
YMALDB: A Result-Driven Recommendation System for
Databases

Marina Drosou
Computer Science Department
University of Ioannina, Greece

mdrosou@cs.uoi.gr

Evaggelia Pitoura
Computer Science Department
University of Ioannina, Greece

pitoura@cs.uoi.gr

ABSTRACT

To assist users in database exploration, we present the
YmalDB system, a database system enhanced with a rec-
ommendation functionality. Along with the results of each
user query, YmalDB computes and presents to the users
additional results, called Ymal (i.e., “You May Also Like”)
results, that are highly related with the results of their orig-
inal query. Such results are computed using the most in-
teresting sets of attribute values, called faSets, that appear
either in the results of the original query or in the results
of an appropriately expanded one. The interestingness of a
faSet is based on its frequency both in the query result and
in the database.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Query formulation, Search process

General Terms

Algorithms, Experimentation, Design, Performance

1. INTRODUCTION
Typically, users interact with a database system by for-

mulating queries. This interaction mode assumes that users
have a clear understanding of their information needs and
the exact content of the database. However, as databases
become larger and accessible to a more diverse and less
technically-oriented audience, the need for an exploratory
mode of interaction arises.

Some form of flexible querying is offered by solutions for
handling the many- or empty- answers problems. Approaches
to the many-answers problem range from reformulating the
original query so as to restrict the size of its result (for exam-
ple, by adding constraints to it (e.g., [9]) to automatically
ranking the query results and presenting to the user only
the top-k most highly ranked among them (e.g., [4]). The
empty-answers problem is commonly handled by relaxing
the original query (e.g., [8]). A form of exploratory search

Copyright is held by the author/owner(s).
EDBT/ICDT ’13 March 18 - 22 2013, Genoa, Italy
Copyright 2013 ACM 978-1-4503-1597-5/13/03 ...$10.00.

is also offered by facet queries (e.g., [7]). With facet search,
users start with a general query and progressively narrow its
results down to a specific item.

The “You May Also Like” database system (YmalDB)
presented in this paper takes a different approach to ex-
ploratory database search through result recommendations
[6, 10]. YmalDB computes and presents to the users ad-
ditional items which, although not part of the result of
their original query, may be of interest to them. This al-
lows users to receive interesting information that they may
not be aware of. For instance, when searching for movies
directed by M. Scorsese, YmalDB guides exploration by
recommending to users movies by other directors that have
directed movies similar to those of M. Scorsese, i.e., movies
with similar characteristics, such as, genre or production
year. In computing related results, YmalDB considers ex-
pansions of the original query with additional attributes, by
finding correlations among attributes in various relations.
For example, when asking for the title of a movie, its genre
or other characteristics are also considered towards discov-
ering similar movies.

In contrast to other recent work in database recommen-
dations (e.g., [3]), that assumes the existence of query logs,
YmalDB uses only the result of the current query and the
database content. In particular, the computation of rec-
ommended results is based on the most interesting sets of
(attribute, value) pairs, called faSets, that appear in the re-
sult of the original user query. The interestingness of a faSet
expresses how unexpected it is to see this faSet in the result.
Interestingness depends both on the frequency of the faSet in
the query result and in the database. Since determining the
frequencies of all faSets in the database is computationally
expensive, we maintain statistics that allow us to estimate

those frequencies when needed. More specifically, we store
information concerning only the frequencies of rare faSets,
using an appropriate compact representation.

In the demonstration of YmalDB, users will be given the
opportunity to submit queries (using SQL or a form-based
interface) to two different databases, one with movies and
one with automobiles, and receive related recommendations.
Furthermore, by logging in as administrators, users will be
able to tune features of the system, such as the size of the
maintained statistics and potential attribute expansions.

2. THE REDRIVE FRAMEWORK
YmalDB is based on the ReDRIVE exploration frame-

work [6]. In a nutshell, ReDRIVE database exploration
works as follows. Given an SQL query Q, the top-k most

725

movieid title year rating

movieid directorid notes directorid name

DIRECTORS (D)MOVIES2DIRECTORS (M2D)

MOVIES (M)

movieid country

COUNTRIES (C)

movieid genre

GENRES (G)

(a) Database schema.

SELECT
FROM
WHERE

AND
AND

, 2 , ,

.directorid = 2 .directorid
2 .movieid = .movieid
.movieid = .movieid

M.title, M.year, G.genre

D “ ”
D M D M G

D M D
M D M
M G

.name = M. Scorsese
AND

(b) Example query.

M.title M.year G.genre

The Aviator 2004 Biography

Gangs of New York 2002 Drama

Goodfellas 1990 Biography

Casino 1995 Drama

Shutter Island 2004 Thriller

M. Jackson: Video Greatest Hits 1995 Drama

The Last Waltz 1978 Biography

Raging Bull 1980 Documentary

(c) Query result.

Figure 1: Example query and result set.

interesting pieces of information in the result of Q, called
faSets, are computed and presented to the user. These faSets
are either interesting pieces (sub-tuples) of the tuples in the
result of Q or extended tuples that include additional at-
tributes not in the original result. Interesting faSets are
used to construct exploratory SQL queries, whose results,
called Ymal results, are recommended to the user.

2.1 Interesting FaSets
Let D be a relational database with n relations R = {R1,

. . ., Rn} and A be the set of all attributes in R. We use AC

to denote the set of categorical attributes and AN to denote
the set of numeric attributes, where AC ∩ AN = ∅ and AC

∪ AN = A. To locate items of interest, users pose queries.
In particular, we consider Select-Project-Join (SPJ) queries
of the following form:

SELECT proj(Q)
FROM rel(Q)
WHERE scond(Q) AND jcond(Q)

where rel(Q) is a set of relations, scond(Q) is a conjunc-
tion of selection predicates, jcond(Q) is a set of join condi-
tions among the relations in rel(Q) and proj(Q) is the set of
projected attributes. A selection predicate is a predicate of
the form (Ai = ai), where Ai ∈ AC and ai ∈ domain(Ai),
or of the form (li ≤ Ai ≤ ui), where Ai ∈ AN , li, ui ∈

domain(Ai) and li ≤ ui. The result set, Res(Q), of a query
Q is a relation with schema proj(Q).

Let us first define pieces of information in the result set:

Definition 1 (Facet and m-FaSet). A facet condi-
tion, or simply facet, is a selection predicate. An m-set of

facets, or m-faSet, m ≥ 1, is a set of m selection predicates

involving m different attributes.

We shall also use the term faSet when the size of the m-faSet
is not of interest.

For a faSet f , we use Att(f) to denote the set of attributes
that appear in f . Let t be a tuple from a set of tuples S with
schema R; we say that t satisfies a faSet f , where Att(f) ⊆

R, if t[Ai] = ai, for all predicates (Ai = ai) ∈ f and li ≤

t[Ai] ≤ ui, for all predicates (li ≤ Ai ≤ ui) ∈ f . We call
the percentage of tuples in S that satisfy f , support of f in
S. In the following, we use the term faSet to mean both the
conditions and the list of the associated values appearing in
the conditions.

Example: Consider the movies database, the query and
its corresponding result set depicted in Fig. 1. {G.genre =

“Biography”} is a 1-faSet with support 0.375 and {1990 ≤

M.year ≤ 2009, G.genre = “Biography”} is a 2-faSet with
support 0.25.

We are looking for interesting pieces of information at the
granularity of a faSet: this may be the value of a single

Figure 2: System architecture.

attribute (i.e., a 1-faSet) or the values of m attributes (i.e.,
an m-faSet). To define faSet relevance formally, we take an
IR-based approach and rank faSets in decreasing order of
their odds of being relevant to a user information need.

Definition 2 (Interestingness Score). Let Q be a

query and f be a faSet with Att(f) ⊆ proj(Q). The inter-

estingness score, score(f, Q), of f for Q is defined as:

score(f, Q) =
p(f |Res(Q))

p(f |D)
The term p(f |Res(Q)) is estimated by the support of f in

Res(Q), i.e., the percentage of tuples in the result set that
satisfy f . The term p(f |D) is a global measure that does not
depend on the specific query. It is estimated by the support
of f in D, i.e., the percentage of all tuples that satisfy f .
It serves as an indication of how frequent f is in the whole
database, i.e., it measures the discriminative power of f .

Example: In the example in Fig. 1,“Drama”appears as fre-
quently as“Biography” in the result set. However, if“Biogra-

phy” appears less frequently than “Drama” in the database,
then “Biography” is considered more interesting for this spe-
cific query than “Drama”.

Clearly, the scond(Q) part of a query is also a faSet. An-
other way of interpreting the interestingness score of f for
Q is as the lift of the association rule: scond(Q) → f . A
high lift value indicates a strong dependency of the faSet f
on the selection conditions of Q.

To estimate p(f |D), we maintain statistics concerning rare
faSets, i.e., faSets that appear in the database less frequently
than a system-defined threshold ξ. Since the number of rare
faSets is very large, we maintain a tunable number of ǫ-
tolerance closed rare faSets [5, 6] and use them to estimate

the frequency of any faSet in the database. Furthermore,
since most real datasets have a large number of rare faSets
that appear only a few times (most often only once), to avoid
generating all super-sets of such faSets, we employ a hash-
based data structure (in particular, a Bloom filter). In a
single scan, we identify all faSets that appear less frequently
than a system-defined threshold ξ0, insert them in the Bloom
filter and do not consider them any further. Then, we pro-
ceed with the generation of rare faSets using ξ.

726

(a) Submitting queries.

(b) Query results and interesting faSets.
(c) Ymal Recommendations.

Figure 3: YmalDB user interface.

Attribute Expansion. Definition 2 provides a means of
ranking the various faSets that appear in the result set of a
query Q. However, there may be interesting faSets that in-
clude attributes that are not included in proj(Q) and, thus,
do not appear in Res(Q). For example, take a query Q that
just returns the titles of movies directed by M. Scorsese. All
faSets appear only once in the result set of Q. However, in-
cluding for instance the relation “Countries” in rel(Q) (and
modifying jcond(Q) accordingly) may disclose interesting
information, e.g., that many of the movies directed by M.
Scorsese are related to Italy.

To discover such potentially interesting faSets, we extend
the definition of interestingness to include faSets with at-
tributes not in proj(Q) by introducing an extended query
Q′ with the same scond(Q′) as the original query Q but with
additional attributes in proj(Q′) (and the corresponding ad-
ditional relations in rel(Q′)). These attributes are dictated
by expansion rules. An expansion rule is a rule of the form
A → B, where A is a set of attributes in the user query,
i.e., A ⊆ proj(Q) and B is such that B ⊆ A\proj(Q). The
expansion rule indicates that when a query Q contains all
attributes of A in its select clause, Q may be expanded to
create a query Q′ that also contains the attributes of B.
Interesting faSets are sought in the result of Q′.

Example: Consider the query Q of Fig. 1(b) and the expan-
sion rule {M.year, G.genre} → {C.country}. We construct
Q′ with proj(Q′) = proj(Q) ∪ {C.country} and rel(Q′) =
rel(Q) ∪ {C}.

2.2 Exploratory Queries
We use interesting faSets to discover additional pieces of

data that are potentially of interest to the user. In particu-
lar, we aim at constructing exploratory queries that retrieve
results strongly correlated with those of the original user
query Q by replacing the selection conditions, scond(Q), of
Q with related ones. Recall that a high interestingness score
for f means that the lift of scond(Q) → f is high, indicating
a high correlation between scond(Q) and f .

For example, by replacing the scond(Q) of Q in Fig. 1 with

its interesting faSet {“Biography”}, we get the exploratory
query:

SELECT D. name
FROM D, M2D, M, G
WHERE G. genre = ‘ Biography ’
AND D. name <> ‘M. Sco r s e s e ’
AND D. d i r e c t o r i d = M2D. d i r e c t o r i d
AND M2D. movieid = M. movieid
AND M. movieid = G. movieid

which retrieves additional directors that have directed biog-
raphy movies, which is an interesting value appearing in the
original query result set. The negation term “D.name <>
M. Scorsese” is added to prevent values appearing in the
selection conditions of the original user query from being
recommended to the users, since these are already known
to the user. An exploratory query is formally defined as
follows.

Definition 3 (Exploratory Query). Let Q be a user

query and f be an interesting faSet for Q. The exploratory

query Qe that uses f is an SPJ query with proj(Qe) = Attr(
scond(Q)), rel(Qe) = rel(Q) ∪ {Re

| Ai ∈ Re, for Ai ∈

Att(f)}, scond(Qe) = f ∧ ¬ scond(Q) and jcond(Qe) =

jcond(Q) ∧ (joins with {Re
| Ai ∈ Re, for Ai ∈ Att(f)}).

The results of the exploratory query Qe are recommended
to the user. Clearly, one can use the interesting faSets in
the results of an exploratory query to construct other ex-
ploratory queries. This way, users may start with an initial
query Q and gradually discover other interesting informa-
tion in the database through results attained by applying
exploratory queries progressively.

3. THE YMALDB DEMONSTRATION
YmalDB is implemented in Java on top of MySQL. Our

system architecture is shown in Fig. 2. YmalDB can be
accessed via a simple web browser using an intuitive GUI.
During the demonstration, users will be allowed to submit
queries and see recommendations.

Two real datasets will be used: (i) “MOVIES”, a database
with 13 relations whose sizes range from around 10,000 to

727

(a) Defining expansion rules. (b) Suggesting parameter values. (c) Tuning statistics.

Figure 4: YmalDB administrator interface.

almost 1,000,000 tuples, containing information extracted
from the Internet Movie Database [1] and (ii) “AUTOS”, a
single-relation database consisting of 12 characteristics for
15,191 used cars from Yahoo!Auto [2].

Users will be allowed to submit their queries via SQL or by
employing available input forms (Fig. 3(a)). Users are first
presented with the results of their query and with a list of the
interesting faSets of these results (Fig. 3(b)). The interesting
faSets are grouped in categories according to the attributes
they contain with longer faSets presented higher in the list.
The faSets in each category are ranked in decreasing order
of their interestingness score and the top-5 faSets of each
category are displayed. The user can click a “More” button
to see more faSets.

Next to each interesting faSet, an arrow button appears.
When the user clicks on it, a set of Ymal results (Fig. 3(c)),
i.e., recommendations, appear in a separate window. These
recommendations are retrieved by executing an exploratory
query corresponding to the interesting faSet that the user
has clicked on. An explanation is also provided along with
the Ymal results, i.e., indicating how these specific recom-
mendations are related to the original query result. Since
the number of results of an exploratory query may be large,
we rank these results according to an application-dependent
popularity measure. For the movie database, we rank the re-
sults based on the average rating of the movies with which
they are related. For example, in (Fig. 3(c)), the directors
of the best-rated movies appear first. We present the top-10
recommendations for each faSet. If users wish to do so, they
can request to see more recommendations, or click on a dif-
ferent faSet of the original query to get a new exploratory
query. They can also exploit the result of the exploratory
query to locate interesting faSets in it and get new recom-
mendations related to the exploratory query. Furthermore,
users can request the expansion of their original queries. The
expansion rules defined by the system administrator are used
to expand the original query.

During the demonstration, users will also be able to login
to YmalDB as administrators and perform the following
administrative tasks: (i) define expansion rules and (ii) see
and tune the statistics maintained for the database.

Concerning the first task, administrators are presented
with three panels that assist them in defining expansion
rules (Fig. 4(a)). To define a new rule A → B, adminis-
trators select from the left panel the attributes in A. Then,
they can either let the system suggest a set of expansion
attributes B based on the maintained statistics, or select

the attributes of B themselves. Afterwards, they can create
the new expansion rule by clicking on the buttons shown
in the figure. Concerning the second task, we provide a
tool that computes and suggests a suitable ǫ approximation
value for the maintained statistics given a space allocation
limit. Administrators specify a desired target space to be
allocated for the statistics and the system shows a plot of ǫ
values that will result in database statistics that can fit the
allocated space (Fig. 4(b)). Furthermore, to assist adminis-
trators in tuning ξ and ξ0, we provide a tool so that they can
select any combination of attributes in the database and see
the corresponding faSets for these attributes in the database
along with their support. Finally, they can set ǫ, ξ and ξ0

and press on a button to generate an ǫ-tolerance closed rare
faSets summary using ξ and ξ0 (Fig. 4(c)).

Acknowledgment

This work was co-financed by the European Union (Euro-
pean Regional Development Fund - ERDF) and Greek na-
tional funds through the Operational Program“THESSALY
- MAINLAND GREECE AND EPIRUS - 2007-2013” of the
National Strategic Reference Framework (NSRF 2007-2013).

4. REFERENCES
[1] The Internet Movie Database (IMDb).

http://www.imdb.com.

[2] Yahoo!Auto. http://autos.yahoo.com.

[3] G. Chatzopoulou, M. Eirinaki, and N. Polyzotis. Query
recommendations for interactive database exploration. In
SSDBM, 2009.

[4] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum.
Probabilistic information retrieval approach for ranking of
database query results. ACM Trans. Database Syst., 31(3),
2006.

[5] J. Cheng, Y. Ke, and W. Ng. δ-tolerance closed frequent
itemsets. In ICDM, 2006.

[6] M. Drosou and E. Pitoura. ReDRIVE: result-driven
database exploration through recommendations. In CIKM,
2011.

[7] A. Kashyap, V. Hristidis, and M. Petropoulos. Facetor:
cost-driven exploration of faceted query results. In CIKM,
2010.

[8] N. Koudas, C. Li, A. K. H. Tung, and R. Vernica. Relaxing
join and selection queries. In VLDB, 2006.

[9] N. Sarkas, N. Bansal, G. Das, and N. Koudas.
Measure-driven keyword-query expansion. PVLDB, 2(1),
2009.

[10] K. Stefanidis, M. Drosou, and E. Pitoura. “You May Also
Like” results in relational databases. In PersDB, 2009.

728

