the associated sub-
structures (e.g., employment of a person). In our example, we can
have subsequent rules that further populate the Employment index,
without affecting any of the existing rules for Person.

(No) Ordering of Rules. We remark that there is no intrinsic
order among the entity population rules. Here we gave the rule to
populate Employment after the rule for Person, but the order could
be switched. It is up to the programmer to define the conceptual
flow of entities and of rules. In contrast, it is the role of the compiler
to stage the execution so that any intermediate entities are fully
materialized before they are used in other entities (i.e., all rules
for Employment must be applied before materializing Person). The
main restriction in HIL is that we do not allow recursion among the
entity population rules (see later Section 3 for more on this).

User-Defined Functions. We specify below the actual popula-
tion of Positions from IRP, with the help of a UDF or user-defined
function, normTitle, to normalize the title string associated with a
particular position. Normalization is an operation that is frequently
encountered in data cleansing, and often requires customization.
From the point of view of HIL, all we need to provide is the signa-
ture of the function. The actual implementation of such function is
provided (either in Java or Jaql) via a binding mechanism.

normTitle: function string to string;

rule m3: insert into Positions![cik: i.cik, company: i.company]
select [title: normTitle(i.title)]
from IRP i where i.isOfficer = true;

Indexes and Aggregation. We now show how one can use an
index in HIL to perform aggregation. Aggregation is similar to the
way nested sets are constructed, except that we also need an actual
function to reduce a set to a single value. We show here how to
compute the earliest_date for a position (the latest_date is similar).

Intuitively, each position we generate (e.g., by rule m3) origi-
nates in some input document that contains a date (i.e., the report-
ingDate attribute of IRP). To compute the earliest date for a posi-
tion, we need an auxiliary data structure to keep track of all the
reporting dates for a position (of a given person with a given com-
pany). Thus, we define an “inverted" index PosInfo that associates
a set of dates for each triple (cik, company, title). This set of dates
represents a form of provenance for the triple.2

PosInfo: fmap [cik: int, company: string, title: string]
to set [date: ?, ?];

rule m4: insert into PosInfo![cik: i.cik, company: i.company,
title: normTitle(i.title)]

select [date: i.reportingDate]
from IRP i where i.isOfficer = true;

Rule m4 parallels the earlier rule m3: whenever m3 produces a nor-
malized title for a given cik and company, rule m4 produces the re-
porting dates (for all the input records in IRP that have the same cik,
company and normalized title). In general, there may be additional
rules to populate this inverted index, since there may be more data
sources or more rules (beyond m3) to populate Positions. Comput-
ing the earliest date for a position amounts then to obtaining the
minimum date in a set of dates. First, we declare a user-defined
function minDate for which we also give its Jaql implementation.

minDate: function set [date: t, ?] to t;
@jaql { minDate = fn(a) min (a[*].date); }

We then change the earlier rule m3 to use the inverted index by
adding the following to the select clause:

(*) earliest_date: minDate(PosInfo![cik: i.cik, company: i.company,
title: normTitle(i.title)])

So far, we have given the main entity population rules that are
needed to construct a Person entity, and some of the associated
structure (e.g., employment and positions), from one input data
source. We focus next on how to enrich this basic scenario, based
on additional data sources. In particular, we look at entity resolu-
tion rules and the second step of our running example.

2.2 Entity Resolution Rules
An entity resolution rule takes as input sets of entities and pro-

duces a set of links between these entities. Each link represents a
semantic association between the entities it refers to. For example,
if the input entities contain information about people, the generated
links will connect those entities that contain, presumably, informa-
tion about the same real-world person.

An entity resolution rule uses a select-from-where pattern to spec-
ify how input entities are linked. The from clause specifies the input
sets of entities to be linked. The where clause describes all possible
ways in which input entities can match. For example, one can spec-
ify that if the names of people in two lists are “similar”, then a “can-
didate” link exists between the two people. Additional clauses, in-
cluding check, group on and cardinality, specify constraints that fil-
ter the “candidate” links. For instance, if only one-to-one matches
between people entities are allowed, candidate links that connect
one person in one list with multiple persons in another list will be
dropped. Next, we describe these clauses in detail.

In our example (Figure 1), we match Person entities with Job-
Change records using a combination of person name and employ-
ment history. If the name of the company that filed the job change
already appears in the person’s employment history, then we use
both company and person name for matching. Otherwise, we per-
form a strong similarity match only on person name. In both cases,
2We could also include other source fields (e.g., docID).

553

we do not want to create a match if different birthdates appear in
the inputs. Furthermore, in this particular entity resolution task,
one Person entity can match multiple JobChange records. How-
ever, multiple Person entities cannot match the same JobChange
record. When this conflict arises, we want to preserve the strongest
links (e.g., those that match identical person names).

All these matching requirements are compactly captured in the
following entity resolution rule (er1), which we analyze next:

rule er1: create link PeopleLink as
select [cik: p.cik, docid: j.docID, span: j.span]
from Person p, JobChange j, p.emp e
where match1: e.company = j.company and

compareName(p.name, j.name),
match2: normalize(p.name) = normalize(j.name)

check if not(null(j.bdate)) and not(null(p.bdate))
then j.bdate = p.bdate

group on (j.docID, j.span) keep links p.name = j.name
cardinality (j.docID, j.span) N:1 (p.cik);

The create clause specifies the name of the output set of entities
(called PeopleLink here). The select clause restricts the attributes
kept from the input entities to describe the link entities. For each
link, we keep the key attributes of the input entities so that we can
link back to them (along with any other information that may be
required). In er1, we keep the (docid, span) from each JobChange
and the person cik. Similarly to SQL, the create and select clauses
are logically applied at the end, after processing the other clauses.

The from clause names the sets of entities that will be used to cre-
ate links, which in our example are the sets Person and JobChange.
Interestingly, this clause can also include other auxiliary sets, like
the nested set p.emp that contains the employment of a person p.
In this way, a user can link entities not only by matching attribute
values but also by matching a value (such as a company name) to a
set of values (e.g., the set of companies in a person’s employment
history). The from clause defines a set C of tuples of entities, corre-
sponding, roughly, to the cartesian product of all input sets. How-
ever, if a nested set in the from clause is empty, C will still contain
an entry that combines the other parts. In our example, if a par-
ticular p.emp is empty, the corresponding Person and JobChange
entities will appear in C with a value of null in the p.emp part.

The where clause specifies the possible ways in which the input
entities can be matched and essentially selects a subset of C. Each
possible matching has a label (used for provenance of matches)
and a predicate on the entities bounded in the from clause. Rule er1
specifies two matchings, labeled match1 and match2. A matching
predicate is a conjunction of conditions that combine equality and
relational operators (e.g., e.company = j.company), boolean match-
ing functions (e.g., compareName(p.name, j.name)) and transfor-
mation functions (e.g., normalize(p.name)). For example, match1
states that a JobChange entity can match a Person if the company
name in JobChange is in the Person’s employment history and the
person names match. For comparing person names, match1 uses
a specialized UDF compareName. Note that match2 uses only an
equi-join on the normalized person names to count for those cases
that the company filing a job change for a person is not in the em-
ployment history of that person.

HIL filters out any tuple in C that does not satisfy any of the
specified matchings. In effect, every matching ri(1 ≤ i ≤ n)
results in a Ci = σri(C) ⊆ C. The result of the where clause
is the union of all these subsets, W =

⋃n
i Ci, which we call the

“candidate links”. An important aspect is that all matchings in an
entity resolution rule will be evaluated, regardless of their relative
order and whether a matching evaluates to true or false.

Entity resolution rules can also specify semantic constraints that
are required to hold on the output links and provide explicit res-

olution actions on constraint violations ensuring that the result is
deterministic. The clauses check, group and cardinality serve this
purpose and appear in a entity resolution rule in this order.

A check clause specifies further predicates that are applied to
each candidate link. A check clause has the form if pk then ck, with
pk and ck being predicates over the candidate links. For every can-
didate link in W , if pk evaluates to true, then we keep the link only
if ck also evaluates to true. In our example, we want to enforce
that if the entities for a person in a candidate link contain non-null
birthdates, then the birthdates must match. In effect, a check clause
specifies a global condition that must be satisfied by all candidate
links matching pk, regardless of the matching predicates. That is
why although this condition could be “pushed-up” to each match-
ing predicate, it is more convenient to specify it in a check clause.

The group on clause applies predicates to groups of candidate
links. The clause specifies a list of attributes that serves as a group-
ing key and a predicate that is applied to all entities in a group. In
our example, a person occurrence in a JobChange entity (identi-
fied by (docID, span)) may be linked to multiple entities in Person.
We want to examine all these links together. Any link where the
person name in both linked entities is exactly the same should be
kept (while the other links are rejected) because having the same
name provides stronger indication that we actually have a match.
Of course, when there are no such “strong” links, in our example,
we keep weaker links. Additional group and cardinality constraints
can be specified to further refine the links. We could also specify
that only the strongest links survive, by just changing the keep links
part of the group clause to keep only links.

Additional types of group constraints are possible. For exam-
ple, we can use aggregate functions on the attributes of a group to
decide whether to keep the links or not. For example, the constraint

group on (p.cik) keep links
e.company = j.company and
j.apptDate = max(j.apptDate)

keeps the most recent job change among all those filed by the same
company for the same person (cik). As another example, we could
use the link provenance to select links that are created by the stronger
matching predicates. For example, if a JobChange matches several
Person entities, then we can give priority to the links created by
match1 if they exist.

Finally, a cardinality clause asserts the number of links a single
entity can participate in (one or many). For example, the cardinal-
ity clause in er1 asserts that each (docID, span) pair should link to
exactly one Person entity (but that Person entity can link to many
JobChange entities). In the final result, if a (docID, span) pair maps
to multiple ciks, then all these links are considered ambiguous and
dropped from the output.

2.3 Additional Fusion Based on Links
We can complete now our HIL use case on the SEC scenario

with the fusion step (Step 3 in Figure 1). We have already outlined
in Section 1.2 the two main entity population rules (m5 and m6)
that fuse the new data from JobChange into the employment and
position indexes of a person. We give here a few more details.

The rules m5 and m6 are similar to the earlier rules m2 and
m3, except that the new data values (for company and title) come
now from JobChange, while the person cik comes from PeopleLink.
The join between JobChange and PeopleLink is based on docid and
span, which form a key for JobChange. The rules also include a
filter condition to select only officers (and not directors).

Since HIL uses set semantics, the effect of m5 is that a new com-
pany entry will be inserted into the Employment index only if it did
not exist a priori (e.g., due to rule m2) for the given person cik. If

554

the company exists, then there is still a chance that the correspond-
ing set of positions will be changed, since rule m6 may apply.

We must also ensure that the earliest and latest dates for a po-
sition are adjusted accordingly, since we now have new data. For
this, we make sure that the inverted index, PosInfo, that keeps track
of all the reporting dates for a position, is also updated with the new
data. Thus, we need another rule (not shown here) that is similar to
the earlier rule m4 except that it uses JobChange and PeopleLink in-
stead of IRP. The actual specification for earliest_date, which must
be incorporated in rule m6, remains the same: the equation (*) and
the discussion at the end of Section 2.1 apply here too, with the
difference that the minDate aggregation now works on a larger set.

Note that we did not need to modify the main rule m1′ for Per-
son. Also, we did not need any new entities or indexes. The new
rules simply assert new data into the same indexes declared by the
initial mapping phase. This pattern typically applies when fusing
any new data source: first, write entity resolution rules to link the
new source to the existing target data, then write entity population
rules to fuse the new data into the target entities (indexes).

2.4 Other HIL Features
For space reasons, we omit the syntax of HIL here and instead

refer the reader to an earlier IBM research report [15]. We include
next a discussion of a few other patterns, also expressible in HIL,
which are common in complex data integration scenarios.

We have mentioned that user-defined functions can be used to
cleanse and normalize the individual values that appear in a source
attribute. A slightly different operation that is also common and
must involve user-defined functions is conflict resolution. Such op-
eration is needed when the integration process yields multiple (con-
flicting or overlapping) values for an attribute that is required to be
single-valued, if certain functional dependencies must hold.

To illustrate, consider the earlier rule m1 in Section 2.1. If a
person with a given cik appears under different names in the data
sources, then the resulting set of Person entities will contain du-
plicate entries (each with a different name) for the same cik. To
avoid such duplication, the typical solution in HIL is to maintain a
separate index, call it Aliases, which collects all the variations of
a person’s name across all known inputs. Rules must be added to
explicitly populate the Aliases index, from the given data sources.
Furthermore, the rule m1 for Person must be modified so that a
unique name is selected, possibly via a user-defined function, from
the list of aliases. This process becomes more sophisticated if fur-
ther attributes, such as the provenance of each alias, are also main-
tained in the index and then used in the selection function.

Finally, we mention two aspects related to entity resolution that
can also be expressed in HIL: blocking and score-based matching.
Blocking is a common mechanism that is used to reduce the number
of comparisons among input entities, by partitioning them accord-
ing to some criteria (called blocking criteria or keys). Score-based
matching, on the other hand, allows matching decisions to be made
based on scores assigned to pairs of entities. This flavor of entity
resolution is widely used in practice and appears in several com-
mercial systems. A score-based entity resolution rule in HIL uses
matching conditions in the where clause that are based on UDFs
that compute the similarity of two records (e.g., based on distance,
on features, or based on probabilistic similarity measures [4]). The
scores computed by the matching conditions can then be used in the
check clause (e.g., averaged and compared to a threshold value).

3. COMPILATION: ENTITY POPULATION
We now describe the compilation of HIL entity population rules

into efficient runtime queries. We will discuss entity resolution

rules in the next section, where we give the overall HIL compila-
tion procedure that takes into account the recursion that may exist
between entity population and entity resolution rules.

The naive semantics of entity population rules is to identify all
the applicable rules, that is, rules which generate new facts, and
to insert all the new facts into the target entities (either sets or in-
dexes). This process repeats until no new facts are generated. To
avoid such iterative and inefficient process, we use compilation (or
query generation) to implement the semantics. The main assump-
tion that we make is that there is no recursion allowed among the
entity population rules; hence, we can topologically sort the entities
based on the dependencies induced by the rules, and then generate
unions of queries (with no recursion) to populate the entities.

We break query generation into several steps. In the first step, the
baseline for HIL compilation, indexes are implemented as func-
tions and index lookups as function calls. In a second step, we
transform the baseline queries into more efficient queries, where
indexes are implemented as materialized binary tables and index
lookups are implemented via joins. A final optimization step, which
is targeted at Hadoop, identifies multiple indexes that can be coa-
lesced into super-indexes, which can then be accessed in a single
join operation from the parent entity. Other Hadoop-oriented opti-
mizations that are implemented in our compiler include pipelining
of intermediate results whenever possible, and delaying duplicate
elimination3 until needed. Both optimizations allow the fusion of
multiple map jobs into a single job, on a Map/Reduce platform.

3.1 Baseline Compilation Algorithm
We now describe the baseline algorithm for query generation.

For each entity that appears in the insert clause of an enriched rule,
we will generate a query term to reflect the effect of that rule. Since
there may be many rules mapping into the same entity, the query
for an entity will include a union of query terms (one per rule). In
the additional case when the entity is an index, we encapsulate the
union of query terms into a function. Furthermore, we parameterize
the query terms by the argument of the function.

We illustrate on our running example. Assume first that m1′ and
m2 from Section 2.1 are the only available rules. The following
two queries (written here in an abstract syntax that resembles the
rules) are generated for Person and Employment.

Person := select [name: i.name, cik: i.cik,
emp: EmploymentFn (cik: i.cik)]

from IRP i;

EmploymentFn :=
fn (arg). select [company: i.company,

positions: PositionsFn ([cik: i.cik,
company: i.company])]

from IRP i
where arg = [cik: i.cik] and i.isOfficer = true;

The first query is immediate and reflects directly the rule m1′. The
main difference is that, to compute the value of emp, we use a func-
tion call that corresponds to the index lookup on Employment. The
second query, for Employment, is the actual function, with a pa-
rameter arg that represents possible keys into the index. The func-
tion returns a non-empty set of values only for a finite set of keys,
namely those that are given by the rule m2 (assuming, for now, that
this is the only rule mapping into Employment). More concretely,
if the parameter arg coincides with an actual key [cik: i.cik] that
is asserted by the rule m2, then we return the set of all associated
entries. Otherwise, we return the empty set. To achieve this behav-
ior, the body of the function is a parameterized query term, whose
where clause contains the equality between the argument and the
3As already mentioned, HIL is based on set semantics.

555

actual key. Similarly to the query for Person, the positions field in
the ouput employment record is computed via a call to a function
(not shown here) that implements Positions.

In the case when multiple rules map into an entity, the expression
defining that entity incorporates a union of query terms. For our
example, if we consider the additional rule m5 for Employment, the
expression for EmploymentFn changes to:

EmploymentFn :=
fn (arg). select [company: i.company,

positions: PositionsFn ([cik: i.cik,
company: i.company])]

from IRP i where arg = [cik: i.cik] and i.isOfficer = true
union

select [company: j.company
positions: PositionsFn ([cik: l.cik,

company: j.company])]
from JobChange j, PeopleLink l
where j.docid = l.docid and j.span = l.span

and arg = [cik:l.cik] and isOfficer (j.appointedAs) = true;

For a given parameter arg, there are now two query terms that can
generate entries for the Employment index. The first query term is
as before; the second query term, obtained from rule m5, contains a
similar condition requiring the equality between the parameter arg
and the actual key [cik: l.cik].

As shown in these examples, during HIL compilation, we use an
intermediate query syntax that is independent of a particular query
language, although it is similar to an object-oriented or complex-
value SQL. Translating from this syntax to a query language such
as Jaql or XQuery is immediate. In our implementation and exper-
iments, we use Jaql as our target execution language.

While the baseline algorithm gives rise to query expressions that
map directly to the HIL entity types and rules, these query expres-
sions can also be inefficient. In particular, indexes are not stored;
an index lookup is computed, on the fly, by invoking the function
associated with the index, which in turn executes the query terms
inside the body. As a result, the query terms within a function will
be executed many times during the evaluation of a HIL program.
We modify next the baseline strategy to avoid such inefficiency.

3.2 Finite Maps as Binary Tables
For each HIL entity that is an index (finite map), we generate

a query that produces a binary table representing the graph of the
finite map, that is, the set of all pairs (k, v), where k is a key and
v is the value for that key. Since v is typically a set (e.g., for each
person cik, we have a set of employment records), the generated
query consists of two parts. First, we generate a union of queries to
accumulate pairs of the form (k, e) where e is an individual value
(e.g., a single employment record). Then, we apply a group by
operation to collect all the entries for the same key into a single set.

To illustrate, instead of using a function for the Employment in-
dex, we can use the following query:

Employment := group by key
(select [key: [cik: i.cik],

val: [company: i.company,
positions: PositionsFn ([cik: i.cik,

company: i.company])]]
from IRP i where i.isOfficer = true

union
select [key: [cik: l.cik],

val: [company: j.company
positions: PositionsFn ([cik: l.cik,

company: j.company])]]
from JobChange j, PeopleLink l
where j.docid = l.docid and j.span = l.span

and isOfficer (j.appointedAs) = true);

The transformation from EmploymentFn to the actual query for Em-
ployment is not yet complete, since the Positions index is still ac-
cessed via a function call. We will show how to change this shortly.
The two inner query terms are similar to the ones in the earlier Em-
ploymentFn; however, instead of being parameterized by the argu-
ment key, they explicitly output all the relevant (key, value) pairs.
The outer group by is an operation that transforms set [key: t1, val:
t2] into set [key: t1, val: set t2] with the obvious semantics.

We now briefly describe how to modify the queries that refer to
an index. For each reference to an index (earlier expressed via a
function call), we will use a join with the binary table that materi-
alizes the index. Since an index is a finite map (i.e., it is defined for
only a finite set of keys), the join must be an outer join, where the
nullable part is with respect to the index that is being invoked. To
illustrate, the earlier query for Person is replaced with:

Person := select [name: i.name, cik: i.cik, emp: emptyIfNull (e.val)]
from IRP i left outer join Employment e

on [cik: i.cik] = e.key;

In the above, the left outer join has a similar semantics to the SQL
correspondent. Thus, the query always emits an output tuple for
each entry in IRP. Furthermore, if there is a match with Employ-
ment, as specified by the on clause of the outer join, then e.val is
non-null and becomes the output set of employment records. If
there is no match, then e.val is null and we output the empty set for
emp. The function emptyIfNull has the obvious meaning.

The actual procedure for replacing index lookup operations with
joins is slightly more involved, since it needs to account for the
case when a query term has multiple bindings in its from clause
and also has its own where clause. In such situation, we first con-
struct a closure query that includes “everything" that the query term
needs (except for the index lookup itself). This closure query is
then outer-joined with the binary table representing the index.

3.3 Index Fusion with Co-Group
The final step in the compilation of entity population rules is an

optimization that is targeted at the Map/Reduce (or Hadoop) plat-
form. This optimization makes use of a co-group operation that is
present in Jaql, and also in PigLatin, and has the ability to group
in parallel multiple input sets by the same key. Applying this opti-
mization has a significant impact when an entity needs to aggregate
data from many indexes that share the same key. Rather than gener-
ating a sequence of binary joins between the parent entity and each
of the indexes, we first generate a query to fuse all the contributing
indexes into a single super-index using the same key. This super-
index is then joined, via a single left-outer join operation, in the
query for the parent entity.

As an example, assume that in addition to the earlier Employment
index, we now have a few more indexes that accumulate further
information about a person: Board (the board membership history
of a person), Transactions (the most recent stock transactions by a
person), and possibly others. These indexes use the same key (the
cik of a person) to map to the corresponding entries for a given
person. By using the outer join strategy outlined in the previous
subsection, the main query for Person needs to include a sequence
of left outer joins, one for each index that needs to be accessed.
Instead, using the co-group strategy, we perform an index fusion
operation to merge such indexes into one super-index. Index fusion
is implemented as a single operation of the form4:

FusedIndex := cogroup Employment by x = Employment.key,
Board by x = Board.key,
Transactions by x= Transactions.key

4The actual Jaql syntax is slightly different, but the idea is the same.

556

into [key: x,
Emp_value: Employment.value,
Board_value: Board.value,
Transactions_value: Transactions.value];

Intuitively, all the participating indexes are partitioned based on
their keys; then, for each key value (x), we stitch together the entries
from all the participating indexes that actually have something for
that key (or put null otherwise). The main entity for Person can then
be obtained via a single outer join with FusedIndex that retrieves
in one shot the employment, board, and transaction entries for a
person. The implementation of this strategy requires three main
steps: detection of when multiple indexes can be fused together,
generation of the co-group queries that materialize fused indexes,
and rewriting of the queries that can benefit from fused indexes.

While conceptually simple, index fusion can be very beneficial,
especially when the number of indexes that can contribute to an
entity becomes large. As part of our experiments, we will show in
Section 6 how this optimization greatly improves the run-time per-
formance of fusion of person entities from social media (Twitter).

4. COMPILATION: ENTITY RESOLUTION
We first give highlights of the compilation of entity resolution

rules in isolation, and then discuss the integrated compilation of
both types of rules (entity population and entity resolution).

4.1 Compilation of Entity Resolution Rules
We divide the query generation for entity resolution rules into

two steps. The first step handles the where and check clauses. Since
the effect of a check clause is local, i.e., it targets individual links,
it is safe to apply it in conjunction with the matching predicates
of the where clause. The group and cardinality clauses apply to
groups of links; thus, all links that belong to a group need to be
generated before making a group-based decision on what links to
drop. Therefore, these clauses are applied in the second step.

Where and Check Clauses. While the semantics of an entity
resolution rule is based on the cross-product of the inputs in the
from clause, the compilation algorithm performs two optimizations
to produce a more efficient query. First, we use the matching con-
ditions in the where clause to join and select entities from our in-
puts. Concretely, based on the where clause of er1, we generate the
following query for candidate links, corresponding to the union of
partial results from each of the matching predicates in er1:

select [p: p, j: j, emp: e, provenance: ‘match1’]
from Person p, JobChange j, p.emp e
where e.company = j.company and compareName(p.name, j.name)

union
select [p: p, j: j, emp: e, provenance: ‘match2’]
from Person p, JobChange j, p.emp e
where normalize(p.name) = normalize(j.name);

In the same spirit, blocking conditions (see also earlier Section 2.4)
are also pushed, whenever present, as join conditions in the where
clauses of the above query terms.

The second optimization incorporates the conditions of the check
clauses within each matching condition. A check clause has the
form if pk then ck, which can be re-written as (not pk or ck). As
an example, the check clause of er1 is re-written as null(j.bdate) or
null(p.bdate) or j.bdate = p.bdate, and then added as a conjunct in
the where clause of both query terms in the above union.

While for simplicity the previous query outputs all entities (as
well as a provenance attribute), the actual query will project on
the attributes mentioned in the select clause of the entity resolution
rule, and on any other the attributes used in the group and cardinality
clauses. To achieve this, the algorithm performs a look-ahead and
marks all attributes that need to be carried over.

Group and Cardinality Clauses. Each group and cardinality
clause is re-written as a query. For example, the query for the group
clause in rule er1 groups candidate links by the (docID, span) at-
tributes and within each group checks if there are links that satisfy
the condition p.name = j.name. Queries for group constraints are
executed in the order specified in the entity resolution rule. The
queries required for the cardinality constraints are executed last.

Cardinality clauses are more complex. We outline here what
would happen if the cardinality constraint in rule er1 were 1:1 (check-
ing for 1:N is similar but simpler):

cardinality (docID, span) 1:1 (cik)
This clause requires mapping each pair (docID, span) to exactly one
cik and vice versa. To enforce this constraint, we group links by
their (docID, span) attributes and we count the number of distinct cik
values within each group. Each group of links with more than one
cik value is rejected as ambiguous. Then, we group the remaining
links by cik and count the number of distinct (docID, span) pairs
within each group. We again reject ambiguous groups of links.
The remaining links comprise the final set of links that is output.

4.2 Integrated HIL Compilation
As noted earlier, we do not allow recursion among entity pop-

ulation rules. The main reason for this is to avoid generation of
recursive queries, which are not supported by the languages we
target (e.g., Jaql or XQuery). In the absence of recursion, and pro-
vided that there are no entity resolution rules, the HIL compilation
algorithm constructs a topological sort of all the entities in a HIL
program; in this sort, there is a dependency edge from an entity E1

to an entity E2 if there is a rule mapping from E1 to E2. Queries
are then generated, in a bottom-up fashion, from the leaves to the
roots. The query generation algorithm for each entity E, which was
already described, is based on all the rules that have E is as target.

However, when entity resolution rules are present, we do allow
a limited form of recursion to take place. Often, in practice, entity
resolution needs to use intermediate results in the integration flow,
while the results of the entity resolution itself need to be used in the
subsequent parts of the flow. Our running example, motivated from
Midas, exhibits such behavior. The entity resolution performed in
Step 2 of our flow (see Figure 1) makes use of the partial Person
entities generated after Step 1. Subsequently, the fusion rules in
Step 3 continue to populate into Person (and, in particular, their
employment records), based on the result of entity resolution.

To achieve such behavior, we take the convention that entity res-
olution rules induce a staging of the overall program, where we
force the evaluation of all the rules prior to a block of entity res-
olution rules. Thus, the order of the entity resolution rules in a
HIL program becomes important. Concretely, for our example, the
entity resolution small er1 in Step 2 requires the evaluation of all
the entity population rules in Step 1 of the flow. To this end, we
compile all the rules in Step 1 into a set P1 of queries, using the
compilation method for entity population rules. We then compile
er1, using the method in Section 4.1, into a query P2 that runs on
top of the result of P1 (and JobChange, which is source data). The
PeopleLink table that results after P2 is materialized and used as
new source data into the next stage. This stage compiles together
the entity population rules in both Steps 1 and 3, again using the
compilation method for entity population rules. As an example, the
query that is generated for Employment (see Section 3.2) incorpo-
rates rules from both Step 1 and Step 3. The resulting set P3 of
queries will produce the final data.

Note that, to achieve the fusion of the data produced by the rules
in Step 3 with the data produced by the earlier rules in Step 1, we
needed to recompile all these entity population rules together. In

557

Table 1: Characteristics of the SEC data to integrate.

Data source #Rcds #Attr #Links #P-Rules #ER-Rules
IRP (from XML) 348,855 9 no links 6 0

JobChange (from text) 1,077 7 694 5 2
Committee (from text) 63,297 10 50,533 3 2

Bios (from text) 23,195 9 19,750 5 2
Signatures (from text) 319,154 11 215,848 5 2

general, after the evaluation of a block of entity resolution rules,
we compile and evaluate all the entity population rules (from the
beginning of the HIL program) until the next block of entity resolu-
tion rules. Additional optimization is possible, in principle, where
the materialized results from one stage (e.g., after P1) are reused in
the evaluation of the next stages (e.g., in P3).

5. EVALUATION: THE SEC SCENARIO
In this section, we describe our experience in applying HIL to the

financial integration scenario from SEC. The goal here is to test less
the scalability in terms of the data size, but rather the specification
and execution of a complex scenario (in terms of the rules involved
and the types of data), where the input data size is constrained by
the domain itself (i.e., the number of relevant documents in SEC).
In Section 6, we perform a different experiment to test the scalabil-
ity of the system, in a parallel setting using a Map/Reduce cluster,
and where the data scales to hundreds of millions of documents.

We start by describing the implementation and the execution of
the three steps of the SEC integration flow in Figure 1, which we
call the Basic Person Integration Scenario. We then add several
other types of extracted data into the flow and we assess perfor-
mance as the integration flow becomes increasingly more complex.

5.1 Basic Person Integration Scenario
The specification of the first step of the integration (illustrated in

Figure 1) was along the lines described in Section 2.1, but included
additional rules and entities to produce board memberships (in ad-
dition to employment), as well as rules to handle their provenance
and temporal aggregation. The HIL code for this step comprised 6
target entity types and 6 entity population rules.

The input IRP data consisted of 348, 855 records, corresponding
to all the XML documents with insider transactions of executives in
the finance industry that were archived by SEC from 2005 to 2010.
We compiled the HIL specification into Jaql, using the compilation
algorithm described earlier, and ran it on an IBM System x3550
with 2 CPUs (4 cores each) and 32 GB main memory. The total
running time for the first step was 1min 28s, and the result con-
sisted of 32, 816 Person entities (15.77 MB). The resulting Person
entities were then used in the entity resolution step of Figure 1. This
step required two rules, one as shown in Section 2.2 and one that is
a slight variation that exploits board membership history. The input
JobChange data had 1, 077 records extracted from text documents.
The running time for entity resolution was 12s, and the result con-
sisted of 694 links. The third integration step included 5 more rules
for fusion. These rules were along the lines described in Section 2.3
and covered the fusion of board membership in addition to employ-
ment histories. These rules were compiled together with the rules
of the first step (as discussed in Section 4) and applied to take into
account the links generated by entity resolution. The resulting Jaql
ran in 1min 48s, where the new running time includes the joins be-
tween JobChange and the links, in addition to the processing of IRP
records and fusion of the results. We obtained the same number of
Person entities as after the first step but each entity is now more
complete with data fused from both IRP and JobChange.

We note that HIL is compiled to optimized Jaql code that, as

110

205

301

400

0

600

79,789 159,577 239,366 319,154
of Row s

Ti
m

e
(s

)

ER-Time for Signatures

(b)

108
154 172

244

12

89
129

529

0

100

200

300

400

500

600

IRP, JobChange IRP, JobChange,
Committtee

IRP, JobChange,
Committtee, Bios

IRP, JobChange,
Committee, Bios,

Signatures

Ti
m

e
(s

)

P-Time ER-Time

(a)

Figure 4: Integration times in the Financial Scenario
expected, is more complex than the HIL specification itself. For
example, the two entity resolution rules mentioned above are 2.32
KB on disk compared to the 12.54 KB of corresponding Jaql code.
In contrast to the Jaql code that consists of a staging of many dif-
ferent queries, with various intermediate results, the HIL rules are
more readable, and they give a succint indication of what links are
created, from what fields, and by which matching functions. As
another example, the fusion rules in the third step of this scenario
were relatively simple in HIL (as in Section 2.3). In contrast, the
compiled code that fused the new rules with the rules in the initial
mapping step is complex, as it required staging of the process based
on the dependencies between entities, as well as many steps such
as the materialization of indexes, the use of outer joins, grouping,
duplicate elimination, etc. Note that this complexity is not due to
Jaql but to the inherent complexity of the problem and the data. A
language such as XQuery, which is similar in spirit to Jaql, would
also require complex operations. In the HIL framework, all these
low-level operations are hidden from the programmer and automat-
ically handled via the optimizing compiler.

5.2 Adding More Data Sources
We scale up the Basic Person Integration Scenario by adding sev-

eral new types of extracted data. Each type of extracted data acts
as a new data source, since it has its own format (schema), and its
own set of records. Before the actual fusion, each data source is first
linked to the initial Person entities created in Step 1 of the basic in-
tegration scenario, in the same way JobChange was linked before
fusion. The characteristics of the data sources (together with the
previous ones, IRP and JobChange) are summarized in Table 1. For
each source, we give a count of the records, the relevant attributes
(i.e., that are actually used in HIL rules), and of the links that are
created by entity resolution. We also list the number of rules that
each new data source requires. We distinguish between entity pop-
ulation rules, P-rules, and entity resolution rules, ER-rules.

Figure 4(a) shows the performance of the HIL-generated code
with increasing number of sources. We have described in Sec-
tion 5.1 the initial computation of Person entities from IRP, as well
as the addition of JobChange, which is represented by the first data
point in Figure 4(a). With each increasing number of data sources,
we include: (1) the total time, ER-Time, to generate the links be-
tween the data sources and the Person entities (as generated in
Step 1 from IRP), and (2) and the total time, P-Time, to fuse all
the data (obtained by re-compiling and running all the entity pop-
ulation rules for all the sources so far). The second data point in
Figure 4(a) corresponds to adding Committee into the flow. The
entity resolution time (89s, or 1 min 29s) includes now the previ-
ous entity resolution time (for JobChange) and the additional time
to link Committee. P-Time (154s, or 2min 34s) accounts for run-
ning all HIL rules for fusing all three data sources together. After
adding Bios into the flow, the cumulative entity resolution time, in-
cluding now the time to link Bios, is 129s, or 2min 9s. The fusion
time for all four data sources is 172s, or 2min 52s. Even though
the number of records in Bios is not that large (23, 195), the in-
tegration flow processes now a lot more textual information (the

558

Table 2: Data characteristics for social media integration.
days # Tweets (cumulative) # Entities (cumulative)

1 21.72 millions 7.06 millions
2 44.13 millions 10.64 millions
3 68.25 millions 14.01 millions
4 91.13 millions 16.15 millions
5 116.24 millions 17.80 millions
6 140.17 millions 19.16 millions

biographies). This is also reflected in the fact that the resulting set
of Person entities is significantly larger now, in size, than for the
previous data point (43.3 MB vs. 19.2MB). Finally, the fourth data
point corresponds to adding Signatures into the flow. These records
are extracted from a special signature section of a certain type of
input documents, and give additional information about key peo-
ple and their employment (that may have been missed by the other
types of extraction). The cumulative entity resolution time, is now
8min 49s. We notice a significant increase in the entity resolution
time, which is explained by the large number of Signatures records
that are compared with the Person entities, as well as by the large
number of links that are generated and checked for the cardinality
constraint. (These are N:1 links from Signatures to Person.) The
total fusion time (P-time) for all five data sources is now 4min 4s.

An additional experiment focuses on entity resolution alone and
its performance with respect to the number of entities to be re-
solved. Here, we keep the number of Person entities constant (32, 816)
and modify the number of Signatures to be resolved (from 1/4 of
the initial Signatures file to 4/4 of the file). Figure 4(b) shows that
the execution time increases linearly with the input size.

5.3 Further Remarks
Integration of entities from SEC was, in general, a complex pro-

cess, and we have described here only a core part. The full-fledged
integration also includes rules for generating company entities, in-
vestment entities, relationships (including lender/co-lender and par-
ent-subsidiary types of relationships), and many user-defined func-
tions for cleansing (of people names, company names, etc.) and
for conflict resolution. Other integration logic included rules for
aggregating the stock transactions made by executives or directors
of companies in various years, as well as temporal analysis rules to
determine how much such insiders have been holding in company
stocks at any given time. All of these rules were expressed in HIL
and used various indexes to access the transaction and holding in-
formation by various dimensions (company, person, year, type of
security, type of ownership, etc).

In total, we used 71 HIL rules, populating and linking 34 entity
types, calling 21 UDFs, all split into 11 scripts. The UDFs ranged
from very simple such as strToUpperCase, isNull, sortReverseBy-
Date to more complex such as normalizeCompanyName and xml-
ToJson (to convert an XML document to JSON format). The size
of the generated Jaql code is about 100 KB on disk, and the entire
flow runs in approximately 25 mins. The full-fledged HIL-based
integration of entities from SEC was used in IBM to populate a
commercial master data management (MDM) system, which was
demonstrated to financial analysts and regulators (including SEC).

6. EVALUATION: LARGE-SCALE INTEGRA-
TION OF SOCIAL MEDIA PROFILES

In this section, we give a different evaluation of HIL that is tar-
geted at integration from social media, and in particular from Twit-
ter. When compared to the SEC scenario, the data is now much
larger, with the overall result consisting of tens of millions of en-
tities, aggregated from hundreds of millions of Twitter messages.
Each output entity represents the profile of a social media user, and

(a) Performance gain for co-group optimization
(s ingle HIL fusion query using 12 indexes)

9.57
11.50

12.92
14.38

15.92
17.05

11.58
9.53

8.05
6.20

4.88

10.42

0

20

1 2 3 4 5 6

of days of Twitter data

Ti
m

e
(m

in
s)

no co-group
co-group

(b) Total Fusion time for Social Media Profiles from Twitter
(after co-group optimization)

14.68

22.40
28.35

33.73

40.87

49.80

0

60

1 2 3 4 5 6

of days of Twitter data

Ti
m

e
(m

in
s)

Figure 5: Performance of HIL fusion over Twitter data: (a)
effect of co-group optimization, (b) total fusion time.

contains attributes whose values are extracted and fused from the
Twitter messages involving that particular user over a time period.

The characteristics of the data are described in Table 2. The input
size is measured in terms of the cumulative number of days (from
1 to 6) of Twitter messages that we process, where for each day we
have access to 10% of the messages (obtained through Twitter dec-
ahose). For each such number of days, we first apply an extraction
phase based on SystemT [6], where each input tweet (an unstruc-
tured document) can be annotated with any number of attributes
ranging from personal information (address, name, marital status,
etc.) to life events (birthdays, weddings, etc.), employment (occu-
pation, employer, etc.), and shopping-related attributes. The latter
attributes describe a person’s purchase intent or sentiment towards
products in the retail domain (e.g., intent to buy a camera at Best
Buy, intent to buy groceries at Target, a positive comment about
a Samsung smartphone, etc). The 2nd column in Table 2 shows
the total number of tweets that were annotated, for each day. The
set of annotated tweets is then passed as input to the fusion phase,
which applies HIL rules to obtain a set of integrated profiles, each
corresponding to a Twitter user. The last column in the table shows
the resulting number of such user profiles. Note that the number of
profiles does not increase linearly with the number of days. This
is intuitive: as we analyze more Twitter messages, there are less
new users to be discovered. Instead, the user profiles become more
complete in terms of the data they accumulate.

The HIL specification includes a main entity population rule that
constructs Person profiles. This rule relies on 12 auxilliary indexes
that accumulate facts about each person across all tweets. The in-
dexes all use the same key, namely Twitter userid, which is in the
metadata associated with each tweet. Each index is populated by
one or more HIL rules, based on the extracted annotations. For ex-
ample, a HIL rule iterates over all tweets that have been annotated
by a SystemT "Job" extractor, and inserts relevant facts (with at-
tributes such as JobTitle, JobCategory, Date, the text of the tweet,
etc.) into a HIL index called Occupation. Other indexes capture
life events, purchase intents, sentiment towards products, etc. The
main HIL rule accesses these indexes, via userid, to retrieve either
an aggregated single value (e.g., the latest entry in the Occupation
index for the given person) or the entire set of records for the given
person (e.g., the history of purchase intents).

Figure 5 gives the run-time HIL performance for generating Per-
son profiles, with increasing number of days of tweets. We high-

559

light: (a) the impact of co-group optimization (described in Sec-
tion 3.3) on the main HIL fusion rule, and (2) the resulting perfor-
mance for the entire HIL fusion (including the population of all the
indexes). The results were obtained by running the HIL-generated
Jaql queries on a Hadoop cluster with 10 nodes, each an IBM Sys-
tem x3550, with 2 CPUs (4 cores each), and 32 GB memory.

As it can be seen, co-group optimization achieves a reduction of
30% to 50%, by replacing in this case 12 outer joins with a sin-
gle co-group followed by one outer join. The effect of co-group is
larger if more indexes are added to the integration flow (to incor-
porate additional extraction). We note that the main HIL fusion is
a relatively large portion of the total integration time. For example,
for 6 days of tweets, the time taken by the main HIL fusion (via co-
group) is 11.58 mins, while the total time (including the creation
of all the indexes) is about 50 mins. The gain in performance due
to co-group becomes even more significant with further increase in
both the time-period of analysis and complexity of analysis.

Full-fledged integration of entities from social media is more
complex than what we have described here. To build user profiles
with rich enough historical information, we have extracted and inte-
grated data that spans months of tweets, with billions of messages.
Going beyond Twitter, we have developed entity resolution rules to
link with other social media sites such as blogs and forums. These
HIL rules exploit combinations of attributes such as name, loca-
tion, and other contextual clues, and were able to link with high
accuracy over 2 million profiles across multiple social media sites.

7. RELATED WORK
Our HIL framework bridges two lines of data integration re-

search: schema mapping [11] and entity resolution [10]. A key
differentiating aspect between schema mapping formalisms (e.g.,
s-t tgds) [12] or SO tgds [13]) and the entity population rules in HIL
is that the latter are designed to facilitate direct programming by a
user. Associations between entities are explicitly given in HIL via
indexes, which effectively eliminate the need for existential quanti-
fiers or Skolem functions. Although technically similar to the dic-
tionaries in the query optimization framework of [8], HIL indexes
differ in that they capture the fusion logic in a data integration flow.

Regarding entity resolution, Dedupalog [1] is another declarative
language that uses constraints to specify properties on the outcome
of entity resolution. However, Dedupalog has no transformation or
fusion (i.e., the equivalent of entity population in HIL), and it only
allows expressing constraints (and no matching rules) on the can-
didate links. Furthermore, much of the execution logic is hidden
behind a black-box system that attempts to minimize the number
of constraint violations. In contrast, HIL rules provide explicit res-
olution actions on constraint violations, with deterministic results.
Ajax [14] is an early data cleaning framework. However, it was fo-
cused on matching and clustering and less on mapping and fusion,
and did not have a notion of logical entities. XClean [22] is a data
cleaning framework for XML; however, its language is at a lower
granularity than HIL, with clauses that correspond to physical-level
operators that are manually orchestrated in a procedural flow.

Model management [17] provides a high-level scripting frame-
work, but operates at the metadata (schema) level. Closer to HIL
is iFuice [21], which combines mapping with fusion of data; how-
ever, it has no entity resolution (it assumes instead that the links are
given), and fusion is focused on attributes (whereas fusion in HIL
applies, more generally, in a hierarchy of entities and is driven by
indexes). Finally, there are several query/transformation languages
with complex data processing capabilities (but not focused on data
integration), including XQuery, XSLT, Jaql, and Pig Latin, which
are all possible target languages for HIL compilation.

8. CONCLUSION
In this paper, we introduced HIL, a high-level language for en-

tity integration, we gave algorithms for compilation into runtime
queries, and showed applications of HIL to integration in the finan-
cial domain and from social media. An immediate direction is to
explore incremental compilation and evaluation algorithms, where
the target data is incrementally modified when new data sources
and rules are added. More broadly, the use of a high-level language
opens up many research directions in the space of reasoning, de-
bugging, and maintenance (evolution) of integration flows.

9. REFERENCES
[1] A. Arasu, C. Ré, and D. Suciu. Large-Scale Deduplication with Con-

straints Using Dedupalog. In ICDE, pages 952–963, 2009.
[2] K. Beyer, V. Ercegovac, R. Gemulla, A. Balmin, M. Eltabakh, C.-C.

Kanne, F. Ozcan, and E. Shekita. Jaql: A Scripting Language for
Large Scale Semistructured Data Analysis. In VLDB, 2011.

[3] J. Bleiholder and F. Naumann. Data Fusion. ACM Comp. Surv., 41(1),
2008.

[4] S. Boriah, V. Chandola, and V. Kumar. Similarity Measures for Cate-
gorical Data: A Comparative Evaluation. In SIAM, 2008.

[5] D. Burdick, M. A. Hernández, H. Ho, G. Koutrika, R. Krishnamurthy,
L. Popa, I. R. Stanoi, S. Vaithyanathan, and S. Das. Extracting,
Linking and Integrating Data from Public Sources: A Financial Case
Study. IEEE Data Eng. Bull., 34(3):60–67, 2011.

[6] L. Chiticariu, R. Krishnamurthy, Y. Li, S. Raghavan, F. Reiss, and
S. Vaithyanathan. SystemT: An Algebraic Approach to Declarative
Information Extraction. In ACL, pages 128–137, 2010.

[7] N. N. Dalvi, R. Kumar, B. Pang, R. Ramakrishnan, A. Tomkins, P. Bo-
hannon, S. Keerthi, and S. Merugu. A Web of Concepts. In PODS,
pages 1–12, 2009.

[8] A. Deutsch, L. Popa, and V. Tannen. Physical Data Independence,
Constraints, and Optimization with Universal Plans. In VLDB, pages
459–470, 1999.

[9] A. Doan, J. F. Naughton, R. Ramakrishnan, A. Baid, X. Chai, F. Chen,
T. Chen, E. Chu, P. DeRose, B. J. Gao, C. Gokhale, J. Huang, W. Shen,
and B.-Q. Vuong. Information Extraction Challenges in Managing
Unstructured Data. SIGMOD Record, 37(4):14–20, 2008.

[10] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate
Record Detection: A Survey. IEEE TKDE, 19(1):1–16, 2007.

[11] R. Fagin, L. M. Haas, M. A. Hernández, R. J. Miller, L. Popa, and
Y. Velegrakis. Clio: Schema Mapping Creation and Data Exchange.
In Conceptual Modeling: Foundations and Applications, pages 198–
236, 2009.

[12] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data Exchange:
Semantics and Query Answering. TCS, 336(1):89–124, 2005.

[13] R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan. Composing Schema
Mappings: Second-order Dependencies to the Rescue. ACM TODS,
30(4):994–1055, 2005.

[14] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.-A. Saita.
Declarative Data Cleaning: Language, Model, and Algorithms. In
VLDB, pages 371–380, 2001.

[15] M. Hernández, G. Koutrika, R. Krishnamurthy, L. Popa, and R. Wis-
nesky. HIL: A High-Level Scripting Language for Entity Integration.
Technical Report RJ10499, IBM Research, June 2012.

[16] M. Lenzerini. Data Integration: A Theoretical Perspective. In PODS,
pages 233–246, 2002.

[17] S. Melnik, E. Rahm, and P. A. Bernstein. Rondo: A Programming
Platform for Generic Model Management. In SIGMOD, pages 193–
204, 2003.

[18] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig
Latin: A Not-So-Foreign Language for Data Processing. In SIGMOD,
pages 1099–1110, 2008.

[19] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.
[20] E. Rahm and P. A. Bernstein. A Survey of Approaches to Automatic

Schema Matching. VLDB Journal, 10(4):334–350, 2001.
[21] E. Rahm, A. Thor, D. Aumueller, H. H. Do, N. Golovin, and

T. Kirsten. iFuice - Information Fusion utilizing Instance Correspon-
dences and Peer Mappings. In WebDB, pages 7–12, 2005.

[22] M. Weis and I. Manolescu. XClean in Action (Demo). In CIDR, pages
259–262, 2007.

560

