
Schema Mappings and Data Examples∗

Balder ten Cate
UC Santa Cruz

Phokion G. Kolaitis
UC Santa Cruz and

IBM Research - Almaden

Wang-Chiew Tan
UC Santa Cruz

ABSTRACT
A fundamental task in data integration and data exchange is the
design of schema mappings, that is, high-level declarative specifi-
cations of the relationship between two database schemas. Several
research prototypes and commercial systems have been developed
to facilitate schema-mapping design; a common characteristic of
these systems is that they produce a schema mapping based on at-
tribute correspondences across schemas solicited from the user via
a visual interface. This methodology, however, suffers from cer-
tain shortcomings. In the past few years, a fundamentally different
methodology to designing and understanding schema mappings has
emerged. This new methodology is based on the systematic use of
data examples to derive, illustrate, and refine schema mappings.

Example-driven schema-mapping design is currently an active
area of research in which several different approaches towards us-
ing data examples in schema-mapping design have been explored.
After a brief overview of the earlier methodology, this tutorial will
provide a comprehensive overview of the different ways in which
data examples can be used in schema-mapping design. In particu-
lar, it will cover the basic concepts, technical results, and prototype
systems that have been developed in the past few years, as well as
open problems and directions for further research in this area.

Categories and Subject Descriptors
H.2.5 [Database Management]: Heterogeneous Databases – Data
Translation; H.2.4 [Database Management]: Systems – Relational
Databases

General Terms
Algorithms, Languages, Theory

Keywords
Schema mappings, data examples, data exchange, data integration

∗All three authors are supported by NSF grant IIS-0905276. In
addition, the first two authors are supported by NSF grant IIS-
1217869.

Copyright is held by the author/owner(s).
EDBT/ICDT ’13 March 18 - 22 2013, Genoa, Italy
Copyright 2013 ACM 978-1-4503-1597-5/13/03 ...$15.00.

1. INTRODUCTION AND OVERVIEW
Background A key task in data integration or data exchange is

the design of a schema mapping between database schemas. A
schema mapping is a high-level, declarative specification of the
relationship between two database schemas, typically called the
source schema and the target schema. Schema mappings form
the backbone for specifying and carrying out data-interoperability
tasks involving data across different sources [6, 14, 15].

Syntactically, schema mappings are specified in some schema-
mapping language, such as, for example, the language of GLAV
(Global-and-Local-As-View) constraints. Due to the complexity
and scale of many real-world schemas, a schema mapping may
consist of a large number of constraints. Developing the “right”
schema mapping for a given pair of schemas can be a daunting task.
Several mapping-design systems have been developed to facilitate
the process of designing schema mappings. These systems include
research prototypes, such as Clio [13], HePToX [9], Spicy++1, as
well as commercial systems, such as Microsoft’s mapping com-
poser [7], Altova Mapforce2, and Stylus Studio3.

Each of the aforementioned schema-mapping design systems ad-
heres to the following general methodology. The two schemas for
which a schema mapping is to be designed are simultaneously dis-
played, and a visual specification of correspondences between el-
ements of the two schemas is solicited from the user (e.g., see
Figure 1, where the source schema is displayed on the left, the
target schema is displayed on the right, and the relationships be-
tween the elements of the schemas are indicated in the middle).
Some of the correspondences between elements of the two schemas
may also be inferred semi-automatically with the help of a schema-
matching module. Once the specification consisting of the schemas
and the correspondences has been completed, the system produces
a schema mapping between the two schemas.

While these schema-mappings design systems help the user by
automatically generating a schema mapping from a visual specifi-
cation, the resulting schema mapping often needs to be manually
tuned before it accurately represents what the user has in mind.
This manual tuning process is a difficult task, as it involves un-
derstanding and modifying the schema mapping generated by the
system. Part of the problem is the fact that a visual specification
consisting of correspondence between the two schemas, such as in
Figure 1, provides only partial information about the schema map-
pings. As a matter of fact, more than one schema mapping may be
consistent with the same visual specification. What is worse, differ-
ent schema-mapping design systems may generate different (logi-
cally inequivalent) schema mappings from the same visual spec-

1http://www.db.unibas.it/projects/spicy/
2http://www.altova.com/mapforce.html
3http://www.stylusstudio.com/xml_mapper.html



ification [2]. Therefore, in order to ensure that the semantics of
the derived schema mapping is as intended, the user is required to
manually inspect the generated schema mapping; this can be a time
consuming and arduous task, in view of the length and the com-
plexity of the schema mapping produced by the system.

9

Visual Specification

 Screenshot from Bernstein and Haas 2008 CACM article. 
“Information Integration in the Enterprise”

Figure 1: Visual specification of value correspondences. This
figure is taken from [8].

Aim of the Tutorial The aim of this tutorial is to present a com-
prehensive overview of a fundamentally different methodology for
the design and understanding of schema mappings. This methodol-
ogy, which has been developed during the past few years, is based
on the systematic use of data examples to facilitate the design and
the understanding of schema mappings. Here, a data example is
a pair consisting of a source instance and a target instance. Sev-
eral different, yet inter-connected, recent strands of research have
shown the usefulness of data examples in schema-mapping design.
Data examples can be used to illustrate, refine, and derive schema
mappings. Papers in which data examples are used to illustrate
and refine schema mappings include [1, 17], while papers in which
data examples are used to derive schema mappings include [16,
11, 12, 4]. In particular, [12] derives a schema mapping from a
single data example using a cost model that takes into account sev-
eral parameters, including the size of the syntactic description of
the schema mapping and also how well the schema mapping “ex-
plains" the example. In general, given a set of data examples, there
may exist zero, one, or more than one schema mapping that “fits”
a given collection of data examples. In [4], an algorithm was pre-
sented that, given a finite set of data examples, decides whether or
not there exists a GLAV schema mapping (i.e., a schema mapping
specified by GLAV constraints) that “fits” these data examples. If
such a fitting GLAV schema mapping exists, then the system re-
turns the “most general” such schema mapping. A prototype sys-
tem based on these ideas was demonstrated at [5]. A different,
but related, investigation has focused on the problem of determin-
ing which schema mappings can be uniquely characterized via a
finite set of data examples [3]. More recently, in [10], the prob-
lem of obtaining a schema mapping from data examples is cast as
an algorithmic learning problem, and is studied using concepts and
methods of computational learning theory.

Example-driven design of schema mappings is becoming an im-
portant and active area of research. As the preceding discussion
shows, a variety of approaches toward the use of data examples in
schema-mapping design have been investigated. The tutorial will
provide a comprehensive overview of the following topics:

(i) The different ways in which data examples can be used to
facilitate schema-mapping design,

(ii) The various approaches, technical results, and prototype sys-
tems that have been developed over the past few years.

(iii) Open problems and directions for further research in this
area.

This is a three-hour tutorial intended for the typical ICDT and
EDBT participant who has an interest in information integration
and data interoperability problems. To the extent possible, the tuto-
rial will be self-contained for the general DB research audience. In
particular, no background knowledge other than an understanding
of the basics of database theory and systems will be assumed.

2. CONTENTS OF THE TUTORIAL
The tutorial has three main parts. In the first part of the tuto-

rial, we will first give a gentle introduction to schema mappings,
schema-mapping languages, and data exchange, focusing on as-
pects that are relevant for understanding the remaining parts of
this tutorial. After this, we will describe the prior state-of-the-art
methodology and systems for schema-mapping design. In the sec-
ond part of the tutorial, we will give an account of the dual use of
data examples: how data examples can be used to illustrate or to
“capture" a given schema mapping, and, conversely, how a schema
mapping can be derived from data examples. In the third and final
part of the tutorial, we will discuss the interactive design of schema
mappings via data examples from several different perspectives, in-
cluding the lens of computational learning theory. Open problems
will be discussed in each of the three parts of the tutorial.

2.1 Background and Motivation
Schema Mappings and Data Exchange This part of the tuto-

rial will highlight the fundamental role of schema mappings in data
inter-operability tasks, such as data exchange and data integration,
and how they are used in practice. Data exchange is the prob-
lem of transforming data residing in a schema, called the source
schema, into data structured under a different schema, called the
target schema; in particular, data exchange entails the materializa-
tion of data, after the data have been extracted from the source for-
mat and re-structured into the target format. Data integration is a
closely related but different problem. It can be described as sym-
bolic or virtual integration: users are provided with the capability
to pose queries and obtain answers via the unified format inter-
face, while the data remain in the sources and no materialization
of restructured data takes place. These problems are ubiquitous in
several different contexts (from enterprise data to data gathered in
scientific applications) and constitute a challenge for all large orga-
nizations today, business and governmental ones alike.

Schema mappings are high-level declarative specifications of the
relationship between two database schemas. As mentioned ear-
lier, they play a fundamental role in data inter-operability tasks.
In particular, they are used to in particular, they are used in data
exchange to specify how source data should be migrated to the tar-
get. Schema mappings are generally preferred over “lower-level”
languages, such as SQL or Java, because they are more amenable
to analysis, manipulation, and optimization.

In this part of the tutorial, we will review a variety of schema-
mapping languages that have been studied in depth. The main focus
will be on schema mappings specified by Global-and-Local-As-
View (GLAV) constraints, which are also known as source-to-target
tuple-generating dependencies; we will also review two important
classes of GLAV constraints, namely, Global-As-View (GAV) con-
straints and Local-As-View (LAV) constraints. In addition, we will
discuss basic concepts and methods from data exchange, includ-
ing the concept of solutions in the context of data exchange, the



concept of universal solutions (i.e., the preferred solutions in data
exchange), and the chase method for efficiently constructing uni-
versal solutions.

Understanding and Designing Schema Mappings Finally, to
prepare our audience for the main topics of this tutorial, we will
describe the problem of understanding and designing schema map-
pings; given a schema mapping, how can we understand what its
semantics is? Conversely, given a source and target schema, how
can we help a user design the desired schema mapping over these
schemas?

We will review prior work with regards to these two questions.
As mentioned earlier, there are several research and commercial
schema-mapping design systems that provide a graphical user inter-
face to facilitate the process of designing schema mappings. These
systems typically display the source schema on one side, and the
target schema on the other. Users can then specify the relationship
between elements of two schemas by “drawing lines” to connect
them. >From this visual specification, either a high-level schema
mapping or a low-level execution script is automatically generated.

We will describe the general methodology used by such schema-
mapping design systems and will assess their strengths and limita-
tions [2]. In particular, we will discuss the inherent limitations of
this approach, thus motivating the need for alternative methods for
specifying schema mappings.

2.2 The Interplay between Schema Mappings
and Data Examples

2.2.1 From Schema Mappings to Data Examples
A data example is a pair of source and target instances that con-

form the source and target schemas. Early uses of data examples in
understanding schema mappings include the following. Data exam-
ples have been used in [17] to illustrate certain aspects of schema
mappings specified by SQL queries. They have also been used to il-
lustrate grouping semantics of schema mappings over nested source
and target schemas, as well as ambiguities that may arise in a visual
specification [1].

More recent work, which will be covered in considerable depth
in this part of the tutorial, has focused on the problem of “captur-
ing" schema mappings via finitely many examples. We will discuss
the main results in [3]. We will first introduce the notion of a data
example and describe how “good” data examples can be used to il-
lustrate the semantics of a schema mapping. To illustrate a schema
mapping, we first consider natural data examples that are finite sets
of positive and negative examples. Intuitively, these are data exam-
ples that satisfy (or, resp., do not satisfy) the given schema map-
ping. We will show that, in general, these data examples are not
sufficiently powerful to capture the full semantics of schema map-
pings. For this reason, we will turn to a more powerful notion of
data examples, called universal examples.

A universal example is a data example in which the target in-
stance is a universal solution for the source instance. We will ex-
plain how universal examples can be viewed as a partial specifica-
tion of a schema mapping, and conversely, how a schema mapping
can be semantically identified with an infinite set of universal ex-
amples. Specifically, we will introduce the concept of a uniquely
characterizing set of data examples in this tutorial. That is, a set
of data examples for which there is only one (up to logical equiva-
lence) schema mapping that “fits” the set of data examples. Results
concerning the unique characterizability of schema mappings are
interesting because they can be viewed as an unambiguous way of
illustrating and explaining the semantics of a schema mapping. We
will describe how all LAV and n-modular schema mappings can

be uniquely characterized via finitely many universal examples. In
contrast, some GAV schema mappings are uniquely characterizable
this way, but some other GAV schema mappings are not. We will
discuss the algorithmic problem of deciding, given a GAV schema
mapping, whether or not it is uniquely characterizable by finitely
many universal examples. Along the way,we will unveil a tight
connection between unique characterizations via universal exam-
ples to the existence of Armstrong bases (which is a relaxation of
the classical notion of Armstrong databases), as well connections
with constraint satisfaction and and homomorphism dualities.

Finally, we will discuss various open problems, including the
following: unique characterizability for unrestricted GLAV schema
mappings; other types of data examples; the number of examples
needed to characterize a schema mapping; and the more concep-
tual problem of what it means to pick a small “representative” set
of data examples when a uniquely characterizing finite set of data
examples is too large or does not exist.

2.2.2 From Data Examples to Schema Mappings
So far, we have discussed how data examples can be used to il-

lustrate or “capture” schema mappings. We now turn to another im-
portant use of data examples in schema-mapping design, namely, as
a basis for deriving schema mappings. There are different scenarios
where the need arises to derive a schema mapping from one or more
given data examples. Each data example can be viewed as a partial
specification of the intended behavior of the schema mapping on a
given input instance. Automatically or semi-automatically deriving
schema mappings from examples provides an alternative approach
to deriving schema mappings from visual specifications, without
the user having to manually spell out the schema mapping. We
will discuss several proposed approaches to the problem of deriv-
ing schema mappings from data examples [12, 4, 16, 11]. We will
focus on two of these approaches in depth, so as to provide the au-
dience with an appreciation of the technical problems and existing
solutions in this line of investigation.

The problem investigated in [12] is how to derive a schema map-
ping based on a single data example (I, J). It involves the notion
of a “repair” of a schema mapping, which, intuitively, is formed by
restricting and/or refining the constraints of the schema mapping in
such a way that they account for every fact in the target instance J .
The problem of deriving a schema mapping from a data example
is then cast as an optimization problem, namely, finding a schema
mapping of minimum cost, under a cost model that measures the
length of the smallest repair of a schema mapping.

The second approach is based on the notion of fitting. A schema
mapping is said to fit a given a set of data examples, if each of the
data examples is a universal example for the schema mapping in
question. In general, for a given set of data examples, there may
be zero, one, or more than one fitting schema mapping. Two fun-
damental algorithmic problems were identified in [4]: the Fitting
Decision Problem and the Fitting Generation Problem. The Fitting
Decision Problem asks, for a given set of data examples, whether a
fitting schema mapping exists, while the Fitting Generation Prob-
lem asks to generate a fitting schema mapping, if one exists. In
[4], these problems were studied systematically for GLAV schema
mappings, GAV schema mappings, and LAV schema mappings. It
was shown that, whenever, for a given set of data examples, a fitting
GLAV schema mapping exists, then a most general fitting GLAV
schema mapping exists and can be efficiently constructed. The last
part of the tutorial, which is detailed below, includes a discussion
of the EIRENE system, which is based on this framework.

We will wrap up this discussion by highlighting various open
problems, such as considering schema-mapping languages that are



more expressive than the language of GLAV constraints; this prob-
lem arises in cases where no fitting GLAV schema mappings exists.

2.3 Interactive Design of Schema Mappings via
Data Examples

In this last part of the tutorial, we will cover a number of systems
and frameworks for schema mapping design that use data examples
in an interactive way. In particular, we will discuss the Muse and
EIRENE research prototype systems, and recent work that casts
example-driven schema mapping design as a learning problem.

Muse [1] is one of the earliest systems that uses data examples
to facilitate schema-mapping design. Specifically, it uses data ex-
amples to identify the right schema mapping among a set of candi-
date schema mappings. Muse was designed to handle nested rela-
tional schemas, and it uses a schema-mapping language that goes
beyond GLAV constraints and can express different grouping se-
mantics. From a visual specification of correspondences, the sys-
tem generates a collection of candidate schema mappings (taking
into account different possible grouping semantics and other inher-
ent ambiguities of visual specifications). Next, through a sequence
of interactions, the set of candidate schema mappings is narrowed
down to a single schema mapping. Each interaction consists of the
user classifying a data example generated by the system to illustrate
some aspect of ambiguity. The data examples that Muse presents
to the user can be synthetic or drawn from a real database, when-
ever possible. We will report our experience with Muse on some
publicly available schemas.

Next, we will discuss the EIRENE system, which allows a user to
interactively design schema mappings via data examples. The core
technique behind EIRENE is an optimized algorithm for solving
the fitting problem for GLAV schema mappings. Given a finite set
of data examples, the algorithm decides whether or not there exists
a GLAV schema mapping that “fits” these data examples. When-
ever a fitting GLAV schema mapping exists, EIRENE constructs
the “most general” schema mapping that fits those data examples.
When a fitting GLAV schema mapping does not exist for given set
of data examples, EIRENE assists the user to modify the examples
by identifying the tuples in the data examples that are contributing
to the non-existence of a fitting schema mapping.

After this, we will explain how the interactive design of schema
mappings using data examples can also be studied also using the
lens of computational learning theory, as was recently proposed in
[10]. We will start out by providing a gentle introduction to the
relevant aspects of computational learning theory, which will in-
clude the exact learning models developed by Dana Angluin and
the Probably-Approximately-Correct (PAC) learning model devel-
oped by Leslie Valiant. We will describe how the problem of deriv-
ing a schema mapping from data examples can be cast as a learning
problem, in the sense of computational learning theory. Our main
focus will be on the class of GAV (Global-As-View) schema map-
pings. We will present the main results from [10] concerning the
learnability of GAV schema mappings in the exact learning model
and the PAC model.

Finally, we discuss various open problems, such as the question
of whether GAV schema mappings are efficiently PAC learnable
with membership queries, and whether LAV and GLAV schema
mappings are efficiently learnable in various learning models.

3. REFERENCES
[1] Bogdan Alexe, Laura Chiticariu, Renée J. Miller, and

Wang Chiew Tan. Muse: Mapping Understanding and
deSign by Example. In ICDE, pages 10–19, 2008.

[2] Bogdan Alexe, Wang Chiew Tan, and Yannis Velegrakis.
STBenchmark: Towards a Benchmark for Mapping Systems.
PVLDB, 1(1):230–244, 2008.

[3] Bogdan Alexe, Balder ten Cate, Phokion G. Kolaitis, and
Wang Chiew Tan. Characterizing schema mappings via data
examples. ACM Trans. Database Syst., 36(4):23, 2011.

[4] Bogdan Alexe, Balder ten Cate, Phokion G. Kolaitis, and
Wang Chiew Tan. Designing and refining schema mappings
via data examples. In SIGMOD, pages 133–144, 2011.

[5] Bogdan Alexe, Balder ten Cate, Phokion G. Kolaitis, and
Wang Chiew Tan. Eirene: Interactive design and refinement
of schema mappings via data examples. PVLDB,
4(12):1414–1417, 2011.

[6] Pablo Barceló. Logical foundations of relational data
exchange. SIGMOD Record, 38(1):49–58, 2009.

[7] Philip A. Bernstein, Todd J. Green, Sergey Melnik, and Alan
Nash. Implementing Mapping Composition. VLDB Journal,
17(2):333–353, 2008.

[8] Philip A. Bernstein and Laura M. Haas. Information
integration in the enterprise. Communications of the
Association for Computing Machinery (CACM),
51(9):72–79, 2008.

[9] A. Bonifati, E. Q. Chang, T. Ho, V. S. Lakshmanan, and
R. Pottinger. HePToX: Marrying XML and Heterogeneity in
Your P2P Databases. In VLDB, pages 1267–1270, 2005.

[10] Balder ten Cate, Víctor Dalmau, and Phokion Kolaitis.
Learning schema mappings. In Proceedings of the
International Conference on Database Theory (ICDT 2012),
pages 22–33. ACM Press, 2012.

[11] George H. L. Fletcher, Marc Gyssens, Jan Paredaens, and
Dirk Van Gucht. On the expressive power of the relational
algebra on finite sets of relation pairs. TKDE, 21(6):939–942,
2009.

[12] Georg Gottlob and Pierre Senellart. Schema mapping
discovery from data instances. JACM, 57(2), 2010.

[13] L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and M. Roth.
Clio Grows Up: From Research Prototype to Industrial Tool.
In ACM SIGMOD, pages 805–810, 2005.

[14] P. G. Kolaitis. Schema Mappings, Data Exchange, and
Metadata Management. In ACM PODS, pages 61–75, 2005.

[15] M. Lenzerini. Data Integration: A Theoretical Perspective. In
ACM PODS, pages 233–246, 2002.

[16] Anish Das Sarma, Aditya G. Parameswaran, Hector
Garcia-Molina, and Jennifer Widom. Synthesizing view
definitions from data. In ICDT, pages 89–103, 2010.

[17] L. Yan, R. J. Miller, L. M. Haas, and R. Fagin. Data-Driven
Understanding and Refinement of Schema Mappings. In
ACM SIGMOD, pages 485–496, 2001.


