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ABSTRACT

Global skyline, as an important variant of skyline, has been
widely applied in multiple criteria decision making, business
planning and data mining, while there are no previous stud-
ies on the global skyline query in the subspace. Hence in
this paper we propose subspace global skyline (SGS) query,
which is concerned about global skyline in ad hoc subspace.
Firstly, we propose an appropriate index structure RB-tree
to rapidly find the initial scan positions of query. Secondly,
by making analysis of basic properties of SGS, we propose a
single SGS algorithm based on RB-tree (SSRB) to compute
SGS points. Then an optimized single SGS algorithm based
on RB-tree (OSSRB) is proposed, which can reduce the scan
space and improve the computation efficiency in contrast to
SSRB. Next, by sharing the scan space of different queries,
a multiple SGS algorithm based on RB-tree (MSRB) is pro-
posed to compute multiple SGS (MSGS). Finally, the per-
formances of our proposed algorithms are verified through a
large number of simulation experiments.

Categories and Subject Descriptors

H.2.4 [Databases]: Query processing

General Terms

Algorithms, Performance

Keywords

global skyline, subspace global skyline, RB-tree, query opti-
mization

1. INTRODUCTION
The skyline operator [3] and its variations [7, 18, 5] have

been widely applied in many applications involving multiple
criteria decision making, business planning and data mining.
Given a data set D in the space S, the skyline of D is the
subset of data points that are not dominated by any other
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Figure 1: Example of Skylines

ones [3]; if x, y ∈ D, x dominate y (denoted as x ≺ y), it
means x is as good as or better than y in all dimensions, and
better in at least one dimension. In this paper, suppose the
small value is better, x.i denotes the value of x in dimension
i, then x ≺ y if ∀i ∈ S, x.i ≤ y.i and ∃j ∈ S, x.j < y.j.

As variations of skyline, global skyline [7] and dynamic
skyline [7, 18, 5] are concerned about the potential interest-
ing points when given a query point, which are more chal-
lenging than skyline and have more applications. Global
skyline is more comprehensive than dynamic skyline, which
considers the directions of the query. Global skyline query
can return all the points which are not global-dominated by
other points; given a data set D of |S|-dimensional points
and a query point q in data space S, D can be divided into
l = 2|S| octants with regard to (w.r.t.) q, the set of octants
Oq = {o1, o2, ..., ol}. If x global-dominate y w.r.t. q (denot-
ed as x �q y), it means x and y are in the same octant oj and
the distance between x and q is as long as or shorter than
the distance between y and q in all dimensions, and shorter
in at least one dimension, then x �q y if ∃m,x, y ∈ om, ∀i ∈
S, |x.i− q.i| ≤ |y.i− q.i| and ∃j ∈ S, |x.j − q.j| < |y.j − q.j|.

Example 1. (Skyline and Global Skyline). As illustrated
in Figure 1, the data set D = {d1, d2, d3, d4, d5, d6, d7, d8, d9}
in 2-dimensional space and the query point q = {3, 4}. d2 ≺
d3 because d2.x = d3.x and d2.y < d3.y, the skyline of D
is SKY (D) = {d1, d2, d6}. d4 �q d5 because d4, d5 ∈ o4,
|d4.x− q.x| = |d5.x− q.x| and |d4.y− q.y| < |d5.y− q.y|, the
global skyline w.r.t. q is GSKYq(D) = {d2, d3, d4, d6, d9}.

When given an interesting query point q, global skyline
query can get all the potential interesting points, which
are close to q in all the dimensions. In general, people do
not pay attention to the information in all the dimensions,
they may be concerned about the information in some sub-
dimensions. So we introduce a new skyline variation which
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Material Hardness Heat-resistance Ductility

m1 1 3 3
m2 2 1 5
m3 2 7 7
m4 5 6 8
m5 4 8 7.5
m6 4 1 4.5
m7 7 5 5.5
m8 6.5 3.5 4
m9 6.5 7 7
m10 5 2.5 3.5
m11 7 1.5 2

(a) Example of Material Library

(b) Query of q1 = {3, 4, } (c) Query of q2 = {5, , 6}

Figure 2: Example of queries in Material Library

is concerned about global skyline in ad hoc subspace, called
subspace global skyline (SGS), which can get the potential
concerned points w.r.t. the query point in ad hoc subspace.
SGS query is very useful for many applications. Next, we
give the motivation of SGS query.

Example 2. (Motivation of Subspace Global Skyline). Fig-
ure 2(a) is a material library M , for each material mi ∈
M , there are three properties, hardness, heat-resistance and
ductility. If user1 wants to obtain a material to produce
automotive parts, the material which meets the condition-
s: hardness=3, heat-resistance=4 is the best suitable mate-
rial, then s/he can do subspace global skyline query w.r.t.
q = {3, 4, } in M , the returned materials will be user1’s best
candidate materials. As illustrated in Figure 2(b), materials
m1-m8 and m10 are the candidate materials for user1. User2
wants to find a material to make car doors, the best suit-
able material meets: handness=5 and ductility=6, m2-m10

are the best candidate materials for user2 in Figure 2(c).

To the best of our knowledge, this is the first attempt to
compute global skyline in ad hoc subspace. Our principal
contributions can be summarized as follows.

1. We introduce a novel variation of skyline, called sub-
space global skyline, which aims to provide a minimum
set of candidates to the query point q, and there is no
restrictions of q about its dimensions and values.

2. We propose a new index RB-tree, on the basis of this
index, a single SGS algorithm (SSRB) is proposed.
Then an optimized algorithm OSSRB which can re-
duce the scan space and improve the computation ef-
ficiency is proposed to efficiently evaluate single SGS.

3. We extend single SGS query to multiple SGS queries.
Firstly propose a scheduling strategy of the queries,
and then propose multiple SGS algorithm MSRB.

The rest of the paper is organized as follows. Section
2 overviews the related work. Section 3 formally defines
the problems. Section 4 proposes a new index RB-tree and
two single SGS algorithms, SSRB and OSSRB. Section 5
presents the multiple SGS queries (MSRB) in details. Ex-
periment results are presented in Section 6. Finally, Section
7 concludes the paper.

2. RELATED WORK
The skyline problem was firstly attempted by Kung et

al. [10] in 1975 under the maximum vector problem. Many
efficient algorithms about skyline and its variations have
been proposed.

2.1 Traditional Skyline Processing
There are many existing classic algorithms for computing

skyline points.
BNL and D&C are proposed in [3], BNL computes skyline

by scanning the data file and keeping a list of candidate
skyline points in main memory. D&C approach divides the
data set into several partitions so that each partition fits in
memory. Then the partial skyline points of every partition
are computed using a main-memory algorithm, and the final
skyline is obtained by merging the partial ones. SFS [6] sorts
the entire data first according to some monotonic function
of the skyline dimensions. The skyline points are output to
a window. If the window is large enough, all the skyline
points can be computed through once scan. Otherwise, the
final result can be obtained through several iterations.

The above algorithms do not rely on any index, several
index-based algorithms have been proposed.

In Bitmap [21], each point is mapped to a m-bit vector,
the approach can quickly return the first few skyline points
according to their insertion orders. However, the algorith-
m is not suitable for dynamic databases where insertions
may alter the rankings of attribute values. NN [9] computes
the skyline using nearest neighbor search, and prunes the
search space using the newly found nearest neighbor object.
BBS is proposed by Papadias et al. in [17], which is a pro-
gressive algorithm based on nearest neighbor search using
R-tree structure. BBS can only access those R-tree nodes
that may contain skyline points. Furthermore, it does not
retrieve duplicates. Lee et al. [11] utilized the close relation-
ship between Z-order curve and constructed a novel index
structure called ZBtree, then the skyline search can be con-
ducted over ZBtree based on the pruning property of Z-order
curve. Liu et al. [16] proposed an efficient index for skyline
computation, called ZINC, which is based on ZBtree.

There have also been many papers concerning the skyline
query in some specific settings. Balke et al. [2] solved the
skyline query in distributed environment and there are some
works about skyline query in uncertain data set [19, 8, 13].

2.2 Skyline Variants
There are many variants of the traditional skyline query.

Top-k skyline computations are proposed based on specif-
ic dominance definitions [1, 4, 14, 22]. Tao et al. [23] gave
an efficient algorithm to calculate skylines in a specific sub-
space, Pei et al. [20] and Yuan et al. [24] presented methods
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Table 1: The Summary of Notations
Notation Definition

D data set in date space S

q, Q query point q, the query point set Q
Sq the ad hoc subspace of q

x �
Sq
q y x global-dominate y w.r.t. q in Sq

GSKY Sq (q,D) SGS w.r.t. q of D in Sq

Oq the set of octants w.r.t. q

GSKY Sq ,i(q,D) SGS w.r.t. q in octant oj

RBi index RB-tree in dimension i

to compute skylines in all possible subspace. Chen et al. [5]
proposed dynamic skyline computation when a query point
is given. Dellis et al. [7] proposed methods to compute re-
verse skyline, which is defined on basis of global skyline.

In the context of uncertain databases, Pei et al. [19] pre-
sented the probabilistic skyline over uncertain data, which
can return all the probabilistic skyline points that are ex-
pected to be skyline with probability higher than a given
threshold. Lin et al. [15] et al. proposed a new skyline
operator over multi-dimensional uncertain data, namely s-
tochastic skyline, which can guarantee to provide the min-
imum set of candidates for the optimal solutions over all
possible monotonic multiplicative utility functions.

The most relevant problems to our work are the global
skyline [7], subspace skyline [23], dynamic skyline in met-
ric spaces [5] and group subspace skyline [12]. Specifically,
global skyline was first proposed by Dellis et al. [7] and they
applied R-tree structure to retrieve the data points in all oc-
tants, then get the global skyline. Tao et al. [23] proposed
SUBSKY aims at finding the skyline in an arbitrary sub-
space with a low dimensionality, which settles the problem
using a single B-tree, and converts multi-dimensional data to
1-dimensional values, and enables several effective pruning
heuristics. Chen et al. [5] proposed technique to compute
dynamic skyline in metric space, metric skyline is a vari-
ant of skyline whose dynamic attributes are defined in the
metric space, and proposed an efficient and effective prun-
ing mechanism to answer metric skyline queries through a
metric index. Lian et al. [12] proposed PGSS query, which
retrieves the uncertain objects not dynamically dominated
by other objects w.r.t a group of queries in ad hoc sub-
spaces. They proposed some effective pruning methods to
reduce PGSS search space, then in light of the cost model,
uncertain data are pre-processed and indexed, and get the
final results.

In summary, most of previous studies on skyline variants
are limited to get the dynamic skyline in the full space, or
return the skyline in subspace w.r.t. origin. Group subspace
skyline query [12] can return probabilistic dynamic skyline
in ad hoc subspace. In contrast, our work focus on the global
skyline query in subspace.

3. PROBLEM DEFINITION
Table 1 summarizes the mathematical notations used in

this paper.
Specifically, given a data set D in full space S, a query

point q in its subspace Sq. Let x.i denote the ith coordinate
value of x. Firstly, we define subspace global dominance,
then give the definition of single subspace global skyline.

Figure 3: Example of Subspace Global Skyline

Definition 1. (Subspace Global Dominance). Given a set
D of |S|-dimensional points in data space S, q is a query
point in its subspace Sq , Sq ⊆ S, x, y ∈ D, x subspace-
global-dominate (sg-dominate) y w.r.t. q in Sq (denoted as

x �
Sq
q y) if it holds that: 1) ∀i ∈ Sq , |x.i− q.i| ≤ |y.i− q.i|,

(x.i− q.i)(y.i− q.i) ≥ 0; 2) ∃j ∈ Sq, |x.j − q.j| < |y.j − q.j|.

Definition 2. (Single Subspace Global Skyline). Given da-
ta set D in data space S, q is a query point in its subspace
Sq, Sq ⊆ S, x ∈ D is a SGS point w.r.t. q if there is no

point y ∈ D such that y �
Sq
q x. The set of SGS w.r.t. q of

D (denoted as GSKY Sq (q,D)) is the result of SGS query.

GSKY Sq (q,D) = {x|x ∈ D, 6 ∃y ∈ D, y �
Sq
q x}.

According to the above definitions, given a query point q

in subspace Sq, q can divide D into l = 2|Sq | octants, Oq =
{o1, o2, ..., ol}. The subspace global dominance relationship
can exist between the data points in the same octant. For
each oj , we can get its SGS GSKY Sq ,j(q,D). And the whole
SGS is the sum of the SGS in each octant, GSKY Sq (q,D) =∑

oj∈Oq
GSKY Sq ,j(q,D).

Example 3. (Single SGS). In Figure 3, the full space S =
{x, y, z}, the subspace of q2 is Sq2 = {y, z}. q2 can divide
D into 4 octants, o1 = {d6}, o

2 = {d1, d3, d4}, o
3 = {d7, d8}

and o4 = {d2, d3, d4, d5, d8, d9}. In subspace Sq2 , d4 �q2 d3,
then we can get SGS for each octant, GSKY Sq2

,1(q2, D) =
{d6}, GSKY Sq2

,2(q2, D) = {d1, d4}, GSKY Sq2
,3(q2, D) =

{d7, d8} and GSKY Sq2
,4(q2, D) = {d2, d4, d8}. The whole

SGS is the sum of SGS in each octant GSKY Sq2 (q2, D) =
{d1, d2, d4, d6, d7, d8}.

Next, we define multiple subspace global skyline.

Definition 3. (Multiple Subspace Global Skyline). Given
data set D in data space S, Q is a set of query points Q =
{q1, q2, ..., qn}. Multiple subspace global skyline w.r.t. Q

can return all the single SGS results w.r.t. qi ∈ Q.

In the above definition, multiple SGS is equivalent to com-
puting the single SGS w.r.t. each query in Q.

Example 4. (Multiple SGS). In Figure 3, given D in data
space S = {x, y, z}, Q = {q1, q2, q3}, Sq1 = {x, z}, Sq2 =
{y, z} and Sq3 = {x, y, z}. Multiple SGS queries can return
all the single SGS results w.r.t. qi ∈ Q. GSKY Sq1 (q1, D) =
{d1, d2, d4, d5, d7}, GSKY Sq2 (q2, D) = {d1, d2, d4, d6, d7, d8}
and GSKY Sq3 (q3, D) = {d1, d2, d4, d5, d6, d7, d8}.

420



Figure 4: RB-tree of Material Library (Figure 2(a))
in Dimension Hardness

4. SINGLE SGS QUERY PROCESSING
In this section, we propose a new index structure RB-

tree to rapidly find the initial scan positions of query point.
Then we propose a single SGS algorithm based on RB-tree
(SSRB). Finally, we present two optimization methods, then
propose an optimized single SGS algorithm (OSSRB) which
can reduce the scan space and improve the computation ef-
ficiency in contrast to SSRB.

4.1 RB-tree Index
Given data set D in S, the query point q can be in any ar-

bitrary subspace Sq, and there are 2|S| choices for Sq. So the
indexes in the full space (e.g. R-tree, M-tree) are not appro-
priate for SGS problem. In order to facilitate the subspace
query, we establish a separate index for each dimension.

For each dimension i, we build a new index based on B-
tree, called Region Balance Tree (RB-tree), which can rapid-
ly find the initial scan positions of query point. Then we
build |S| RB-trees for data set D, the RB-tree set of D,
RBSet(D) = {RB1, RB2, ..., RB|S|}. RBi can rapidly find
the initial scan positions of q.i, i ∈ Sq, then begin to scan
the data points from the positions to the both sides.

Given RB-tree in dimension i RBi, all the values of D in
dimension i are stored in the leaf node in ascending order,
and there exist a bi-pointer between two adjacent leaf nodes.
The intermediate node stores the pointers and the bound of
its leaf nodes. Specially, there is a special node between
two adjacent intermediate nodes, which stores the vacancy
interval of the two intermediate nodes, and there are two
pointers in each special node. The left pointer of special
node points to the last leaf node in its left intermediate
node, while the right pointer points to the first leaf node in
its right intermediate node.

Given RBi and q.i, we can easily get the initial scan po-
sitions of q.i, that is to say get the two values which are the
closest to q.i in RBi, the maximum value smaller than q.i

and the minimum value larger than q.i. Then we can begin
to scan the data points from the initial positions.

Example 5. (Region Balance Tree RB-tree). Figure 4 de-
scribes a RB-tree in dimension hardness of material library
(Figure 2(a)), there are 6 leaf nodes sorted in the ascending
order according to their values. Between the intermediate
nodes [1, 2] and [4, 5], there exists a special node (2, 4), its
left pointer points to leaf node 2, which is the last leaf node
in intermediate node [1, 2], while its right pointer points to
leaf node 4.

Given q.hardness = 3, we can rapidly find its initial po-
sitions of q.hardness, obtain the values in leaf nodes which
are the closest to 3, are 2 and 4. 2 is the maximum value
smaller than 3 in RBi, while 4 is the minimum value larger
than 3. Then we can scan the data points from the positions.

4.2 SSRB Algorithm
In this section, we propose some basic properties of SGS

query, and apply round robin scheduling method to scan the
data points in different dimensions, then present the single
SGS algorithm based on RB-tree (SSRB).

Given a query point q in subspace Sq, the data set can be

divided into 2|Sq | octants, Oq = {o1, o2, ..., o2
|Sq|

}, we have
known that subspace global dominance relationship can ex-
ist between the points in the same octant, GSKY Sq ,j(q,D)
denote the SGS points in oj .

We propose some basic properties of SGS. Subspace global
dominance has transitivity, which is an important property.

Theorem 1. If x �
Sq
q y and y �

Sq
q z, then x �

Sq
q z.

Proof. We can easily get it by Definition 1.

We can use RB-trees to find the initial scan positions of
q for all the dimensions (introduced in Section 4.1). Then
we scan the data points from the initial positions to both
sides, the scan direction is from near to far according to the
distance to q. Given RBi and query point q, i ∈ Sq , we can
obtain the theorems below.

Theorem 2. In RBi, x and y are in the same octant
w.r.t. q, and x is scanned before y in RBi, then x cannot be

sg-dominated by y (y 6�
Sq
q x).

Proof. Supposed that y �
Sq
q x, then |y.i− q.i| < |x.i −

q.i|. Because x is scanned before y in RBi, we know that
|x.i−q.i| < |y.i−q.i|, this is contradictory to the assumption.
Then we can get the conclusion in Theorem 2.

Given the query point q and data points x, y in the same
octant, we can know the subspace global dominance rela-
tionship between x and y through their scan sequences in
the dimensions. Then we can get the following lemma.

Lemma 1. Given x ∈ oj , it is scanned in RBi, if x 6∈
GSKY Sq ,j(q,D), so must exist y ∈ GSKY Sq ,j(q,D) which
can sg-dominate x, and y is scanned before x in all RBi.

Proof. If x 6∈ GSKY Sq ,j(q,D), there must exist a SGS

point y �
Sq
q x, then we know that |y.i−q.i| < |x.i−q.i|, ∀i ∈

Sq, so y is scanned before x in all RBi.

From the above theorems, we can get that when we scan
a point x in RBi, we can determine whether x is a subspace
global skyline by judging whether x is sg-dominated by the
points scanned before x in RBi.

First of all, we propose the dimension scan strategy of
SSRB, which apply round robin scheduling method to scan
each dimension of q, each time we scan the data points in
both sides in dimension i, then we scan the data points in
next dimension i+ 1.

Given RBi, we can get the initial positions of qi, then
there are two directions for qi, we define the data points
whose values in dimension i are smaller than q.i as direction
0, while the direction larger than qi is 1. Each time we scan
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RBi, we should read the data points in both directions 0 and
1. When we first scan dimension i, we get the data points
with maximum value at i in direction 0 and the data points
with minimum value in direction 1. If we scan dimension i

the second time, we get the next data points along direction
0, and the next points along direction 1. For example in Fig-
ure 4, given q.hardness = 3, the first time we read m2, m3

in direction 0 while m5,m6 in direction 1. The second time
we read m1 in direction 0, while m4,m10 in direction 1.

We apply round robin scheduling to scan dimensions, and
each time read data points of two directions in the current
scan dimension. Theorem 3 presents the end conditions of
scan in one octant.

Theorem 3. For any x ∈ D and x belongs to octant oj,
if x has been scanned for |Sq| times, then all the SGS points
in oj have been scanned. The calculation of oj is finished.

Proof. Suppose that y ∈ GSKY Sq (q,D) and y has not

been scanned, then x 6�
Sq
q y and ∃i ∈ Sq, |y.i − q.i| <

|x.i− q.i|, so y must be scanned before x in RBi, this is con-
tradictory to the assumption, then get the conclusion.

From Theorem 3, given x ∈ oj has been scanned for |Sq |
times, then all the SGS points in oj have been found, the
calculation about oj is finished. We call the data point x

which is scanned for |Sq| times as finished scan point in
oj . If we find the finished scan points in every octant, the
algorithm SSRB ends, all the SGS points have been found.
The data points which have been scanned constitute the scan
space of q (denoted as ScanSpace(q)). Algorithm 1 presents
the details of SSRB algorithm.

Algorithm 1 SSRB Algorithm

Input: data set D in date space S;
query point q in subspace Sq;

Output: the subspace global skyline GSKY Sq (q,D);
1: for each dimension i ∈ Sq do
2: get the initial scan positions of q.i in RB-tree RBi;
3: end for
4: while ∃oj ∈ Oq do not finish do
5: D′=get points by scan strategy of round robin;
6: for each d ∈ D′ do
7: d.times++;
8: if d.times == 1 then
9: Od=get the octant set d belongs to;
10: for each oj ∈ Od do
11: if GSKY Sq ,j(q,D) 6�

Sq
q d then

12: add d into GSKY Sq ,j(q,D);
13: end if
14: end for
15: else if d.times == |Sq| then
16: the calculations of Od ends;
17: end if
18: end for
19: end while
20: for each oj ∈ Oq do
21: GSKY Sq(q,D)+ = GSKY Sq ,j(q,D);
22: end for
23: return;

As described in Algorithm 1, we locate the query point q

to find its initial scan positions in all the dimensions of Sq

(lines 1-3). Then we get the data point set D′ which should
be computed according to the scan strategy of SSRB (line 5).
When scanning the points in RBi, we scan all the points with
the same value in dimension i at a time, then delete the data
points which are sg-dominated by others, the remaining data
points form the set D′. If we scan only one data point at one
time, there is only one point inD′, do not need to be deleted.
Then we deal with each data point in D′ (lines 6-18). If d
is scanned at first time (lines 8-15), we should judge which
octants d belongs to (line 10), then compute whether d is sg-
dominated by the data points in GSKY Sq ,j(q,D), oj ∈ Od,
if not, d is a SGS point (lines 11,12). If d has been scanned
for |Sq| times, then the calculations of octants d belongs
to are finished (lines 15,16). If the calculations of all the
octants are finished, we can get the final SGS points (lines
20, 21).

Finally, we give the detailed description of SSRB by the
example below.

Example 6. (SSRB Algorithm). As illustrated in Figure
2(b), we firstly locate the query point q = {3, 4, } in di-
mension hardness and heat-resistance. Then begin to s-
can dimension hardness the first time, get m2,m3 in di-
rection 0 and m5,m6 in direction 1. There is no global
dominance relationship between m2 and m3, m5 and m6,
and we should deal with these points. Next we scan di-
mension heat-resistance and get m8 in direction 0, m7 in
direction 1. Continue to scan dimension hardness the sec-
ond time, we get data points m1 in direction 0 and m4,m10

in direction 1, when scan dimension heat-resistance the sec-
ond time, we get m1 and m4. Now m1.times = 2 and
m4.times = 2, the calculations of the octants m1 and m4

belong to are finished, so GSKY Sq,1(q,D) = {m1,m2} and
GSKY Sq ,4(q,D) = {m4,m5,m7}. Repeat this process until
the calculations of all the octants are finished, we will get
the final SGS points, m1-m8 and m10.

4.3 OSSRB Algorithm
In this section, we propose an optimized algorithm OSS-

RB, which adds the scan optimization and calculation opti-
mization to SSRB.

4.3.1 Scan Optimization

In SSRB, we scan the RB-trees by turns until finding the
finished scan points in each octant. The scan strategy of
SSRB may scan many invalid points before finding the fin-
ished scan points, which wastes a lot of calculations. So we
establish a histogram for each dimension to optimize the s-
can strategy of SSRB. In the |S|-dimensional space, we need
build |S| histograms H = {h1, h2, ..., h|S|}.

Figure 5 describes an example about scan optimization.
The query point q = {5, 4.5} in subspace Sq = {x, y}, if
applying scan strategy of SSRB, we need to scan 15 data
points, obtain GSKY Sq ,1(D, q) = {d9}, GSKY Sq ,2(D, q) =
{d3}, GSKY Sq,3(D, q) = {d5, d6, d8} and GSKY Sq ,4(D, q)
= {d8, d12, d14}. The scan space of SSRB is d1 and d3-d16
(denoted as BScanSpace in Figure 5). Next we introduce an
optimized scan strategy which can reduce the scan space.

For each octant, the finished scan point must be the SGS
point, when we select different points in GSKY Sq ,j(D, q)
as finished scan points, their scan spaces are different. In
Figure 5, d3 and d9 are the unique SGS points in their oc-
tants, they must be the finished scan points in their octants.
Their scan spaces are ScanSpace(d3) = {d3, d5, d6, d7, d9}
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Figure 5: Scan Optimization

and ScanSpace(d9) = {d8, d9, d10}. For octants o3 and o4,
there are some candidate points as the finished scan points,
d5, d6 for o3 and d8, d12, d14 for o4. We should select ap-
propriate points as the finished scan points of o3 and o4

which can guarantee that the combination their scan spaces
is minimal. If we choose d5 (or d6) and d8 as the finished s-
can points, the scan space combination of {d3, d5(d6), d8, d9}
is d3-d10, d12 and d14-d16, which has 12 points. When we
select d5 (or d6) and d12 as the finished scan point in o4,
the scan space is d3-d12 and d14-d16 which has 13 points. If
the finished scan points are d5 and d14, the scan space com-
bination of {d3, d5, d9, d14} is d3-d15, which has 13 points.
While if the finished scan points are d6 and d14, the scan
space combination of {d3, d6, d9, d14} is d3-d16 which has 14
points. so d5 (or d6) and d8 are the best finished scan points
in o3 and o4, which can guarantee the whole scan space of
all the octants is minimal. And the best finished scan points
in Figure 5 are {d3, d5, d9, d8} (or {d3, d6, d9, d8}). Next we
propose an optimized scan strategy using histograms to find
the best combination of these finished scan points.

Firstly, we should maintain a histogram for each dimen-
sion. For example, given histogram hi in dimension i, the
data values in dimension i are divided into several intervals,
interval rj stores the total number of data points fall in it-
s scope (denoted as rj .totalnum) and its boundary values,
rj .min denotes the low-bound value while rj .max denotes
the up-bound value, then we can compute the density of rj ,

ρ(rj) =
rj .totalnum×unit

|rj .max−rj .min|+unit
, where unit is the smallest unit

of difference in interval rj . For example in Figure 5, the den-
sity of interval [7,9] in histogram hy is 6×1

|9−7|+1
= 2, unit = 1,

it means the number of data points whose values in y-axis
equal to 7 (or 8, 9) is 2.

In each interval, we hope the number of data is evenly
distributed, in accordance with this principle, we divide the
intervals. In Figure 5, because the number of data points
whose values in y-axis equal to 7 is 2, also there are 2 data
points whose values in y-axis are 8 and 9, we divide 7, 8 and
9 to the same interval [7,9]. Using these histograms, we can
estimate the number of data points between two values in
each dimension, then using function hi(x.i, y.i) to estimate
the number of data points between x.i and y.i in dimension

i, suppose that x.i ≤ y.i, x.i ∈ rm, y.i ∈ rn,m ≤ n.
In Equation 1, ⌊4.5⌋ denotes getting the integer 4. For

example in Figure 5, given two points q.y = 4.5 and d13.y =
8, we can estimate the number of data points between them,

hy(4.5, 8) = 1×(⌊ (5−4.5)

1
⌋+1)+2×( (8−7)

1
+1)+2 = 1+4+2 =

7, they are d8-d14 in dimension y.

hi(x.i, y.i) =






ρ(rm)(⌊ |y.i−x.i|

unit
⌋ + 1), m = n

ρ(rm)(⌊ |rm.max−x.i|

unit
⌋+ 1)

+ρ(rn)(⌊
|y.i−rn.min|

unit
⌋+ 1)

+
∑

j∈(m,n)
rj .totalnum

m 6= n

(1)

Before describing the details of optimized scan strategy,
we give some representations. cnumi,0(1) denotes the num-
ber of data points we have scanned in direction 0 (or 1) of di-
mension i. Given a data x has been scanned in dimension i,
we can use Equation 1 to estimate the number of data points
between the initial scan position q.j and x.j, ∀j ∈ Sq, j 6= i,
which is the number should be scanned before scanning x

in dimension j. x.hnumj,0(1) denotes the number of data
points which should be scanned at direction 0 (or 1) in di-
mension j until scanning x. The difference between cnum

and x.hnum in corresponding direction 0 (or 1) of dimension
i is denoted as x.difi,0(1) = x.hnumi,0(1) − cnumi,0(1), and
x.Alldif =

∑
i∈Sq

x.difi,0(1) denotes the sum of x.dif in all

dimensions. For example in Figure 5, q = {5, 4.5} we scan
d9 = {4, 6} in direction 0 of x-axis, then cnumx,0 = 1, and
we can estimate d9.hnumy,1 = hy(4.5, 6) = 3. d9.dify,1 =
3− 0 = 3, and d9.Alldif = 3.

For each octant, we select the data point with minimum
value Alldif as the finished scan point of corresponding oc-
tant. From these finished scan points in all the octants, we
choose one with minimum Alldif as the fastest finished

scan point.
Here we give the detailed description of optimized scan

strategy. Firstly we randomly select dimension i and begin
to scan the data points in both sides from the initial scan po-
sitions of q.i. Secondly we deal with the initial scanned data
points, and find the fastest finished scan point dfast. Next
we choose the direction with minimum value dfast.difi,0(1)
to scan, and deal with the new scanned data points, update
the corresponding parameters, and select new direction with
minimum value dfast.difi,0(1) to scan. Repeat this process
until all SGS points are found.

Example 7. (Optimized scan strategy). As illustrated in
Figure 5, starting from x-axis, we scan the data point d9
in direction 0, {d4, d5, d14, d15} in direction 1, cnumx,0 = 1,
cnumx,1 = 4, cnumy,0 = 0, cnumy,1 = 0. Because d4, d15
are sg-dominated by d5, d14, we only need to deal with d9, d5,

d14. GSKY Sq ,1 = {d9} and d9.Alldif = d9.dify,1 = 3,
GSKY Sq ,3 = {d5} and d5.Alldif = 4, and GSKY Sq ,4 =
{d14}, d14.Alldif = 7. So d9 is the fastest finished scan
point, we select the direction of d9 (direction 1 of y-axis) to
scan. Next we get d8, update cnumy,1 = 1, GSKY Sq ,4 =
{d14, d8}, d8.Alldif = 4 which is smaller than d14.Alldif =
6, d8 replace d14 as the finished scan point of o4. And d9 is
still the fastest finished scan point with d9.Alldif = 2, con-
tinue to scan direction 1 of y-axis, and get points d9, d10,

d9 �
Sq
q d10, only to deal with d9. Now d9 has been s-

canned twice, the calculation of octant o1 has been finished,
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GSKY Sq,1 = {d9}, update cnumy,1 = 3. We select the
fastest finished scan point in d5, d8, because d5.Alldif =
d8.Alldif = 4, we randomly select d5 as the fastest finished
scan point and scan direction 0 of y-axis, then get d6, up-
date cnumy,0 = 2. GSKY Sq ,3 = {d5, d6}, d6.Alldif = 3
which is not smaller than d5.Alldif = 3, d5 is still the
fastest finished scan point, continue to scan direction 0 of
y-axis and get d3, d5, d7, update cnumy,0 = 5. Because

d5 �
Sq
q d7, we need to deal with d3 and d5, d5 has been

scanned twice, the calculation of o3 is finished, d3 belongs
to o2 and GSKY Sq,2 = {d3}, d3.Alldif = 2 which is the
fastest finished scan point. Repeat this process, next we se-
lect d8 as the fastest finished scan point. At last, we get the
final SGS set GSKY Sq = {d3, d5, d6, d8, d9, d12, d14}.

4.3.2 Calculation Optimization

In Section 4.2, if x ∈ oj , when we scan x the first time, we
must consider whether x is sg-dominated by the points in
GSKY Sq,j(D, q) w.r.t. q, then we can determine whether
x ∈ GSKY Sq ,j(D, q). If the number of data points in
GSKY Sq,j(D, q) is large, it requires a lot of calculations.
In this section, we propose two pruning strategies, which
can reduce amount of redundant calculations and improve
the computation efficiency.

For each set GSKY Sq,j(q,D), we maintain two points,
Low Filter Point (LFP j) and High Filter point (HFP j).

Suppose the current scan dimension is i, the value of
LFP j in dimension i LFP j .i is the current scan value. The
value of LFP j in the other dimension l is the nearest value to
q.l in GSKY Sq,j(q,D). LFP j .l = argminx.l(|x.l−q.l|), x ∈
GSKY Sq,j(q,D), l 6= i. The value of HFP j in dimension i

is also the current scan value. The value of HFP j in other
dimension l is the farthest value to q.l in GSKY Sq ,j(q,D).
HFP j .l = argmaxx.l(|x.l−q.l|), x ∈ GSKY Sq ,j(q,D), l 6= i.
Then we can get two pruning rules.

Theorem 4. Given x ∈ oj and x is scanned the first
time, if x is sg-dominated by HFP j, x 6∈ GSKY Sq(q,D).

Proof. If HFP j �
Sq
q x, ∀y ∈ GSKY Sq,j(q,D), y �

Sq
q x,

x cannot be the SGS point.

Theorem 5. Given x ∈ oj and x is scanned the first
time, if x is not sg-dominated by LFP j, x ∈ GSKY Sq ,j(q,D).

Proof. If LFP
j

i 6�
Sq
q x, ∀y ∈ GSKY Sq,j(q,D), y 6�

Sq
q x,

x can add to GSKY Sq,j(q,D).

We can use Theorem 4 and 5 to rapidly judge whether x

belongs to GSKY Sq (D, q). The details of the filter rules are
described in Algorithm 2.

In Algorithm 2, we can know that LFP j and HFP j

need to be updated when there is a new point added to
GSKY Sq,j(D, q) (line 6). And we can add Algorithm 2 to
Algorithm 1 between lines 10 and 11, then calculation opti-
mization can be achieved.

The OSSRB proposed in this section has better perfor-
mance than SSRB by using the optimized scan strategy and
filter points, which can reduce the scan space and improve
the computation efficiency.

5. MULTIPLE SGS QUERIES PROCESSING
In this section, we propose an algorithm to process mul-

tiple SGS queries. When given multiple queries, we can ex-
ecute these queries one by one using OSSRB, which would

Algorithm 2 Filter(d)

Input: point d ∈ oj which is scanned the first time;
LFP j andHFP j corresponding toGSKY Sq ,j(D, q);

Output: updated LFP j , HFP j and GSKY Sq ,j(D, q);

1: if HFP j �
Sq
q d then

2: d is marked as non-result point;
3: continue deal with next point;

4: else if LFP j 6�
Sq
q d then

5: add d into GSKY Sq ,j(D, q);
6: update LFP j , HFP j;
7: end if
8: return;

waste a lot of calculations. Therefore, we propose a schedul-
ing strategy to divide some queries into one subset, then
present an algorithm MSRB to compute these queries to-
gether through one pass scan.

5.1 Division Scheduling Strategy of Queries
In this section, we introduce a division scheduling strategy

of queries. Given a query set Q, the scan spaces of some
queries have overlap, we except to compute these queries
together to reduce the scan space, the division scheduling
can divide some similar queries into the same subset, and
the queries in a subset can be computed together.

First of all, we introduce the similarity of different queries.
Given two query points q1 and q2, when we calculate their
single SGS, the more overlap of their scan space, the more
similar they are. We cannot get their exact scan space un-
til finishing their SGS queries, but we know some rules to
estimate their similarity.

Given two query points q1, q2, and they share dimension
i, if the difference between q1.i and q2.i is too lager, it means
the number of data points between q1.i and q2.i is large, their
scan spaces in dimension i may have no overlap, the dimen-
sion similarity of q1 and q2 is 0. If the difference between
q1.i and q2.i is very small, there must be some overlap of
their scan spaces in dimension i. Based on the rules above,
we design function Si(q1, q2) (0 ≤ Si(q1, q2) ≤ 1) to estimate
the dimension similarity of two queries in dimension i if
they share dimension i.

Si(q1, q2) =






1, q1.i = q2.i

0, q1.i 6= q2.i, |
hi(q1 .i,q2.i)

N
| > ε

1 −
hi(q1.i,q2.i)

ε×N
, q1.i 6= q2.i, |

hi(q1 .i,q2.i)

N
| ≤ ε

(2)

hi(q1.i, q2.i) denotes the number of data points between
q1.i and q2.i, which can be calculated using Equation 1. N

denotes total number of data points in data setD. ε is a min-
imum value (0 < ε << 1), which is used to limit the max-
imum number of data points between two similar queries.
If ε is too large, the similar queries may have no overlap of
their scan spaces, while if ε is too small, the queries whose
scan spaces have overlap will not be determined as similar
queries, so we should select an appropriate ε.

We can calculate the similarity of two queries in all their
shared dimensions using Equation 2, for other dimensions
which can not be shared, the dimension similarity is 0. Then
we use S(q1, q2) to denote the similarity of q1 and q2.

S(q1, q2) =

∑
i∈(Sq1

∩Sq2
)
Si(q1, q2)

|Sq1 ∪ Sq2 |
(3)
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(a) Index of Material Library

(b) Queries Division (ε=0.5)

Figure 6: Division Scheduling of Queries

Given any two queries, we can get their similarity using
Equation 2 and 3. The larger the similarity, the more overlap
of their scan spaces. If their similarity is larger than 0, they
are called similar queries.

Given a query point set Q = {q1, q2, ..., qm}, we divide Q

into some subsets Q = {Q1, Q2, ..., Ql}, each subset stores
the similar queries. The queries in each subset can be cal-
culated together. Therefore, each query in Qi should have
high similarity with the other queries in Qi. Then we use
S(Qi) to denote the similarity of the queries in Qi.

S(Qi) =






∑
∀qi,qj∈Qi

S(qi,qj)

C2

|Qi|

|Qi| ≥ 2

0, |Qi| = 1
(4)

In Equation 4, C2

|Qi|
is the number of combinations of

any two queries in Qi, C
2

|Qi|
= |Qi|×(|Qi−1|)

2
. We can use

Equation 4 to measure the whole similarity of Qi. Next we
use function f(Q) to score the division of Q.

f(Q) =

∑
Qi∈Q

S(Qi)

|Qsubset|
(5)

In Equation 5, |Qsubset| denotes the number of subsets
of Q, the more the function f(Q), the better the division
scheduling of Q. Then we give an example about queries
division scheduling as follows.

Figure 6 describes an example of queries division, Figure
6(a) is the index of Material in Figure 2(a), meanwhile gives
the initial scan positions of 6 queries in all the dimensions.
In this example we suppose ε = 0.5, then we can calculate
the similarity between two queries using Equation 2 and 3,
and get the results in Figure 6(b). From Figure 6(b), we
divide six queries into three subsets Q1 = {q1, q2, q4}, Q2 =
{q3, q5}, Q3 = {q6}, and S(Q1) = 0.51, S(Q2) = 0.8, S(Q3) =
0, the function of this division scheduling is f(Q) = 0.44,
f(Q) of other divisions must be less than 0.44. The best
division is Q = {{q1, q2, q4}, {q3, q5}, {q6}}.

Given a query set Q, we can easily get the similarity be-
tween any two queries in Q using Equation 2 and 3. All the
similarity values are stored in similarity queue SQ, and then
sort SQ in descending order according to S(qi, qj). Then we
propose algorithm 3 to divide Q rapidly.

As described in Algorithm 3, we apply greedy algorithm
to divide the queries in Q, every time we process the two

Algorithm 3 Division Scheduling of Queries

Input: query point set Q;
similarity queue SQ in descending order;

Output: the division SUB of Q;
1: while SQ is not empty do
2: get the first element of SQ to S(qi, qj);
3: if qi and qj have not been assigned to a subset then
4: assign qi and qj to a new subset subj ;
5: add subj to SUB;
6: else if qi has been assigned to subset subi then
7: compute f(SUB) suppose qj is assigned to subi;
8: compute f(SUB)′ suppose qi and qj are assigned

to a new subset subj ;
9: if f(SUB) > f(SUB)′ then
10: assign qj to subi;
11: else
12: assign qi and qj to a new subset subj ;
13: add subj to SUB;
14: end if
15: end if
16: end while

queries with greatest similarity in the remaining SQ (line 2).
Then we assign the two queries to appropriate subset, and
guarantee the function f(SUB) w.r.t. the current division
SUB with the greatest value (lines 3-14). Algorithm 3 can
provide a good division of Q rapidly.

5.2 MSRB Algorithm
In this section, we propose the details of MSRB algorithm,

given a similar query set Q, how to compute the multiple
SGS results for each query in Q together.

Given a subset Q of similar queries (divided in Section
5.1), we have known the similarity between these queries in
Q. We use S(qi, Q) to measure the similarity between qi
and other queries in Q. Then we sort the queries in Q by
descending order according to the value of S(qi, Q), and se-
lect the query point qi with maximum S(qi, Q) as the main

query point (denoted as qmain).

S(qi, Q) =
∑

∀qj∈Q,qj 6=qi

S(qi, qj) (6)

Equation 6 gives how to compute the S(qi, Q). For ex-
ample in Figure 6(b), Q1 = {q1, q2, q4}, and S(q1, Q1) =
1, S(q2, Q1) = 1, S(q4, Q1) = 1.06, so sort Q1 = {q4, q1, q2}
and q4 is the main query point.

Then we can get the queries which are similar to qmain in
all its dimensions, the queries which are similar to qmain.i

can be saved in Seti(qmain). Next we can get the initial scan
positions of qmain in all dimensions, and use optimized scan
strategy to scan the data points.

When we scan a data x in dimension i, x is not only
in the scan space of qmain, but also in the scan space of
the queries in Seti(qmain). So we deal with x for all the
queries in Seti(qmain). Because the scan direction of qmain

is different from the queries in Seti(qmain). So we apply
different computation methods.

For query point q and the current scan data point x ∈ oj , if
the scan direction is from near to far, we detect whether x is
sg-dominated by the data points which have been scanned
before in GSKY Sq ,j(q,D). Conversely, if the direction is
from far to near, we detect whether x can sg-dominate pre-
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vious scanned data points in GSKY Sq,j(q,D).
We use OSSRB to compute the SGS points of qmain,

meanwhile we deal with the data points in ScanSpace(qmain)
for other queries in Seti(qmain),∀i ∈ Sqmain . If the compu-
tation of qmain is finished, we select the next main query
point in the remaining Q. Repeat this process until all the
queries in Q have been finished. Next we give the details of
MSRB algorithm.

Algorithm 4 MSRB Algorithm

Input: sorted similar query set Q;
Output: GSKY (qi, D) for all qi ∈ Q;
1: while Q is not empty do
2: Remove the first element of Q to qmain;
3: while OSSRB(qmain, D) is not finished do
4: d = the data point which is obtainned by optimized

scan strategy of qmain in dimension i;
5: for each query point qj in Seti(qmain) do
6: deal with d w.r.t. qj ;
7: end for
8: end while
9: end while

In Algorithm 4, for every main query point qmain, we ap-
ply OSSRB method to compute its GSKY Sqmain (qmain, D)
(lines 3-8), meanwhile deal with the scanned data point
w.r.t. the queries which are similar to qmain (lines 4-7).
When all the query points in Q have been finished, MSRB
ends. Then we give an example about MSRB.

Example 8. (MSRB Algorithm). As illustrated in Figure
6, the sorted Q1 = {q4, q1, q2}, q4 is the main query point.
And we begin to scan the data points according to the opti-
mized scan strategy of q4. Firstly we scan m2,m3 in dimen-
sion hardness and q1, q2 are the similar queries with q4 in di-
mension hardness, then get GSKY Sq4 (q4, D) = {m2,m3},
GSKY Sq1 (q1, D) = {m2,m3}, GSKY Sq2 (q2, D) = {m3}

because m3 �
Sq2
q2 m2. Now m2 is the fastest finished scan

point of q4, then we scan m2,m6 at direction 0 in dimen-
sion heat-resistance and q1 is the similar query, because m2

sg-dominate m6 w.r.t. q1, q4, there is no change about S-
GS w.r.t. q1, q4. Continue to scan m3,m9 in dimension
ductility and q1, q2 are the similar queries, because m3 sg-
dominate m9 w.r.t. q1, q2, q4, there are no change about SGS
w.r.t. q1, q2, q4. Then scan m7 at direction 0 in ductility and
get GSKY Sq4 (q4, D) = {m2,m3,m7}, GSKY Sq1 (q1, D) =
{m2,m3,m7}. Next scan m2 at direction 0 in ductility, m2

has been scanned 3 times, the calculation of octants m2 be-
longs to are finished. And we select m3 as the fastest finished
scan point, then scan m11,m10,m1,m8, m7,m4,m3,m9 at
direction 1 in heat-resistance while m3 is the fastest finished
scan point, get GSKY Sq4 (q4, D) = {m2,m3, m7,m11,m10,

m1, m8,m4} andGSKY Sq1 (q1, D) = {m2,m3,m7,m1,m4}.
Now m3 has been scanned 3 times, the calculation of octants
m3 belongs to are finished, and the calculations of all the
octants of q4 are finished.

Then we begin to deal with the remaining queries q1, q4,
now q1 is the qmain. Get the initial scan positions of q1, be-
cause the scan spaces in some dimensions have been scanned,
we can skip these spaces. We scan m1 in dimension hard-
ness and q2 is the similar query, then get GSKY Sq2 (q2, D) =
{m3,m1}. Because the scan direction is from far to near for
q1, we detect whether m1 sg-dominate m2,m3,m7 which are

in the same octants withm1. Because there is no data points
along direction 0 in hardness, the calculations of some oc-
tants are finished for q1, q2. Therefore, the calculations of
all the octants of q2 are finished, we get GSKY Sq2 (q2, D) =
{m3,m1}. And the calculations of only one octant of q1
(m4 belongs to) has not been finished. Next we scan m5,m4

at direction 1 in ductility, because there is no data along
the direction 1 in ductility, the calculations of all the oc-
tants of q2 are finished. Finally we get GSKY Sq4 (q4, D) =
{m1,m2,m3,m4,m7,m8,m10, m11} andGSKY Sq1 (q1, D) =
{m1,m2,m3,m4,m7}, GSKY Sq2 (q2, D) = {m1,m3}

6. EXPERIMENTAL EVALUATION
In this section, through extensive experiments, we demon-

strate the efficiency and effectiveness of our proposed ap-
proaches to answer SGS queries. We have developed a simu-
lator to evaluate the performance of our proposed approach-
es with C++ programming language. A PC with Intel Core
i3-2120 CPU at 3.3GHz, 4GB Ram is used for all experi-
ments.

In particular, we test our methods using both real and
synthetic data sets. Real data set applies forest environ-
mental monitoring data obtained by a sensor network. In
the real data set, there are 30000 tuples and each tuple
has 4 attributes, including humidity, temperature, light and
voltage. Table 2 records average scan space number (the
number of data points in scan space) and total CPU time
of random 100 SGS queries for algorithms SSRB, OSSR-
B, MSRB(ε = 0.003), B-tree and R-tree. B-tree algorithm
applies the scan strategy of SSRB and B-tree index, while
R-tree algorithm uses BBS to compute SGS based on R-tree
index. Because the total number of tuples is 30000, we set
ε = 0.003, then ε× 30000 = 90, which means if the number
of data points between two queries is larger than 90, they
are not the similar queries.

Table 2: Experimental Results of Real Date
Algorithms CPU time (s) Scan Space Number

SSRB 306 7357
OSSRB 262 5723

MSRB (ε = 0.003) 214 4013
B-tree 320 7357
R-tree 612 9221

In Table 2, the average result number of 100 SGS queries
is 819. MSRB can get the SGS results just scan 4013 points,
which is the best algorithm to compute multiple SGS results,
and meanwhile its CPU time is the least. OSSRB has the
best performance to compute these SGS queries one by one.

Next we verify the performance of our algorithms using
synthetic data sets. For synthetic data sets, we employ in-
dependent(uniform) and anti-correlated data sets with di-
mensionality d in the range [3,7] and cardinality N in the
range [100K,1.6M]. Data sets are indexed by RB-trees using
a page size of 4kbytes, resulting in node capacities is 254
which is not affected by dimensionality.

In particular, Section 6.1 and 6.2 study the effect of di-
mensionality and cardinality, respectively.

6.1 The effect of dimensionality
In order to study the effect of dimensionality, we use the

data sets with cardinality N=100K and vary d between 3
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Figure 7: Node accesses
vs. d(N = 100K)
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Figure 8: CPU-time vs.
d(N = 100K)
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Figure 9: Scan space
number vs. d(N = 100K)

0

5

10

15

20

25

30

35

40

3 4 5 6 7

C
P

U
 t

im
e 

(s
)

dimensionality

SSRB
OSSRB

B-tree
R-tree

(a) Independent

0

5

10

15

20

25

3 4 5 6 7

C
P

U
 t

im
e 

(1
0
s)

dimensionality

SSRB
OSSRB

B-tree
R-tree

(b) Anti-correlated

Figure 10: CPU-time vs.
d(N = 100K)

and 7. Given any dimension d ∈ [3, 7], we randomly generate
1000 query points, and the dimension of each query point
d′ is between 2 and d. We randomly select arbitrary d′

dimensions in the full data space.

6.1.1 Index Performance

In this section, we demonstrate the efficiency and effec-
tiveness of our proposed index structure RB-tree. B-tree
and RB-tree are both able to scan the data points sequen-
tially from the initial scan positions to both sides, so we
compare the ability of finding the initial scan positions of
the 1000 queries using two indexes. We record the total
number of node access and CPU time for locating 1000 con-
secutive queries.

Figure 7 shows the number of node access as a function
of dimensionality, for independent (7(a)) and anti-correlated
(7(b)) data sets. Figure 8 illustrates a similar experiment
that compares the indexes in terms of CPU-time under the
same settings. With the growth of dimensionality, the num-
ber of node access and CPU-time increase. And the experi-
mental results are consistent in the two data sets. Because
with the growth of dimensionality, the dimension number of
query points is larger, and more query locations will come,
so the number of node access and CPU-time will increase.
We can see that the number of node access of RB-tree is
much larger than that of B-tree under the same conditions
and the differences increase with the dimensionality. Thus,
the CPU-time of RB-tree is shorter than that of the B-tree.
From the above phagomania, we can get the conclusion that
RB-tree has better performance than B-tree regardless of
the change of dimensionality.

6.1.2 Single query algorithms

In this section, we demonstrate the efficiency and effec-
tiveness of our proposed single SGS query algorithms. We
record the performance of our proposed algorithms SSR-
B and OSSRB. In addition, we compare our algorithms to
B-tree algorithm and R-tree algorithm. B-tree algorithm
applies the scan strategy of SSRB and B-tree index, while

R-tree algorithm applies the variant BBS algorithm using
R-tree index. We randomly generate 1000 subspace query
points, and record the average scan space number and CPU
time of 1000 queries.

Figure 9 shows the number of scan points as a function of
dimensionality, over independent (9(a)) and anti-correlated
(9(b)) data sets. Figure 10 illustrates a similar experiment
compared with the algorithms in terms of CPU-time under
the same settings. With the growth of dimensionality, the
scan space and CPU time increase in all the algorithms. We
can see that OSSRS has better performance than any other
algorithm, while scan space is the smallest and CPU time is
the fastest. All the algorithms have better performance in
independent data set because of the distribution character-
istics.

6.1.3 Multiple queries results

In this section, we demonstrate the efficiency and effec-
tiveness of algorithm MSRB. We record the performances
of OSSRB and MSRB. We randomly generate 1000 query
points and record the total scan space numbers and CPU
time of 1000 queries. OSSRB deals with these queries one
by one. The value after MSRB is the value of ε. The num-
ber of the data set is N = 100000. If the number of data
points between two queries is larger than 100, the overlap
of their scan space must become very small, so the value of
ε should be smaller than 0.001. If ε is small enough, the
similar queries will be fewer, so the value of ε should larg-
er than 0.0005. We give the experimental results of MSRB
when ε = 0.001, ε = 0.0008 and ε = 0.0005.

Figure 11 shows the total number of scan points for all the
1000 queries as a function of dimensionality, for independent
(11(a)) and anti-correlated (11(b)) data sets. Figure 12 il-
lustrates a similar experiment that compares the algorithms
in terms of CPU-time under the same settings. With the
growth of dimensionality, the scan space number and CPU
time increase, the performances of the algorithms are better
in independent data set than anti-correlated data set. We
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Figure 11: Scan space
number vs. d(N = 100K)

0

5

10

15

20

3 4 5 6 7

C
P

U
 t

im
e 

(×
 1

0
3
s)

dimensionality

OSSRB
MSRB(0.001)

MSRB(0.0008)
MSRB(0.0005)

(a) Independent

0

2

4

6

8

10

12

3 4 5 6 7

C
P

U
 t

im
e 

(×
 1

0
4
s)

dimensionality

OSSRB
MSRB(0.001)

MSRB(0.0008)
MSRB(0.0005)

(b) Anti-correlated

Figure 12: CPU-time vs.
d(N = 100K)
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Figure 13: Node accesses
vs. N(d = 5)
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Figure 14: CPU-time vs.
N(d = 5)

can see that MSRB has much better performance than OS-
SRB to process multiple queries. If vary ε between 0.0005
and 0.001, there is little effect on MSRB.

6.2 The effect of cardinality
In order to study the effect of cardinality, we use the data

sets with dimensionality d=5 and vary N between 100K
and 1.6M . We randomly generate 1000 query points, the
dimension number d of each query point is between 2 and
5, and we randomly select arbitrary d dimensions in the full
data space.

6.2.1 Index Performance

Figure 13 and 14 show the number of node access and CPU
time, respectively, versus the cardinality for 5-dimensional
data sets. We can see that with the growth of cardinality,
the number of node access maintains stable and CPU time
slowly increases. In both data sets, the performance of RB-
tree is better than B-tree.

6.2.2 Single query algorithms

In this section, we record the performance of the algo-
rithms SSRB, OSRB, algorithm with B-tree index and algo-
rithm with R-tree index.

Figure 15 shows the number of scan points as a function
of cardinality, for independent (15(a)) and anti-correlated
(15(b)) data sets. Figure 16 illustrates a similar experiments
that compare the algorithms in terms of CPU-time under the
same settings. With the growth of cardinality, the compu-
tations will increase, so the number of scan space becomes
more and CPU time becomes longer. The performance of
OSSRB is better than other algorithms. The algorithms in
independent data set have better performance than that in
anti-correlated data set.

6.2.3 Multiple queries results

In this section, Figure 17 shows the total number of scan
points for all the 1000 queries as a function of cardinality, for
independent (17(a)) and anti-correlated (17(b)) data sets.

Figure 18 illustrates a similar experiment that compares the
algorithms in terms of CPU-time under the same settings.
MSRB has better performance than OSSRB, the effect of ε
is small with the growth of cardinality.

7. CONCLUSIONS
Skyline plays an important role in many applications, in-

cluding business planning, multi-criteria decision making and
so on. In this paper, we present a variant of skyline query,
subspace global skyline query, which can process the glob-
al skyline query with a query point in arbitrary subspace
and have more extensive application prospect. To solve S-
GS query, we firstly propose a new index RB-tree, which
can rapidly find the initial scan positions. Secondly, we an-
alyze the properties of SGS, and propose SSRB algorithm
to compute single SGS points through one pass scan of RB-
trees. On the basis of SSRB, we put forward two optimiza-
tion strategies, and get OSSRB algorithm which has better
performances in scan space and processing time. Then we
propose a method to deal with multiple SGS queries, us-
ing the division scheduling strategy, we assign the similar
queries to the same subset, then employ algorithm MSRB
to solve the queries in subset through one pass scan. MSR-
B use the shared scan space of similar queries and it can
rapidly return the results of multiple SGS queries. Finally,
a large number of simulation experiments verify the perfor-
mance of our proposed algorithms, OSSRB and MSRB show
stable performances and are better than other methods, so
they are appropriate for practical applications.
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Figure 15: scan space
number vs. N(d = 5)
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