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ABSTRACT
Data processing is the core of any statistical information
system. Statisticians are interested in specifying transfor-
mations and manipulations of data at a high level, in terms
of entities of statistical models such as time series. We il-
lustrate here an experience at the Bank of Italy where (i) a
language, EXL, has been defined for the declarative spec-
ification of statistical programs, (ii) an approach for the
translation of EXL code into executables in various target
systems has been developed, and (iii) a concrete implemen-
tation, EXLEngine, has been carried out. The approach
leverages on schema mappings as an intermediate specifica-
tion step, in order to facilitate the translation from EXL
towards several target systems.
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1. INTRODUCTION
Data processing is of primary importance in statistical in-
formation systems of major organizations, since it allows for
the generation of statistical products, which are the finished,
or at least deliverable, artifacts of the whole process of sta-
tistical data treatment [8]. A common statistic production
flow [17] starts from the elementary (raw) data, acquired
in many forms from the external environment. Elementary
data are provided in a number of formats and fed into the
system in an initial phase of the process generally known as
collection. Collected raw data are then processed in order
to obtain aggregated or elaborated information, valuable for
the decision process relying on the statistical information
system. This latter phase, known as statistical data pro-
duction, precedes the dissemination which involves all the
activities that concretely package and deliver products to
the stakeholders [11]. In the area of automatic processing of
statistical information, a major goal would be the integra-
tion of the three phases mentioned above within a unique
information system.
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In the recent literature, a lot of consideration has been de-
voted to the approaches that try to provide support to trans-
formations in various contexts, by means of algebras and
languages for querying, manipulating, extracting and trans-
forming data. In this respect, schema mappings are con-
sidered a powerful formal device to describe transformation
and processing of data [6, 16] . ETL (Extract - Trans-
form - Load) tools, commonly used in data warehousing,
can be seen as application counterparts of mapping the-
ory; the close relationship between schema mappings and
ETL executable flows was practically clarified in the Orchid
prototype [10] but had been consciously understood since
Clio early studies [15]. It is also worth mentioning that
while most of the mappings theory has been developed for
the relational model, arguments for more general, model-
independent approaches have been made [2, 4, 6].

As a matter of fact, there are several kinds of engines used to
run or support statistical programs, which include domain-
independent ones, such as relational databases of ETL tools,
as well as specific ones, such as R or Matlab. Therefore,
the need for a unifying approach that supports several im-
plementation platforms has clearly emerged. The Bank of
Italy has sponsored these objectives, playing for decades a
key role in the process of standardization and devising Ma-
trix [9], a statistical data model, actually adopted in the
Bank, which falls in the class of SDMX1 (Statistical Data
and Metadata Exchange), the internationally adopted model
which benefits from these efforts. The Bank of Italy also
devised EXL [9] (EXpression Language), a specification lan-
guage for statistical programs over cubes (involving sum,
difference, aggregations of cubes etc.).

In this paper, we illustrate an experience carried out at
the Bank of Italy, which leverages the expressive power of
schema mappings and the huge expertise on them present in
the IT community, to build a theoretical and practical bridge
between the abstract specification of a statistical program
(in EXL) and its software execution (in relational databases,
statistical languages and ETL tools).

Our conceptual goal is to formalize the link between pro-
grams expressed in terms of statistical models and their ex-
ecutable form by means of schema mappings. We show that
the result of the execution of the declarative schema map-
pings corresponds to the algorithmic application of program
expressions. To achieve this target, we formulate a data ex-

1http://sdmx.org/
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change problem instance out of the generated schema map-
pings and show that its solution is equivalent to the effect
of the statistical program.

Our practical goal is to provide a technological hub to decou-
ple the abstract specification of statistical procedures from
their technical implementation. The translation of programs
into schema mappings allows for their execution in a number
of target systems.

We illustrate our concrete contribution through EXLEngine,
the engineered system actually adopted by the Bank of Italy
for the generation and execution of schema mappings out of
declarative statistical programs. Programs written by Bank
statisticians are fed into EXLEngine. They are then trans-
lated into a set of schema mappings. Finally, the produced
mappings are translated into an executable form according
to the specific target system. For example, mappings (and so
the original program) could be translated into SQL to dele-
gate the execution of the program to a DBMS; into ETL jobs
to pass the execution to a specialized stream-like architec-
ture such as an off-the-shelf ETL engine; into a specialized
language for a statistical tool (such as R, FAME, Matlab,
etc.).

In the next section we give an overview of our approach and
at the end of it we briefly illustrate the organization of the
subsequent sections.

2. OVERVIEW
In this section, we illustrate our approach by using an exam-
ple, a small statistical program, for which we first show the
specification in EXL, then the equivalent schema mapping
and finally portions of its implementations in various target
systems.

So, let us consider the following EXL program, which cal-
culates the percentage change of the GDP (Gross Domestic
Product) trend by quarter given the GDP per capita by re-
gion and quarter and the population of each region by day.

(1) PQR := avg(PDR , group by

quarter(d), region)

(2) RGDP := RGDPPC * PQR

(3) GDP := sum(RGDP , group by quarter)

(4) GDPT := stl_T(GDP)

(5) PCHNG := (GDPT - shift(GDPT ,1))

* 100 / GDPT

Entities denoted by uppercase strings are statistical func-
tions (called cubes, as in data warehousing). They have ar-
guments, which are omitted in the listing and we briefly
describe now. PDR(d, r) represents the population of a re-
gion r at the end of the day d. PQR(q, r) represents the
same population during a quarter, and it is calculated (line
1) from PDR by changing its sampling frequency from day
to quarter and aggregating the population measure with an
average function. RGDP(q, r) is the regional gross product,
which is obtained (line 2) as product of RGDPPC (regional
gross domestic product per capita) by quarter and the (pre-
viously calculated) average population in the same quarter.
GDP(q) is then obtained (line 3) as the sum over regions

of RGDP(q, r). Then, in line 4, the seasonal decomposition2

operator stl T is used to isolate the trend GDPT(q). Finally
(line 5) the PCHNG is obtained computing the difference
between the values of GDPT in two consecutive quarters,
multiplying by 100 (to have a percentage) and dividing by
the trend itself.

As we will illustrate in Section 4, we can reformulate every
statistical program in terms of a schema mapping, with a
set of tgds3 over relations that correspond to cubes. For
every cube C, we define a relational symbol C′, which has
the same arguments as the cube, plus one, corresponding to
the value of the function. Indeed, in the following we will
often use the same symbol for the cube in EXL and for the
relational symbol in tgds, as it will be clear from the context
what we refer to. So, for example, for function PDR(d, r)
(the population of a region r at the end of the day d), we
have a relation PDR(d, r, p), whose tuples include also the
value p for the population. The tgds we need are extensions
of those commonly used in data exchange settings, because
we need to represent operators. In the example, we would
have the following4

(1) PDR(t, r, p)→ PQR(quarter(t), r, avg(p))
(2) PQR(q, r, p) ∧ RGDPPC(q, r, g)→ RGDP(q, r, p ∗ g)
(3) RGDP(q, r, g)→ GDP(q, sum(g))
(4) GDP→ GDPT(stl T(GDP))
(5) GDPT(q, r1) ∧GDPT(q − 1, r2)→

PCHNG(q, (r1 − r2)× 100/r1)

The extensions with respect to usual tgds do require some
care, even in the definition, so we assume for now the in-
tuition behind them, and we will explain them later. This
especially true for complex operators such as the seasonal
decomposition, where each tuple is a function of all tuples
of the operand; for this reason we use no variables in tgd
(4).

The schema mapping represents in our approach an inter-
mediate, implementation-independent step, which is then
translated into an executable version in a target system.
Many translations are indeed possible and are supported.
We have translations into SQL, R and Matlab.

For example, the translation in SQL for the calculation of
PCHNG (tgd (5)) can be implemented by means of the fol-
lowing statement.

INSERT INTO PCHNG(Q,R)

SELECT G1.Q, (G1.R - G2.R) * 100 / G1.R

FROM GDPT G1, GDPT2 G2

WHERE G1.Q = G2.Q - 1

2The seasonal decomposition is an operator that decomposes
a time series into various components, one of which is
the trend, which, roughly speaking considers medium-
or long-term movements, ignoring seasonal, cyclic (and
stochastic) ones [7, 20].

3As we will see in Section 4, we also have some egds, which
enforce the functional nature of cubes, but we can ig-
nore them here, given that their satisfaction is always
guaranteed, as we will argue.

4Following common practice, we omit universal quantifiers.
Also, given that we need only total tgds, wee have no
quantifiers at all.
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Other possible target systems and languages include the
ones that are specifically designed for statistical elabora-
tions, such as R or Matlab. They are typically vector or
matrix oriented and offer a number of powerful statistical
functions. In most cases, the translation from a tgd into
such target languages is intuitive.

For instance, consider tgd (4), which calculates GDPT out
of GDP and its translation in R. This requires the spec-
ification of the various components of the time series, by
means of function stl(), followed by the extraction of the
trend component, as follows.

GDPC=stl(GDP ," periodic ")

GDPDT=GDPC$time.series[ ,"trend"]

The same tgd would be translated differently, but in a straight-
forward way, if we assume a trend isolating library in Mat-
lab, acting on vectors.

GDPC=isolateTrend(GDP)

A possible perspective on statistical data production, which
will be discussed in Section 5, is ETL. A statistical program
can be intuitively seen as an ETL job composed of a number
of flows each representing a tgd statement. All flows have
the same structure and involve: data source steps, feeding
data into the ETL stream; merge steps, combining streams
coming from different sources; calculation steps, performing
simple or user defined algebraic or statistical calculations;
output steps, writing the results back into the system. For
each relation in the lhs there is a data source step in the
flow. Data streams coming from these steps are merged on
the basis of dimensions, while their measures are combined
with the calculation step.

The approach we have sketched above is indeed adopted in
EXLEngine, the engineered system actually adopted in the
Bank of Italy for the generation and execution of schema
mappings out of declarative statistical programs. Programs
written by Bank statisticians are fed into EXLEngine, which
translates them and generates executables in the various tar-
get systems.

The remainder of the paper is organized as follows. In Sec-
tion 3 we present a short overview of EXL, a specification
language for statistical programs. In Section 4 we present
the approach adopted in EXLEngine to generate schema
mappings out of statistical programs. We address correct-
ness issues by recognizing a data exchange setting from the
generated mappings. In Section 5 we show how EXLEngine
can translate the executable schema mappings into various
executable forms, such as SQL queries or ETL jobs. The
architecture of EXLEngine is then briefly presented in Sec-
tion 6. In Section 7, we discuss related work and in Section 8
we draw our conclusions.

3. THE EXPRESSION LANGUAGE
In this section we illustrate the model we adopt for the rep-
resentation of statistical data and the language we use for
the high-level specification of the transformations of interest.

As we saw in the introduction, we will show in the subse-
quent sections how such a specification can be translated
into executable programs.

The model and language have been defined with the goal
of being closer to the actual activities of statisticians and
independent of the specific implementation.

The data of interest in this context can be modeled by means
of dimensional cubes, similar to those used in data warehous-
ing activities, and the associated transformation processes
can be modeled by statistical programs acting on the cubes.
Let us formalize these concepts, first the model and then the
language for transformations.

We define a cube (as usual) as a partial function

F : X1 × . . .×Xn → Y

where F is the identifier of the cube, and X1, . . . , Xn (the di-
mensions) and Y (the measure5) are all sets. As in databases
(relational and other) we associate a name with each dimen-
sion (and call it dimension indeed), so that we can effectively
refer to it. So, we will also write the cube as F (D1, . . . , Dn)
where D1, . . . , Dn are the dimensions. The function is de-
fined over tuples of the form (x1, . . . , xn), where x1 ∈ X1,
. . . , xn ∈ Xn, associating a value (a measure) y in Y with
each dimensions tuple (x1, . . . , xn) (on which the function is
defined; there are as well tuples on which the function is not
defined—the function is sparse). Given the frequent imple-
mentation of cubes on relational databases, it is common to
refer to the (n + 1)-tuple (x1, . . . , xn, y) as a cube tuple.

In the specific practice of statistics, it is often convenient to
distinguish dimensions related to time from the others, and
to give specific attention to some extreme cases. In partic-
ular, if a function has only one variable that corresponds to
a time dimension, then it is named time series; in our ap-
proach, time series are also treated as cubes. For this reason
we would need to be specific on the nature of the domains for
the dimensions. In the following, for the sake of simplicity,
we will mainly ignore types in the discussion, mentioning
them only when really needed. For the same reasons, we
assume that measures are all numeric.

Let us now turn our attention to EXL (EXpression Lan-
guage) a specification language for statistical programs over
cubes, defined and adopted by the Bank of Italy. We have
already seen an example in Section 2. An EXL statistical
program is a sequence of statements. A statement is an as-
signment where the left-hand side (lhs) is a cube identifier
and the right-hand side (rhs) is an expression.

In an EXL program, cube identifiers are partitioned into two
categories: elementary, whose tuples are available as base
data provided to the system, and derived, defined by means
of expressions. This partitioning is similar to the one in rela-
tional databases between base tables and views, where each
view has a unique definition, and to the one in deductive
databases, and in Datalog specifically, between extensional
and intensional predicates. In an EXL program, the ex-

5In general, it could be possible to define cubes with more
measures, but this would not add much to the discus-
sion.
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pression that specifies the definition of a derived cube in a
statement may contain only elementary cubes and other de-
rived ones specified in previous statements in the program.
So, no recursive definition of derived cubes is allowed, as
this is not needed in the statistical applications of interest.
Moreover, as a cube defines a function, there needs to be a
unique way to obtain it, and so a cube identifier must not
appear as lhs more than once (as opposed to what happens
in Datalog, where intensional predicates can be defined by
means of multiple rules, because there is no functional re-
striction).

Expressions specify how the tuples in a derived cube are
calculated. They can be recursively defined as follows:

• a cube identifier (e.g. C) is an expression; we use the
term cube literal for this base case; the type of the
expression is the same as that of the cube;

• the application of any n-ary EXL operator to n expres-
sions (whose types are compatible with the operator)
is an expression; its type is determined by the specific
operator.

Let us now discuss operators. The language has many of
them and comprises elementary algebraic ones (sum, prod-
uct, etc.) as well as all the complex operators commonly
adopted for statistical analysis (including linear regression,
seasonal decomposition, aggregations such as average, me-
dian, standard deviation). Given that each operator has a
specific syntax and semantics and that a complete general-
ization is not possible (nor a detailed presentation of all of
them), we illustrate now some interesting operators, which
represent the main categories, with the associated variants
and difficulties.

The common feature of operators is that, obviously, an op-
erator produces a result cube (a function with at most one
value for each dimension tuple) from one or more input
cubes. In general, the value of the cube on a dimension
tuple may depend on the values of several tuples (this is
for example the case in aggregation operands and in many
statistical ones). In this respect, we distinguish two main
classes, as follows. We say that an operator is tuple-level if
a value in the result depends only on the value of at most
one tuple for each of the operands, while we say it is multi-
tuple if a value of the result depends on a (non-singleton)
set of tuples of an operand.

As it is common in many languages, we have a syntax (with
special symbols) for some algebraic operators and a function
notation (with an identifier and operands in parenthesis) for
the others.

Operators of all kinds might have, beside operands (which
are in turn expressions), also additional arguments, which
can be scalar parameters or structural elements. Exam-
ples of scalar parameters include the logarithm base, as in
log(2, e1 ∗ 3), or the shift in the time series we already saw
in the example in Section 2. Structural elements arise in all
contexts where the result cube is a result of a restructuring
of the operand, as in the cases of aggregation we discuss
below.

Tuple-level operators are scalar or vectorial. Scalar opera-
tors have one cube operand and scalar parameters (usually
one). They include the natural ones on the measures of
cubes (sum, subtraction, product, division with a constant,
increment, logarithm, exponential, trigonometric function).
Here the expression (the resulting cube) has the same dimen-
sions as the operand, and it is defined (with usual the se-
mantics for each operator) on the dimension tuples on which
the operand has a value for which the operator is meaning-
ful: for example, given the expression e, we have that the
expression 1/e is defined on all dimension tuples on which
the value of the cube denoted by e is not zero.6 Other scalar
operators transform the dimensions. The most common here
is the shift, which is essentially a sum on the values of a nu-
meric dimension or (with a suitable, but natural definition)
on a time dimension. The semantics of the time shift with
parameter s is that the result cube is defined on dimension
values t+s for each dimension value t on which the operand
cube is defined,7 and with the same value: given expression
e, we have that shift(e(t + s)) = e(t), for all t.

Vectorial operators have two (or even more, but this is not
essential here) cubes, generating a third one as a result. The
two operands and the result as well have the same dimen-
sions8 (same name and type for each), and the semantics is
defined as expected, for each dimension tuple. A nontrivial
issue is how to deal with cubes that have the same dimen-
sions but their values exist on different dimension tuples:
here different versions exist, we mainly refer the simplest,
which produces the result cube tuple only for dimension tu-
ples that appear in both cubes, but there are others assum-
ing a default value for the “missing” tuples (example, in the
sum operator, we could have zero as the default value).

The second class, that of tuple-level operators, includes many
of them, which are indeed important in the production of
statistical data, as they restructure cubes, calculating new
values from sets of previous ones. Among them, we have
a significant subclass whose elements can be considered as
black boxes, as they receive one cube in input and transform
it by producing another cube. They have no additional pa-
rameters or clauses and so their semantics is just defined by
the black box function they refer to. An interesting repre-
sentative is the seasonal decomposition (stl) operator we
mentioned in Section 2. Another specific, widely used sub-
class is that of aggregation (or summarization) operators,
which “roll up” cubes, by applying a specific arithmetic op-
erator (for example sum, max, min, or average) to the values
of the cube that correspond to dimensions with the same
value. Here the syntax is the following

aggr(e, group by dimensionList)

where aggr is one of the aggregation operators and dimen-
sionList is a list of dimensions in e or scalar expressions over

6We said that measures are numeric. Indeed, we should
distinguish on the basis of the specific type, but we
omit this discussion.

7The example refers to a time series, with just one dimen-
sion. The generalization to a cube with more dimen-
sions with a shift applied to a time one is a bit intricate
in notation but straightforward.

8There are indeed versions that operate on cubes with dif-
ferent dimensions, but they are not much relevant here.
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them (for example, the application of the quarter function
to a date dimension, as we saw in statement (1) in the ex-
ample in the Overview section). The semantics is essentially
the same as we have in SQL aggregate queries: the result
cube contains only the dimensions in dimensionList and it
is defined as follows: let (x1, . . . , xk) be a tuple with one
value for each dimension in dimensionList and V be the
bag9 of values in cube e that are associated with dimension
tuples (in e) that coincide with (x1, . . . , xk) on dimension-
List. Then, the value of the result cube on (x1, . . . , xk) is
the result of applying function aggr to the bag V . The cube
tuple exists only if the bag V is non-empty.

To complete the discussion on the semantics of EXL, let us
say that, as it is easy to guess, a statement assigns the result
of the expression in its rhs to the cube in its lhs.

4. GENERATING SCHEMA MAPPINGS
FROM STATISTICAL PROGRAMS

Let us now see how a schema mapping can be generated
out of an EXL statistical program. This is illustrated in
Subsection 4.1 (and implemented in our tool EXLEngine).
Then, in Subsection 4.2 we argue for the correctness of the
translation, showing that a solution to the data exchange
problem specified by the mappings equals the result of the
application of the statistical program.

4.1 The generation of schema mappings
With respect to the common theory of mappings [16], we
need to make some extensions to the well known language
for dependencies. In fact, as we saw in Section 3, we do
need to handle operators, which can be complex, with re-
sults that depend on sets of input tuples, as in the case of
aggregation functions or most statistical operators. So, we
will need to provide suitable definitions for the semantics of
the dependency language as well as on the chase procedure
for correctness proof.

As usual, the mapping M we build has the form M =
(S, T,Σst,Σt). Where S and T are the source and target
schemas, respectively, Σst and Σt are the source-to-target
and target dependencies, respectively.

The source relational schema S contains a relational symbol
Fi(Xi,1, . . . , Xi,ni , Yi) for each cube in the EXL program of
interest.10

The target schema T contains the same relations, which we
however need to rename, since we assume (as usual [14])
S ∩ T = ∅. So, for each FS,i(Xi,1, . . . , Xi,ni , Yi) ∈ S we
have a relational symbol FT,i(Xi,1, . . . , Xi,ni , Yi) ∈ T , and
a source-to-target tuple generating dependency (tgd) in Σst

that “copies” the source relation into the target one:

FS,i(x1, . . . , xni , y)→ FT,i(x1, . . . , xni , y)

However, we will not refer to these tgd any longer in the
rest of the paper, as their role is straightforward, and we

9That is, repeated elements are meaningful.
10As anticipated, we blur the distinction between a cube and

the respective relation; Fi denotes both the cube and
the corresponding relation.

will keep on using the same symbol for the relation in the
source and its copy in the target.

An additional auxiliary set of dependencies is needed on the
target, on the basis of the fact that cubes represent func-
tions, with one value for the measure for each dimension
tuple. Indeed, in each cube Fi in the target schema we have
a functional dependency from the dimensions to the mea-
sure. This is modeled by means of an equality generating
dependency (egd), of the form:

Fi(x1, . . . , xni , y1) ∧ Fi(x1, . . . , xni , y2)→ (y1 = y2)

Then, we have dependencies that correspond to the EXL
statements. For each statement, we have one or more target
tgds, depending on the expression in the rhs of the state-
ment. For the sake of simplicity, we assume here that the
expressions in EXL statements include one operator,11 and
so there will be only one tgd for each statement. This as-
sumption does not cause any loss of generality in the ex-
pressive power, as we could add additional statements and
auxiliary cubes to handle intermediate results. For example,
statement (5) in the example in Section 2 could be replaced
by three statements, as follows:

(5a) GDPT1 := shift(GDPT,1)

(5b) CHNG := GDPT - GDPT1

(5c) RCHNG := CHNG / GDPT

(5d) PCHNG := 100 * RCHNG

It should be noted that, in this way, we obtain many tgds,
each with one operator. Indeed, in practice, our tool is able
to simplify them, as it was shown in the example in Section 2,
where statement (5) generates the single tgd (5), with a
complex expression.

According to these hypotheses, all EXL statements have the
form

• C := op (C 1, . . . , C k)

where the operator op might have the special syntax or the
standard function notation, and the number of operands
would depend on the operator itself.

Let us first see tgds for tuple-level operators, where, as we
saw, the result cube is computed value by value, by applying
a function to the individual values of the input cubes for
one dimension tuple for each of the operands. In general,
the dimension tuple in the result need not be the same as
in the operand(s): for example, in the time shift operator,
the value in the result cube is the same as in the operand,
but for a different dimension tuple. In all these cases, we
can find an extension of the usual notion of tgd, with as
many atoms in the lhs as the number of operands and some
scalar expression in the rhs, for the measure or for one of the
dimensions. For example, consider the following expressions,
a scalar multiplication, a vectorial sum, and a time shift
11We could say at most one operator, but it is easy to assume

that there are no statements that just copy a cube with
no additional operations.
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• C2 := 3 * C1

• C5 := C3 + C4

• C7 := shift(C6,1)

They would give rise to the following tgds (assuming the
cubes in the first two statements all have two dimensions
and those in the third have only one):

• C1(x1, x2, y)→ C2(x1, x2, 3× y)
• C3(x1, x2, y1), C4(x1, x2, y2)→ C5(x1, x2, y1 + y2)
• C6(t, y)→ C7(t− 1, y)

These tgds are indeed a bit more complex than those usu-
ally found in data exchange settings, but their semantic is
a straightforward extension of the classical one, in the sense
that a tuple has to exist in the relation in the rhs for each
tuple in the lhs (for unary operators, or pair of tuples for n-
ary operators and so on). Also, these are full tgds, as there
are no existentially quantified variables in the rhs. There-
fore, the values in the generated tuples are uniquely defined,
both when they are copied and when they are calculated.

Let us now consider multi-tuple operators, which produce
values that are calculated from sets of tuples, usually within
a single cube. These include all the aggregation operators as
well as many interesting statistical ones. Here tgds require
special care, because the constraints they specify need to
refer to a relation as a whole, rather than to individual tuples
independently from one another. For example, statement
(3) in the example in Section 2 specifies the sum of different
values of the measure, one for each of the tuples that refer
to a given quarter. This means that, in the extreme case, a
value for the result cube could even depend on all the tuples
of the input cube.

Here, given a statement of the form

• C2 := aggr ( C1 , group by D1, ..., Dk )

assuming that D1, ..., Dk are the first k dimensions of C1,
we would have the following tgd:

• C1(x1, . . . , xk, xk+1, . . . , xn, y)→
C2(x1, . . . , xk, aggr(y))

whose semantics would be:

• for every different tuple x1, . . . , xk in the projection of
C1 on D1, ..., Dk, there is a tuple x1, . . . , xk, y

′ in C2

(so with the same x1, . . . , xk values for the dimensions)
with a value y′ for the measure that is the result of the
aggregation function aggr applied to the multiset of
values that the measure has in the tuples of C1 that
coincide with this tuple on D1, ..., Dk.

It is worth mentioning that aggregation functions have been
introduced in various settings that make use of logic for-
malisms, and the need for a careful definition of semantics
arose in all of them, especially when a procedural semantics

is added (for efficiency of evaluation) to a model based one.
A simple solution, which would be sufficient for our goals,
is based on stable model semantics or on stratified seman-
tics [19], where the basic idea for our case would be very
simple: an aggregation function is computed only when its
input operands are completely known. Given that we have
no recursion, this becomes easy to achieve in our case, fol-
lowing the total order in EXL statements.

In the Overview (Section 2) we have already shown a set of
tgds, which have been derived according to the procedure we
have just described, with one minor extension: we had two
statements, (1) and (5) with more than one operator, and we
have generated a tgd by means of a combination of the steps
just discussed. In statement (1) we have a scalar function
(quarter) that operates on the values of a dimension, and
we have it in the same way in the tgd. In statement (5), we
have four operators, and the resulting tgd takes care of all
of them in a straightforward way.

4.2 Correctness of the schema mappings
Let us now argue for the correctness of the schema map-
pings generated out of the EXL programs as illustrated in
Subsection 4.1.

Thus, let us consider the data exchange problem associated
with the schema mapping M = (S, T,Σst,Σt): given M and
a finite instance I of S, find a finite instance J of T such
that 〈I, J〉 satisfies Σst and J satisfies Σt. Instance I is a
collection of facts for the S atoms representing the cubes,
and so it coincides with the input of the EXL program.

We prove that this data exchange problem always has a so-
lution, which can be found by means of (a suitable variation
of) the chase. Then, we show that the chase indeed gen-
erates the same instance of the target schema as the EXL
program, and so the two are equivalent and the solution
coincides with the output of the EXL program.

The chase terminates, succeeds and solves the data
exchange problem
An EXL program with an instance I as input always termi-
nates and returns an output; the program is acyclic, because
each cube is defined by means of a statement, and makes use
of other cubes which are available. Each statement involves
operators which are well defined as functions and so each of
them terminates.

The existence of solutions to the data exchange problem is
usually proved by means of the chase procedure [13, 16],
which “applies” constraints to an instance, “forcing” their
satisfaction (for tgds this means adding new tuples corre-
sponding to the rhs for each set of tuples that unify with
the lhs; for egds, this means equating values, and this may
lead to failure, if there is need to equate constants). The
procedure has a running instance of 〈S, T 〉 which is initial-
ized as 〈I, ∅〉 (the input instance I for the source schema
and the empty instance for the target one). Then the target
instance is modified by applying all the dependencies in Σst

and Σt as long as they are applicable. Application of tgds
means generation of new tuples in the target instance (as
the name “tuple generating” suggests), while application of
egds leads to modification to the values, if they violate the
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dependency and they are not constants. Violations of egds
that involve constants cause a “failure” of the procedure. In
a classical data exchange setting, if the process terminates
and does not fail, then the resulting instance is a solution to
the data exchange problem,12 which is then shown to exist.

Now, the data exchange problem we have in our case, as
defined by the schema mappings shown in Subsection 4.1,
exhibits some differences with respect to the classic case.
We devise a variation of the classical chase, which always
terminates for our data exchange setting.

The involved dependencies only contain full tgds, therefore
there are no existentially quantified variable, and so all tu-
ples are generated with constants. In the classical case
(without aggregation) this condition is sufficient to guar-
antee termination [5, 13], because of the finiteness of the
source instance, as the number of symbols in the target in-
stance is bounded. Our tgds are also acyclic, and this is
another sufficient condition for termination in the classical
case.

However our tgds are indeed more complex than the classical
ones, because of the aggregations and multi-tuple operators;
thus the mentioned conditions are not sufficient for termina-
tion and some considerations have to be made. The presence
of tuple-level operators does not affect termination as tuples
in the target instance are generated in a bounded way for
all tuples that unify with the lhs. For aggregations and the
other multi-tuple operators, termination is guaranteed by
the adoption of a slightly modified version of the chase in
which the order of rules is constrained. Rather than allow-
ing the applications of chase rules in any order, we follow a
stratified approach: we consider the total order on derived
cubes that corresponds to their definition in the EXL pro-
gram, and apply rules in that order, by completely applying
the rules corresponding to one statement, before consider-
ing the next one.13 Here again it is clear that when a rule is
applied to a specific tuple (or sets thereof), then it will not
have to be applied again, and so the number of applications
is finite and the chase terminates.

As a consequence, if the chase does not not fail, then it
produces a correct solution to the data exchange problem
as it can be easily seen that the result of the application
of rules is unique and equivalent to the result of any other
terminating chase instance that respects the stratification
order.

The only possibility of failure is the violation of an egd. In
our setting, the egds we have are those that guarantee the
functionality of cubes: a cube does not have two tuples with
the same dimension tuple. We can prove this by checking
that it is not possible for our egds to generate two distinct
tuples with the same dimension tuple. First of all, as we
defined EXL with only one statement for each derived cube,
it follows that it suffices to show that no single tgd gener-

12Indeed, it is a solution with very interesting properties,
but this is not essential here.

13This total order is not strictly necessary, the only thing
that is needed is that the rules that involve these gen-
eral operators are applied only after their operands have
been fully computed.

ates two possibly conflicting tuples. Indeed, this does not
happen because all tdgs generate the measure value as a
function on the basis of the values of dimensions. For ex-
ample, for the sum of cubes, if we assume that the input
predicates are indeed functional cubes, then a value for the
result cube is defined for each dimension tuple, as the sum
of the two values (each univocally defined, by hypothesis)
for that dimensions tuple, and this value is unique. Simi-
larly, the tgd for a multi-tuple function is defined to have
one value (and only one) for each dimension tuple. We have
not given details for the various statistical operators, but we
assume that they are all defined in a functional way.

So, we have that the chase terminates, does not fail and
generates a unique result. This result also satisfies all the
constraints, as egds cannot be violated (as we argued above)
and violations of tgds are eventually eliminated by appli-
cations of them. Therefore, the chase generates indeed a
solution for the data exchange problem.

The schema mapping problem is equivalent to the
EXL program
In order to prove that the schema mapping generated out
of an EXL program is actually equivalent to it, we argue
that the instance J that is the solution of the data exchange
problem is equal to the output of the EXL program.

This holds if J contains a relational fact for each cube tuple
generated by the EXL program and viceversa. We can claim
that this is the case because of the way the tgds have been
defined: for each EXL statement we have a tgd, and each
tgd generates one tuple (and exactly one) for each tuple
generated by the EXL expression. This can be proven, in
tedious but straightforward way for each of the operators,
in both classes, tuple-level and multi-tuple.

5. GENERATING EXECUTABLE CODE
The final step to fill the gap between EXL specification lan-
guage and a working implementation is the translation of
the schema mappings generated by the algorithm described
in Section 4.1 into a form that can be executed on target
systems.

As mentioned in the Overview, DBMSs are often adopted as
statistical data can be successfully stored in tables. In other
cases, domain-specific tools, allowing for a specialized treat-
ment of statistical calculations by means of dedicated data
structures and operators, are used. For this category, we fo-
cus on R and Matlab, two widespread matrix oriented tools.
Other approaches comprise statistics within business intel-
ligence processes and assimilate calculations in ETL flows.

We move from the basic observation that tgds in the gener-
ated schema mappings can be orderly applied independently
of one another, as we have shown in Section 4.2. This im-
plies that, without loss of generality, we can concentrate on
the translation of each tgd into its executable form.

In fact, if an executable script generates all the tuples im-
plied by a single tgd, then it is correct with respect to that
dependency and corresponds to a self contained chase step
for the whole data exchange setting. As a consequence, the
execution according to the total order of tgds of every script,
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generates all the tuples needed to solve the exchange setting.

In all cases we proceed by showing examples, which are how-
ever sufficiently general to show how our approach proceeds.
It is important to underline that a given tgd can be formally
translated into all the executable versions, one for each tar-
get system. However, depending on the specific operators
used in the rhs, the translation may be actually feasible or
not. In fact, as it is obvious, it is not the case that all
operators are natively supported by all systems.

5.1 SQL mappings
As we have mentioned in Section 4, tgds may have two basic
structures as they include a tuple-level or multi-tuple oper-
ator.

For the first category, consider tgd (2) in the Overview,
which is quite general, with two elements in the lhs, with
shared variables, and a tuple level operator in the rhs:

(2) PQR(q, r, p) ∧ RGDPPC(q, r, g)→ RGDP(q, r, p ∗ g)

Our tool generates out of it an SQL insertion statement of
the following form

INSERT INTO RGDP(Q,R,P)
SELECT C2.Q AS Q, C2.R AS R, C1.P*C2.G AS P
FROM PQR C1, RGDPPC C2
WHERE C1.Q = C2.Q AND C1.R = C2.R

The conjunction of atoms in the lhs is turned into a join
of the corresponding relations, with the equality conditions
generated out of the repeated variables in the lhs. Measures
are combined by means of a tuple-level operator. The script
correctly generates all the tuples implied by the tgd, since
they are uniquely identified by appropriate matches (join
condition on Q and R) on dimensions. The tuple-level opera-
tor (here multiplication) can be any system (or user) defined
stored function implementing any scalar function.

Tgds with multi-tuple operators require more care. Let us
consider tgds (3) and (4) of the example in the Overview:

(3) RGDP(q, r, g)→ GDP(q, sum(g))
(4) GDP→ GDPT(stl T(GDP))

Indeed, the two cases need to be handled in different ways.
Tgd (3) is essentially an aggregation absolutely similar to
those common in SQL, and so an executable statement can
be generated in a straightforward way, including a GROUP BY

clause and the SUM aggregation function as follows.

INSERT INTO GDP(Q, G)
SELECT Q, SUM(G) as G
FROM RGDP
GROUP BY Q

Tgd (4), instead, is not an aggregation, and it does not re-
duce the cardinality by partitioning and combining tuples,
but essentially computes a new table where each tuple de-
pends on many (possibly all) of the tuples in the argument.

This can be handled by means of a more general approach
(which could also include aggregations as a special case, but
this would make things more complex). This is based on an
extended dialect of SQL where tabular functions are allowed
(and this is indeed available in most commercial systems).
Tabular functions take in input one or more tables and re-
turn another table whose tuples are obtained by an arbitrar-
ily complex elaboration of the input tuples. Thus for tgd (4)
the following script is generated.

INSERT INTO GDPT(Q,G)
SELECT Q,G
FROM STL_T(GDP)

In the script, STL_T denotes the application of a tabular
function to the table GDP. In particular it returns the trend
component for a given time series stored in a table with es-
tablished naming (and types) conventions; it can be either a
system provided API (and indeed many commercial systems
have statistical add-ons) or a user-defined stored function.

5.2 Mappings in specialized languages
Let us start again with tgds with tuple level operators only.

Let us first refer to R, the programming language for sta-
tistical computing. Unlike SQL, it is matrix oriented, with
structures that are called data frames and many ad hoc op-
erations defined on them. Therefore, the implementation of
tgds has to refer to data frames.

A translation of tgd (2) requires various statements.

tmp <- merge(PQR ,RGDPPC ,by=c("q","r"))
tmp$i <- tmp["p"] * tmp["g"]
TGDP <- tmp[-c("p","g")]

The first statement uses the R operator called merge to build
a temporary matrix by joining PQR and RGDPPC on q
and r. The second statement adds a new column i to tmp,
computed as the element-wise product of p and g. Finally
TGDP is obtained by removing columns p and g from the
operand.

Matlab is another example of matrix oriented tool and trans-
lations are based on similar ideas, with differences essentially
on syntax. Let us see how tgd (2) is expressed in this lan-
guage as well.

tmp=join(PQR , 1:2, RGDPPC , 1:2)
tmp [;5]= tmp[ ; 3] .* tmp[ ; 4]
TGDP=[tmp[ ; 1] tmp[ ; 2] tmp[ ; 5]]

Here the Matlab join operator is used to build the temporary
matrix tmp, as the composition of PQR and RGDPPC; its
columns, in order, correspond to variables q, r, p and g in
the tgd. Then, the second statement adds a new column, i
(in position 5), again as the element-wise product of p and g
(here denoted by positions 3 and 4, respectively). The last
statement builds matrix TGDP as the composition of the
dimension vectors (in the first two positions) and i.

With respect to multi-tuple operators, we can observe that
both R and Matlab offer a number of statistical functions
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over matrices, which directly correspond to the operators we
have in EXL and so in tgds. Therefore, the translation is
often direct, and we have already shown such cases in the
Overview, for example for a tgd involving seasonal decom-
position.

5.3 ETL translation
ETL and Business Intelligence tools are another common
family of target system. The translation engine can indeed
turn schema mappings into executable ETL jobs by feed-
ing the metadata catalog of the specific tool. This objective
is of course facilitated if the tool under examination pro-
vides software API to build its catalog. EXLEngine actu-
ally supports Pentaho Data Integration,14 an open source
ETL product which has the advantage of being completely
metadata driven.

For every tgd, an ETL flow is generated by the engine. All
flows are finally tailored into a more comprising job accord-
ing to tgds total order.

For each atom in the lhs, a data source step appears in the
flow. The operator in the rhs is translated into a cascade
of ETL operators, first joining input streams coming from
data source steps on the dimensions, and then combining
the measures. The first operation is performed by a merge
step, which, in turn, is implemented in different ways in the
systems, according to the ETL design and the chosen access
plan. The joined stream is then processed by a calculation
step, which actually implements the rhs of the tgd. ETL
systems provide a number of algebraic tuple-level features
in this kind of steps, calculating stream columns from other
columns. Calculation steps can be easily replaced by user-
defined steps in order to extend the statistical capabilities
of the system. When multi-tuple operators are present in
the rhs, then the native or user-defined calculation step may
be combined with an aggregation step if some grouping is
needed. Finally, the stream is written back into the system
with an output step.

With reference to tgd (2) in the Overview, the ETL flow in
Figure 1 is generated.

Figure 1: Example of schema mapping deployment
as ETL flow

It is apparent that a complete execution of the data flow
generates all the tuples implied by the tgd, since every tuple
in the sources is fed into the stream and treated exactly
once.
14http://kettle.pentaho.com/

6. EXLENGINE:
ARCHITECTURAL OVERVIEW

EXLEngine is the software system used by Bank of Italy to
support the execution of an EXL program. It is metadata-
driven in the sense that the definitions of cubes (elemen-
tary or derived) and dependencies among them, expressed
in terms of EXL statements, guide its runtime behavior. It
refers to a data model called Matrix (for which we have
described the cubes, omitting the illustration of the other
aspects) to structure metadata definitions and to support
the various features needed in the typical statistical data
production process. A major example of this kind of fea-
tures is historicity, that is, the time-dependence of cubes and
programs, which is handled by the system. EXL statements
are written by statisticians by means of IDE tools validating
the programs both syntactically and semantically. System
administrators trigger all the subsequent process, involving
the translation and execution of the statements in the target
systems.

Figure 2 represents a data view of the engine architecture
and points out the data flows.

Figure 2: The architecture of EXLEngine

There is a determination engine, the component that has
the responsibility to decide what cubes have to be calcu-
lated in the system. Indeed, in a production environment,
EXLEngine handles a number of programs at the same time,
which globally define a graph of dependencies among all
the stored cubes. In this graph, which is actually a DAG
(directed acyclic graph) for the aciclicity of EXL programs
mentioned in Section 3, nodes represent the cubes, while
there is a directed edge from a cube A to a cube C, if C is
calculated from A in an EXL statement.

EXL programs need to be run, and derived cubes calculated,
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when some values in elementary cubes (the leaves of the
graph) change. Thus, the determination component detects
what cubes have changed and performs a depth-first visit of
the graph starting from the corresponding nodes, to produce
a topologically sorted graph of all the cubes that need to be
calculated according to the dependencies induced by EXL
expressions. This means that it isolates a set of dependencies
and dynamically builds the EXL program to be run.

The obtained graph is then partitioned by the determina-
tion engine into subgraphs. Each of them will be coherently
delegated to a single target system; technical metadata are
used to specify what specific target system is the most suit-
able to calculate each cube according to the specificity of
the involved operators.

The translation engine for each set of cubes in a subgraph,
considers the generating EXL expressions and performs the
schema mapping generation algorithm producing an inter-
mediate abstract representation of them. Then it translates
the schema mappings into the executable translations ac-
cording to the selected target systems.

All the activities described so far can be efficiently performed
off line or at the startup of the system. In such a way the sys-
tem decouples their computational time from the one of the
actual statistical calculation. It follows that the metadata-
driven approach of EXLEngine does not affect the global
elapsed time for calculations.

In fact, at runtime, a dispatcher component assigns every
subgraph to a specific target system, also applying paral-
lelization and optimization patterns. Each target engine
then only executes its native code and produces the results.

Real runs involve steps performed by several target engines,
therefore they have to share the data they act on. Some
engines, such as DBMSs, include storage capabilities and so
can efficiently operate directly on data: a query dispatched
to a DBMS will be directly executed on data stored in it.

By contrast, other engines can only calculate data but do not
involve a storage system. In some situations, the dispatcher
can provide them with the data they have to operate on
and then handle the result storage. More often, there are
meaningful performance advantages to let engines extract
data from a storage system themselves. This implies that
native scripts generated by the translation engine, are often
engineered with data access primitives. Moreover, in the
solution illustrated so far, every tgd is translated into a read-
write statement in the target system. Actually, it is not
necessary that all the intermediate steps are stored back
into the system as intermediate cubes can be irrelevant. It
follows that the whole approach can be easily reformulated
in terms of creation of relational views, or intermediate R or
Matlab structures for temporary cubes.

7. RELATED WORK
This paper aims at formalizing the link between statistical
programs and their executable form as well as illustrating
a working system. Statistical programs are implemented in
several languages and with respect to different models. Here
we make specific reference to the Matrix data model and to

the EXL language [8, 9, 11], both developed by Bank of Italy,
but any other language could have been considered: in fact,
our approach is general since it does not directly link EXL
to its executable form; by contrast, they are decoupled by
means of schema mappings.

To the best of our knowledge, the link between any statis-
tical language (and the respective reference model) and its
implementation has never been pursued nor formalized.

This work aims at filling this gap by using the theoretical
device of schema mappings. Schema mappings and their
properties have been analyzed in detail in a number of works.
Here we mostly leverage on Fagin et al. [13] definitions.

The theoretical process leading from statistical expressions
to executable schema mappings is somehow twofold. First
expressions are translated into schema mappings, then map-
pings are turned into their executable form. This approach
leverages on the experience of Atzeni et al. [2, 4] on MIDST,
a solution for model-independent schema and data transla-
tion; these works propose model-independent solutions based
on the composition of elementary translations. Elementary
translations are specified as Datalog programs acting on a
pivot metamodel. Here we face the problem from a slight
different perspective and do not foster a pivot metamodel;
instead, we use mappings as a formal abstract language act-
ing as a hub between an abstract transformation specifica-
tion and its implementation.

The approach to the execution of the generated schema map-
pings delegates the effort to the target systems and does
not involve a centralized execution. This is coherent with
the runtime extensions [1] to the mentioned translation ap-
proaches, where translation metadata are determined in ad-
vance and only executable scripts are passed to the tar-
get systems. Approaches and algorithms for the execution
of schema mappings in SQL systems can be also found in
Clio [12, 15] and in +Spicy [18]. Similarly, in Orchid [10] a
formal approach to the integration of schema mappings and
ETL is presented. However, Orchid perspective is slightly
different: it maps both ETL flows and schema mappings
into a common model in order to integrate them. Here we
abstract the specific representation of ETL flows and only
consider schema mappings as a part of the system metadata.

8. CONCLUSIONS
The main contribution of this work is the formalization of
the relationship between common tools used by statisticians
(within a unifying language to write conceptual programs)
and a translation approach generating their executable ver-
sion. The formal device of schema mappings is adopted as
an intermediate step allowing for a uniform translation of
programs into their running form in the target systems.

To the best of our knowledge this is the first proposal in this
direction.

The approach shows that a statistical program, written in
an abstract specification language, can be correctly trans-
lated into a schema mapping: in particular it turns out
that the solution to such a data exchange setting coincides
with the outcome of the statistical program. Concretely, we
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presented EXLEngine, the engineered software architecture
adopted in Bank of Italy implementing the described algo-
rithms.

The approach still has some limitations that are being ad-
dressed. Many operators are particularly easy to be sup-
ported on certain target systems while there are issues on
others. Moreover, a major challenge is devising further
translations of schema mappings in order to widen the spec-
trum of supported target systems.
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