
Processing Multi-Way Spatial Joins on Map-Reduce

Himanshu Gupta, Bhupesh Chawda, Sumit Negi, Tanveer A. Faruquie, L V Subramaniam,
Mukesh Mohania

IBM India Research Laboratory, New Delhi, India
{higupta8, bhchawda, sumitneg, ftanveer, lvsubram, mkmukesh}@in.ibm.com

ABSTRACT

In this paper we investigate the problem of processing multi-
way spatial joins on map-reduce platform. We look at two
common spatial predicates - overlap and range. We address
these two classes of join queries, discuss the challenges and
outline novel approaches for executing these queries on a
map-reduce framework. We then discuss how we can pro-
cess join queries involving both overlap and range predi-
cates. Specifically we present a Controlled-Replicate frame-
work using which we design the approaches presented in this
paper. The Controlled-Replicate framework is carefully engi-
neered to minimize the communication among cluster nodes.
Through experimental evaluations we discuss the complex-
ity of the problem under investigation, details of Controlled-
Replicate framework and demonstrate that the proposed ap-
proaches comfortably outperform naive approaches.

1. INTRODUCTION
Spatial data consists of points, lines, rectangles, polygons

and more complex objects composed from simple ones. Spa-
tial data naturally arises in multiple domains e.g., satellite
images, digital video, multi-media documents, medical in-
formation systems, robotics etc. Increasing availability of
such data has rendered spatial query processing as one of
the most active research areas in the database community.
One of the most important spatial queries is spatial join
which retrieves from datasets all object pairs that satisfy a
certain spatial predicate [14]. For example the query ‘find all
cities adjacent to a forest and overlap with a river’ involves
a spatial join between city, forest and river datasets. The
query ‘Find all objects within 10 m of each other that have
identical colors but different brightness’ involves a spatial
self-join between object datasets.

Many studies in the literature have looked at how to opti-
mize spatial joins in a database engine. These include both
optimizing 2-way spatial joins [5, 7, 6, 11, 12, 18, 19, 10]
as well as optimizing multi-way joins [17, 15]. In this paper
we investigate the problem of optimizing multi-way spatial

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT/ICDT ’13 March 18 - 22 2013, Genoa, Italy
Copyright 2013 ACM 978-1-4503-1597-5/13/03 ...$10.00.

joins on map-reduce platform. Map-reduce [8] is a frame-
work for parallel processing proposed by Google for large
scale data processing and many modern applications use
map-reduce as their data-processing platform. This has in-
spired many studies to investigate efficient approaches for
handling join queries on map-reduce platform [16, 3]. Few
studies have also looked at how to compute 2-way spatial
joins on map-reduce platform [21, 23, 22]. However the pro-
cessing of multi-way spatial joins on map-reduce has not
received much attention. To the best of our knowledge, this
is the first study to do so.

Implementation of a map-reduce program entails writing
of map and reduce functions. A map function reads the
input and converts the input to an intermediate form con-
sisting of a set of key-value pairs. These key-value pairs are
collected by the map-reduce engine and are routed to reduc-
ers in a manner that all pairs with identical key are routed to
a single reducer. Efficiency of a map-reduce program often
hinges upon the number of intermediate key-value pairs be-
ing generated. Larger the number of intermediate key-value
pairs, higher the communication cost. Hence a map-reduce
algorithm should be designed in a manner such that it pro-
duces minimal number of intermediate key-value pairs. The
approaches proposed in this paper are developed with an
objective of minimizing communication cost.

Contributions: In this paper we design novel algorithms
for handling multi-way spatial join queries on map-reduce
platform. Specifically we look at two common spatial predi-
cates - overlap and range on datasets consisting of rectangu-
lar objects. The overlap predicate looks for the pairs of rect-
angles which intersect with each other while the range pred-
icate looks for pairs of rectangles within a certain distance
of each other. We develop a Controlled-Replicate framework
coupled with project-split-replicate notation using which we
handle multi-way spatial join queries. This framework out-
lines how rectangles are communicated to different reducers.
We first present novel approaches to handle multi-way over-
lap and range join queries and discuss the challenges arising
therein. Finally we present how we can handle general spa-
tial multi-way join queries which involve both overlap and
range predicates. By carrying out an experimental study
over synthetic as well as real-life data we show that the ap-
proaches presented in the paper comfortably beat the naive
approaches.

1.1 Object Model - Why only Rectangles?
Representing spatial objects with their minimum bound-

ing rectangle (MBR) is a standard approach in spatial join

113

Figure 1: Representation of a MBR

literature [15]. A spatial object may be circular or may
have multiple vertices, may be concave or convex etc and
hence the representation of a spatial object can be large and
complex. Finding out whether two spatial objects satisfy a
certain predicate or not, can be computationally very expen-
sive. Spatial joins are hence carried out in two steps: filter
and refinement. Each spatial object is approximated using
its minimum bounding rectangle (MBR). In the filter step,
instead of the two spatial objects, their MBRs are checked
whether they satisfy a spatial predicate or not. Checking
whether two MBRs satisfy a certain predicate is computa-
tionally inexpensive as the representation of an MBR is sim-
ple. If the MBRs do not satisfy the predicate, then the two
objects will not satisfy the predicate; however the reverse is
not true. The filter step hence produces a super-set of the
actual result. For each pair of MBRs output by the filter
step, the refinement step then checks whether the two ob-
jects actually satisfy the predicate or not. Computationally
expensive geometric procedures hence are employed in the
refinement step. As a result the two-step process is compu-
tationally more efficient as compared to checking every pair
of objects whether they satisfy a spatial predicate or not.

The objective of the approaches developed in this paper
is to hence efficiently carry out the filter step on MBRs. A
refine operation is carried out in the end to check whether
the objects actually satisfy the spatial multi-way join or not.

A relation is hence visualized as consisting of a set of rect-
angles and the spatial multi-way join query is evaluated over
the MBRs. Figure 1 shows a pentagon object and its MBR.
A rectangle r is represented as (x, y, l, b) where x and y
represent the coordinates of top-left vertex of the rectangle;
while l and b represent the length and breadth of the rect-
angle. We also refer to the top-left vertex as the start-point
of the rectangle. The x-range and y-range are [x0, xn] and
[y0, yn] respectively i.e. all MBRs lie within the 2D space
defined by these two ranges.

1.2 Query Model
In this paper, we consider two spatial predicates - overlap

and range defined as follows:

Overlap(r1, r2): true if rectangles r1 overlaps
with rectangle r2

Range(r1, r2, d): true if the distance between any two
points of rectangles r1 and r2 is less than d

Overlap(R1, R2) finds the pairs of rectangles (r1, r2), r1

∈ R1, r2 ∈ R2 and r1 overlaps with r2. Range(R1, R2, d)
finds the pairs of rectangles (r1, r2), r1 ∈ R1, r2 ∈ R2 s.t.
at least one point of rectangle r1 is within distance d of at
least one point in r2. Two objects can overlap only if their
MBRs overlap and two objects can be within distance d only
of their MBRs are within distance d.

We denote a multi-way spatial query as a conjunction of
triples Ti = (Pi, Ri,1,Ri,2) as follows:

Q = {(P1, R1,1, R1,2) ∧ (P2, R2,1, R2,2) ∧ . . .

∧(Pn, Rn,1, Rn,2)}
(1)

Here Pi’s are spatial predicates while Ri,1 and Ri,2 rep-
resent the two relations being joined on spatial predicate
Pi.The query Q is an overlap or range query if all the pred-
icates Pi’s are either overlap or range. Overlap and range
predicates are also represented using Ov and Ra(d) respec-
tively.

We visualize the query as a join graph G(V, E) with each
relation as a vertex in the graph and for every triple (Pi,
Ri,1, Ri,2) in query Q there is an edge between the vertices
for relations Ri,1 and Ri,2 with the edge weight being 0 if
predicate Pi is an overlap predicate and d if Pi is a range
predicate with distance parameter d.

Organization: Section 2 presents the basics of map-
reduce programming model. Section 3 discusses the related
work. Section 4 develops the project-split-replicate notation
which is used in rest of the paper. Section 5 discusses 2-
way spatial joins in terms of project-split-replicate notation.
Section 6 presents two naive approaches 2-way Cascade and
All-Replicate for handling multi-way spatial joins and dis-
cusses why these approaches are naive. Section 7 presents
Controlled-Replicate framework and discusses how we can
handle multi-way overlap join queries. Section 8 proposes
Controlled-Replicate based approaches for handling multi-
way spatial range join queries. Section 9 discusses how we
handle general spatial join queries which involve both over-
lap and range predicates. Section 7, 8 and 9 also present
the experimental evaluation on the approaches presented in
the respective sections. Section 10 concludes the paper with
a mention of future work.

2. BACKGROUND: MAP-REDUCE
A map-reduce program consists of two user-defined func-

tions map and reduce. The signatures of these two functions
are as follows:

map: (k1,v1)→[k2,v2]
reduce:(k2,[v2])→[k3,v3]

Every input record is parsed as a key-value pair (k1,v1).
Map function applies a user defined logic on each input key-
value pair (k1,v1) and transforms it into a set of intermediate
key-value pairs ([k2,v2]). These map outputs are collected
and the keys of type k2 are assigned to reducer nodes. Then
the reduce function applies a user-defined logic to all inter-
mediate values [v2] associated with the same k2 and produces
a list of final output key-value pairs [k3,v3].

The map-reduce framework parallelizes the map and re-
duce operations by dividing the responsibilities of these op-
erations among many nodes. Input data is distributed across
several physical locations on a distributed file system (DFS).
On initialization of a map-reduce job, the input data is par-
titioned among multiple mapper nodes, which are tasks re-
sponsible for applying the map function. Mappers fetch the
input data from DFS and write the set of intermediate key-
value pairs to a set of files. Reducers then access these files
and compute the final output. Once a reducer has received
its files from all mappers, it merges and sorts the files by
keys and reduces each key in turn, outputting the resulting
tuples to files on the distributed file system.

3. RELATED WORK

114

Spatial join processing on RDBMS is a well developed
research area. A number of studies have investigated op-
timization of both 2-way and multi-way spatial joins in an
RDBMS [5, 7, 6, 11, 12, 17, 15]. In this paper we study
the related problem of optimizing multi-way spatial joins on
map-reduce platform.

Few studies have recently looked at optimizing 2-way spa-
tial join processing on map-reduce [23, 21, 22]. In addition
these studies also look at other spatial queries like kNN -
finding k objects in a dataset that are nearest to a query
point q, ANN - for an object in dataset 1 find its nearest
neighbor in dataset 2, containment - find objects which con-
tain a point etc. However none of these studies consider
multi-way spatial join processing (or any other query pro-
cessing). Ours is the first study to analyze the problem in
detail. The basic approach these studies employ to handle
2-way spatial queries is to visualize the 2D space as a grid
of reducers and let each reducer handle a different part of
the space. We also employ a similar approach to handle
multi-way spatial joins on map-reduce.

Optimization techniques for the evaluation of join queries
on map-reduce platform has seen a flurry of activity last few
years. Blanas et al. [4] look at various algorithms for opti-
mizing 2-way equi-joins on map-reduce. Afrati et al. [3] look
at multiway equi-joins on Map-Reduce platform. Okcan et
al. [16] look at processing 2-way inequality joins on map-
reduce platform. One common objective in all these studies
is to minimize the communication cost among the cluster
nodes as well as ensure that the reducers are load-balanced.
We also design our solutions for handling multi-way spatial
joins with a similar objective by exploiting various proper-
ties which arise due to relative spatial location of objects.

Few studies recently have looked at optimizing join queries
for specialized scenarios. Lu et al. [13] look at optimizing
K-NN joins on map-reduce platform. Vernica et al. [20] look
at optimizing set-similarity joins on map-reduce. In this pa-
per we look at multi-way join processing on spatial datasets
which has not been studied previously.

4. PROJECT-SPLIT-REPLICATE
Partitioning: Let the complete x-range and y-range be

[x0,xn) and [y0,yn) i.e., all rectangles lie within this space.
A rectilinear partitioning divides the space into a set of
disjoint rectangles which taken together cover the whole
space. We equivalently call these rectangles as partition-
cells. Partition-cells in each row have the same breadth and
partition-cells in each column have the same length. Fig-
ure 2(a) shows an example of partitioning. Here the whole
space is partitioned into 16 cells.

We represent a partitioning as C=(c1,c2,. . . , cq) where
the cj ’s represent the individual partition-cells and q is the
total number of partition-cells in C. We also denote each
partition-cell by their indices (i, j). We will be using these
two notations interchangeably in this paper. 16 cells in Fig-
ure 2(a) are denoted by their ids i.e. (1, 2, ..., 16) or their
indices ((1,1), (1,2), ... , (4,4)).

Distance between a rectangle and partition-cell:

The distance between a partition-cell c and a rectangle r
is defined as the minimum distance between any point p1

in partition-cell c and any point p2 within the rectangle.
Mathematically it can be written down as follows:

dist(c, r) = min
p1,p2

dist(p1, p2),∀(p1, p2)p1 ∈ c, p2 ∈ r (2)

Cell of a Rectangle: Given a rectangle u, its cell cu

is defined as the partition-cell in which the start-point of
rectangle u lies. In Figure 2(a), the cell of rectangle r1 (i.e.,
cr1

) is 6 as the start point of rectangle r1 lies in cell 6.
Similarly the cell of rectangle r2, (i.e., cr2

) is 3.
Cells in the 4th Quadrant wrt. a Rectangle: In

this paper we will be heavily using this notion. Consider
a rectangle u and its cell cu. If we divide the whole 2D
space by taking the start-point of cell cu as origin, than the
cells lying in the fourth quadrant are said to be the cells
in the 4th quadrant wrt. rectangle u and denoted as C4(u).
Mathematically it is defined as follows:

C4(u) = {ci} s.t. ci.x ≥ cu.x & ci.y ≤ cu.y

In Figure 2(a), cells 6-8, 10-12 and 14-16 are in the 4th

quadrant wrt. rectangle r1. Cell of rectangle r1 i.e., cr1
is

6 and the four quadrants (marked by Q1, Q2, Q3 and Q4)
formed by division of 2D space by taking start-point of cell
6 as origin are also shown in Figure 2(a).

We next define the following three operations project,
split and replicate. Collectively we call these three oper-
ations as transform operations. These operations transform
a rectangle wrt. a partitioning in three different manners.
Intermediate key-value pairs in the approaches we develop
in this paper are generated using these transform opera-
tions. The output consists of key-value pairs where key is
the partition-cell id and the value is the input rectangle.

Project: Project operation returns the cell of a rectangle
i.e., it determines the partition-cell in which the start-point
of the rectangle lies. The projection of a rectangle u on a
partitioning C results in the generation of a single key-value
pair (cu, u) where cu is the partition-cell within which the
start-point of the rectangle u lies.

Project(u, C)→ (cu,u)

Split: Split operation determines all the partition-cells
which have at-least one point in common with the rectangle.
Consequently for each such partition-cell, a key-value pair
is generated and hence a set of key-value pairs is returned
for each rectangle.

Split(u, C)→ {(ci,u)}, ∀(i) s.t. u ∩ ci 6= φ

Replicate: The replicate operation returns all partition
cells which satisfy a certain condition.

Replicate(u, C, f)→ {(ci,u)}, ∀(i) f(ci, u)=true

In this paper we will be mainly considering two functions
f1 and f2 as described next. The function f1 replicates the
rectangle u to all partition-cells which lie in the fourth quad-
rant wrt. rectangle u. The function f2 takes an additional
parameter d and replicates the rectangle u to all cells which
(1) lie in the fourth quadrant wrt. rectangle u and (2) are
within distance d of the rectangle u.

Mathematically, these two functions are written down as
follows.

f1(c, u) = c.x ≥ cu.x & c.y ≤ cu.y

f2(c, u, d) = f1(c, u) & dist(c, u) ≤ d

115

(a) (b)

(c)

Figure 2: Project, Split and Replicate Example

Figure 2(c) presents the output of project, split and repli-
cate operations on rectangle r1 in Figure 2(a). The project
operation returns cell 6 as cell 6 contains the start-point of
rectangle r1. The split operation returns the cells 6 and 7
as only these two cells intersect with rectangle r1. Replicate
operation with function f1 returns cells in 4th quadrant wrt.
rectangle r1 i.e., cells 6-8, 10-12, 14-16. Replicate operation
with function f2 returns cells 6,7,10 and 11 as only these
cells are within distance d of rectangle r1. The shaded cells
represent the output of replicate operations with function f1

in Figure 2(a).
Projecting, Splitting and Replicating a relation:

Equivalently we define projecting (Project(R, C)) splitting
(Split(R,C)) and replicating (Replicate(R,C)) a relation R
wrt. a partitioning C as follows:

Project(R, C): ∀(j) Project(uj , C) s.t. uj ∈ R
Split(R, C): ∀(j) Split(uj , C) s.t. uj ∈ R
Replicate(R, C): ∀(j) Replicate(uj , C) s.t. uj ∈ R

Project(R, C) represents the output of project operation
on each rectangle in R. The size of this operation hence
equals the size of relation R. Split(R, C) represents the
output of split operation on each rectangle in R and similarly
Replicate(R, C) represents the output of replicate operation
on each rectangle in R.

Notation: To make the notation simpler, we omit the
partitioning parameter C while talking about any of project,
split or replication operation. In the rest of the paper we
may avoid mentioning the replication function f1 and f2

explicitly. From the context it will be clear which function
is implied. Table 1 summarizes the symbols used in this
paper.

5. 2-WAY SPATIAL JOINS
Binary joins have been studied in the literature before [23,

22]. In this section we first outline the same solutions using
the project-split-replicate notation. Secondly understanding
how 2-way spatial joins can be computed on map-reduce
platform is essential to understand how multi-way joins need
to be carried out.

5.1 2-way Join Algorithm Blueprint
Let the number of reducers be k and let us denote these

reducers by ids 1,2,. . .,k. We first divide the 2D space into a

grid containing k partition-cells (i.e., we divide x and y axis

in
√

k partitions each). We either project, split or replicate
the relations (depending on the exact predicate involved).
Intermediate key-value pairs generated as a result of these
operations are routed to the reducers. An intermediate key-
value pair (ci, u) is routed to the reducer ci. All pairs with
partition-cell ci as key are hence processed by one reducer
only i.e., ci.

After all the intermediate key-value pairs have been com-
municated to the relevant reducers, each reducer has got all
the information to generate a part of the output. If two
rectangles from two relations agree on the predicate then
these two rectangles must be present at, at least one of the
reducers. Each reducer computes a part of the spatial join
output. Combining the output of all the reducers produces
the complete join output.

Notation: As one reducer handles the key-value pairs
containing only one partition-cell, we also denote the reduc-
ers with the same ids i.e., ci. We will be using the terms
‘reducer’ and ‘cell’ loosely and interchangeably. We will not
be using the exact phrases ‘reducer corresponding to the cell’
and ‘cell corresponding to the reducer’. It will be clear from
the context what is implied.

5.2 Overlap Predicate
We next look at the Overlap predicate. Let R1 and R2

be the two relations being joined. We can process the over-
lap join by splitting the two relations. Let r1 ∈ R1 and
r2 ∈ R2 be two rectangles which satisfy the Overlap pred-
icate. Hence there must be at least one reducer which will
receive both r1 and r2. Such reducers can output that the
rectangles r1 and r2 overlap. As there can be more than one
reducers which receive both r1 and r2, we need to remove
the duplicates from the output. The final output is hence
scanned once again and the duplicates are removed. Alter-
natively we can adopt a duplicate avoidance mechanism so
that we need not remove duplicates from the final output.
A duplicate avoidance mechanism ensures that one output
tuple is generated only at one of the reducer. We adopt the
following duplicate avoidance mechanism [9].

We first compute the area overlapping between the two
rectangles r1 and r2. This area will also be a rectangle and
let’s denote this by ro12. Which-ever cell contains the start-
point of the rectangle ro12, computes the output tuple (r1,
r2). As only one cell can contain the start-point of the rect-
angle ro12, there will be no duplicate.

Consider the rectangles r3 (∈ R1) and r4 (∈ R2) in Fig-
ure 2(a). x and y axis are divided in 4 partitions and hence
there are 16 reducers in play. The overlapped area between
rectangles r3 and r4 is shown black. Reducers 14 and 15
will receive both the rectangles r3 and r4. However the
start-point of overlapping area lies in cell 14. The output
tuple (r3,r4) is hence computed by reducer 14.

Note that an overlap join can not be computed by pro-
jecting one relation and splitting the other. Consider that
the relation R1 is projected and relation R2 is split. For a
counter-example, consider the rectangles r1 (∈ R1) and r2

(∈ R2) in Figure 2(a). As rectangle r1 is projected, only
reducer 6 receives rectangle r1. As rectangle r2 is split, re-
ducers 3 and 7 receive the rectangle r2. Hence, no reducer
receives both the rectangles r1 and r2; and hence this output
tuple will not be computed.

116

Table 1: Terminology and Notation
R1, R2, R3 Relations
u, v, w, x

Rectangles
r1, r2, r3

p1, p2 A point
Q A Spatial Join Query

R
A set of relations,

Set of Relations in query Q

U
A set of rectangles with each rectangle

belonging to a different relation
P A spatial predicate
c partition-cell
C A partitioning, A set of partition-cells

cu, cr Cell in which rectangle u (r) starts

5.3 Range Predicate
Let R1 and R2 be the two relations being joined and let d

be the distance parameter of the range predicate. A range
predicate computes the pairs of rectangles which are within
distance d of each-other. We first define the concept of en-
larging a rectangle by d units.

Enlarging a rectangle by d units: Let (x1, y1) be the
top-left vertex of a rectangle and let (x2, y2) be the bottom-
right vertex . The top-left vertex of the enlarged rectangle is
given by (x1−d, y1 +d) and the bottom-right vertex is given
by (x2 + d, y2 − d). Consider the Figure 2(b). Rectangle r1

is shown and its enlarged rectangle is also shown. Let us
denote the rectangle obtained by enlarging rectangle r by d
units as re(d).

We can process the Range predicate by splitting the rela-
tion R2 and communicating a rectangle r1 in R1 to reducers
corresponding to all partition-cells which overlap with the
rectangle obtained by enlarging r1 by d units (i.e, re

1(d)).
For example rectangle r1 in Figure 2(b) is communicated to
reducers 2-4, 6-8 and 10-12 as these cells overlap with the
enlarged rectangle of r1. Rectangle r2 is communicated to
reducers 7 and 8 as these two cells overlap with rectangle r2.

There can be more than one reducers which will receive
both the rectangles r1 and r2. We hence need to have a
duplicate avoidance mechanism. We once again compute
the rectangular area overlapping between re

1(d) and r2. The
cell which contains the start-point of this rectangular area
computes the output tuple (r1, r2) if r1 and r2 are within
distance d.

In Figure 2(b), reducers 7 and 8 receive both rectangle r1

and r2 and reducer 7 computes the output tuple (r1, r2) as
the start-point of the overlapping area between re

1 and r2

lies in cell 7.
Note that we still need to check whether rectangle r1 and

r2 are within distance d as the overlap between enlarged rect-
angle of r1 (i.e., re

1) and r2 does not guarantee that r1 and
r2 are within distance d. For a counter-example, consider

rectangles r1 and r
′

2 in Figure 2(b). Rectangle r
′

2 overlaps

with re
1 but r1 and r

′

2 are more than distance d apart.
If r1 and r2 are within distance d then r2 will overlap with

enlarged rectangle re
1(d) but the reverse is not true. Hence it

suffices to split r2 and replicate r1 to reducers which overlap
with re

1(d).

6. MULTIWAY JOINS - NAIVE METHODS
In this section we present two naive approaches to solve

multi-way spatial join queries and discuss why these ap-
proaches are naive.

6.1 Naive Approaches
• 2-way Cascade: This approach processes a multi-

way join query as a series of 2-way joins. Each 2-
way join is handled as discussed in Section 5. For
example consider the query Q1= R1 Overlaps R2 and
R2 Overlaps R3 and R3 Overlaps R4. This approach
first joins R1 and R2 for predicate overlap, the result
with R3 and the subsequent result with R4

1.

• All-Replicate: All-Replicate handles a join query by
replicating all relations with replication function f1 as
defined in Section 4. A rectangle u is communicated to
all cells which are in the fourth quadrant wrt. cell cu.
Each reducer then computes a part of the join output
on the rectangles it receives.

It should be noted that the decision of replicating the
rectangles to cells in fourth quadrant is arbitrary. One
can equivalently replicate the rectangles to first, sec-
ond or third quadrant.

Consider an output tuple U . Naturally there may be
multiple cells which will receive all the rectangles in
U and all such cells can compute the output tuple
U . For example, consider the query Q1 as mentioned
above and the rectangles as shown in Figure 3. Assume
that there are 32 reducers and hence the 2D space
is divided in a 8x4 grid. Consider the rectangle-set
U=(u1,v1,w1,x1). Rectangles in U satisfy the over-
lap conditions in Q1. As a result of replication with
function f1, reducers 19-24 and 27-32 will receive all
rectangles in U . No other reducer receives all four rect-
angles in U e.g., reducers 11-16 receive rectangles v1,
w1 and x1 but do not receive rectangle u1. Potentially
hence any reducer among 19-24, 27-32 can compute
the output tuple U . We need to hence employ a du-
plicate avoidance strategy so that an output tuple is
computed exactly at one reducer. We next outline the
duplicate avoidance strategy used.

6.2 Duplicate Avoidance Strategy
Consider an output tuple U , let ur, ur ∈ U be the right-

most rectangle in U i.e., the rectangle with the largest x-
coordinate of the starting-point and let ul, ul ∈ U be the
lowermost rectangle in U i.e., the rectangle with the smallest
y-coordinate of the starting point. Duplicates are avoided
by letting only the partition-cell which contains the point
(ur.x, ul.y) compute the output tuple U .

Consider again the query Q1, Figure 3 and the rectangle-
set U=(u1,v1,w1,x1). x1 is the rightmost rectangle in U and
u1 is the lowermost rectangle. Cell 19 contains the point
(x1.x, u1.y) (as shown in Figure 3) and hence reducer 19
computes the output tuple U . Reducers 20-24, 27-32 will
determine that their respective cell do not contain the point
(x1.x, u1.y) and hence will not output the tuple U .

6.3 Why Splitting all Relations does not work?
Note that unlike a 2-way overlap join, a multi-way overlap

join query can not be computed by splitting all rectangles.
For example, again consider query Q1, Figure 3 and the
rectangle-set U=(u1,v1,w1,x1). Splitting each rectangle will
imply that rectangle u1 is received by reducer 18, rectangle
v1 is received by reducers 10 and 18, rectangle w1 is received

1Assuming that this is the optimal order in which to evaluate
2-way joins

117

by reducers 2,3,10 and 11; and rectangle x1 is received by
reducers 3 and 11. Hence no one reducer receives all the
rectangles and the output tuple U can not be computed.

Splitting both relations in a 2-way overlap join works as
it is certain that two overlapping rectangles will be received
at at-least one reducer. In a multi-way overlap join, rect-
angles forming an output tuple may be far apart and it is
not certain that all rectangles in an output tuple will be re-
ceived by at least one reducer. To circumvent this problem,
All-Replicate replicates all rectangles to 4th quadrant reduc-
ers which ensures that for each output tuple, there will be
at least one reducer which will receive all rectangles for the
output tuple. A suitable strategy can be adopted to avoid
any duplicates (Section 6.2).

6.4 Why 2-way Cascade and All-Replicate are
Naive?

Both these approaches are very inefficient. 2-way Cascade
handles a multi-way join as a cascade of 2-way joins. This
hence produces a series of big intermediate join results and
these big intermediate results are joined with subsequent
relations. 2-way Cascade hence executes a number of map
and reduce tasks. The first problem with this approach is
that it involves a huge reading and writing cost. For each
successive 2-way join, a larger and larger size of data will be
read (and written to the disk). Secondly a larger amount of
data read naturally results in a larger communication cost
among the cluster nodes.

All-Replicate carries out the multi-way join in one step
and hence unlike 2-way Cascade does not involve huge read-
ing and writing cost. However All-Replicate involves a huge
communication cost as it replicates each rectangle and as a
result, each rectangle u is communicated to all the reducers
which are in the 4th quadrant wrt. rectangle u. Replicating
each rectangle is a naive way of ensuring that there is at-
least one reducer which will receive all the rectangles in an
output tuple and can hence compute the output tuple.

However this naive way turns out to contain a lot of redun-
dancy. Rectangles are replicated even if they do not form
part of any output tuple resulting in unnecessary communi-
cation and processing e.g., a rectangle may not overlap with
any other rectangle but is still replicated to multiple cells.
For example, in Figure 3, rectangle u4 will be communicated
to all 32 reducers even though it does not form a part of any
output tuple. Secondly for a majority of the output tuples,
the overlapping rectangles are likely to be near-by and there
is no provision of identifying that such output tuples can be
computed locally e.g., rectangles (u3,v3,w3,x3) in Figure 3.
We hence need an approach which carries out the multi-
way join simultaneously (unlike a cascade of 2-way joins)
but selectively replicates rectangles by taking into account
their relative spatial locations. We next present Controlled-
Replicate, a framework which achieves precisely this.

7. CONTROLLED-REPLICATE METHOD

AND MULTI-WAY OVERLAP JOINS
In this section we present Controlled-Replicate framework

and illustrate how we use it to compute multi-way overlap
joins. We then present an experimental evaluation to show
the efficacy of the Controlled-Replicate framework.

7.1 Motivation and Blueprint

Figure 3: Example illustrating the scheme for decid-

ing which reducer to compute the join

The basic idea of Controlled-Replicate framework is to
identify which rectangles need not be replicated. The frame-
work defines a number of conditions which each rectangle
must satisfy. Any rectangle which does not satisfy these
conditions is not replicated.

Controlled-Replicate runs as a round of two map-reduce
jobs. First set of map-reduce operations figure out which
rectangles need to be replicated. Map operations in the
first round split all the relations and hence a reducer ci re-
ceives all rectangles which overlap with cell ci. Reduce op-
erations in the first round then determine which rectangles
need to be replicated. First round of reduce operations hence
check which rectangles satisfy the conditions of Controlled-
Replicate framework. A rectangle which is chosen for repli-
cation is marked with a flag. All other rectangles are output
unmarked.

Second round of map-reduce operations carry out the repli-
cation and compute the multi-way join. Second round of
map operations process the output of first round of reducers.
The rectangles chosen for replication (i.e., which are marked)
are replicated with function f1 (see Section 4). Rest of the
(unmarked) rectangles are projected. The second round of
reducers compute the join. The duplicates are avoided using
the strategy outlined in Section 6.2.

As only rectangles marked in the first round are replicated,
Controlled-Replicate replicates much lesser number of rect-
angles as compared to All-Replicate. Controlled-Replicate
hence incurs a much smaller communication cost as com-
pared to All-Replicate. As Controlled-Replicate is carried
out as a sequence of two map-reduce cycles, it incurs a much
smaller reading and writing cost as compared to 2-way Cas-
cade which incurs a huge reading/writing cost due to gen-
eration of large intermediate results. We next outline the
notion of consistency of a set of rectangles which is used in
the conditions of Controlled-Replicate framework.

Notation: For simplicity purposes we refer to Controlled-
Replicate and All-Replicate as C-Rep and All-Rep respec-
tively.

7.2 Rectangle-Set
In this paper we will be heavily using the notion of a“rect-

angle set” or a “set of rectangles”. We assume the following
notations on such a set U used in this paper:

1. All rectangles in a set U belong to different relations.

2. We assume an order among the set U so that we can
access ith element of the set by the notion U [i].

118

3. We say that the set Rs is the relation-set of rectangle-
set U if the ith rectangle in U belongs to ith relation
in Rs i.e., U [i] ∈ Rs[i] for all i. All the relations in Rs

are distinct as no two rectangles in U come from the
same relation (Point 1).

7.3 Consistency of a set of rectangles
Given a query Q, we say that a set of rectangles U is

consistent with its relation-set Rs if the following holds:
For any two indices j and k, if there is a condition (Pi,

Rs[j], Rs[k]) in query Q then the rectangles U [j] and U [k]
satisfy the predicate Pi.

The notion of consistency of a set of rectangles implies
that the rectangles from set U satisfy all the conditions in
query Q which are formed by the relations in relation-set
Rs.

Consider the rectangles shown in Figure 3 and the query
Q1: R1 Overlaps R2 and R2 Overlaps R3 and R3 Overlaps
R4. Let the rectangles in relations R1, R2, R3 and R4 be rep-
resented using u, v, w and x respectively. The rectangle-set
U1=(u1,v1,w1) is consistent with the relation-set Rs=(R1,
R2, R3) as rectangle u1 and v1 overlap and rectangles v1

and w1 overlap. This is required by the presence of join
conditions ‘R1 Overlaps R2’ and ‘R2 Overlaps R3’ in query
Q. There is no condition R1 Overlaps R3 in Q1 and hence
the overlap of rectangles u1 and w1 is not required for con-
sistency. The rectangle-set U1=(u2,v1,w1) is not consistent
with Rs=(R1,R2,R3) as rectangles u2 and v1 do not over-
lap but this is required by the presence of condition ‘R1

Overlaps R2’ in query Q.
The intuition behind the notion of consistency is that each

subset of an output tuple must be consistent. For example,
consider the output tuple U=(u1,v1,w1,x1) and query Q1.
Each subset of the tuple U is consistent. One of the condition
of C-Rep is that the rectangles which are replicated must be
part of some consistent rectangle-sets.

7.4 Conditions of Controlled-Replicate
We now describe the conditions of Controlled-Replicate

framework which are used to find rectangles to be replicated.
Let the query be Q and its relation-set R. Let Uc be the
set of rectangles split on partition-cell c and subsequently
received by the reducer c. The reducer c first identifies all
rectangle-sets U which satisfy the following conditions. Let
Rs be the set of relations to which the rectangles in U belong
to.

1. C1: U is consistent with Rs.

2. C2: Consider two relations R1 and R2, R1 ∈ Rs, R2

/∈ Rs and R2 ∈ R s.t. there is a triple (Ov,R1,R2) or
(Ov,R2,R1) in Q. Let u1 be the rectangle in U which
belongs to relation R1. For all such pairs R1 and R2,
the rectangle u1 crosses the boundary of partition-cell
c i.e., rectangle u1 overlaps with a partition-cell other
than c.

3. C3: There must be at least one pair (R1,R2) satisfying
the conditions C2.

4. C4: No superset of U satisfies conditions C1, C2 and
C3.

Let USc be the set of such rectangle-sets. We define uSc

as the union of all rectangle sets in USc i.e.,

Figure 4:

uSc =
[

U

U , s.t. U ∈ USc

C-Rep replicates all rectangles in uSc which start in partition-
cell c i.e., the start-point of rectangle u lies in cell c.

7.5 Proof-of-Correctness
We next show that this approach will compute the join

output correctly. Consider the rectangles in an output tuple
U ′=(u1,u2,. . . ,um), ui ∈ Ri. Consider the set of rectangles

U ′

c, U
′

c ⊆ U ′ which are split or projected onto the partition-
cell c. Let Rc be the set of relations to which the rectangles

in U ′

c belong. As an output tuple is by default consistent

with R, the set of rectangles U ′

c will be consistent with Rc.
This satisfies the condition C1. So we next need to show
that U ′

c satisfies the conditions C2 and C3.
Consider a join condition represented by a triple (P ,Rj ,Rk)

or (P ,Rk,Rj) in Q s.t. Rj ∈ Rc, Rk /∈ Rc and Rk ∈ R. Let
uk and uj be the corresponding rectangles in U ′, i.e., uk ∈
Rk and uj ∈ Rj . As uj and uk are present in the output
tuple, they must overlap. However the rectangle uk does not
belong to Uc′ as Rk /∈ Rc. Rectangle uj and uk hence can
overlap only if rectangle uj crosses-over the boundary of cell
c. Condition C2 represents this case.

However if no such join-condition exists in query Q, it
implies that all rectangles in U ′ overlap with partition-cell
c. The cell c hence can itself compute the output tuple U ′

and does not need to replicate any rectangle. Condition C3
represents this boundary case.

Condition C4 is hence present only for efficiency purposes.
If a rectangle-set U satisfies conditions C1-C3, all of its sub-
sets will also satisfy conditions C1-C3.

7.6 Intuition behind Controlled-Replicate
Condition C1 conveys that a rectangle-set U must be con-

sistent for inclusion in USc (Section 7.3). It is because each
subset of an output tuple is by default consistent. If a
rectangle-set U is not consistent, it can not be part of an
output tuple.

Condition C2 conveys that if the number of rectangles in a
consistent rectangle-set U is less than the number of relations
involved in query Q (i.e., the cardinality of R), then certain
rectangles in U must cross-over the partition-cell boundary.
Consider the join condition in Q - (P , R1, R2) s.t. R1 ∈ Rs

and R2 /∈ Rs and let u be the rectangle in U belonging to
relation R1. If rectangle u does not cross the partition-cell c,
then u can not overlap with any rectangle v which does not
overlap with cell c. U hence must not be included in USc

even though it is consistent. By not including U in USc,
C-Rep will possibly avoid replicating some rectangles 2.

2Possibly, because a rectangle u in U may still get replicated
as it may be a part of another rectangle-set in USc

119

Condition C3 conveys that the reducer c may receive all
rectangles to form an output tuple. Such a rectangle-set
is consistent and also satisfies condition C2 as no rectangle
needs to cross-over. However this must not be included in
USc as reducer c will receive these rectangles in second round
and can compute this output tuple. Condition C3 hence
eliminates this boundary case.

Consider the simple scenario of Figure 4 and query Q1

(Section 7.3). Let the rectangles of relations R1, R2, R3,
R4 be represented by u,v,w and x respectively. (u1, v1, w1,
x1) form an output tuple. Reducer c1 receives rectangles
v1 and w1 and needs to decide whether to replicate these
rectangles or not. The set (v1, w1) is consistent with its
relation-set (R2, R3) as v1 and w1 overlap. If v1 and w1 were
not overlapping, reducer C1 would have deduced that v1 and
w1 together can not be part of an output tuple (Condition
C1).

Secondly both rectangles v1 and w1 cross over the cell c1.
They can hence overlap with other rectangles not overlap-
ping with cell c1 (u1 and x1 in this case) and hence can form
an output tuple (Condition C2). If any of the v1 or w1 were
not crossing over, reducer c1 would have deduced that v1

and w1 together can not form an output tuple with rect-
angles not overlapping with cell c1. Reducer c1 hence finds
that the rectangle-set (v1, w1) is a candidate-set that can
belong to an output tuple and replicates both the rectangles
v1 and w1. Note that the output tuple (u1, v1, w1, x1) will
be computed by reducer c4.

7.7 Illustrative Example
We next illustrate the working of C-Rep approach using a

detailed example. Consider the rectangles shown in Figure 5
with the whole 2D space partitioned into 4 cells and the
query Q1 (Section 7.3). Rectangles belonging to relations
R1, R2, R3 and R4 are represented using u, v, w and x
respectively. For the rectangles shown in Figure 5 the output
will consist of tuples (u2, v3, w1, x1), (u2, v3, w1, x2), (u3,
v3, w1, x1) and (u3, v3, w1, x2) . Consider the reducer
c1. After splitting every rectangle, the reducer c1 receives
the rectangles u1, v1, v2, v3, x2, u2 , w1 and v4 in the first
stage. The set USc1 is [(u2, v3, w1), (v3, w1, x2), (v4)] as
these three sets satisfy all four conditions of C-Rep. The set
uSc1 is hence (u2, v3, v4, w1, x2) and reducer c1 replicates
all these rectangles as they all start-out within c1.

The rectangle-set U1=(u2, v3, w1) is consistent with re-
lation set Rs1=(R1, R2, R3) as rectangles in U1 satisfy the
overlap predicates formed by relations in Rs1. Rectangles
u2 and v3 overlap and rectangles v3 and w1 overlap. As
there is the join-condition R3 overlaps R4 in query Q, the
condition C2 of C-Rep requires that the rectangle w1 crosses
the partition-cell boundary and it does. The rectangle-set
U1 is hence included in set USc1 . The inclusion of the set U1

in Rs1 signifies that there might be an output tuple of form
(u2, v3, w1, x), x ∈ R4 s.t. x does not intersect with cell
c1. In the Figure 5, (u2, v3, w1, x1) is such an output tuple.
Supposing x1 were not present the reducer would have still
needed to replicate the rectangles in U1 as the reducer c1

does not have any way to know this apriori.
Similar is the case for rectangle-set U2=(v3, w1, x2). U2

is consistent with relation-set Rs2=(R2, R3, R4). The pres-
ence of join-condition R1 overlaps R2 requires that the rect-
angle v3 crosses the cell-boundary and it does.

The rectangle-set U3=(v4) is consistent with relation-set

Figure 5: Controlled-Replicate Example

(R2) and it crosses the cell-boundary of C1 as required by
conditions R1 overlaps R2 and R2 overlaps R3.

Consider the rectangle-set U4=(u2, v3, w1, x2). This
set belongs to the output and can be computed by the re-
ducer c1 itself. U4 hence violates the condition C3 of C-
Rep. Next consider the set U5=(v2, w1). This is consistent
with relation-set (R2, R3) however the rectangle v2 does not
cross the cell-boundary as required due to the join condition
R1 overlaps R2. U5 hence violates the condition C2 of C-
Rep.No other rectangle-sets satisfy all conditions of C-Rep.

For reducer c3 the rectangle set U6=(u3,v3) satisfies all
conditions of C-Rep. However the reducer c3 replicates only
the rectangle u3 as the rectangle v3 does not start within c3.

The output tuples (u2, v3, w1, x1), (u2, v3, w1, x2), (u3,
v3, w1, x1) and (u3, v3, w1, x2) are computed by reducers
c2, c1, c4 and c3 respectively in the second stage.

Table 3: Query Q2, Varying rectangle dimensions
nI=2 million, dS=Uniform, dX, dY,dL, dB=Uniform

(xmin,xmax)=(0,100K), (ymin, ymax)=(0,100K)
lmax, Time 2-way Time Time # Recs Rep. # Recs Rep.
bmax Cascade C-Rep C-Rep-L C-Rep C-Rep-L

(hh:mm) (hh:mm) (hh:mm) (million) (million)
100 00:10 00:07 00:07 0.11, (7.6) 0.11 (6.1)
200 00:13 00:09 00:08 0.25, (10.1) 0.25 (6.5)
300 00:30 00:16 00:13 0.39, (12.0) 0.39 (6.8)
400 02:23 00:28 00:20 0.53, (14.5) 0.53 (7.1)
500 05:14 00:59 00:33 0.67 (16.8) 0.67 (7.3)

7.8 Experimental Evaluation
In this section, we show the efficacy of C-Rep approach

over naive approaches first on synthetic and then on a real-
life data-set. We first describe the cluster set-up, how we
generate the synthetic data and the details of real-life Cali-
fornia Road data.

7.8.1 Experimental SetUp

The experiments are run over a 16 core Hadoop cluster
built using Blade Servers with three 3 GHz Xeon proces-
sors having 8GB memory and 200 GB SATA drives. These
machines run Red Hat Linux 5.2. The software stack com-
prises of Hadoop 0.20.2 with HDFS. All the experiments are
executed with 64 reduce processes. The 2D space is hence
divided in 8x8 grid.

7.8.2 Datasets

Generation of Synthetic Data: We use synthetic data
for experimental evaluation. We write a script to generate
a set of rectangles. The parameters to this script are the
following: (a) Number of rectangles (nI), (b) Distribution
of x and y coordinates of start-point of rectangles (dX and
dY). (c) Distribution of rectangle length and breadth (dL
and dB), (d) x and y ranges within which all rectangles
lie ([xmin, xmax], [ymin, ymax]) (e) Minimum and maximum
length and breadth of rectangles ([lmin, lmax], [bmin, bmax]).

120

Table 2: Query Q2, Varying the dataset size
dS=Uniform, dX, dY, dL, dB=Uniform, (xmin,xmax)=(0,100K)

(ymin, ymax)=(0,100K), (lmin,lmax)=(0,100), (bmin,bmax)=(0,100)
nI Time 2-way Time Time Time # Rectangles Rep. # Rectangles Rep. # Rectangles Rep.

Tuples Cascade All-Rep C-Rep C-Rep-L All-Rep C-Rep C-Rep-L
(million) (hh:mm) (hh:mm) (hh:mm) (hh:mm) (millions) (millions) (millions)

1 00:05 00:32 00:05 00:05 3, (64.3) 0.05, (3.9) 0.05 (3.0)
2 00:10 01:22 00:07 00:07 6, (128.7) 0.1, (7.6) 0.1 (6.1)
3 00:13 >03:00 00:08 00:09 9, (-) 0.19, (12.5) 0.19 (9.2)
4 00:24 >03:00 00:11 00:11 12, (-) 0.23, (15.6) 0.23 (12.2)
5 00:35 >03:00 00:15 00:13 15, (-) 0.31 (19.8) 0.31 (17.9)

The computational effort needed to compute the join can
be effected by varying these parameters e.g., increasing num-
ber of rectangles results in a larger output size. If lmax or
bmax increases, more rectangles will overlap and the out-
put size will be larger. We can hence carry out a number
of controlled-experiments to investigate the efficacy of ap-
proaches presented in this paper.

Details of real-life California Road Data: Census
2000 TIGER/Line shape files were used to create the real
data set [1]. Road data layer information in the California
state was used to generate MBBs in the real data set. The
total number of road objects in the California dataset is
2092079. For each road object in the shape file, given bounds
were used to create MBBs. We then converted the latitude
and longitude to a flat XY co-ordinate system using the
Openmap library [2] and the ratio |x-range|/|y-range| was
found to be 0.63. The flattened MBBs were used for all the
join computations in our experiments.

The mapping was done on 2D space with y-range as [0,
100K] and x-range as [0,63K]. Average MBB length and
breadth were found to be 18 and 8 respectively. Minimum
and maximum MBB length were found to be 1 and 2285
respectively while minimum and maximum MBB breadth
were found to be 1 and 1344 respectively. Minimum and
maximum MBB areas were found to be 1 and 3071K respec-
tively. 97% of rectangles have both length and breadth less
than 100 while 99% of the rectangles have both their length
and breadth less than 1000.

7.8.3 Metrics Computed

In each experiment we report the following metrics:

1. Time Taken: This is the end-to-end time for run-
ning an algorithm. It covers cost of reading and pars-
ing data, communication cost among the cluster nodes,
join processing cost as well as the cost of writing in-
termediate outputs on HDFS.

2. The number of Rectangles Replicated: This is
the number of rectangles marked by C-Rep for repli-
cation.

3. The number of Rectangles After Replication: A
rectangle is communicated to multiple reducers after
replication. This is the aggregated count of rectangles
communicated to reducers after replication. For ex-
ample, in Figure 5, the rectangle w1 after replication,
is communicated to reducers C1, C2, C3 and C4. The
rectangle w1 hence is counted once in the metric ‘the
number of rectangles replicated’ and four times in the
metric ‘the number of rectangles communicated after
replication’. This metric is hence much larger than the
number of rectangles replicated in C-Rep. In all exper-
iments this metric is mentioned within parenthesis.

7.8.4 Varying DataSet Size - Synthetic Data

We consider the query Q2 = R1 overlaps R2 and R2

overlaps R3. Table 2 presents a comparison of all three
approaches, 2-way Cascade, All-Rep and C-Rep (Ignore C-
Rep-L at the moment). We generate three sets of rectangles
synthetically, R1, R2 and R3. Parameter values using which
the synthetic data is generated are also provided in Table 2.
All three relations contain same number of tuples. The num-
ber of tuples in all three relations are varied from 1 million
to 5 million. Both 2-way Cascade and All-Rep are found
to be taking much longer time vis-a-vis C-Rep. The time
required for both of these increases rapidly as the size of the
relations increase. 2-way Cascade solves a multi-way join
query as a series of 2-way joins which involves joining large
intermediate results and hence requires a much higher time
to complete.

All-Replicate replicates all rectangles and hence incurs a
much higher communication cost. In comparison, C-Rep
replicates a much smaller number of rectangles. Table 2 also
presents the number of rectangles replicated for both the ap-
proaches. The numbers in parentheses represent the number
of rectangles after the replication (Section 7.8.3). For nI=1
million, All-Rep communicates an aggregated 64.3m rectan-
gles while C-Rep communicates only 3.9m rectangles. It is
this huge reduction in the number of communicated rect-
angles which shows up in much improved performance of
C-Rep over All-Rep. Both the communication cost as well
as the time required for computing the partial join output at
each reducer are smaller for C-Rep vis-a-vis All-Rep. We do
not present the numbers for All-Rep in the remaining exper-
iments as it is clear that C-Rep will significantly outperform
All-Rep .

7.8.5 Varying Rectangle Size - Synthetic Data

We next keep the number of rectangles in each dataset
at 2m while varying lmax and bmax. As rectangles of larger
and larger dimensions are allowed, more number of rectan-
gles overlap and larger is the size of output. The results
are presented in Table 3. The C-Rep approach easily out-
performs the naive 2-way Cascade.

7.8.6 Experiments on California Road Data

We first define the notion of enlarging a rectangle by factor
k.

Enlarging a rectangle by factor k: Let (x1, y1) be the
top-left vertex of a rectangle and let (x2, y2) be the bottom-
right vertex . The top-left vertex of the enlarged rectangle
by factor k is given by (x1 − (x2 − x1) ∗ (k − 1)/2, y1 +
(y2 − y1) ∗ (k − 1)/2) and the bottom-right vertex is given
by (x2 + (x2 − x1) ∗ (k − 1)/2, y2 − (y2 − y1) ∗ (k − 1)/2)).
In other words, the length and breadth of each rectangle is
increased by a factor of k keeping the center of the rectangle

121

Figure 6: Controlled Replication In Limit

identical.
In this experiment we compare the performance of 2-way

Cascade and C-Rep on real-life California road data. We
consider the star join query Q2s=R Overlaps R and R
Overlaps R. This hence find road triples (rd1,rd2,rd3) such
that rd1 overlaps with rd2 and rd2 overlaps with rd3. We
take California Road data and construct different datasets
from this by enlarging each rectangle by a factor k. Hence
as the enlarging factor increases, the sizes of the MBBs in-
crease and more and more MBBs will overlap resulting in a
larger output. Table 4 provides the comparison. We again
find that C-Rep easily outperforms 2-way Cascade.

Table 4: Query Q2s, California Road Data
nI=2 million

(xmin,xmax)=(0,63K), (ymin, ymax)=(0,100K)
Enlar Time Time Time #Recs Rep. #Recs Rep.
ging 2-way Cd C-Rep C-Rep-L C-Rep C-Rep-L

Factor (hh:mm) (hh:mm) (hh:mm) (million) (million)
1.00 00:19 00:15 00:14 0.08, (0.8) 0.08 (0.64)
1.25 00:27 00:24 00:21 0.12, (0.9) 0.12 (0.65)
1.5 00:43 00:25 00:24 0.18, (1.0) 0.18 (0.66)
1.75 01:04 00:46 00:42 0.23, (1.14) 0.23 (0.67)
2.0 01:35 00:57 00:53 0.32 (1.33) 0.32 (0.68)

7.9 Controlled Replicate in Limit
C-Rep approach replicates a rectangle u starting out in

partition-cell c to all reducers which lie in the 4th quadrant
wrt partition-cell c. However a rectangle is only likely to
join with rectangles which start-out in neighboring partition-
cells. Rectangle u hence is not likely to be present in the join
outputs of many reducers. Performance of C-Rep hence can
be improved if we can apriori decide which reducers won’t
require a rectangle and avoid replicating the rectangle to
those reducers. We call this approach as Controlled Replicate
in Limit (C-Rep-L).

We can design one such scheme if we know the upper
bound on the diagonal length of the rectangles for each re-
lation. Lets say dmax is the upper bound on the diagonal-
length for each relation. If number of relations in the query
are m, a rectangle u being replicated by C-Rep need only
be communicated to reducers which are in the 4th quadrant
to rectangle u and are at most a distance of (m − 2) ∗ dmax

from the rectangle u 3.
Consider the figure 6 and query Q1 (Section 7.3). Sup-

pose dmax is an upper-bound on the diagonal-length of any
rectangle. Then it suffices that rectangles of relation R1 and
R4 are replicated within distance 2dmax while rectangles of
relations R2 and R3 are replicated within distance dmax i.e.,
the replication function f2 is applied with distance param-
eter 2dmax for relations R1 and R4 while with parameter

3It is assuming that the query is a chain join. The bounds
can be easily obtained for a general query graph. A graph
formalism is avoided in this paper so as to avoid mathemat-
ical details not directly relevant to this paper.

dmax for R2 and R3. Consider the output tuple (u,v,w,x).
Rectangles u and x can at most be distance 2dmax apart
as the maximum diagonal length is dmax (Figure 6). Hence
rectangle u (and x) needs to be replicated to all cells in 4th

quadrant which are at most 2dmax distance apart from rect-
angle u. Similarly rectangles v and x (u and w) can be at
most dmax apart.

C-Rep hence limits the number of rectangles being repli-
cated and C-Rep-L limits the extent of replication of rect-
angles chosen by C-Rep for replication.

7.10 Experimental Evaluation-2
We implement C-Rep-L as described above and repeat

the two controlled-experiments on synthetic data outlined
in Section 7.8.4 and 7.8.5. Tables 2 and 3 also list out the
results for C-Rep-L. The first experiment varies the num-
ber of rectangles. Not much difference is observed between
C-Rep and C-Rep-L as the number of rectangles after repli-
cation (Section 7.8.3) i.e., the numbers in parenthesis are of
similar magnitude. Note that the number of replicated rect-
angles remain the same. C-Rep-L only determines the limit
to which a rectangle is replicated to. The decision whether
a rectangle needs to be replicated or not is made by C-Rep.

However a large improvement is observed in the perfor-
mance of C-Rep-L vis-a-vis C-Rep for the case when we
vary the maximum rectangle dimension (Table 3). As the
lmax and bmax increase, the number of overlapping rectan-
gles also increase. There is a substantial difference between
the number of rectangles after replication (numbers in paren-
thesis) between C-Rep and C-Rep-L. C-Rep-L involves much
smaller number of rectangles after replication and this trans-
lates to a smaller processing time. This shows the efficacy of
C-Rep-L in identifying and eliminating unnecessary replica-
tion. Overall C-Rep-L substantially improves over the naive
approach of 2-way Cascade.

Finally Table 4 presents the performance of C-Rep-L on
California road data. A small improvement is observed in
the performance of C-Rep-L over C-Rep. The improvement
is small as there is not much difference between the number
of rectangles after replication (number in parenthesis).

8. HANDLING RANGE JOINS
In this section we present Controlled-Replicate based ap-

proaches for handling multi-way range join queries. The
selectivity of range predicate is much lower as compared to
overlap predicate as a range predicate joins rectangles at
some distance apart while overlap predicate joins rectangles
which are overlapping.

The conditions for C-Rep for range join queries remain the
same except condition C2 outlined below. We are looking
for properties a rectangle-set U must satisfy in cell c.

Condition C2 in Controlled-Replicate for Range

Joins: Consider two relations R1 and R2, R1 ∈ Rs, R2

/∈ Rs and R2 ∈ R s.t. there is a triple (Ra(d),R1,R2) or
(Ra(d),R2,R1) in Q. Let u1 be the rectangle in U which
belongs to relation R1. For all such pairs R1 and R2, there
must be a cell c′ (6= c) which is within distance d from rect-
angle u1 i.e. dist(c′, u1) ≤ d.

The proof-of-correctness is along the similar lines as out-
lined in Section 7.4. The revision in the condition C2 is
natural as if a rectangle u1 starting within cell c is within
range d of another rectangle u2 starting in cell c′ then cell
c′ must be within distance d from u1. If not, rectangle u1

122

Figure 7: Controlled Replication for Range Queries

Figure 8: C-Rep In Limit for Range Queries

can have range relationship only with rectangles starting in
cell c and need not be replicated.

For example, consider the query Q3=R1 Ra(d) R2 and R2

Ra(d) R3 and Figure 7. Let the rectangles denoted by u, v
and w belong to relations R1, R2 and R3. Reducer C1 will
receive rectangle u1, v1 and v2 in the first round. Consider
the reducer C1 and rectangle-set (u1, v1). As the cell C2

is less than distance d apart from rectangle v1, rectangle
v1 can be within distance d of a rectangle (∈ R3) starting
out in cell C2. For example rectangle v1 is within distance
d of rectangle w1. Rectangle-set (u1, v1) is consistent as
rectangle u1 is within distance d of rectangle v1 and hence
reducer C1 will mark rectangles u1 and v1 for replication.
Note that even if the rectangle w1 were more than distance d
apart from rectangle v1, u1 and v1 would have still required
to be replicated as reducer C1 has no way to figure that
out. Rectangle v2 will not be replicated as no cell is within
distance d of v2 and hence condition C2 as described above
is not satisfied.

Controlled-Replicate-In-Limit: We next extend the ar-
guments in Section 7.9 in case of range joins. We need to find
the distance to which a rectangle marked by C-Rep needs
to be replicated to. If the number of relations in the query
are m, dmax is the upper-bound on the diagonal length of
rectangles and d is the upper-bound on all the range param-
eters in the query then a rectangle u needs to be replicated
to all cells in the 4th quadrant which are within a distance
(m − 2)*dmax+(m − 1)*d from rectangle u.

Consider Figure 8 and query R1 Ra(d) R2 and R2 Ra(d)
R3 and R3 Ra(d) R4. Let rectangles u, v, w and x belong
to relations R1, R2, R3 and R4 respectively. Rectangles
u and x can be part of an output tuple only if they are
within distance 2*dmax+3*d as shown in Figure 8. Hence
a rectangle belonging to relations R1 and R4 need to be
replicated to 4th quadrant cells within distance 2*dmax+3*d.

Similarly rectangles belonging to relations R2 and R3 need
to be replicated to 4th quadrant cells within distance dmax +
2*d. Rectangles v and x can be part of an output tuple only
if they are within distance dmax+2*d. Rectangles v and w
or rectangles v and u can be part of an output tuple only
if they are within distance d. Hence R2 rectangles must be
replicated to distance dmax+2*d. Similar is the reasoning
for rectangles belonging to relation R3.

8.1 Experimental Evaluation

We now present an experimental evaluation on both syn-
thetic as well as California Road data. We consider the
query Q3=R1 Ra(d) R2 and R2 Ra(d) R3 with d=100. We
first generate three sets of rectangles synthetically.

In the first experiment, we vary the number of rectangles
in each relation while keeping other parameters identical.
Table 5 presents the results. The parameters using which the
synthetic data is generated are also provided. Performance
numbers for 2-way Cascade quickly spiral out. C-Rep-L pro-
vides much better performance vis-a-vis both 2-way Cascade
and C-Rep. It is again due to the fact that C-Rep-L carries
out much lesser redundant replication. Numbers of rect-
angles after replication (Section 7.8.3) i.e. the numbers in
parenthesis, are found to be approx. 30% of the correspond-
ing numbers for C-Rep. There is hence a huge difference
between the number of communicated rectangles between
C-Rep and C-Rep-L. For example, for nI=5m, C-Rep com-
municates 40 million pairs more than those communicated
by C-Rep-L and this difference exhibits as a much improved
performance of C-Rep-L.

In the second experiment, we vary the distance parameter
d and process query Q3. Number of rectangles are fixed at 1
million in all relations. Table 6 presents the results. C-Rep-
L clearly out-performs C-Rep. It is again due to the fact that
the number of rectangles after replication are much smaller
for C-Rep-L as compared to C-Rep.

Finally, we present performance results on California Road
Data in Table 7. We consider the query: Q3s=R Ra(d) R
and R Ra(d) R. This finds the road triples (rd1,rd2,rd3)
such that rd1 is within distance d from rd2 and rd2 is within
distance d from rd3. We sample the road data with prob-
ability 0.5 and retain only 1 million road MBBs. We then
vary the distance parameter d. C-Rep beats 2-way Cas-
cade easily. C-Rep-L performs slightly better than C-Rep
as there is a slight reduction in the number of rectangles
after replication.

Table 5: Query Q3, Varying the dataset size
dS=Uniform, dX, dY, dL, dB=Uniform, (xmin, xmax)=(0,100K)
(ymin, ymax)=(0,100K), (lmin, lmax) & (bmin, bmax)=(0,100)

nI, # Rectangles Replicated in millions
nI Time Time Time # Rectangles # Rectangles

2-way Cd C-Rep C-Rep-L Replicated Replicated
(hh:mm) (hh:mm) (hh:mm) C-Rep C-Rep-L

1 00:11 00:10 00:06 0.36, (9.1) 0.36 (3.0)
2 00:56 00:27 00:12 0.61, (16.5) 0.61 (6.1)
3 02:27 01:12 00:23 0.96 , (26.2) 0.96 (9.7)
4 04:23 01:43 00:39 1.3 , (41.6) 1.3 (12.8)
5 >06:00 02:37 01:03 1.7 (58.4) 1.7 (15.8)

Table 6: Query Q3, Varying distance parameter d
dS, dX, dY, dL, dB=Uniform, (xmin, xmax)=(0,100K)

(ymin, ymax)=(0, 100K), (lmin,lmax) & (bmin,bmax)=(0,100)
nI = 1 million, # Rectangles Replicated in millions

d Time Time # Rectangles # Rectangles
C-Rep C-Rep-L Replicated Replicated

(hh:mm) (hh:mm) C-Rep C-Rep-L

100 00:10 00:06 0.36, (9.1) 0.36 (3.0)
200 00:18 00:08 0.53, (13.1) 0.53 (3.2)
300 00:42 00:15 0.72, (16.5) 0.72 (3.3)
400 01:16 00:25 0.94, (20.3) 0.94 (3.4)
500 01:40 00:41 1.06, (24.8) 1.06 (3.5)

9. MULTI-WAY HYBRID JOIN QUERIES
The Controlled-Replicate framework easily extends to han-

dle join queries involving both overlap and range predicates.
Condition C2 can be written down as follows. We are look-
ing for properties, a rectangle-set U must satisfy in cell c.

123

Table 7: Query Q3s, California Road Data
nI=1m, (xmin, xmax)=(0,63K)

(ymin, ymax)=(0,100K)
nI, # Rectangles Replicated in millions

d Time 2-way Time Time # Recs # Recs
Cascade C-Rep C-Rep-L Rep. Rep.
(hh:mm) (hh:mm) (hh:mm) C-Rep C-Rep-L

5 01:16 00:14 00:11 0.04, (4.1) 0.36 (3.1)
10 02:02 00:21 00:16 0.07, (4.9) 0.61 (3.2)
15 02:52 00:36 00:23 0.09, (5.4) 0.96 (3.2)
20 04:06 00:46 00:31 0.10, (5.9) 1.3 (3.3)

Condition C2 in Controlled-Replicate for Hybrid

Queries: Consider two relations R1 and R2, R1 ∈ Rs, R2 /∈
Rs and R2 ∈ R s.t. there is a triple (P ,R1,R2) or (P ,R2,R1)
in Q. Let u1 be the rectangle in U which belongs to relation
R1. For all such pairs R1 and R2, the following holds:

1. If predicate P is an overlap predicate, the rectangle u1

crosses the boundary of partition-cell c.

2. If predicate P is a range predicate with distance pa-
rameter d, there must be a cell c′ (6= c) which is within
distance d from rectangle u1 i.e. dist(c′, u1) ≤ d.

Condition C2 is a natural union of the individual C2 con-
ditions presented in Section 7 and Section 8. Alternatively a
hybrid query can be handled by replacing the overlap pred-
icate as a range predicate with distance parameter 0 and
handling the resulting query as a multi-way range join query.
Similarly for C-Rep-L we can derive the distance bounds for
rectangles belonging to each relation.

Table 8: Query Q4, Varying the dataset size
dS=Uniform, dX, dY, dL, dB=Uniform, (xmin, xmax)=(0,100K)
(ymin, ymax)=(0,100K), (lmin, lmax) & (bmin, bmax)=(0,100)

nI, # Rectangles Replicated in millions, d=200
nI Time Time # Rectangles # Rectangles

Recs C-Rep C-Rep-L Replicated Replicated
(hh:mm) (hh:mm) C-Rep C-Rep-L

1 00:07 00:06 0.27, (8.0) 0.27 (3.1)
2 00:16 00:12 0.57, (15.8) 0.57 (6.3)
3 00:39 00:23 0.94 , (26.5) 0.94 (9.6)
4 01:08 00:44 1.22 , (33.0) 1.22 (12.7)
5 01:57 01:16 1.54, (46.3) 1.54 (16.1)

Table 9: Query Q4s, California Road Data
dS=Uniform, dX, dY, dL, dB=Uniform, (xmin, xmax)=(0,63K)

(ymin, ymax)=(0,100K)
nI=1 million, # Rectangles Replicated in millions

d Time Time # Rectangles # Rectangles
C-Rep C-Rep-L Replicated Replicated

(hh:mm) (hh:mm) C-Rep C-Rep-L

10 00:28 00:26 0.08, (5.0) 0.08 (3.6)
20 00:39 00:30 0.11, (5.9) 0.11 (3.8)
30 00:51 00:41 0.14 , (6.7) 0.14 (3.9)
40 01:03 00:48 0.18 , (7.5) 0.18 (4.1)

9.1 Experimental Evaluation
We consider the query Q4=R1 Ov R2 and R2 Ra(d) R3

with d=200. Table 8 presents the comparison between C-Rep
and C-Rep-L on synthetic data. The parameters using which
the synthetic data is generated are also provided. We vary
the relation size while keeping other parameters same. Ta-
ble 9 presents the results for California road data. Here we
consider the query Q4s=R Ov R and R Ra(d) R. This finds
road triples (rd1, rd2, rd3) such that rd1 overlaps with rd2

and rd2 is within distance d of r3. We vary the parameter
d while keeping the number of roads as 1m (sampled with
probability 0.5). Once again we get the similar trends and
C-Rep-L out-performs C-Rep.

10. CONCLUSIONS
In this paper we proposed novel approaches to handle

multi-way spatial join queries on map-reduce platform. The
proposed Controlled-Replicate framework is designed to min-
imize the communication among the cluster nodes. Using
an experimental study over both synthetic and real-life Cal-
ifornia road data, we demonstrated that the proposed al-
gorithms significantly improved the performance vis-a-vis
naive methods. Though we presented our techniques in
context of spatial data, we believe they are more general
in applicability. We hence plan to look for use-cases other
than spatial data. We also plan to look how we can use the
proposed approaches for processing other classes of spatial
queries e.g., nearest neighbor, containment etc.

11. REFERENCES
[1] Census 2000 Tiger/Line Data

www.esri.com/data/download/census2000-tigerline.
[2] OpenMap Library http://openmap.bbn.com/.
[3] F. N. Afrati and J. D. Ullman. Optimizing joins in a

map-reduce environment. In EDBT, 2010.
[4] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita,

and Y. Tian. A comparison of join algorithms for log
processing in mapreduce. In SIGMOD, 2010.

[5] T. Brinkhoff, H. P. Kriegal, and B. Seeger. Efficient
processing of spatial joins using R-trees. In SIGMOD, 1993.

[6] T. Brinkhoff, H.-P. Kriegel, R. Schneider, and B. Seeger.
Multi-step processing of spatial joins. In SIGMOD, 1994.

[7] T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Parallel
processing of spatial joins using r-trees. In ICDE, 1996.

[8] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. Commun. ACM, 51(1), 2008.

[9] J.-P. Dittrich and B. Seeger. Data redundancy and
duplicate detection in spatial join processing. In ICDE,
2000.

[10] O. Günther. Efficient computation of spatial joins. In
ICDE, 1993.

[11] M.-L. Lo and C. V. Ravishankar. Spatial joins using seeded
trees. In SIGMOD, 1994.

[12] M.-L. Lo and C. V. Ravishankar. Spatial hash-joins. In
SIGMOD, pages 247–258, 1996.

[13] W. Lu, Y. Shen, S. Chen, and B. C. Ooi. Efficient
processing of k nearest neighbor joins using mapreduce.
PVLDB, 5(10), 2012.

[14] N. Mamoulis and D. Papadias. Integration of spatial join
algorithms for processing multiple inputs. In SIGMOD,
1999.

[15] N. Mamoulis and D. Papadias. Multiway spatial joins.
ACM Trans. Database Syst., 26(4), 2001.

[16] A. Okcan and M. Riedewald. Processing theta-joins using
mapreduce. In SIGMOD, 2011.

[17] D. Papadias and D. Arkoumanis. Approximate processing
of multiway spatial joins in very large databases. In EDBT,
2002.

[18] J. M. Patel and D. J. DeWitt. Partition based
spatial-merge join. In SIGMOD, 1996.

[19] J. M. Patel and D. J. DeWitt. Clone join and shadow join:
two parallel spatial join algorithms. In ACM-GIS, 2000.

[20] R. Vernica, M. J. Carey, and C. Li. Efficient parallel
set-similarity joins using mapreduce. In SIGMOD, 2010.

[21] K. Wang, J. Han, B. Tu, J. Dai, W. Zhou, and X. Song.
Accelerating spatial data processing with mapreduce. In
ICPADS, 2010.

[22] S. Zhang, J. Han, Z. Liu, K. Wang, and S. Feng. Spatial
queries evaluation with mapreduce. In GCC, 2009.

[23] S. Zhang, J. Han, Z. Liu, K. Wang, and Z. Xu. Sjmr:
Parallelizing spatial join with mapreduce on clusters. In
CLUSTER, 2009.

124

