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ABSTRACT

Statistics about n-grams (i.e., sequences of contiguous words
or other tokens in text documents or other string data) are
an important building block in information retrieval and
natural language processing. In this work, we study how
n-gram statistics, optionally restricted by a maximum n-
gram length and minimum collection frequency, can be com-
puted efficiently harnessing MapReduce for distributed data
processing. We describe different algorithms, ranging from
an extension of word counting, via methods based on the
Apriori principle, to a novel method Suffix-σ that relies
on sorting and aggregating suffixes. We examine possible
extensions of our method to support the notions of maxi-
mality/closedness and to perform aggregations beyond oc-
currence counting. Assuming Hadoop as a concrete Map-
Reduce implementation, we provide insights on an efficient
implementation of the methods. Extensive experiments on
The New York Times Annotated Corpus and ClueWeb09
expose the relative benefits and trade-offs of the methods.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing

General Terms

Algorithms, Experimentation
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1. INTRODUCTION
Applications in various fields including information re-

trieval [12, 46] and natural language processing [13, 18, 39]
rely on statistics about n-grams (i.e., sequences of contigu-
ous words in text documents or other string data) as an
important building block. Google and Microsoft have made
available n-gram statistics computed on parts of the Web.
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While certainly a valuable resource, one limitation of these
datasets is that they only consider n-grams consisting of
up to five words. With this limitation, there is no way to
capture idioms, quotations, poetry, lyrics, and other types
of named entities (e.g., products, books, songs, or movies)
that typically consist of more than five words and are cru-
cial to applications including plagiarism detection, opinion
mining, and social media analytics.

MapReduce has gained popularity in recent years both as
a programming model and in its open-source implementa-
tion Hadoop. It provides a platform for distributed data
processing, for instance, on web-scale document collections.
MapReduce imposes a rigid programming model, but treats
its users with features such as handling of node failures and
an automatic distribution of the computation. To make
most effective use of it, problems need to be cast into its
programming model, taking into account its particularities.

In this work, we address the problem of efficiently com-
puting n-gram statistics on MapReduce platforms. We allow
for a restriction of the n-gram statistics to be computed by
a maximum length σ and a minimum collection frequency τ .
Only n-grams consisting of up to σ words and occurring at
least τ times in the document collection are thus considered.

While this can be seen as a special case of frequent se-
quence mining, our experiments on two real-world datasets
show that MapReduce adaptations of Apriori-based meth-
ods [38, 45] do not perform well – in particular when long
and/or less frequent n-grams are of interest. In this light,
we develop our novel method Suffix-σ that is based on
ideas from string processing. Our method makes thought-
ful use of MapReduce’s grouping and sorting functionality.
It keeps the number of records that have to be sorted by
MapReduce low and exploits their order to achieve a com-
pact main-memory footprint, when determining collection
frequencies of all n-grams considered.

We also describe possible extensions of our method. This
includes the notions of maximality/closedness, known from
frequent sequence mining, that can drastically reduce the
amount of n-gram statistics computed. In addition, we in-
vestigate to what extent our method can support aggrega-
tions beyond occurrence counting, using n-gram time series,
recently made popular by Michel et al. [32], as an example.

Contributions made in this work include:

• a novel method Suffix-σ to compute n-gram statistics
that has been specifically designed for MapReduce;

• a detailed account on efficient implementation and pos-

sible extensions of Suffix-σ (e.g., to consider maxi-
mal/closed n-grams or support other aggregations);
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• a comprehensive experimental evaluation on The New
York Times Annotated Corpus (1.8 million news ar-
ticles from 1987–2007) and ClueWeb09-B (50 million
web pages crawled in 2009), as two large-scale real-
world document collections, comparing our method
against state-of-the-art competitors and investigating
their trade-offs.

Suffix-σ outperforms its best competitor in our experi-
ments by up to a factor 12x when long and/or less frequent
n-grams are of interest. Otherwise, it is at least on par with
its competitors.

Organization. Section 2 introduces our model. Section 3
details on methods to compute n-gram statistics based on
prior ideas. Section 4 introduces our method Suffix-σ. As-
pects of efficient implementation are addressed in Section 5.
Possible extensions of Suffix-σ are sketched in Section 6.
Our experiments are the subject of Section 7. In Section 8,
we put our work into context, before concluding in Section 9.

2. PRELIMINARIES
We now introduce our model, establish our notation, and

provide some technical background on MapReduce.

2.1 Data Model
Our methods operate on sequences of terms (i.e., words

or other textual tokens) drawn from a vocabulary V. We
let S denote the universe of all sequences over V. Given a
sequence s = 〈 s0, . . . , sn−1 〉 with si ∈ V, we refer to its
length as |s|, write s[i..j] for the subsequence 〈 si, . . . , sj 〉,
and let s[i] refer to the element si. For two sequences r and
s, we let r‖s denote their concatenation. We say that

• r is a prefix of s (r ⊲ s) iff

∀ 0 ≤ i < |r| : r[i] = s[i]

• r is a suffix of s (r ⊳ s) iff

∀ 0 ≤ i < |r| : r[i] = s[|s| − |r|+ i]

• r is a subsequence of s (r ⋄ s) iff

∃ 0 ≤ j < |s| : ∀ 0 ≤ i < |r| : r[i] = s[i+ j]

and capture how often r occurs in s as

f(r, s) = |{ 0 ≤ j < |s| | ∀ 0 ≤ i < |r| : r[i] = s[i+ j] }| .

To avoid confusion, we use the following convention: When
referring to sequences of terms having a specific length k, we
will use the notion k-gram or indicate the considered length
by alluding to, for instance, 5-grams. The notion n-gram,
as found in the title, will be used when referring to variable-
length sequences of terms.

As an input, all methods considered in this work receive
a document collection D consisting of sequences of terms as
documents. Our focus is on determining how often n-grams
occur in the document collection. Formally, the collection

frequency of an n-gram s is defined as

cf(s) =
∑

d∈D

f(s,d) .

Alternatively, one could consider the document frequency of
n-grams as the total number of documents that contain a
specific n-gram. While this corresponds to the notion of
support typically used in frequent sequence mining, it is

less common for natural language applications. However,
all methods presented below can easily be modified to pro-
duce document frequencies instead.

2.2 MapReduce
MapReduce, as described by Dean and Ghemawat [17],

is a programming model and an associated runtime system
at Google. While originally proprietary, the MapReduce
programming model has been widely adopted in practice
and several implementations exist. In this work, we rely on
Hadoop [1] as a popular open-source MapReduce platform.
The objective of MapReduce is to facilitate distributed data
processing on large-scale clusters of commodity computers.
MapReduce enforces a functional style of programming and
lets users express their tasks as two functions

map() : (k1,v1) -> list<(k2,v2)>
reduce() : (k2, list<v2>) -> list<(k3,v3)>

that consume and emit key-value pairs. Between the map-
and reduce-phase, the system sorts and groups the key-value
pairs emitted by the map-function. The partitioning of key-
value pairs (i.e., how they are assigned to cluster nodes) and
their sort order (i.e., in which order they are seen by the
reduce-function on each cluster node) can be customized, if
needed for the task at hand. For detailed introductions to
working with MapReduce and Hadoop, we refer to Lin and
Dyer [29] as well as White [41].

3. METHODS BASED ON PRIOR IDEAS
With our notation established, we next describe three

methods based on prior ideas to compute n-gram statistics
in MapReduce. Before delving into their details, let us state
the problem that we address in more formal terms:

Given a document collection D, a minimum collection fre-

quency τ , a maximum length σ, our objective is to identify

all n-grams s with their collection frequency cf(s), for which
cf(s) ≥ τ and |s| ≤ σ hold.

We thus assume that n-grams are only of interest to the
task at hand, if they occur at least τ times in the document
collection, coined frequent in the following, and consist of at
most σ terms. Consider, as an example task, the construc-
tion of n-gram language models [46], for which one would
only look at n-grams up to a specific length and/or resort
to back-off models [24] to obtain more robust estimates for
n-grams that occur less than specific number of times.

The problem statement above can be seen as a special case
of frequent sequence mining that considers only contiguous
sequences of single-element itemsets. We believe this to be
an important special case that warrants individual attention
and allows for an efficient solution in MapReduce, as we
show in this work. A more elaborate comparison to existing
research on frequent sequence mining is part of Section 8.

To ease our explanations below, we use the following run-
ning example, considering a collection of three documents:

d1 = 〈 a x b x x 〉
d2 = 〈 b a x b x 〉
d3 = 〈 x b a x b 〉

With parameters τ = 3 and σ = 3, we expect as output

〈 a 〉 : 3 〈 b 〉 : 5 〈 x 〉 : 7
〈 a x 〉 : 3 〈 x b 〉 : 4

〈 a x b 〉 : 3

from any method, when applied to this document collection.
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Algorithm 1: Näıve

// Mapper
1 map(long did, seq d) begin

2 for b = 0 to |d| − 1 do

3 for e = b to min(b + σ − 1, |d| − 1) do

4 emit(seq d[b..e], long did)

// Reducer
1 reduce(seq s, list<long> l) begin

2 if |l| ≥ τ then

3 emit(seq s, int |l|)

3.1 Naïve Counting
One of the example applications of MapReduce, given by

Dean and Ghemawat [17] and also used in many tutorials, is
word counting, i.e., determining the collection frequency of
every word in the document collection. It is straightforward
to adapt word counting to consider variable-length n-grams
instead of only unigrams and discard those that occur less
than τ times. Pseudo code of this method, which we coin
Näıve, is given in Algorithm 1.

In the map-function, the method emits all n-grams of length
up to σ for a document together with the document identi-
fier. If an n-gram occurs more than once, it is emitted mul-
tiple times. In the reduce-phase, the collection frequency
of every n-gram is determined and, if it exceeds τ , emitted
together with the n-gram itself.

Interestingly, apart from minor optimizations, this is the
method that Brants et al. [13] used for training large-scale
language models at Google, considering n-grams up to length
five. In practice, several tweaks can be applied to improve
this simple method including local pre-aggregation in the
map-phase (e.g., using a combiner in Hadoop). Implementa-
tion details of this kind are covered in more detail in Sec-
tion 5. The potentially vast number of emitted key-value
pairs that needs to be transferred and sorted, though, re-
mains a shortcoming.

In the worst case, when σ ≥ |d|, Näıve emits O(|d|2) key-
value pairs for a document d, each consuming O(|d|) bytes,
so that the method transfers O(|d|3) bytes between the map-
and reduce-phase. Complementary to that, we can deter-
mine the number of key-value pairs emitted based on the
n-gram statistics. Näıve emits a total of

∑
s∈S:|s|≤σ

cf(s)

key-value pairs, each of which consumes O(|s|) bytes.

3.2 Apriori-Based Methods
How can one do better than the näıve method just out-

lined? One idea is to exploit the Apriori principle, as
described by Agrawal et al. [9] in their seminal paper on
identifying frequent itemsets and follow-up work on frequent
pattern mining [10, 37, 38, 45]. Cast into our setting, the
Apriori principle states that

r ⋄ s ⇒ cf(r) ≥ cf(s)

holds for any two sequences r and s, i.e., the collection fre-
quency of a sequence r is an upper bound for the collection
frequency of any supersequence s. In what follows, we de-
scribe two methods that make use of the Apriori principle
to compute n-gram statistics in MapReduce.

Apriori-Scan

The first Apriori-based method Apriori-Scan, like the
original Apriori algorithm [9] and GSP [38], performs mul-

Algorithm 2: Apriori-Scan

int k = 1
repeat

hashset<int[]> dict = load(output-(k − 1))

// Mapper
1 map(long did, seq d) begin

2 for b = 0 to |d| − k do

3 if k = 1 ∨
4 (contains(dict, d[b..(b + k − 2)]) ∧
5 contains(dict, d[(b + 1)..(b + k − 1)])) then

6 emit(seq d[b..(b + k − 1)], long did)

// Reducer
1 reduce(seq s, list<long> l) begin

2 if |l| ≥ τ then

3 emit(seq s, int |l|)

k += 1

until isEmpty(output-(k − 1)) ∨ k = σ + 1;

tiple scans over the input data. During the k-th scan the
method determines k-grams that occur at least τ times in
the document collection. To this end, it exploits the output
from the previous scan via the Apriori principle to prune
the considered k-grams. In the k-th scan, only those k-
grams are considered whose two constituent (k − 1)-grams
are known to be frequent. Unlike GSP, which first generates
all potentially frequent sequences as candidates, Apriori-

Scan considers only sequences that actually occur in the
document collection. The method terminates after σ scans
or when a scan does not produce any output.

Algorithm 2 shows how the method can be implemented
in MapReduce. The outer repeat-loop controls the execu-
tion of multiple MapReduce jobs, each of which performs
one distributed parallel scan over the input data. In the k-
th iteration, and thus the k-th scan of the input data, the
method considers all k-grams from an input document in
the map-function, but discards those that have a constituent
(k−1)-gram that is known to be infrequent. This pruning is
done leveraging the output from the previous iteration that
is kept in a dictionary. In the reduce-function, analogous to
Näıve, collection frequencies of k-grams are determined and
output if above the minimum collection frequency τ . After
σ iterations or once an iteration does not produce any out-
put, the method terminates, which is safe since the Apriori

principle guarantees that no longer n-gram can occur τ or
more times in the document collection.

When applied to our running example, in its third scan
of the input data, Apriori-Scan emits in the map-phase
for every document di only the key-value pair (〈 a x b 〉,di),
but discards other trigrams (e.g., 〈 b x x 〉) that contain an
infrequent bigram (e.g., 〈 x x 〉).

When implemented in MapReduce, every iteration corre-
sponds to a separate job that needs to be run and comes
with its administrative fix cost (e.g., for launching and fi-
nalizing the job). Another challenge in Apriori-Scan is
the implementation of the dictionary that makes the out-
put from the previous iteration available and accessible to
cluster nodes. This dictionary can either be implemented
locally, so that every cluster node receives a replica of the
previous iteration’s output (e.g., implemented using the dis-
tributed cache in Hadoop), or by loading the output from
the previous iteration into a shared dictionary (e.g., imple-
mented using a distributed key-value store), which can then
be accessed remotely by cluster nodes. Either way, to make
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lookups in the dictionary efficient, significant main memory
at cluster nodes is required.

An apparent shortcoming of Apriori-Scan is that it has
to scan the entire input data in every iteration. Thus, al-
though typically only few frequent n-grams are found in later
iterations, the cost of an iteration depends on the size of the
input data. The number of iterations needed, on the other
hand, is determined by the parameter σ or the length of the
longest frequent n-gram.

In the worst case, when σ ≥ |d| and cf(d) ≥ τ , Apriori-

Scan emits O(|d|2) key-value pairs per document d, each
consumingO(|d|) bytes, so that the method transfersO(|d|3)
bytes between the map- and reduce-phase. Again, we pro-
vide a complementary analysis based on the actual n-gram
statistics. To this end, let

SNP = {s ∈ S | ∀ r ∈ S : (r 6= s ∧ r ⋄ s) ⇒ cf(r) ≥ τ}

denote the set of sequences that cannot be pruned based
on the Apriori principle, i.e., whose true subsequences all
occur at least τ times in the document collection. Apriori-

Scan emits a total of
∑

s∈SNP :|s|≤σ
cf(s) key-value pairs,

each of which amounts to O(|s|) bytes. Obviously, SNP ⊆ S
holds, so that Apriori-Scan emits at most as many key-
value pairs as Näıve. Its concrete gains, though, depend on
the value of τ and characteristics of the document collection.

Apriori-Index

The secondApriori-based methodApriori-Index does not
repeatedly scan the input data but incrementally builds an
inverted index of frequent n-grams from the input data as a
more compact representation. Operating on an index struc-
ture as opposed to the original data and considering n-grams
of increasing length, it resembles SPADE [45] when breadth-
first traversing the sequence lattice.
Pseudo code of Apriori-Index is given in Algorithm 3. In

its first phase, the method constructs an inverted index with
positional information for all frequent n-grams up to length
K (cf. Mapper #1 and Reducer #1 in the pseudo code). In
its second phase, to identify frequent n-grams beyond that
length, Apriori-Index harnesses the output from the pre-
vious iteration. Thus, to determine a frequent k-gram (e.g.,
〈 b a x 〉), the method joins the posting lists of its constituent
(k−1)-grams (i.e., 〈 b a 〉 and 〈 a x 〉). In MapReduce, this can
be accomplished as follows (cf. Mapper #2 and Reducer #2

in the pseudo code): The map-function emits for every fre-
quent (k−1)-gram two key-value pairs. The frequent (k−1)-
gram itself along with its posting list serves in both as a
value. As keys the prefix and suffix of length (k − 2) are
used. In the pseudo code, the method keeps track of whether
the key is a prefix or suffix of the sequence in the value by
using the r-seq and l-seq subtypes. The reduce-function
identifies for a specific key all compatible sequences from
the values, joins their posting lists, and emits the resulting
k-gram along with its posting list if its collection frequency
is at least τ . Two sequences are compatible and must be
joined, if one has the current key as a prefix, and the other
has it as a suffix. In its nested for-loops, the method consid-
ers all compatible combinations of sequences. This second
phase of Apriori-Index can be seen as a distributed can-
didate generation and pruning step.
Applied to our running example and assuming K = 2, the

method only sees one pair of compatible sequences with their
posting lists for the key 〈 x 〉 in its third iteration, namely:

Algorithm 3: Apriori-Index

int k = 1
repeat

if k ≤ K then

// Mapper #1
1 map(long did, seq d) begin

2 hashmap<seq, int[]> pos = ∅
3 for b = 0 to |d| − 1 do

4 add(get(pos, d[b..(b + k − 1)]), b)

5 for seq s : keys(pos) do

6 emit(seq s, posting (did, get(pos,s)))

// Reducer #1
1 reduce(seq s, list<posting> l) begin

2 if cf(l) ≥ τ then

3 emit(seq s, list<posting> l)

else

// Mapper #2
1 map(seq s, list<posting> l) begin

2 emit(seq s[0..|s| − 2],
3 (r-seq, list<posting>) (s, l))
4 emit(seq s[1..|s| − 1],
5 (l-seq, list<posting>) (s, l))

// Reducer #2
1 reduce(seq s, list<(seq, list<posting>)> l) begin

2 for (l-seq, list<posting>) (m, lm) : l do

3 for (r-seq, list<posting>) (n, ln) : l do

4 list<posting> lj = join(lm, ln)
5 if cf(lj) ≥ τ then

6 seq j = m ‖ 〈n[|n| − 1] 〉
7 emit(seq j, list<posting> lj)

k += 1

until isEmpty(output-(k − 1)) ∨ k = min(σ, K);

〈 a x 〉 : 〈d1 : [0], d2 : [1], d3 : [2] 〉
〈 x b 〉 : 〈d1 : [1], d2 : [2], d3 : [0, 3] 〉 .

By joining those, Apriori-Index obtains the only frequent
3-gram with its posting list

〈 a x b 〉 : 〈d1 : [0], d2 : [1], d3 : [2] 〉 .

For all k < K, it would be enough to determine only col-
lection frequencies, as opposed to, positional information
of n-grams. While a straightforward optimization in prac-
tice, we opted for simpler pseudo code. When implemented
as described in Algorithm 3, the method produces an in-
verted index with positional information, which can be used
to quickly determine the locations of a specific frequent n-
gram.

One challenge when implementing Apriori-Index is that
the number and size of posting-list values seen for a specific
key can become large in practice. Moreover, to join compa-
tible sequences, these posting lists have to be buffered, and a
scalable implementation must deal with the case when this is
not possible in the available main memory. This can, for in-
stance, be accomplished by storing posting lists temporarily
in a disk-resident key-value store.

The number of iterations needed by Apriori-Index is de-
termined by the parameter σ or the length of the longest fre-
quent n-gram. Since every iteration, as for Apriori-Scan,
corresponds to a separate MapReduce job, a non-negligible
administrative fix cost is incurred.

In the worst case, when σ ≥ |d| and cf(d) ≥ τ , Apriori-

Index emits O(|d|2) key-value pairs per document d, each
consuming O(|d|) bytes, so that O(|d|3) bytes are trans-
ferred between the map- and reduce-phase. We assume K <
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σ for the complementary analysis. In its first K iterations,
Apriori-Index emits

∑
s∈S:|s|≤K

df(s) key-value pairs, where

df(s) ≤ cf(s) refers to the document frequency of the n-
gram s, as mentioned in Section 2. Each key-value pair con-
sumes O(cf(s)) bytes. To analyze the following iterations,
let

SF = {s ∈ S | cf(s) ≥ τ}

denote the set of frequent n-grams that occur at least τ

times. Apriori-Index emits a total of

2 · |{s ∈ SF |K ≤ |s| < σ}|

key-value pairs, each of which consumes O(cf(s)) bytes.
Like for Apriori-Scan, the concrete gains depend on the
value of τ and characteristics of the document collection.

4. SUFFIX SORTING & AGGREGATION
As already argued, the methods presented so far suffer

from either excessive amounts of data that need to be trans-
ferred and sorted, requiring possibly many MapReduce jobs,
or a high demand for main memory at cluster nodes. Our
novel method Suffix-σ avoids these deficiencies: It requires
a single MapReduce job, transfers only a modest amount of
data, and requires little main memory at cluster nodes.
Consider again what the map-function in the Näıve ap-

proach emits for document d3 from our running example.
Emitting key-value pairs for all of the n-grams 〈 b a x 〉, 〈 b a 〉,
and 〈 b 〉 is clearly wasteful. The key observation here is that
the latter two are subsumed by the first one and can be ob-
tained as its prefixes. Suffix arrays [31] and other string
processing techniques exploit this very idea.
Based on this observation, it is safe to emit key-value pairs

only for a subset of the n-grams contained in a document.
More precisely, it is enough to emit at every position in the
document a single key-value pair with the suffix starting
at that position as a key. These suffixes can further be
truncated to length σ – hence the name of our method.

To determine the collection frequency of a specific n-gram
r, we have to determine how many of the suffixes emitted
in the map-phase are prefixed by r. To do so correctly us-
ing only a single MapReduce job, we must ensure that all
relevant suffixes are seen by the same reducer. This can
be accomplished by partitioning suffixes based on their first
term only, as opposed to, all terms therein. It is thus guar-
anteed that a single reducer receives all suffixes that begin
with the same term. This reducer is then responsible for
determining the collection frequencies of all n-grams start-
ing with that term. One way to accomplish this would be
to enumerate all prefixes of a received suffix and aggregate
their collection frequencies in main memory (e.g., using a
hashmap or a prefix tree). Since it is unknown whether an
n-gram is represented by other yet unseen suffixes from the
input, it cannot be emitted early along with its collection
frequency. Bookkeeping is thus needed for many n-grams
and requires significant main memory.
How can we reduce the main-memory footprint and emit

n-grams with their collection frequency early on? The key
idea is to exploit that the order in which key-value pairs are
sorted and received by reducers can be influenced. Suffix-σ
sorts key-value pairs in reverse lexicographic order of their

Algorithm 4: Suffix-σ

// Mapper
1 map(long did, seq d) begin

2 for b = 0 to |d| − 1 do

3 emit(seq d[b..min(b + σ − 1, |d| − 1)], long did)

// Reducer
stack<int> terms = ∅
stack<int> counts = ∅

1 reduce(seq s, list<long> l) begin

2 while lcp(s,seq(terms)) < len(terms) do

3 if peek(counts) ≥ τ then

4 emit(seq seq(terms), int peek(counts))

5 pop(terms)
6 push(counts, pop(counts) + pop(counts))

7 if len(terms) = |s| then
88 push(counts, pop(counts) + |l|)

else

10 for i = lcp(s, seq(terms)) to |s| − 1 do

11 push(terms, s[i])
12 push(counts, (i == |s| − 1 ? |l| : 0))

1 cleanup() begin

2 reduce(seq ∅, list<long> ∅)

// Partitioner
1 partition(seq s) begin

2 return hashcode(s[0]) mod R

// Comparator
1 compare(seq r, seq s) begin

2 for b = 0 to min(|r|, |s|) − 1 do

3 if r[b] < s[b] then
4 return +1 // r > s
5 else if r[b] > s[b] then
6 return −1 // r < s

7 return |s| − |r|

suffix key, formally defined as follows for sequences r and s:

r < s ⇔ (|r| > |s| ∧ s ⊲ r) ∨

∃ 0≤ i < min(|r|, |s|) :r[i] > s[i] ∧ ∀ 0≤j < i : r[j] = s[j] .

To see why this is useful, recall that each suffix from the
input represents all n-grams that can be obtained as its pre-
fixes. Let s denote the current suffix from the input. The
reverse lexicographic order guarantees that we can safely
emit any n-gram r such that r < s, since no yet unseen
suffix from the input can represent r. Conversely, at this
point, the only n-grams for which we have to do bookkeep-
ing, since they are represented both by the current suffix s
and potentially by yet unseen suffixes, are the prefixes of
s. We illustrate this observation with our running example.
The reducer responsible for suffixes starting with b receives:

〈 b x x 〉 : 〈d1 〉
〈 b x 〉 : 〈d2 〉
〈 b a x 〉 : 〈d2, d3 〉
〈 b 〉 : 〈d3 〉 .

When seeing the third suffix 〈 b a x 〉, we can immediately
finalize the collection frequency of the n-gram 〈 b x 〉 and emit
it, since no yet unseen suffix can have it as a prefix. On the
contrary, the n-grams 〈 b 〉 and 〈 b a 〉 cannot be emitted,
since yet unseen suffixes from the input may have them as
a prefix.

Building on this observation, we can do efficient book-
keeping for prefixes of the current suffix s only and lazily ag-
gregate their collection frequencies using two stacks. On the
first stack terms, we keep the terms constituting s. The sec-
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ond stack counts keeps one counter per prefix of s. Between
invocations of the reduce-function, we maintain two invari-
ants. First, the two stacks have the same size m. Second,

m−1∑

j=i

counts[j]

reflects how often the n-gram

〈 terms[0], . . . , terms[i] 〉

has been seen so far in the input. To maintain these in-
variants, when processing a suffix s from the input, we first
synchronously pop elements from both stacks until the con-
tents of terms form a prefix of s. Before each pop operation,
we emit the contents of terms and the top element of counts,
if the latter is above our minimum collection frequency τ .
When popping an element from counts, its value is added
to the new top element. Following that, we update terms,
so that its contents equal the suffix s. For all but the last
term added, a zero is put on counts. For the last term, we
put the frequency of s, reflected by the length of its asso-
ciated document-identifier list value, on counts. Figure 1
illustrates how the states of the two stacks evolve, as the
above example input is processed.

x 1 x 2
x 0 x 2 a 0
b 0 b 0 b 2 b 4 _ _

Figure 1: Suffix-σ’s bookkeeping illustrated

Pseudo code of Suffix-σ is given in Algorithm 4. The
map-function emits for every document all its suffixes trun-
cated to length σ if possible. The reduce-function reads suf-
fixes in reverse lexicographic order and performs the book-
keeping using two separate stacks for n-grams (terms) and
their collection frequencies (counts), as described above. The
function seq() returns the n-gram corresponding to the en-
tire terms stack. The function lcp() returns the length of
the longest common prefix that two n-grams share. In ad-
dition, Algorithm 4 contains a partition-function ensuring
that suffixes are assigned to one of R reducers solely based
on their first term, as well as, a compare-function that en-
sures the reverse lexicographic order of input suffixes in the
map-phase. When implemented in Hadoop, these two func-
tions would materialize as a custom partitioner class and a
custom comparator class. Finally, cleanup() is a method
invoked once, when all input has been seen.

Suffix-σ emits O(|d|) key-value pairs per document d.
Each of these key-value pairs consumes O(|d|) bytes in the
worst case when σ ≥ |d|. The method thus transfers O(|d|2)
bytes between the map- and reduce-phase. For every term
occurrence in the document collection, Suffix-σ emits ex-
actly one key-value pair, so that in total

∑
s∈S:|s|=1

cf(s)

key-value pairs are emitted, each consuming O(σ) bytes.

5. EFFICIENT IMPLEMENTATION
Having described the different methods at a conceptual

level, we now provide details on aspects of their implemen-
tation, which we found to have a significant impact on per-
formance in practice:

Document Splits. Collection frequencies of individual
terms (i.e., unigrams) can be exploited to drastically reduce

required work by splitting up every document at infrequent
terms that it contains. Thus, assuming that z is an infre-
quent term given the current value of τ , we can split up a
document like 〈 c b a z b a c 〉 into the two shorter sequences
〈 c b a 〉 and 〈 b a c 〉. Again, this is safe due to the Apri-

ori principle, since no frequent n-gram can contain z. All
methods profit from this – for large values of σ in particular.

Sequence Encoding. It is inefficient to operate on docu-
ments in a textual representation. As a one-time preprocess-
ing, we therefore convert our document collections, so that
they are represented as a dictionary, mapping terms to term
identifiers, and one integer term-identifier sequence for every
document. We assign identifiers to terms in descending order
of their collection frequency to optimize compression. From
there on, our implementation internally only deals with ar-
rays of integers. Whenever serialized for transmission or
storage, these are compactly represented using variable-byte
encoding [42]. This also speeds up sorting, since n-grams can
now be compared using integer operations as opposed to op-
erations on strings, thus requiring generally fewer machine
instructions. Compact sequence encoding benefits all meth-
ods – in particular Apriori-Scan with its repeated scans of
the document collection.

Key-Value Store. For Apriori-Scan and Apriori-

Index, reducers potentially buffer a lot of data, namely, the
dictionary of frequent (k−1)-grams or the set of posting lists
to be joined. Our implementation keeps this data in main
memory as long as possible. Otherwise, it migrates the data
into a disk-resident key-value store (Berkeley DB Java Edi-
tion [3]). Most main memory is then used for caching, which
helps Apriori-Scan in particular, since lookups of frequent
(k − 1)-grams typically hit the cache.

Hadoop-Specific Optimizations that we use in our im-
plementation include local aggregation (cf. Mapper #1 in
Algorithm 3), Hadoop’s distributed cache facility, raw com-
parators to avoid deserialization and object instantiation, as
well as other best practices (e.g., described in [41]).

How easy to implement are the methods presented in pre-
vious sections? While hard to evaluate systematically, we
still want to address this question based on our own expe-
rience. Näıve is the clear winner here. Implementations of
the Apriori-based methods, as explained in Section 3, re-
quire various tweaks (e.g., the use of a key-value store) to
make them work. Suffix-σ does not require any of those
and, when Hadoop is used as a MapReduce implementation,
can be implemented using only on-board functionality. Our
code is available – details provided at the end of this paper.

6. EXTENSIONS
In this section, we describe how Suffix-σ can be extended

to consider only maximal/closed n-grams and thus produce
a more compact result. Moreover, we explain how it can sup-
port aggregations beyond occurrence counting, using n-gram
time series, recently made popular by [32], as an example.

6.1 Maximality & Closedness
The number of n-grams that occur at least τ times in

the document collection can be huge in practice. To reduce
it, we can adopt the notions of maximality and closedness
common in frequent pattern mining. Formally, an n-gram r
is maximal, if there is no n-gram s such that r⋄s and cf(s) ≥
τ . Similarly, an n-gram r is closed, if no n-gram s exists
such that r ⋄ s and cf(r) = cf(s) ≥ τ . The sets of maximal
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or closed n-grams are subsets of all n-grams that occur at
least τ times. Omitted n-grams can be reconstructed – for
closedness even with their accurate collection frequency.

Suffix-σ can be extended to produce maximal or closed
n-grams. Recall that our method processes suffixes in re-
verse lexicographic order in its reduce-function. Let r de-
note the last n-gram emitted. For maximality, we only emit
the next n-gram s, if it is no prefix of r (i.e., ¬(s ⊲ r)). For
closedness, we only emit s, if it is no prefix of r or if it has a
different collection frequency (i.e., ¬(s⊲r ∧ cf(s) = cf(r))).
In our example, the reducer responsible for term a receives

〈 a x b 〉 : 〈d1, d2, d3 〉

and, both for maximality and closedness, emits only the n-
gram 〈 a x b 〉 but none of its prefixes. With this extension,
we thus emit only prefix-maximal or prefix-closed n-grams,
whose formal definitions are analogous to those of maximal-
ity and closedness above but replace ⋄ by ⊲. In our example,
we still emit 〈 x b 〉 and 〈 b 〉 on the reducers responsible for
terms x and b, respectively. For maximality, as subsequences
of 〈 a x b 〉, these n-grams must be omitted. We achieve this
by means of an additional post-filtering MapReduce job. As
input, the job consumes the output produced by Suffix-σ
with the above extensions. In its map-function, n-grams are
reversed (e.g., 〈 a x b 〉 becomes 〈 b x a 〉). These reversed
n-grams are partitioned based on their first term and sorted
in reverse lexicographic order, reusing ideas from Suffix-σ.
In the reduce-function, we apply the same filtering as de-
scribed above to keep only prefix-maximal or prefix-closed
reversed n-grams. Before emitting a reversed n-gram, we
restore its original order by reversing it. In our example,
the reducer responsible for b receives

〈 b x a 〉 : 3
〈 b x 〉 : 4
〈 b 〉 : 5

and, for maximality, only emits 〈 a x b 〉. In summary, we ob-
tain maximal or closed n-grams by first determining prefix-
maximal or prefix-closed n-grams and, after that, identifying
the suffix-maximal or suffix-closed among them.

6.2 Beyond Occurrence Counting
Our focus so far has been on determining collection fre-

quencies of n-grams, i.e., counting their occurrences in the
document collection. One can move beyond occurrence count-
ing and aggregate other information about n-grams, e.g.:

• build an inverted index that records for every n-gram
how often or where it occurs in individual documents;

• compute statistics based on meta-data of documents

(e.g., timestamp or location) that contain a n-gram.

In the following, we concentrate on the second type of aggre-
gation and, as a concrete instance, consider the computation
of n-gram time series. Here, the objective is to determine
for every n-gram a time series whose observations reveal how
often the n-gram occurs in documents published, e.g., in a
specific year. Suffix-σ can be extended to produce such
n-gram time series as follows: In the map-function we emit
every suffix along with the document identifier and its asso-
ciated timestamp. In the reduce-function, the counts stack
is replaced by a stack of time series, which we aggregate
lazily. When popping an element from the stack, instead

of adding counts, we add time series observations. In the
same manner, we can compute other statistics based on the
occurrences of an n-gram in documents and their associated
meta-data. While these could also be computed by an ex-
tension of Näıve, the benefit of using Suffix-σ is that the
required document meta-data is transferred only per suffix
of a document, as opposed to, per contained n-gram.

7. EXPERIMENTAL EVALUATION
We conducted comprehensive experiments to compare the

different methods and understand their relative benefits and
trade-offs. Our findings from these experiments are the sub-
ject of this section.

7.1 Setup & Implementation
Cluster Setup. All experiments were run on a local clus-

ter consisting of ten Dell R410 server-class computers, each
equipped with 64 GB of main memory, two Intel Xeon X5650
6-core CPUs, and four internal 2 TB SAS 7,200 rpm hard
disks configured as a bunch-of-disks. Debian GNU/Linux
5.0.9 (Lenny) was used as an operating system. Machines
in the cluster are connected via 1 GBit Ethernet. We use
Cloudera CDH3u0 as a distribution of Hadoop 0.20.2 run-
ning on Oracle Java 1.6.0 26. One of the machines acts a
master and runs Hadoop’s namenode and jobtracker; the
other nine machines are configured to run up to ten map
tasks and ten reduce tasks in parallel. To restrict the num-
ber of map/reduce slots, we employ a capacity-constrained
scheduler pool in Hadoop. When we state that nmap/reduce
slots are used, our cluster executes up to n map tasks and
n reduce tasks in parallel. Java virtual machines to process
tasks are always launched with 4 GB heap space.

Implementation. All methods are implemented in Java
(JDK 1.6) applying the optimizations described in Section 5
to the extent possible and sensible for each of them.

Methods. We compare the methods Näıve, Apriori-

Scan, Apriori-Index, and Suffix-σ in our experiments.
For Apriori-Index, we set K = 4, so that the method
directly computes collection frequencies of n-grams having
length four or less. We found this to be the best-performing
parameter setting in a series of calibration experiments.

Measures. For our experiments, in the following, we
report as performance measures:

(a) wallclock time as the total time elapsed between launch-
ing a method and receiving the final result (possibly
involving multiple Hadoop jobs),

(b) bytes transferred as the total amount of data trans-
ferred between map- and reduce-phase(s) (obtained from
Hadoop’s MAP_OUTPUT_BYTES counter),

(c) # records as the total number of key-value pairs trans-
ferred and sorted between map- and reduce-phase(s)
(obtained from Hadoop’s MAP_OUTPUT_RECORDS counter).

For Apriori-Scan and Apriori-Index, measures (b) and
(c) are aggregates over all Hadoop jobs launched. All mea-
surements reported are based on single runs and were per-
formed with exclusive access to the Hadoop cluster, i.e.,
without concurrent activity by other jobs, services, or users.

7.2 Datasets
We use two publicly-available real-world datasets for our

experiments, namely:
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NYT C09

# documents 1, 830, 592 50, 221, 915
# term occurrence 1, 049, 440, 645 21, 404, 321, 682
# distinct terms 345, 827 979, 935
# sentences 55, 362, 552 1, 257, 357, 167
sentence length (mean) 18.96 17.02
sentence length (stddev) 14.05 17.56
dataset size raw (GB) 3.23 246.84
dataset size encoded (GB) 2.07 41.50

Table 1: Dataset characteristics

• The New York Times Annotated Corpus [7] con-
sisting of more than 1.8 million newspaper articles
from the period 1987–2007 (NYT);

• ClueWeb09-B [6], as a well-defined subset of the
ClueWeb09 corpus of web documents, consisting of
more than 50 million web documents in English lan-
guage that were crawled in 2009 (CW).

These two are extremes: NYT is a well-curated, relatively
clean, longitudinal corpus, i.e., documents therein have a
clear structure, use proper language with few typos, and
cover a long time period. CW is a“World Wild Web”corpus,
i.e., documents therein are highly heterogeneous in struc-
ture, content, and language.

For NYT a document consists of the newspaper article’s
title and body. To make CW more handleable, we use boil-
erplate detection as described by Kohlschütter et al. [25] and
implemented in boilerpipe’s [4] default extractor, to identify
the core content of documents. On both datasets, we use
OpenNLP [2] to detect sentence boundaries in documents.
Sentence boundaries act as barriers, i.e., we do not consider
n-grams that span across sentences in our experiments. As
described in Section 5, in a pre-processing step, we convert
both datasets into sequences of integer term-identifiers. The
term dictionary is kept as a single text file; documents are
spread as key-value pairs of 64-bit document identifier and
content integer array over a total of 256 binary files. Table 1
reports sizes of the two datasets (before and after boilerplate
removal and encoding) and summarizes their characteristics.

7.3 Output Characteristics
Let us first look at the n-gram statistics that (or, parts of

which) we expect as output from all methods. To this end,
for both document collections, we determine all n-grams
that occur at least five times (i.e., τ = 5 and σ = ∞).
We bin n-grams into 2-dimensional buckets of exponential
width, i.e., the n-gram s with collection frequency cf(s) goes
into bucket (i, j) where i = ⌊log10 |s|⌋ and j = ⌊log10 cf(s)⌋.
Figure 2 reports the number of n-grams per bucket.

The figure reveals that the distribution is biased toward
short and less frequent n-grams. Consequently, as we lower
the value of τ , all methods have to deal with a drastically
increasing number of n-grams. What can also be seen from
Figure 2 is that, in both datasets, n-grams exist that are very
long, containing hundred or more terms, and occur more
than ten times in the document collection. Examples of long
n-grams that we see in the output include ingredient lists
of recipes (e.g.,...1 tablespoon cooking oil...) and chess
openings (e.g., e4 e5 2 nf3...) in NYT; in CW they in-
clude web spam (e.g., travel tips san miguel tourism san

miguel transport san miguel...) as well as error messages
and stack traces from web servers and other software (e.g.,
...php on line 91 warning...) that also occur within user
discussions in forums. For the Apriori-based methods, such
long n-grams are unfavorable, since they require many iter-
ations to identify them.

7.4 Use Cases
As a first experiment, we investigate how the methods per-

form for parameter settings chosen to reflect two typical use
cases, namely, training a language model and text analytics.
For the first use case, we set τ = 10 on NYT and τ = 100
on CW, as relatively low minimum collection frequencies, in
combination with σ = 5. The n-gram statistics made public
by Google [5], as a comparison, were computed with param-
eter settings τ = 40 and σ = 5 on parts of the Web. For
the second use case, we choose σ = 100, as a relatively high
maximum sequence length, combined with τ = 100 on NYT
and τ = 1, 000 on CW. The idea in the analytics use case
is to identify recurring fragments of text (e.g., quotations or
idioms) to be analyzed further (e.g., their spread over time).

Figure 3 reports wallclock-time measurements obtained
for these two use cases with 64 map/reduce slots. For our
language-model use case, Suffix-σ outperforms Apriori-

Scan as the best competitor by a factor 3x on both datasets.
For our analytics use case, we see a factor 12x improvement
over Apriori-Index as the best competitor on NYT; on CW
Suffix-σ still outperforms the next bestApriori-Scan by a
factor 1.5x. Measurements for Näıve on CW in are missing,
since the method did not complete in reasonable time.

7.5 Varying Minimum Collection Frequency
Our second experiment studies how the methods behave

as we vary the minimum collection frequency τ . We use a
maximum length σ = 5 and apply all methods to the entire
datasets. Measurements are performed using 64 map/reduce
slots and reported in Figure 4.

We observe that for high minimum collection frequencies,
Suffix-σ performs as well as the best competitor Apriori-

Scan. For low minimum collection frequencies, it signifi-
cantly outperforms the other methods. Both Apriori-based
method show steep increases in wallclock time as we lower
the minimum collection frequency – especially when we reach
the lowest value of τ on each document collection. This is
natural, because for both methods the work that has to be
done in the k-th iteration depends on the number of (k−1)-
grams output in the previous iteration, which have to be
joined or kept in a dictionary, as described in Section 3. As
observed in Figure 2 above, the number of k-grams grows
drastically as we decrease the value of τ . When looking at
the number of bytes and the number of records transferred,
we see analogous behavior. For low values of τ , Suffix-σ
transfers significantly less data than its competitors.

7.6 Varying Maximum Length
In this third experiment, we study the methods’ behavior

as we vary the maximum length σ. The minimum collection
frequency is set as τ = 100 for NYT and τ = 1, 000 for CW
to reflect their different scale. Measurements are performed
on the entire datasets with 64 map/reduce slots and reported
in Figure 5. Measurements for σ > 5 are missing for Näıve

on CW, since the method did not finish within reasonable
time for those parameter settings.

108



NYT CW

 0

 1

 2

 3

 4

 5

 6

 7

 0  1  2  3

C
o

lle
c
ti
o

n
 F

re
q

u
e

n
c
y
 (

1
0

y
)

Length (10
x
)

’-’ using ($1+0.5):($2+0.5):3

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  1  2  3  4  5

C
o

lle
c
ti
o

n
 F

re
q

u
e

n
c
y
 (

1
0

y
)

Length (10
x
)

’-’ using ($1+0.5):($2+0.5):3

 1

 100

 10000

 1e+06

 1e+08

 1e+10

Figure 2: Output characteristics as # of n-grams s with cf(s) ≥ 5 per n-gram length and collection frequency
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Figure 3: Wallclock times in minutes for (a) training a language model (σ = 5, NYT: τ = 10 / CW: τ = 100)
and (b) text analytics (σ = 100, NYT: τ = 100 / CW: τ = 1, 000) as two typical use cases

Suffix-σ is on par with the best-performing competitor
on CW, when considering n-grams of length up to 50. For
σ = 100, it outperforms the next best Apriori-Scan by
a factor 1.5x. On NYT, Suffix-σ consistently outperforms
all competitors by a wide margin. When we increase the
value of σ, the Apriori-based methods need to run more
Hadoop jobs, so that their wallclock times keep increasing.
For Näıve and Suffix-σ, on the other hand, we observe a
saturation of wallclock times. This is expected, since these
methods have to do additional work only for input sequences
longer than σ consisting of terms that occur at least τ times
in the document collection. When looking at the number of
bytes and the number of records transferred, we observe a
saturation for Näıve for the reason mentioned above. For
Suffix-σ only the number of bytes saturates, the number
of records transferred is constant, since it depends only on
the minimum collection frequency τ . Further, we see that
Suffix-σ consistently transfers fewest records.

7.7 Scaling the Datasets
Next, we investigate how the methods react to changes in

the scale of the datasets. To this end, both from NYT and
CW, we extract smaller datasets that contain a random 25%,
50%, or 75% subset of the documents. Again, the minimum
collection frequency is set as τ = 100 for NYT and τ = 1, 000
for CW. The maximum length is set as σ = 5. Wallclock
times are measured using 64 map/reduce slots.

From Figure 6, we observe that Näıve handles additional
data equally well on both datasets. The other methods’
scalability is comparable to that of Näıve on CW, as can
be seen from their almost-identical slopes. On NYT, in con-
trast, Apriori-Scan, Apriori-Index, and Suffix-σ cope
slightly better with additional data than Näıve. This is
due to the different characteristics of the two datasets.

7.8 Scaling Computational Resources
Our final experiment explores how the methods behave as

we scale computational resources. Again, we set τ = 100 for
NYT and τ = 1, 000 for CW. All methods are applied to the
50% samples of documents from the collections. We vary
the number of map/reduce slots as 16, 32, 48, and 64. The
number of cluster nodes remains constant in this experiment,
since we cannot add/remove machines to/from the cluster
due to organizational restrictions. We thus only vary the
amount of parallel work every machine can do; their total
number remains constant throughout this experiment.

We observe from Figure 7 that all methods show compara-
ble behavior as we make additional computational resources
available. Or, put differently, all methods make equally ef-
fective use of them. What can also be observed across all
methods is that the gains of adding more computational re-
sources are diminishing – because of mappers and reducers
competing for shared devices such as hard disks and net-
work interfaces. This phenomenon is more pronounced on
NYT than CW, since methods take generally less time on
the smaller dataset, so that competition for shared devices
is fiercer and has no chance to level out over time.

Summary

What we see in our experiments is that Suffix-σ outper-
forms its competitors when long and/or less frequent n-
grams are considered. Even otherwise, when the focus is
on short and/or very frequent n-grams, Suffix-σ performs
never significantly worse than the other methods. It is hence
robust and can handle a wide variety of parameter choices.
To substantiate this, consider that Suffix-σ could compute
statistics about arbitrary-length n-grams that occur at least
five times (i.e., τ = 5 and σ = ∞), as reported in Figure 2,
in less than six minutes on NYT and six hours on CW.
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Figure 4: Varying the minimum collection frequency τ

8. RELATED WORK
We now discuss the connection between this work and

existing literature, which can broadly be categorized into:
Frequent Pattern Mining goes back to the seminal

work by Agrawal et al. [8] on identifying frequent itemsets
in customer transactions. While the Apriori algorithm de-
scribed therein follows a candidate generation & pruning
approach, Han et al. [21] have advocated pattern growth
as an alternative approach. To identify frequent sequences,
which is a problem closer to our work, the same kinds of ap-
proaches can be used. Agrawal and Srikant [10, 38] describe
candidate generation & pruning approaches; Pei et al. [37]
propose a pattern-growth approach. SPADE by Zaki [45]
also generates and prunes candidates but operates on an in-
dex structure as opposed to the original data. Parallel meth-
ods for frequent pattern mining have been devised both for
distributed-memory [19] and shared-memory machines [36,
44]. Little work exists that assumes MapReduce as a model
of computation. Li et al. [26] describe a pattern-growth ap-
proach to mine frequent itemsets in MapReduce. Huang et
al. [22] sketch an approach to maintain frequent sequences
while sequences in the database evolve. Their approach is
not applicable in our setting, since it expects input sequences
to be aligned (e.g, based on time) and only supports doc-
ument frequency. For more detailed discussions, we refer
to Ceglar and Roddick [14] for frequent itemset mining,
Mabroukeh and Ezeife [30] for frequent sequence mining,
and Han et al. [20] for frequent pattern mining in general.

Natural Language Processing & Information Re-
trieval. Given their role in NLP, multiple efforts [11, 15,
18, 23, 39] have looked into n-gram statistics computation.
While these approaches typically consider document collec-
tions of modest size, recently Lin et al. [27] and Nguyen
et al. [34] targeted web-scale data. Among the aforemen-

tioned work, Huston et al. [23] is closest to ours, also fo-
cusing on less frequent n-grams and using a cluster of ma-
chines. However, they only consider n-grams consisting of
up to eleven words and do not provide details on how their
methods can be adapted to MapReduce. Yamamoto and
Church [43] augment suffix arrays, so that the collection
frequency of substrings in a document collection can be de-
termined efficiently. Bernstein and Zobel [12] identify long
n-grams as a means to spot co-derivative documents. Brants
et al. [13] and Wang et al. [40] describe the n-gram statis-
tics made available by Google and Microsoft, respectively.
Zhai [46] gives details on the use of n-gram statistics in lan-
guage models. Michel et al. [32] demonstrated recently that
n-gram time series are powerful tools to understand the evo-
lution of culture and language.

MapReduce Algorithms. Several efforts have looked
into how specific problems can be solved using MapReduce,
including all-pairs document similarity [28], processing re-
lational joins [35], coverage problems [16], content match-
ing [33]. However, no existing work has specifically ad-
dressed computing n-gram statistics in MapReduce.

9. CONCLUSIONS
In this work, we have presented Suffix-σ, a novel method

to compute n-gram statistics using MapReduce as a plat-
form for distributed data processing. Our evaluation on
two real-world datasets demonstrated that Suffix-σ outper-
forms MapReduce adaptations of Apriori-based methods
significantly, in particular when long and/or less frequent n-
grams are considered. Otherwise, Suffix-σ is robust, per-
forming at least on par with the best competitor. We also
argued that our method is easier to implement than its com-
petitors, having been designed with MapReduce in mind.
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Figure 5: Varying the maximum length σ
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Figure 6: Scaling the datasets

Finally, we established our method’s versatility by showing
that it can be extended to produce maximal/closed n-grams
and perform aggregations beyond occurrence counting.
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