
Processing XML Queries and Updates
on Map/Reduce Clusters

Nicole Bidoit Dario Colazzo Noor Malla
Federico Ulliana

BD&OAK Team - Université Paris Sud - INRIA
{bidoit, colazzo, malla, fulliana}@lri.fr

Maurizio Nolè Carlo Sartiani
DIMIE - Università della Basilicata

{maunole, sartiani}@gmail.com

ABSTRACT

In this demo we will showcase a research prototype for pro-
cessing queries and updates on large XML documents. The
prototype is based on the idea of statically and dynamically
partitioning the input document, so to distribute the com-
puting load among the machines of a Map/Reduce cluster.
Attendees will be able to run predefined queries and updates
on documents conforming to the XMark schema, as well as
to submit their own queries and updates.

Categories and Subject Descriptors

H.2 [Database Management]: Systems—parallel databases

Keywords

XML, Cloud Computing, Map/Reduce

1. INTRODUCTION
In the last few years cloud computing has attracted much

attention from the database community. Indeed, cloud com-
puting architectures like Google Map/Reduce [9] and Ama-
zon EC2 proved to be very scalable and elastic, while allow-
ing the programmer to write her own data analytics applica-
tions without worrying about interprocess communication,
recovery from machine failures, and load balancing. There-
fore, it is not surprising that cloud platforms are used by
large companies like Yahoo!, Facebook, and Google to pro-
cess and analyze huge amounts of data on a daily basis.

The advent of this novel paradigm is posing new chal-
lenges to the database community. Indeed, cloud comput-
ing applications might also be built upon parallel databases,
that were introduced nearly two decades ago to manage huge
amounts of data in a very scalable way. These systems are
very robust and very efficient, but for the following reasons
their adoption is still very limited: (i) they are very expen-
sive; (ii) their installation, set up, and maintenance are very
complex; and, (iii) they require clusters of high-end servers,
which are more expensive than cloud computing clusters.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright is held by the author/owner(s).
EDBT’13, Mar 18-22 2013, Genoa, Italy
ACM 978-1-4503-1597-5/13/03

It should also be observed that at least one big company
(Amazon) reported severe scalability and robustness issues
with parallel databases and preferred to drop their previ-
ous DBMS-based infrastructure in favor of a simpler, but
much more scalable in-house platform (see Werner Vogels’s
keynote at VLDB 2007).

Demo Contribution. In this demo we will demonstrate a
system that is able to process both queries and updates on
very large XML documents. As observed in [7], such very
large documents are generated and processed in several con-
texts, in particular in those involving scientific data and logs.

Our system supports a large fragment of XQuery [5] and
XUF (XQuery Update Facility) [13]. The system exploits
dynamic and static partitioning to distribute the processing
load among the machines of a Map/Reduce cluster. The
proposed technique applies when queries and updates are
iterative, i.e., they iterate the same query/update operations
on a sequence of subtrees of the input document. From our
experience many real world queries and updates actually
meet this property.

Our partitioning technique is schema-less, as the presence
of a user-supplied schema is not required; indeed, this tech-
nique only relies on path information extracted from the
input query/update.

Our system uses Hadoop Map/Reduce [2] as cloud infras-
tructure and Qizx-open [3] as query/update engine, and re-
quired only a few modifications to the query engine to in-
troduce full compression support. To boost the I/O per-
formance across the distributed file system, our system uses
EXI [15] compression at each stage of the computation, from
data partitioning to query/update execution.

1.1 Related Systems
The partitioning technique employed by our system re-

sembles that of [6], where an horizontal partitioning tech-
nique has been proposed in order to ensure parallel execu-
tion of single XPath queries. The partitioning technique
proposed in that work can be performed only on the main-
memory representation of the input document, and, as a
consequence, is not suitable for very large XML documents.

In [11] a vertical partitioning technique has been proposed
still with the aim of parallel and distributed execution of
XPath queries. The technique can handle very large docu-
ments, but, unlike our system, requires the use of schema
information on the input document. Both techniques [6,
11] require strong interventions inside a query engine, while

745

Static Analyzer

Partition Manager

Projector Projector Projector

Query/Update

Engine

Query/Update

Engine

Query/Update

Engine

Intermediate

Result Combiner

Intermediate

Result Combiner

 Result Combiner

Part Cache

MASTER

MAPPERS

REDUCERS

MASTER

... ...

... ...

...

Figure 1: System architecture.

our system required only a minor extension of Qizx-open to
support EXI compression.

A recent work [8] proposes new efficient algorithms for
the distributed evaluation of XPath queries. This work uses
horizontal-vertical partitioning, and assumes data have been
statically partitioned according to some pre-existing tech-
nique. Another recent work [7] proposes an Hadoop-based
architecture for processing multiple twig-patterns on a very
large XML document. This system is able to deal with a sub-
set of XPath 1.0 queries, and adopts static partitioning: the
input document is statically partitioned into several blocks
and some path information is added to blocks to avoid loss
of structural information. Differently, our system supports
both dynamic and static partitioning, and, importantly, sup-
ports mixed workloads containing both XQuery queries and
updates.

2. SYSTEM ARCHITECTURE
In this Section we describe the overall architecture of our

system, while more details about partitioning, query/update
processing and result combination will be given in the next
section.

The basic idea of our system is to dynamically and/or stat-
ically partition the input data to leverage on the parallelism
of a Map/Reduce cluster and to increase the scalability. The
architecture of our system is shown in Figure 1.

When a user submits a query or an update to the system,
the Static Analyzer parses the input query or update,
and extracts relevant information for partitioning the input
document D. This information is passed to the Partition

Manager, which verifies if D has already been partitioned;
in that case, as a single document can be partitioned in mul-
tiple ways, the Partition Manager checks if there exists a
partition that is still valid (i.e., D has not been updated or
externally modified after partitioning), and that it is com-
patible with the submitted query or update. Parts are stored
in the distributed file system, so to be globally available.

If no existing partition can be reused, D is dynamically
partitioned according to the partitioning scheme described
in Section 3. To overlap partitioning and query/update ex-

ecution, as soon as a sufficiently large number of parts be-
comes available, Map/Reduce jobs are asynchronously sub-
mitted to the cluster. Parts are encoded as EXI (Efficient
XML Interchange) files1; this allows the system to signifi-
cantly reduce the storage space required for parts and, most
importantly, to cut network costs. Parts are directly en-
coded in EXI format during the partition process through
the streaming encoder of EXIficient [1].

If, instead, an existing partition can be reused, which is
the most common case, the Partition Manager assigns
parts to each mapper and launches a Map/Reduce job. Part
assignment is performed by taking locality information into
account, so to further improve the I/O throughput.

Each mapper works independently on each assigned part.
In the case of a query, each part is also projected, in order
to eliminate all unnecessary elements or attributes from the
part; projection is performed according to the path-based
projection scheme described in [4] and returns an EXI file.
Projected parts reside in the local file system of the mapper
and do not survive query execution. In the case of updates,
the system ignores projection for the sake of simplifying the
global result reconstruction from the updated parts.

After optional projection, the mapper executes the query
or the update on each assigned part by invoking Qizx-open, a
main-memory query engine. Results returned by Qizx-open
are stored in the distributed file system.

Query/update results produced by mappers are combined
into a single file in two phases. In the first phase, reduc-
ers perform a preliminary result combination, which is then
refined by the Result Combiner.

3. PROCESSING QUERIES AND UPDATES
In this section we describe the class of queries and updates

that our system supports, and illustrate in more details the
data partitioning, query/update processing, and result fu-
sion techniques we use.

3.1 Iterative Queries and Updates
Our system supports the execution of iterative XQuery

queries and updates, i.e., queries and updates that i) use
forward XPath axes, and ii) first select a sequence of sub-
trees of the input document, and then iterate some operation
on each of the subtrees. Iterative queries and updates are
widely used in practice, and a static analysis technique has
been proposed to recognize them [4, 12].

As an example of iterative query, consider the following
query on XMark documents (assume $auction is bound to
the document node doc(“xmark.xml′′)). The query iterates
the same operation on each subtree selected by $auction/site
//description and, hence, is iterative.

for $i in $auction/site//description
where contains(string(exactly-one($i)), “gold”)
return $i/node()

This property is enjoyed by many real world queries: for
instance, in the XMark benchmark 13 out of the 20 prede-
fined queries are iterative2. Non iterative queries are typi-
cally those performing join operations on two independent
sequences of nodes of the input documents. Notice that,
however, iterative queries may perform join operations, as
in the following case:
1EXI is a binary format, proposed by the W3C, for com-
pressing and storing XML documents.
2Queries from Q1 to Q5, Q10, and Q14 to Q20 are iterative.

746

for $i in $auction/site//description
for $x in $i//keyword
for $y in $i//listitem
where $x = $y
return $x

Iterative updates include the wide class of updates that
modify a sequence of subtrees, and such that each delete/
rename/insert/replace operation does not need data out-
side the current subtree. As an example of iterative update,
consider the following one:

for $x in $auction/site/regions//item/location
where $x/text() = “United States”
return (replace value of node $x with “USA”)

This update iterates over location elements and replaces
each occurrence of “United States” with “USA”. As no infor-
mation outside the subtrees rooted by location elements is
required for processing the replace operation, the update
is iterative.

The following update, instead, is not iterative, as deletion
is made according to some condition depending from data
outside the deleted subtrees:

if $auction//description//text() = “word”
then delete nodes $auction/site/regions/australia//item

In this case, the update accesses all description elements
(in the if clause), but deletes nodes in a distinct fragment
of the input document.

3.2 Data Partitioning
As described in Section 2, the Static Analyzer parses

the input query/update to extract information required for
checking the property of Section 3.1 and for partitioning the
input data. This information, which is passed to the Par-

tition Manager, is essentially the set of paths used in the
query/update, enriched with details about bound variables,
and guides the partitioning process.

To illustrate, consider the following iterative query:

for $x in /a,
$y in $x/b

where $y/c/d
return < res > $y/c/e < /res >

For this query the Static Analyzer extracts the follow-
ing path set:

{ /a{for x}, /a{for x}/b{for y},
/a{for x}/b{for y}/c/d, /a{for x}/b{for y}/c/e }

By analyzing this path set, the Static Analyzer derives
that /a/b is the path on which the query iterates; this path is
called partitioning path and is used during the partitioning
process to identify indivisible subtrees, i.e., subtrees that
cannot be split among multiple parts. In particular, if a
node matches this path, then the whole subtree is kept in
the current part; subtrees rooted at nodes outside subtrees
selected by the partitioning path can be split across consec-
utive parts. A possible input XML tree for the above query
together with a possible partition {t′1, t

′

2} are proposed in
Figure 2. The above mentioned indivisibility property is
necessary to ensure that query result on the input docu-
ment is equal to the ordered concatenation of query results
on each part. It is easy to verify that this does not hold
for the partition {t′′1 , t

′′

2 , t
′′

3} in Figure 2, where the first b

subtree has been split.

In the case of updates, the system must distinguish be-
tween simple updates, i.e., updates consisting of a single
delete/rename/insert/replace operation without for-iter-
ations, and update containing iterations. In the first case,
the Static Analyzer extracts paths selecting target nodes
of the update operations, and considers these paths as par-
titioning paths. In the second case, the partitioning path is
computed as for queries. Composite updates are treated by
summing the partitioning paths of each update. As happens
for queries, partitioning paths are used to recognise subtrees
that should not be divided. Again, this indivisibility prop-
erty is necessary in order to ensure semantics preservation
once the update is distributed over the partition.

To illustrate, consider the following XQuery update per-
forming both a deletion and a renaming:3

delete nodes //f ;
for $x in //c insert < n/ > as last into $x

For this update we have two partitioning paths //c and
//f . By using these two partitioning paths, a possible sound
partition is {t′1, t

′

2} in Figure 2 (target subtrees, that is sub-
trees selected by partitioning paths, are not split). Note that
the partition {t′′1 , t

′′

2 , t
′′

3} is unsound for the update since the
first subtree rooted in a c node is split: executing the up-
date on this partition entails two insertions for this subtree
instead of one.

When a document is partitioned for the first time, the
Partition Manager uses the partitioning paths to per-
form the actual partitioning. The Partition Manager

also computes a DataGuide [10] for an input document D.
The DataGuide is later used to verify the compatibility of
a newly issued query/update with an existing partition, by
verifying that the indivisible subtrees identified by the par-
tition paths of the new query/update are already indivisible
in an existing partition.

For both queries and updates, the Partition Manager

ensures that each part in the partition does not exceed the
memory capacity of the main-memory query engine by end-
ing the current part and creating a new one when the size of
the current part exceeds a given threshold (if this happens
during the visit of an indivisible subtree, then the part is
terminated only after the subtree has been totally parsed).

Also, for both queries and updates, artificial tags are added
during partitioning to ensure each generated part is well-
formed and rooted (so that the query/update engine can
process it). For instance, in XML documents corresponding
to the partition {t′1, t

′

2} of Figure 2, the closing a tag for {t′1}
root and the opening a tag for {t′2} root are both artificial
(they were not present in the input document t).

3.3 Query/Update Processing
Once the Static Analyzer has extracted path informa-

tion from the input query/update, and the Partition Man-

ager has found an existing partition or created a new one
for processing the query/update, parts are assigned to map-
pers for query/update processing.

When processing a query, each mapper receives not only
the address on the distributed file system of each assigned
part, but also the path set extracted by the Static Ana-

lyzer. This set is used to project the parts, i.e., to remove
3Recall that W3C adopts a snapshot semantics for updates,
with no side-effects: first a list of update operations is de-
termined on the same document, and then these operations
are executed on the document.

747

a

b

c

d e

f

d

“gogo′′

b

c

e

d

b

g c

“tata′′

c

d h

a

b

c

d e

f

d

“gogo′′

b

c

e

d

a

b

g c

“tata′′

c

d h

a

b

c

d

a

b

c

e

f

d

“gogo′′

b

c

e

d

a

b

g c

“tata′′

c

d h

Input document t Part t′
1

Part t′
2

Part t′′
1

Part t′′
2

Part t′′
3

Figure 2: Sound and unsound partitions

elements and attributes not necessary for the query. While
original parts are stored in the distributed file system, pro-
jected parts are stored in the local file system of the mapper
and do not survive query execution. The input query is
executed on each projected part by a local instance of Qizx-
open, which exports the results, encoded in XML format, to
the distributed file system.

When processing an update, instead, projection cannot
be applied, as each fragment of a given input part is neces-
sary. As a consequence, the local instance of Qizx-open just
executes the update on the original part, discards artificial
tags, and stores the updated part, encoded in EXI format,
in the distributed file system.

3.4 Result Combination
Result combination works a bit differently for queries and

updates. Indeed, partial results of a query can be simply
concatenated together, while partial results of an update
must be merged.

The combination of partial query results is performed in
two steps. In the first step, each reducer receives a set of
consecutive part results, which are then combined through
high-speed Java NIO channels; the Result Combiner, fi-
nally, links together the combined part results produced by
the reducers. In the case of updates, combination through
Java NIO channels is replaced by EXI file merging.

4. DEMO OVERVIEW
At the demonstration, attendees will be able to pose queries

and updates on several very large documents from the XMark
benchmark [14]. Attendees will be able to submit either pre-
defined queries and updates or write their own queries/updates
and submit them to the system.

Attendees will be able to run any of the iterative queries
from the benchmark on instances of the data at different
scale factors loaded to a small remote cluster running our
system. In addition to the queries from the benchmark, they
will also be able to submit predefined updates.

We propose to display an interface that lists all the pre-
defined queries and updates from the benchmark. Once a
query or an update have been selected, their submission will
take the user to a console that shows relevant information
about the status of the cluster. Once the query or the update
completes, the user will be able to inspect the processing
times for each of the processing phases (i.e., static analysis,
data partitioning, data projection, query/update execution,
and result combination), and to compare the load of each
phase. The user will also be able to run predefined work-
loads consisting of multiple queries and/or updates.

Through the same interface, attendees will be able to sub-
mit their own queries or updates.

5. REFERENCES
[1] Exificient. http://exificient.sourceforge.net.

[2] Hadoop. http://hadoop.apache.org/.

[3] Qizx-open. http://www.xmlmind.com/qizxopen/.

[4] N. Bidoit, D. Colazzo, N. Malla, and C. Sartiani.
Partitioning XML documents for iterative queries. In
IDEAS, 2012.

[5] S. Boag, D. Chamberlin, M. F. Fernández,
D. Florescu, J. Robie, and J. Siméon. XQuery 1.0: An
XML Query Language (Second Edition). Technical
report, World Wide Web Consortium, Dec. 2010.
W3C Recommendation.

[6] R. Bordawekar, L. Lim, and O. Shmueli.
Parallelization of XPath queries using multi-core
processors: challenges and experiences. In EDBT,
2009.

[7] H. Choi, K.-H. Lee, S.-H. Kim, Y.-J. Lee, and
B. Moon. HadoopXML: A suite for parallel processing
of massive XML data with multiple twig pattern
queries. In CIKM, 2012.

[8] G. Cong, W. Fan, A. Kementsietsidis, J. Li, and
X. Liu. Partial evaluation for distributed XPath query
processing and beyond. ACM TODS, 37(4):43, 2012.

[9] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In OSDI, pages
137–150. USENIX Association, 2004.

[10] R. Goldman and J. Widom. DataGuides: Enabling
query formulation and optimization in semistructured
databases. In VLDB, 1997.

[11] P. Kling, M. T. Özsu, and K. Daudjee. Generating
efficient execution plans for vertically partitioned
XML databases. PVLDB, 4(1), 2010.

[12] N. Malla. Partitioning XML data, towards distributed

and parallel management. PhD thesis, Université Paris
Sud, 2012.

[13] J. Robie, D. Chamberlin, M. Dyck, D. Florescu,
J. Melton, and J. Siméon. XQuery Update Facility
1.0. Technical report, World Wide Web Consortium,
Mar. 2011. W3C Recommendation.

[14] A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey,
I. Manolescu, and R. Busse. XMark: A benchmark for
XML data management. In VLDB, 2002.

[15] J. Schneider and T. Kamiya. Efficient XML
Interchange (EXI) Format 1.0. Technical report,
World Wide Web Consortium, Mar. 2011. W3C
Recommendation.

748

