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ABSTRACT
Time-Decaying Bloom Filters are efficient, probabilistic data
structures used to answer queries on recently inserted items.
As new items are inserted, memory of older items decays.
Incorrect query responses incur penalties borne by the ap-
plication using the filter. Most existing filters may only be
tuned to static penalties, and they ignore Bayesian priors
and information latent in the filter.

We address these issues in an integrated way by converting
existing filters into inferential filters. Inferential filters com-
bine latent filter information with Bayesian priors to make
query-specific optimal decisions. Our methods are applica-
ble to any Bloom Filter, but we focus on developing infer-
ential time-decaying filters, which support new query types
and sliding window queries with varying error penalties.

We develop the inferential version of the existing Timing
Bloom Filter. Through experiments on real and synthetic
datasets, we show that when penalties are query-specific and
prior probabilities are known, the inferential Timing Bloom
Filter reduces penalties for incorrect responses to sliding-
window queries by up to 70%.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Retrieval models; G.3 [Probability
and Statistics]: Miscellaneous

General Terms
Design, Performance

1. INTRODUCTION
Bloom Filters are probabilistic data structures widely used

for set membership queries [19]. A Bloom Filter F comprises
an array of m cells and k hash functions h1, . . . , hk. An item
x is inserted into F by updating the contents of the cells at
indices h1(x), . . . , hk(x). The contents of F ’s cells define its
state F̂ , and the set of items inserted into F is denoted {F}.
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The Classical Bloom Filter [3] is used to test whether an
item x ∈ {F}. A query should return Pos if x ∈ {F} and
Neg if x /∈ {F}. Inserted items are never deleted, so filters
may become saturated, leading to false positive errors where
Pos is returned even when x /∈ {F}.

A Time-Decaying Bloom Filter [6, 9, 10, 23, 24], in con-
trast, supports queries that ask how recently x was inserted.
New insertions obscure information from older ones, so the
memory of old items decays with time, limiting saturation
even for continuous streams of item insertions.

Definition 1. The insertion age Ix of item x is a random
variable denoting the number of items inserted since x was
last inserted. If x was never inserted, we define Ix =⊥.
Different Ix values represent mutually exclusive events.

Time-decaying filters answer retrospective queries, whose
predicates reference insertion ages. A typical retrospective
query is the sliding window query, which asks whether x was
one of the last w items inserted (Ix < w). F̂ only approxi-
mates the insertion history, so we may commit false positive
errors, returning Pos when Ix ≥ w, or false negative errors,
returning Neg when Ix < w. Such errors incur penalties
borne by the application using the filter.

Responding accurately to retrospective queries is difficult
since information in F̂ is only approximate. We show that F̂ ,
though limited, contains valuable information that is ignored
by current time-decaying filters. For example, in [6, 18],
cells are counters which embed information about insertion
age, since they are decremented with each insertion. Yet,
these filters are content to return Pos if and only if all the
counters set when x was last inserted are non-zero, ignoring
the other information in the counts. Even filters that do
consider exact counts [9] do not provide a clear framework
for deciding how to use counter values.

In addition, most filters base decisions on “forward” prob-
abilities, ignoring Bayesian priors. Such filters may yield
worse results than when no filter is used at all [16]. We
present inferential time-decaying filters to address these is-
sues. Inferential filters combine latent information in F̂ with
Bayesian priors to infer posterior probabilities.

Definition 2. P (Ix = i|F̂) is the posterior probability that
item x has insertion age i, given the filter state F̂ .

Definition 3. A standard time-decaying filter uses limited
information from F̂ to answer sliding window queries with
Pos or Neg. An inferential one uses P (Ix = i|F̂) to achieve
greater flexibility and accuracy in answering queries.
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False positives/negatives incur application-dependent er-
ror penalties ranging from financial costs to response laten-
cies. Standard filters may be tuned to minimize such penal-
ties, so long as they are static and fixed at filter design time.
In reality, however, penalties vary by queried item, time, and
context. For example, a wrong decision on a high-value item
generally costs more than one on a low-value item. Scenar-
ios with query-specific penalties include duplicate detection
for items with different values [2], distributed caches with
item-specific access times [17], and web crawler caches with
pages weighted by importance [13].

For best results, each decision should minimize expected
penalty, and must be made dynamically, query-by-query. In-
ferential time-decaying filters infer the sliding window poste-
rior probability P (Ix < w|F̂) =

∑w−1
i=0 P (Ix = i|F̂) for each

sliding window query. The filters then use this posterior to
compute expected penalties of Pos and Neg responses and
make minimum-penalty decisions for each query.

In addition to enabling minimum-cost decision strategies,
inferential filters enhance flexibility by supporting new types
of retrospective queries. For instance, we can identify the
most likely insertion age for x by comparing P (Ix = i|F̂)
for various i. We can also aggregate over all i to find the
expected insertion age. As far as we know, our work is the
first to support such queries using Bloom Filters.

1.1 Contributions
We show how to turn existing standard filters into infer-

ential ones, using Bayesian priors and latent information in
F̂ . Section 2 outlines our inferential filter framework. We
focus primarily on time-decaying filters, but we can also use
our framework to develop a more accurate version of the
Classical Bloom Filter as in [16] (see Section 2.4).

We show in detail how to develop an inferential version of
the Timing Bloom Filter (TBF) [23], and use it for sliding
window queries. We also develop standard and inferential
versions of a space-efficient TBF variant called the Block
TBF (BTBF), conceptualized in [23]. We discuss the stan-
dard and inferential BTBF in Sections 3 and 4, respectively.

In Section 5, we evaluate the standard and inferential
BTBF on real and synthetic data streams. We randomly
vary error penalties for sliding window queries and compare
the total penalties incurred using each BTBF. Our results
show that the inferential BTBF improves upon the standard
BTBF, reducing penalties when Bayesian priors are known.
We discuss related work in Section 6.

2. INFERENTIAL FILTER FRAMEWORK
Bloom Filter variants commonly consist of an array of

m cells and k independent hash functions h1, . . . , hk, where
hash hi maps an item x to a cell hi(x) in the filter. Notation
from Sections 1 and 2 is summarized in Table 1.

Definition 4. The set Rx of cells touched by item x is
given by Rx = {h1(x), . . . , hk(x)}.

When inserting an item x into filter F , we update each
cell in Rx according to the rules of F . Let n be the number
of past insertions. To query for x, we inspect each cell in
Rx, and return Pos or Neg as appropriate.

2.1 The Classical Bloom Filter
The Classical Bloom Filter [3] represents the set {F} of

all items inserted into the filter (n = |{F}|). Each cell is a

k = 3, m = 10

Insert x

Rx

Rx

00 000 00 00 0

11 001 00 00 0

11 011 10 00 0Insert x

Initialize

Rx
Query x
True Pos.

Rx
Query x
False Pos.

Rx
Query x
True Neg.

Figure 1: Inserts and queries on a Classical Bloom
Filter representing {F} = {x1, x2}.

single bit initialized to 0. We insert x by setting each cell in
Rx to 1. Some cells may be touched by multiple items. A
query for x returns Pos if and only if all cells in Rx are 1.

Figure 1 shows several inserts and possible query out-
comes. Cells are never reset to 0, so all cells in Rx remain
1 if x ∈ {F}. Thus, the Classical Bloom Filter has no false
negatives. However, a false positive occurs if x /∈ {F} but
every cell in Rx has been touched by some item, as for x3.

Let rx = |Rx|. The probability that a given cell is not
touched by a given insertion is (1− 1/m)k. Thus, the prob-
ability that a given cell is touched by at least one of the
n items in {F} is (1 − (1 − 1/m)kn). When x /∈ {F}, the
false positive probability that all rx cells in Rx are set to 1
(touched) by at least one item in {F} is:

PFP =

(
1−

(
1− 1

m

)kn)rx
(1)

2.2 Analytical Approximations
Bloom filter analyses often use approximations. The com-

monly used expression for PFP approximates Equation 1 by
replacing rx with k, since the k cells touched by x are usually
distinct when m� k. Equation 1 itself assumes that touch-
ing each cell in Rx is an independent event, which is not
strictly correct [5]. Such approximations are justified for
most applications since they greatly simplify analysis and
generally have little impact on accuracy [5]. We make such
simplifying assumptions throughout the paper when com-
puting posteriors. Our experimental results show that the
posteriors are accurate enough to substantially reduce error
penalties in most situations.

2.3 Probability Functions
The posterior P (Ix = i|F̂) is conditioned on F̂ , the filter

state, which includes all cells in F . However, checking every
cell is impractical, and most information relevant to x can
be obtained from the cells Rx. Thus, for the remainder of
the paper, we will use the following notation:

Definition 5. P (Ix = i|Rx), also denoted P (i|Rx), is the
posterior probability that exactly i insertions occurred since
x was last inserted, given the current contents of cells Rx.
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Table 1: General Notation
F A Bloom Filter

F̂ The state of Bloom Filter F
{F} Set of all items inserted into a filter
x Item to be inserted or queried
n = |{F}| Total number of items inserted
w Width of sliding window
U Universe of items inserted/queried
px Sample probability of x
m Number of cells in filter
k Number of hash functions used in filter
h, h1(x) Hash function, cell touched by h1 on x
Ix, i Number of insertions since x last inserted
⊥ Ix =⊥ means x was never inserted
Rx Cells touched by k hashes applied to x
rx |Rx|
cx For standard filter, number of 1-bits in Rx
PFP False positive probability of standard filter
P (i) Prior prob.i insertions since x last inserted
P (Rx|i) Conditional probability of Rx given Ix = i
P (i|Rx) Posterior prob. of Ix = i insertions since x

last inserted, given contents of cells in Rx
P (Ix<w|Rx) Posterior prob. x one of last w insertions
D(j) Expected num. distinct items in j inserts

To turn a standard filter into an inferential one, we must
derive an expression for P (i|Rx). P (i|Rx) depends on the
filter’s contents and on the prior probability that Ix = i.
Since P (i|Rx) is generally difficult to derive directly, we ap-
ply Bayes’ theorem:

P (i|Rx) =
P (i)P (Rx|i)
P (Rx)

, (2)

where P (i), P (Rx|i), and P (Rx) are defined as follows:

• P (Ix = i) or P (i): Prior (marginal) probability that
exactly i insertions occurred since x was last inserted.

• P (Rx): Prior (marginal) probability that cells Rx have
their current contents.

• P (Rx|Ix = i) or P (Rx|i): Conditional probability that
cells Rx have their current contents, given that exactly
i insertions occurred since x was last inserted.

2.3.1 Computing Prior Probability P (i)

Definition 6. The sample probability mass function px is
the probability that x is the next item to be inserted.

Let U be the universe of all items that may be inserted or
queried. For any two items x 6= y, px and py may differ, but
we assume that px itself is time-invariant, giving:

P (i) =

{
px(1− px)i if i 6=⊥ (0 ≤ i < n)

(1− px)n if i =⊥
(3)

P (⊥) gives the probability that x was not inserted during
any of the n insertions thus far, and P (i), i 6=⊥ gives the
probability that x was inserted, followed by i items distinct
from x. We say the data stream is continuous when the

number of past insertions n goes to infinity, giving:

lim
n→∞

P (i) =

{
px(1− px)i if i 6=⊥
0 if i =⊥

(4)

Often, we need to evaluate P (α ≤ Ix < β) for 0 ≤ α < β,
which leads to the following geometric series:

P (α ≤ Ix < β) =

β−1∑
i=α

P (i) = px

β−1∑
i=α

(1− px)i

= (1− px)α − (1− px)β (5)

= (1− px)α(1− (1− px)β−α).

2.3.2 Computing Posterior P (i|Rx)

To compute P (i|Rx) with Equation 2, we must use P (Rx),
which can be hard to compute directly. We can re-write
P (Rx) as a marginal sum over P (i)P (Rx|i), giving:

P (i|Rx) =
P (i)P (Rx|i)

P (⊥)P (Rx|⊥) +
∑n−1
i′=0 P (i′)P (Rx|i′)

. (6)

To derive P (i|Rx), we still need to find an expression for
P (Rx|i) and an efficient way to compute sums over the prod-
uct P (i)P (Rx|i). Both challenges are filter-specific, so we
address them in Section 4.

2.3.3 Retrospective Queries
Inferential time-decaying filters use P (i|Rx) as a building

block for constructing responses to retrospective queries. If
we compare values of P (i|Rx) for all i, we can determine the
highest probability choice i for Ix, which tells us when x was
most likely last inserted.

For a continuous stream (n→∞), we get

lim
n→∞

P (i|Rx) =
P (i)P (Rx|i)∑∞

i′=0 P (i′)P (Rx|i′)
. (7)

We can then compute the expected number of insertions
since x was last inserted:

E[Ix|Rx] = lim
n→∞

n∑
i=0

i · P (i|Rx). (8)

We can also derive the sliding window posterior

lim
n→∞

P (Ix < w|Rx) =

w−1∑
i=0

lim
n→∞

P (i|Rx)

=

w−1∑
i=0

P (i)P (Rx|i)∑∞
i′=0 P (i′)P (Rx|i′)

=

∑w−1
i=0 P (i)P (Rx|i)∑∞
i=0 P (i)P (Rx|i)

(9)

= 1−
∑∞
i=w P (i)P (Rx|i)∑∞
i=0 P (i)P (Rx|i)

. (10)

2.4 Example: Classical Bloom Filters
As a warm-up, we show how to develop an inferential ver-

sion of the Classical Bloom Filter (Section 2.1) by comput-
ing the posterior P (x ∈ {F}|Rx). This posterior was first
derived for the Classical Bloom Filter in [16], but the anal-
ysis there does not apply to time-decaying filters or retro-
spective queries. Since this filter is not time-decaying, we
do not need the full power of our approach, but we show
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our results to be consistent with the simpler derivation in
[16]. Using this posterior, the inferential Classical Bloom
Filter can be adapted to provide optimal responses given
item-specific prior probabilities px and query-specific error
penalties. Since n = |{F}|,

P (x ∈ {F}|Rx) = P (Ix < n|Rx) =
∑n−1
i=0 P (i|Rx)

=

∑n−1
i=0 P (i)P (Rx|i)

P (⊥)P (Rx|⊥) +
∑n−1
i=0 P (i)P (Rx|i)

. (11)

Let rx = |Rx|, and let cx be the number of cells (bits) in
Rx that are set to 1.

P (Rx|i) =


1 if cx = rx and 0 ≤ i < n

0 if cx 6= rx and 0 ≤ i < n(
1−

(
1− 1

m

)kn)cx ((
1− 1

m

)kn)rx−cx
if i =⊥

(12)
If x was inserted (0 ≤ i < n), then all cells in Rx must be 1
(cx = rx). If x was not inserted (i =⊥), then every one of
the cx 1-cells in Rx must have been touched (set) by some
combination of the n insertions, while the remaining rx− cx
0-cells in Rx must not have been touched by any insertion.

Theorem 1. The posterior probability that x was inserted
into the Classical Bloom Filter is given by:

P (Ix < n|Rx) =


0 if cx 6= rx

1

1 +
(1− px)nPFP

1− (1− px)n

if cx = rx (13)

where PFP is as in Equation 1.

Proof: P (Ix < n|Rx) is given by Equation 11, P (i) by
Equation 3, and P (Rx|i) by Equation 12.

Case cx 6= rx:

P (Ix < n|Rx) =

∑n−1
i=0 P (i) · 0

P (⊥)P (Rx|⊥) +
∑n−1
i=0 P (i) · 0

= 0.

Case cx = rx:

P (Ix < n|Rx) = ∑n−1
i=0 P (i) · 1

P (⊥)
(

1−
(
1− 1

m

)kn)rx
+
∑n−1
i=0 P (i) · 1

=
(1− P (⊥))

P (⊥) · PFP + (1− P (⊥))

=
1

1 +
P (⊥) · PFP

1− P (⊥)

=
1

1 +
(1− px)n · PFP

1− (1− px)n

.

For the Classical Bloom Filter it is common to assume
that rx = k, k = (m/n) ln 2 and that PFP = (1− e−kn/m)k,

as in [10, 16, 18, 23]. Doing so gives PFP = (1/2)(m/n) ln 2,
so when cx = rx, rearranging Theorem 1 and substituting
P (Ix < n) = 1− (1− px)n gives

P (Ix < n|Rx) =
P (Ix < n)

P (⊥)
(

1
2

)(m/n) ln 2
+ P (Ix < n)

, (14)

which is consistent with the probability expressions in [16].

2.5 Expected Number of Distinct Items
The accuracy of our posterior expressions can be improved

if we know the expected number of distinct items inserted
during j insertions, which we label D(j). D(j) depends on
the distribution of px for x ∈ U , and is given by

D(j) =
∑
x∈U

(
1− (1− px)j

)
. (15)

When items are sampled from the uniform distribution,
we have px = 1/|U | for all x ∈ U , and Equation 15 becomes

D(j) = |U |

(
1−

(
1− 1

|U |

)j)
. (16)

If the item probabilities follow a Zipf-like discrete power
law px = 1/(H|U| · x), then it is shown in [22] that

D(j) ≈ j

H|U|

(
1− γ + ln

|U | ·H|U|
j

)
. (17)

where H|U| =
∑|U|
i=1 1/i is the |U |th harmonic number and

γ = 0.57721566... is Euler’s constant.
When real-world distributions are hard to model analyti-

cally, we can experimentally determine D(j) for certain val-
ues of j, and then interpolate for intermediate values. Our
experience suggests that piecewise logarithmic interpolation
(using straight lines on a log-log plot) generally yields ac-
ceptable results. That is, if we know D(j1) and D(j3), we
can interpolate D(j2) for j1 < j2 < j3 as follows:

lnD(j2) = lnD(j1) +

(
ln
D(j3)

D(j1)

)(
ln
j2
j1

)
(

ln
j3
j1

) . (18)

2.6 Minimum-Penalty Decisions
As noted in Section 1, penalties for incorrect responses

may be query-specific, so tuning a standard filter to fixed
false positive/negative rates is non-optimal. With an infer-
ential filter, we can use posteriors to make better-informed,
query-specific choices between returning Pos and Neg.

For sliding window queries, inferential filters return the
sliding window posterior P (Ix < w|Rx). Let $FP and $FN be
the penalties for false positive/negative errors, respectively.
Correct responses incur no penalty. The expected penalty
of Pos is EPos = $FP · (1 − P (Ix < w|Rx)), and of Neg is
ENeg = $FN · P (Ix < w|Rx). We compute both and return
Pos if EPos ≤ ENeg, and Neg otherwise.

3. STANDARD TIMING BLOOM FILTERS
The Timing Bloom Filter (TBF) [23] is designed to answer

sliding window queries. Here we describe the standard TBF
and its extension, the standard Block Timing Bloom Filter
(BTBF). We will present the inferential BTBF in Section 4.
Table 2 summarizes the relevant notation.

3.1 Timing Bloom Filters
The TBF consists of k hash functions and an array of m

cells, each of which is a timer with bpt bits. Each timer
θ holds a timestamp θ.T ∈ {0, . . . , TΩ} ∪ {Tε}, where Tε
denotes an expired timestamp, defined below. The filter
maintains a single current timestamp T+, where T+ cycles
through the range [0, TΩ] as items are inserted.

242



Table 2: TBF/BTBF Notation
bpt Number of bits per timer
θ, θ.T Timer, timestamp stored by timer
T+ Current timestamp
TΩ Maximum timestamp value
Tε Expired timestamp value
Tx Oldest timestamp in Rx
λ(T ) Age of timestamp T
λx Age of oldest timestamp: λx = λ(Tx)
P Padding size
B Insertion block size
b Insertions since last T+ increment
Cx Timers in Rx with oldest timestamp Tx
cx |Cx|
F (cx, rx, j) Prob. specific cx of rx timers untouched

during j inserts, other rx − cx touched
F (·) Short for F (rx, cx, (λx − 1)B + b)
G(rx, cx, λx) Prob. cx timers touched by B inserts, same

cx timers not touched by any of subsequent
(λx−1)B+b inserts, other rx−cx touched

G(·) Short for G(rx, cx, λx)

3.1.1 TBF: Insert
To insert item x into a TBF, we proceed as follows:

1. For each timer θ ∈ Rx, set θ.T ← T+.

2. Increment T+: T+ ← (T+ + 1) mod (TΩ + 1).

Definition 7. The age λ(θ.T ) of timestamp θ.T is defined
as the number of times that T+ was incremented since the
last time that we set θ.T to T+.

When λ(θ.T ) ≥ w+1, we say that θ.T has expired, and we
set θ.T to the expired timestamp value Tε. Thus, as soon as a
timestamp θ.T is set to T+, it has age λ(θ.T ) = 0, but since
increments occur immediately after insertions, λ(θ.T ) ≥ 1
by the time any queries are issued. We define λ(Tε) =∞.

3.1.2 TBF: Query
When we query the TBF for item x, it should return Pos

whenever Ix < w, and Neg otherwise. To query, we examine
each timer θ in Rx and compute the age of its timestamp
λ(θ.T ). The TBF returns Neg if any θ ∈ Rx has an ex-
pired timestamp, and returns Pos otherwise, yielding false
positives but no false negatives.

False Negatives: Since all θ ∈ Rx are set to T+ when x
is inserted, we know that Ix ≥ λ(θ.T ) − 1, for all θ ∈ Rx.
Therefore, if for any θ ∈ Rx, θ.T has expired, we know that
Ix ≥ λ(θ.T ) − 1 ≥ w. Since we only return Neg when one
of the θ.T has expired, the TBF has no false negatives.

False Positives: A false positive error occurs when no
timestamp in Rx has expired, but Ix ≥ w. The standard
TBF only has false positives if all timers in Rx were touched
during the last w insertions, none of which inserted x.

3.1.3 TBF: Marking Expired Timestamps
If any timestamp θ.T expires, we must mark it expired

(θ.T ← Tε) before T+ = θ.T again. If we do not, λ(θ.T ) will
cycle back to 0 and we will not know that θ.T ought to be
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Insert x

Insert x

Expired

Rx

Query x
True Neg.

m = 10

Rx

Query x
True Pos.

Query x
False Pos.

Query x
True Neg.

Tε

∞

Tε

∞

Rx

Rx

Rx

Rx

Time

Rx

Figure 2: Inserts and queries on a Timing Bloom
Filter. Timestamps touched by each insertion high-
lighted. Ages are relative to the updated T+.

expired.1 If TΩ = w, there are w + 1 values for T+, so it
can only be incremented w times without returning it to its
current value. Thus, w is the maximum timestamp age, and
timestamps never get a chance to expire. Hence, to correctly
support a window of width w, we must have TΩ ≥ w + 1.
An example of a TBF with TΩ = w+ 1 is given in Figure 2.

If we have the minimum TΩ = w+1, then once any times-
tamp θ.T expires, we must set θ.T ← Tε before the next in-
sertion, which would set T+ ← θ.T . Thus, to find all newly
expired timestamps, we must check all m timers after every
insertion, which is prohibitively expensive. The solution in
[23] is to increase TΩ by an amount we call padding.

Definition 8. The padding P is the difference between the
chosen and minimum values for TΩ.

For a standard TBF, P = TΩ−w. If P = 1, TΩ = w+2, and
we can recognize an expired timestamp up to one insertion
after it first expires. Thus, we can split up the search for
expired timestamps, such that we need only check half of
the timers after each insertion. In general, with padding P
we need only check m/(P + 1) timers after each insertion.
The use of padding is demonstrated in Figure 3.

A good rule of thumb is to set P ≈ m/k, so that we
need only check O(k) timers per insertion. Since we already

1If we assume that timers should never have age 0, we can
actually let T+ cycle back to θ.T , but not beyond, and treat
its apparent age 0 as age TΩ + 1. We can thus reduce the
minimum TΩ value by 1, but we do not do so, since this
assumption does not hold for Block Timing Bloom Filters.
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Figure 3: Using padding P in a Timing Bloom Filter,
new insertions omitted for clarity. Newly expired
timestamps (highlighted) can remain expired for P+
1 insertions before T+ cycles, so we need only check
4 timers per insertion.

performO(k) hashes for each insertion, checkingO(k) timers
is acceptable. As long as m ≈ w, as is often the case, this
choice of P increases TΩ by less than w, so we need at most
one extra bit per timer to accommodate the larger TΩ.

3.2 Block Timing Bloom Filters
A problem with the TBF is that the TΩ +2 possible times-

tamp values require it to use O(logw) bits per timer (bpt).
For example, the sample TBF in [23] has a window size of
w = 220, requiring 21 bpt , including 1 bit for padding. It
has m = 15, 112, 980 timers, for a total of 21m bits, and
21m/w ≈ 303 bits per item in the window of interest, which
is excessive. In fact, given 303 bits per item, we could simply
use unique hashes for every item in the window, and index
them using a hash table. This alternative setup performs at
least as well as the TBF, and is simpler and more accurate.

We can reduce bpt by incrementing T+ only after every
block of B > 1 insertions, where B is the insertion block
size. Using a larger B reduces bpt , but uses fewer blocks to
cover the window, resulting in a coarser approximation and
more false positives (see Section 3.2.2). We call this scheme
a Block Timing Bloom Filter (BTBF), due to its similarities
to the Block Decaying Bloom Filter in [18]. The BTBF was
alluded to, but not developed, in [23].

3.2.1 BTBF: Insert
Insertions into the BTBF proceed as for the TBF, except

that we only increment T+ once for each block of B inser-
tions. We keep a counter b to record the number of insertions
since the last time T+ was incremented. If B = 1, as in the
standard TBF, then we always have b = 0. After each in-
sertion, if b = B − 1, we increment T+ and set b = 0. If
b < B − 1, we increment b and leave T+ unchanged.

x

x x x x

w = 7

x x x x x xxB = 1

B = 3

B = 8

x x x x x x x x xx

x x x x x x x x x xx

False

Positives
Query Time

Figure 4: For the BTBF to treat x5 as in the window,
it must treat all items in x5’s block as in the window.
Thus, larger blocks yield more false positives.

Definition 7 for λ(θ.T ) still holds, but our definition of an
expired timestamp becomes more general:

Definition 9. In a BTBF, timestamp θ.T has expired once
its age λ(θ.T ) ≥

⌈
w−b
B

⌉
+ 1.

3.2.2 BTBF: Query
Like the TBF, the BTBF returns Neg if and only if some

timestamp in Rx has expired. Thus, it has false positives
but no false negatives.

False Negatives: If λ(x) = 1, we know Ix ≥ b. If λ(x) =
2, we know that Ix ≥ B + b. In general, we have

Ix ≥

{
(λ(θ.T )− 1)B + b if λ(θ.T ) > 0

0 if λ(θ.T ) = 0

Therefore, if for any θ ∈ Rx, θ.T has expired, we know that

Ix ≥ (λ(θ.T )− 1)B + b

=

(⌈
w − b
B

⌉
+ 1− 1

)
B + b

≥
(
w − b
B

)
B + b = w.

That is, if any timestamp in Rx has expired, x is not in the
window. Since Neg is returned only if at least one times-
tamp in Rx has expired, the BTBF has no false negatives.

False Positives: In a BTBF, false positives can occur in
two ways. As for standard TBFs, they can occur if all timers
in Rx are touched by other recent inserts. False positives
also occur if x is one of the first items in a block, but only
the latter items in the block are in the window. Such false
positives are described below and illustrated in Figure 4.

Let B > 1, and let x1 and xB , respectively, be the first
and last items inserted during a given insertion block. If
IxB = w − 1, then Ix1 = w + B − 2. Since the filter has no
false negatives, a query for xB must return Pos. However,
since x1 and xB are part of the same insertion block, they use
the same timestamp and are indistinguishable to the filter,
so a query for x1 must also return Pos. Since Ix1 ≥ w,
the response is a false positive. At any point, queries for an
average of B/2 items yield such false positives, so a larger
B gives a coarser sliding window approximation with more
false positives.
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half the timers for expiration after each insertion.

3.2.3 BTBF: Marking Expired Timestamps
Marking expired timestamps and the use of padding are

the same for the BTBF as for the TBF. However, the mini-
mum TΩ value is lower for BTBFs, allowing us to reduce bpt .
To support a window of width w, we now need TΩ ≥ dwB e+1.
We also now need only check m/(B(P+1)) timers after each
insertion, so we can choose P ≈ m/(kB). An example of a
BTBF with P = 0, B = 3, w = 6 is given in Figure 5.

4. INFERENTIAL BTBF
We now develop the inferential Block Timing Bloom Fil-

ter (BTBF), which is able to return the sliding window
posterior probability limn→∞ P (Ix < w|Rx), instead of just
a binary Pos or Neg, in response to queries. We derive
limn→∞ P (Ix < w|Rx) directly using Equations 9 and 10.
Due to space limits, we do not derive E[Ix|Rx], nor do we
explicitly derive limn→∞ P (i|Rx). For the sake of brevity,
we omit the limit notation in the rest of the paper.

Definition 10. Let Tx be the oldest timestamp in Rx, and
let λx be its age λ(Tx), given by

λx = Max{λ(θ.T ) | θ ∈ Rx}. (19)

If any timestamp in Rx has expired, λx =∞.

If x had been inserted since the last time T+ = Tx, all timers
in Rx would have been set to a more recent timestamp.
Thus, if any of the timers in Rx still have the timestamp
they were given the last time x was inserted, it is only those
timers with timestamp Tx and age λx.

Definition 11. Let Cx be the subset of timers in Rx that
have timestamps with age λx. That is,

Cx = {θ | θ ∈ Rx ∧ λ(θ.T ) = λx}. (20)

Let rx = |Rx| and cx = |Cx|. The timers in Rx \ Cx must
have timestamps set by items other than x, so only the
timers in Cx could have been last touched by x, so that only
timers in Cx provide worthwhile information about when x
was last inserted (Ix). Since all cx timers in Cx have the
same timestamp, with age λx, we can accurately compute
posteriors given only rx, cx, and λx. That is, when we refer
to P (Rx|i), we are interested in the probability that rx, cx,
and λx have the values we observe, given that Ix = i.

The prior probability P (i) is given by Equation 4. In order
to compute posteriors, we must sum over the conditional
probability P (Rx|i). This probability varies depending on
the relationship between i and λx, so to sum P (Rx|i) over
various i, we must handle different ranges of λx separately.
Figure 6 shows the different expressions for P (Rx|i) derived
below for each λx case. We use the following function when
computing posteriors:

Definition 12. Let F (rx, cx, j) be the probability that a
specific subset of cx out of rx timers are not touched during j
insertions, and that the remaining rx−cx timers are touched
during the j insertions. We approximate it as

F (rx, cx, j) ≈

((
1− 1

m

)kD(j)
)cx(

1−
(

1− 1

m

)kD(j)
)rx−cx

(21)

The probability that a given timer is not touched during a
given insertion is (1−1/m)k. If we take (1−1/m)kj to be the
probability that a timer is not touched during j insertions,
we ignore dependencies that arise when the same item is
inserted more than once. We account for such dependencies
by replacing j with D(j), where D(j) gives the expected
number of distinct items among j insertions (see Section
2.5). Raising a probability to an expectation is not entirely
valid, but it is an efficient and adequate approximation here,
as our approximation error results show (Section 5.1.4).

4.1 Case λx > dw−bB e

Theorem 2. If λx > dw−bB e, then P (Ix < w|Rx) = 0.

Proof: If λx > dw−bB e, then at least one timestamp in Rx
has expired, so we know for certain that Ix ≥ w, and thus
P (Rx|i) = 0 for 0 ≤ i < w, giving

P (Ix < w|Rx) =

∑w−1
i=0 P (i)P (Rx|i)∑∞
i=0 P (i)P (Rx|i)

=

∑w−1
i=0 P (i) · 0∑∞

i=0 P (i)P (Rx|i)
= 0.

The 0 posterior probability that Ix < w when timestamps
in Rx have expired reflects the fact that the standard BTBF
has no false negatives.
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4.2 Case λx = 0

Lemma 1. If λx = 0, then

P (Rx|i) =

{
1 if i < b

F (rx, 0, b) if i ≥ b
(22)

Proof. If λx = 0, then all timers in Rx must have times-
tamp T+ with age 0, so cx = rx.

Case i < b: If i < b, then x would have been inserted
since T+ was last incremented, and all timers in Rx must
have had their timestamps set to T+ and could not have
been changed since, so P (Rx|i) = 1.

Case i ≥ b: If i ≥ b, then x would have been most recently
inserted before T+ was last incremented. Thus, for all the
timers in Rx to have timestamp T+, every one of the rx
timers must have been touched through some combination
of the last b items inserted, none of which were x. The
probability that this event occurs is F (rx, 0, b).

Theorem 3. If λx = 0, then

P (Ix < w|Rx) = 1− (1− px)w

1− (1− px)b

F (rx, 0, b)
+ (1− px)b

. (23)

Proof: Taking P (Rx|i) from Equation 22, we get

P (Ix < w|Rx) = 1−
∑∞
i=w P (i)P (Rx|i)∑∞
i=0 P (i)P (Rx|i)

= 1−
F (rx, 0, b) · px

∑∞
i=w(1− px)i

px
∑b−1
i=0 (1− px)i + F (rx, 0, b) · px

∑∞
i=b(1− px)i

= 1− F (rx, 0, b)(1− px)w

(1− (1− px)b) + F (rx, 0, b)(1− px)b

= 1− (1− px)w

1− (1− px)b

F (rx, 0, b)
+ (1− px)b

.

4.3 Case 0 < λx ≤ dw−bB e

Definition 13. Let G(rx, cx, λx) be the probability that
a specific subset of cx out of rx timers are touched by B
inserts, and that the same cx timers are not touched by any
of the subsequent (λx− 1)B+ b inserts, while the remaining
rx − cx timers are touched by those subsequent inserts.

Lemma 2. If 0 < λx ≤ dw−bB e, then

P (Rx|i) ≈


0 if i < (λx − 1)B + b

G(rx, cx, λx) if i ≥ λxB + b

F (rx, cx, (λx − 1)B + b) otherwise

(24)

Proof. We know that exactly (λx − 1)B + b insertions
occurred since T+ changed from timestamp Tx with age λx.
Case i < (λx − 1)B + b: In this case, x would have been

inserted since T+ changed from Tx, so all timers in Rx would
have been assigned a timestamp more recent than Tx. If
so, λx would be less than its observed value, which is a
contradiction. Thus, P (Rx|i) = 0.

Case i ≥ λxB + b: In this case, x would have been most
recently inserted before T+ = Tx. Thus, the observed cx, rx,
and λx values must have resulted from the following events:

1. All cx timers in Cx were touched by one of the B in-
sertions during which T+ = Tx.

2. The same cx timers were not touched during the (λx−
1)B + b insertions since T+ = Tx, but the remaining
rx − cx timers were touched during those insertions.

The joint probability of these events is exactly G(rx, cx, λx),
so we have P (Rx|i) = G(rx, cx, λx).

Case (λx − 1)B + b ≤ i < λxB + b: In this case, x would
have been most recently inserted while T+ = Tx, so all timers
in Rx must have been set to Tx. Thus, P (Rx|i) is just the
probability F (rx, cx, (λx − 1)B + b) that the cx timers that
we observe as still having timestamp Tx would not have been
overwritten during the last (λx−1)B+b insertions, and that
the remaining rx− cx timers that differ from Tx would have
been overwritten.

We obtain G(rx, cx, λx) by finding the probability of each
of its constituent events. First, the probability that a par-
ticular set of cx timers were touched by one of B insertions
is given by F (cx, 0, B). Second, the probability that the
same cx timers were not touched by any of (λx − 1)B + b
insertions, while the remaining rx − cx timers were, is given
by F (rx, cx, (λx − 1)B + b)). These two events are largely
independent for common BTBF parameters, so we can ap-
proximate G(rx, cx, λx) by multiplying their probabilities:

G(rx, cx, λx) ≈ F (cx, 0, B) · F (rx, cx, (λx − 1)B + b). (25)

Computing P (Ix < w|Rx) is different for λx = dw−b
B
e and

0 < λx < dw−b
B
e, so we handle each separately. In both

cases, P (Rx|i) is defined as in Equation 24. To shrink equa-
tions, we substitute F (·) for F (rx, cx, (λx − 1)B + b) and
G(·) for G(rx, cx, λx). Since F (·) is a term in our approxi-
mation for G(·), G(·)/F (·) simplifies to F (cx, 0, B).

4.3.1 Case 0 < λx < dw−bB e

Theorem 4. If 0 < λx < dw−bB e, then

P (Ix < w|Rx) = 1− (1− px)w−(λx−1)B−b

1− (1− px)B

F (cx, 0, B)
+ (1− px)B

. (26)

Proof: If λx < dw−bB e, then λx ≤ w−b
B

, and λxB+b ≤ w.
Thus, we can construct the posterior sum as follows:

P (Ix < w|Rx) = 1−
∑∞
i=w P (i)P (Rx|i)∑∞
i=0 P (i)P (Rx|i)
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= 1−
G(·)

∑∞
i=w(1− px)i

F (·)
λxB+b−1∑

i=(λx−1)B+b

(1− px)i + G(·)
∞∑

i=λxB+b

(1− px)i

= 1− (1− px)w

F (·)
G(·) (1−px)(λx−1)B+b(1−(1−px)B) + (1−px)λxB+b

= 1− (1− px)w−(λx−1)B−b

F (·)
G(·) (1− (1− px)B) + (1− px)B

= 1− (1− px)w−(λx−1)B−b

1− (1− px)B

F (cx, 0, B)
+ (1− px)B

.

4.3.2 Case λx = dw−b
B
e

Theorem 5. If λx = dw−b
B
e, then

P (Ix < w|Rx) =
1− (1− px)w−(λx−1)B−b

1− (1− px)B(1− F (cx, 0, B))
. (27)

Proof: If λx = dw−b
B
e, then (λx−1)B+b < w ≤ λxB+b.

Thus, we can construct the posterior sum as follows:

P (Ix < w|Rx) =

∑w−1
i=0 P (i)P (Rx|i)∑∞
i=0 P (i)P (Rx|i)

=

F (·)
w−1∑

i=(λx−1)B+b

(1− px)i

F (·)
λxB+b−1∑

i=(λx−1)B+b

(1− px)i +G(·)
∞∑

i=λxB+b

(1− px)i

=
(1− px)(λx−1)B+b(1− (1− px)w−(λx−1)B−b)

(1− px)(λx−1)B+b(1− (1− px)B) +
G(·)
F (·) (1− px)λxB+b

=
1− (1− px)w−(λx−1)B−b

1− (1− px)B(1− F (cx, 0, B))
.

4.4 Computing Probabilities Efficiently
We want to efficiently evaluate the inferential BTBF’s pos-

teriors given by Equations 23, 26, and 27. Since m and k
are fixed, we can pre-compute the value (1− 1/m)k used in
Equation 21. Equation 23 requires O(log2(w · rx ·D(b))) �
O(log2(w · k ·B)) floating point multiplications to compute
its exponents, plus the cost of computing D(b), which de-
pends on the distribution (see Section 2.5). Equation 23 is
the most expensive, but is fortunately needed only in the
rare case when λx = 0.

Equation 26 requires O(log2 w) floating point multiplica-
tions, plus the cost of computing F (cx, 0, B). Since B is
fixed, and cx has only O(k) possible values, we pre-compute
and cache the O(k) values of F (cx, 0, B). We then use the
same cached values for Equation 27, which requires only
O(log2 B) additional multiplications, since λ(x) = dw−b

B
e.

Using these techniques, we observed that less time was spent
computing probabilities than managing the filter itself.

5. EXPERIMENTS

5.1 Experimental Setup
We have examined two approaches for answering sliding

window queries: the standard BTBF, which returns Pos or
Neg, and the inferential BTBF, which returns the sliding
window posterior P (Ix < w|Rx). We now vary false posi-
tive/negative error penalties across queries, and test whether
using posteriors reduces overall penalties. We compare the
techniques using a real-world data stream and two synthetic
data streams.

5.1.1 Queries and Error Penalties
We use the same data stream for queries and inserts. As

we observe each new item x, we query for x and then insert
x, regardless of the query outcome. This model might be
used for an expensive multi-level LRU cache, where we only
want to make a time-consuming check of a large cache level
if we are likely to find the item. This model also resembles
duplicate detection as used for mitigating click fraud [9, 23],
although duplicates would not be inserted in that case.

Let $FP and $FN be the penalties incurred if the filter
makes false positive/negative errors, respectively. We choose
$FP and $FN independently and uniformly at random from
the range [1.0, 10.0) for each query. The inferential BTBF
uses the minimum expected penalty strategy describe in Sec-
tion 2.6 for deciding whether to return Pos or Neg.

5.1.2 Parameter Selection
Poor choices for filter parameters lead to more errors.

However, there is no consensus on how to choose param-
eters for the BTBF, though [18] provides limited guidance.
For the BTBF, we fix bpt = k as in [18]. If k < 3, we set the
minimum bpt = 3 needed by the BTBF. Given k, we choose
the smallest P that allows us to check at most k timers per
insertion.

Our focus is not on predicting optimal parameters, so for
each trial we tried all k for 1 ≤ k ≤ 30, and chose k to
minimize total penalty. Thus, penalties measured for each
filter are independent of its parameter selection mechanism.

5.1.3 Measuring Performance for Each Filter
Each filter is allowed bpi bits per item in the window.

Since there are w such items, the total space is w · bpi bits.
Each experimental trial measures the total penalty incurred
by a given filter for a specific data stream, choice of w, and
choice of bpi . Each trial over a given stream uses the same
sequence of n = 222 item inserts/queries, and the same se-
quence of penalties $FP and $FN , ensuring comparable re-
sults. Before each trial, all cells in the BTBF are set to Tε.
We then insert 220 items without issuing queries, initializing
the filters with “past” items from the data stream.

Trials with the same stream and w are grouped into an
experiment, which measures penalties incurred by the stan-
dard and inferential BTBF over a range of bpi values. For
each stream, we ran experiments under two conditions. Con-
dition [Pos≈Neg] uses a small enough w to make the num-
bers of queries requiring Pos and Neg responses roughly the
same. Condition [Pos>Neg] uses a larger w, so Pos quer-
ies outnumber Neg ones. Each experiment is shown as a
single curve on a graph, showing the ratio of the penalty for
the standard BTBF to that for the inferential BTBF. The
choice of w and the actual Pos/Neg ratios for each exper-
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Stream |U | Condition w Pos/Neg

Uniform 216 [Pos≈Neg] 216 1.718

Uniform 216 [Pos>Neg] 218 53.547

Power Law 216 [Pos≈Neg] 211 1.182

Power Law 216 [Pos>Neg] 218 13.451

IP Source 232 [Pos≈Neg] 28 1.171

IP Source 232 [Pos>Neg] 215 8.893

Table 3: Data parameters and characteristics for
each experiment/condition. Pos/Neg gives the ratio
of queries for items with Ix < w to those with Ix ≥ w.

iment are given in Table 3. For convenience, we chose w to
be a power of 2, but our implementation supports arbitrary
integer values for w.

5.1.4 Errors from Approximations
We made several approximations while deriving the pos-

terior P (Ix < w|Rx), so we want to evaluate its accuracy
when applied to each dataset. During each experiment, we
group queries into 20 bins based on the posterior value P
returned. The first bin contains queries with 0 ≤ P < 0.05,
the second with 0.05 ≤ P < 0.1, on up to the last with
0.95 ≤ P ≤ 1. Let η` be the number of queries in bucket `,
and let M` be the midpoint of bucket `. We let f` be the
fraction of queries in bucket ` for which Ix < w. Without
approximations, we should have f` ≈M` for all `.

We define the Posterior Error to be the average absolute
difference between a query posterior and its bucket mid-
point, given by

1

n

20∑
`=1

|f` −M`| · η` (28)

Some Posterior Error is unavoidable due to the coarseness of
our grouping. Thus, we expect a baseline error of less than
half the bucket width (0.025). We graph Posterior Errors
for each experiment below.

5.1.5 Implementation
We implemented the filters in Java, and ran each trial

using a single thread on a 2.4GHz processor. The average
time to query and insert an item fell between 0.5 and 1.5
microseconds for the standard and inferential BTBF. The
inferential BTBF caches O(k) static floating-point values to
speed up computation in common cases (Section 4.4).

5.2 Uniform Data Stream
The Uniform data stream draws items uniformly at ran-

dom, with replacement, from a set U of 216 integers. D(j)
is given by Equation 16, and for each x ∈ U , px = 1/|U |.
Penalty ratios for the standard and inferential BTBF are
shown in Figure 7, and Posterior Errors are given in Figure
8. The inferential filter incurs around 80% of the penalties
incurred by the standard filter.

At very low bpi the filters hold little information, so pos-
teriors depend primarily on the prior P (Ix = i). Since the
prior is known exactly, the posterior here is quite accurate.
For large bpi , so much filter information is available that
most posteriors are close to 0 or 1, and thus differ from their
corresponding bin centers by half the bin width, explaining
the convergence to 0.025. Thus, our approximations pro-
duce noteworthy error only for moderate bpi . However, the

Posterior Errors for such bpi remain under 0.05, indicating
largely accurate posterior expressions.

5.3 Streams with Skewed Distributions
If the distribution of stream items is skewed, computing

accurate posteriors requires the following assumptions:

Assumption 1. px is easy to compute for each x.

Assumption 2. px is time-invariant for each x.

If Assumption 1 is violated, prior probabilities, and thus
posteriors, cannot be computed efficiently. If Assumption 2
is violated, the time-invariant priors yield inaccurate poste-
riors, and may increase penalties.

5.3.1 Power Law Stream
Our Power Law stream consists of a sequence of items

from the set U = {x ∈ Z | 1 ≤ x ≤ 216}. Items are drawn
from U according to a discrete power law distribution with

px = 1/(x ·H|U|), where H|U| =
∑|U|
i=1 1/i is the |U |th har-

monic number. Computing px is easy since H|U| is fixed,
and px is time-invariant. D(j) is given by Equation 17.

Penalty ratios are shown in Figure 9, and Posterior Errors
in Figure 10. The standard BTBF has no false negatives, so
it performs well under condition [Pos>Neg]. Thus, penalty
reductions are more pronounced under [Pos≈Neg].

Again, we see that our posterior expressions are largely
accurate, as the Posterior Errors stay under 0.035 for all
bpi . In this case, as for Uniform streams, Posterior Errors
are low for very low bpi , where the posterior depends largely
on the precisely-known priors, and converges to 0.025 when
bpi is large.

5.3.2 Source IP Data Stream
The Source IP data stream [1] is a sequence of anonymized

source addresses taken from IPv4 packet headers (|U | =
232). As expected, address distribution is complex, so px
is hard to model analytically (see Assumption 1). We han-
dled this problem by pre-processing the stream items x to
be queried, computing px based on the observed frequency
of address x, and saving (x, px) pairs for the queried x.

We sample D(j) for j ∈ {1, 10, 102, 103, 104, 105, 218} over
the stream itself. We inserted 218 items during each of 8
sampling trials. We then averaged D(j) values over all 8
trials, and interpolated between averages using Equation 18.

Penalty ratios are shown in Figure 11, and Posterior Er-
rors in Figure 12. The stream is bursty, so px is not strictly
time-invariant, violating Assumption 2. Thus, prior proba-
bilities are not accurate, leading to higher Posterior Error
for low bpi , where the posterior relies heavily on the prior.
These high errors, combined with the zero false negative rate
of the standard BTBF, cause the inferential BTBF to incur
higher penalties for some low bpi under [Pos>Neg]. How-
ever, the inferential BTBF still generally reduces penalties
for most trials.

6. RELATED WORK
Filters including the Standard Bloom Filter [3], the Gen-

eralized Bloom Filter [10], and others [12, 11] use single-bit
cells. Other filters use multiple bits in each cell to represent
counters, as in the Counting Bloom Filter (CBF) [8], timers,
as in the TBF [23], or other values [4, 6, 15].
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Figure 7: Penalty Ratios, Uniform Stream.
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Figure 8: Posterior Errors, Uniform Stream.
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Figure 9: Penalty Ratios, Power Law Stream.
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Figure 10: Posterior Errors, Power Law Stream.
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Figure 11: Penalty Ratios, IP Source Stream.
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Figure 12: Posterior Errors for IP Source stream.

Simple filters [3, 16, 7] only allow items to be inserted, and
generally represent static sets. Deletable filters [12, 14, 15]
allow items to be deleted as well as inserted, and represent
dynamic sets. Decaying filters represent a dynamic set of
recently inserted items. As time goes on and new items are
inserted, decaying filters lose their memory of older items.

Deletable filters such as the CBF can function as decaying
filters by storing a queue of recent items [20, 21]. When a
new item arrives, an old item is removed from the queue and
deleted from the filter. Storing the queue requires many bits
per item, so such techniques are only practical when a great
deal of space is available to the filter.

Common decaying filters use multi-bit counters and insert
an item by setting all its touched cells to some maximum
value such as a window width. Cells are regularly decre-
mented, with minimum value 0. When the filter is queried,
the item is deemed to be in the window if all touched cells

have values greater than 0. In [6], cells to decrement are
chosen randomly after each insertion, while in [9, 18, 24],
all non-zero counters are decremented after each block of
inserts. The TBF [23] implicitly decrements cells by assign-
ing each cell a timestamp, and periodically incrementing a
current timestamp. Posterior expressions for such decaying
filters are similar to those of the BTBF.

Filters commonly contain unused information. Authors of
[9] note that in decaying filters, the number of timers with
minimum value touched by x affects the posterior probabil-
ity that x is in the window, but do not derive that proba-
bility. Authors of [16] use specific counter values in a CBF
to derive the posterior probability that x is in a static set.
They show that the posterior depends on the product of the
counters touched by x, and use it to improve accuracy. Au-
thors of [4] use knowledge of data stream item frequencies to
improve accuracy. They construct a hierarchy of decaying
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filters and assign items to filters based on frequency, using
more information to store more frequent items.

7. CONCLUSION
We have shown how to turn standard time-decaying filters

into inferential filters, using prior probabilities and previ-
ously unused information in the filter. We showed how infer-
ential filters can support new types of retrospective queries
and adapt to query-specific error penalties on existing sliding
window queries. We developed a space-efficient extension of
the existing Timing Bloom Filter called the Block Timing
Bloom Filter (BTBF), and turned the standard BTBF into
an inferential BTBF.

We showed that our sliding window posterior expressions
for the inferential BTBF are accurate in practice. We ex-
perimentally evaluated the standard and inferential BTBF,
comparing total penalties incurred by each when answering
sliding window queries with query-specific penalties. The
inferential BTBF generally reduced penalties by 10%–70%.
Accurate modeling of filters and item probabilities is impor-
tant, as poor modeling can cause inferential filters to per-
form poorly. Future work in this area may include additional
modeling, developing inferential versions of other filters, and
identifying optimal parameters for inferential filters.
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