
Temporal Query Processing in Teradata

Mohammed Al-Kateb
Teradata Labs

100 N. Sepulveda Blvd.
El Segundo, CA 90245

mohammed.al-kateb
@teradata.com

Ahmad Ghazal
Teradata Labs

100 N. Sepulveda Blvd.
El Segundo, CA 90245

ahmad.ghazal
@teradata.com

Alain Crolotte
Teradata Labs

100 N. Sepulveda Blvd.
El Segundo, CA 90245

alain.crolotte
@teradata.com

Ramesh Bhashyam
Teradata Labs
Queens Plaza

Hyderabad, 500 003, India
bhashyam.ramesh

@teradata.com

Jaiprakash Chimanchode
Teradata Labs
Queens Plaza

Hyderabad, 500 003, India
jaiprakash.c

@teradata.com

Sai Pavan Pakala
Teradata Labs
Queens Plaza

Hyderabad, 500 003, India
sai.pakala

@teradata.com

ABSTRACT
The importance of temporal data management is evident
by the temporal features recently released in major com-
mercial database systems. In Teradata, the temporal fea-
ture is based on the TSQL2 specification. In this paper,
we present Teradata’s implementation approach for tempo-
ral query processing. There are two common approaches
to support temporal query processing in a database engine.
One is through functional query rewrites to convert a tem-
poral query to a semantically-equivalent non-temporal coun-
terpart, mostly by adding time-based constraints. The other
is a native support that implements temporal database op-
erations such as scans and joins directly in the DBMS inter-
nals. These approaches have competing pros and cons. The
rewrite approach is generally simpler to implement. But
it adds a structural complexity to original query, which can
pose a potential challenge to query optimizer and cause it to
generate sub-optimal plans. A native support is expected to
perform better. But it usually involves a higher cost of im-
plementation, maintenance, and extension. We discuss why
and describe how Teradata adopted the rewrite approach. In
addition, we present an evaluation of our approach through
a performance study conducted on a variation of the TPC-H
benchmark with temporal tables and queries.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query Pro-
cessing

General Terms
Temporal

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT/ICDT ’13 March 18 - 22 2013, Genoa, Italy
Copyright 2013 ACM 978-1-4503-1597-5/13/03 ...$15.00.

1. INTRODUCTION
Time is an important attribute of each and every real-

world application. This importance made it necessary for a
broad spectrum of database applications to be able to per-
form diverse and sophisticated temporal data analytics. In
response to this necessity, ANSI SQL:2011 just came out
with new SQL constructs to support some temporal func-
tionality [9]. Commercial database vendors also acknowl-
edged this indispensable feature as we recently witnessed a
big boost of temporal support in major commercial database
management systems (e.g., IBM DB2 [8], Oracle [12], and
Teradata [15]). Teradata’s temporal feature - made available
in release 13.10 and further enhanced in subsequent releases
- is based on the TSQL2 specification [13]. This feature
comes with an ample scope of temporal elements, including
temporal tables definitions (e.g., valid-time and transaction-
time tables), temporal qualifiers (e.g., sequenced and non-
sequenced), and others (e.g., temporal constraints and com-
parisons). The value of Teradata’s temporal feature is ev-
ident as already being adopted by a class of data-intensive
industries such as top retailers and leading insurers.

In this paper, we present the approach taken by Teradata
to implement temporal query processing. There are two al-
ternatives to consider for implementing temporal queries.
The first is a functional rewrite approach to express the se-
mantics of temporal queries in conventional (non-temporal)
SQL. This approach is typically implemented by adding a
pre-optimization phase to perform the functional rewrites,
which can be in the form of adding new constraints and/or
using derived tables. The second is through a native tem-
poral support in the underlying database engine. This ap-
proach implements temporal database operations such as
scans, projections, and joins directly in the DBMS internals.

To illustrate the difference between the rewrite and the na-
tive approaches, consider an example portraying a scenario
for insurance policy coverage. Table 1 shows that policy
“123-456-789” was initially for partial coverage. This is rep-
resented by a single record in Table 1 holding current (i.e.,
active) data on this policy. Table 2 shows that on “01-01-
2012”, the policy was upgraded to full coverage and this has
been effective to date. Upon the upgrade, the former record
became history and the new record has become current.

573

Table 1: Policy: Current Data - no History
Policy Number Policy Coverage Coverage Period

123-456-789 Partial (01-01-2010, UNTIL CHANGED)

Table 2: Policy: Current and History Data
Policy Number Policy Coverage Coverage Period

123-456-789 Partial (01-01-2010, 01-01-2012)

123-456-789 Full (01-01-2012, UNTIL CHANGED)

Assume that Customer Service wants to know the current
coverage for policy “123-456-789”. This business question
can be expressed in a query as follows:

CURRENT VALIDTIME
SELECT Policy_Coverage
FROM Policy
WHERE Policy_Number = ‘123-456-789’;

In this syntax, CURRENT VALIDTIME directs the query
to go after rows whose time validity (i.e, Coverage Period)
is current (i.e., present and active). This declarative syntax
is part of TSQL2 [13] implemented in Teradata temporal
feature. More details on this syntax are in Section 2.

A rewrite approach needs to transform the above temporal
query to a semantically-equivalent non-temporal one. The
non-temporal query is produced by attaching time-based
predicates to the WHERE clause to filter out all the rows
that are not current (i.e., to discard all inactive records from
the result set and retain the remaining ones). For the above
temporal query, its non-temporal equivalent is as follows (as-
suming current time is ‘10-11-2012’ with closed-open seman-
tics for the period representation):

SELECT Policy_Coverage
FROM Policy
WHERE BEGIN(Coverage_Period) <= DATE ‘10-11-2012’
AND END(Coverage_Period) > DATE ‘10-11-2012’
AND Policy_Number = ‘123-456-789’;

An English-like execution plan description for the query
after transformation is as follows1:

Step1: Do a RETRIEVE step from Policy table with a residual
condition of BEGIN(Coverage_Period)<= DATE ‘2012-10-11’ AND
END(Coverage_Period) > DATE ‘2012-10-11’ into Spool 1.
Step 2: Return the contents of Spool 1.

The plan with the rewrite approach actually deals with the
temporal table as a regular table. Consequently, it plans
for a regular RETRIEVE step to scan the table. But to
reflect the temporal semantics of the CURRENT keyword,
the query is augmented with a residual condition to filter
out all the rows that do not overlap with current time.

A native implementation, however, would treat the tem-
poral table as a different database object and produce an
execution plan accordingly. That is, the underlying DBMS
would need to recognize the temporal table, distinguish be-
tween history and current data, and provide efficient plans
and access paths to either or both. Naturally, this leads to a
new retrieve operator to carry out this execution. Therefore,
an English-like execution plan following a native implemen-
tation would assume a TEMPORAL RETRIEVE step to
scan the table and return CURRENT rows:

Step1: Do a TEMPORAL RETRIEVE step from Policy table for
CURRENT rows into Spool 1.
Step 2: Return the contents of Spool 1.

The tradeoff between these approaches is twofold. With
regard to implementation, the rewrite approach is generally
easier and more predictable, while a native support usu-
ally brings about a higher cost of implementation, main-
tenance, and extension. In the aforementioned temporal
query example, the rewrite approach simply adds tempo-
ral constraints to the original query and the DBMS treats

1Throughout this paper, we present English-like execution
plans as simplified version of Teradata EXPLAIN.

(i.e., plans, optimizes, and executes) it as a regular query
therein. In contrast, a native implementation needs to in-
troduce a new temporal scan operator with new directives
to go after either or both history and current rows in an ef-
ficient and optimized way. With regard to performance, the
rewrite approach is likely to bring a challenge to the query
optimizer and cause it to lose optimization chances or pro-
duce sub-optimal plans due to the structural complexity it
contributes to query processing. The native implementation
approach can avoid such potential negative performance is-
sues as it is typically expected to deliver better performance
by directly implementing temporal operations in the DBMS
internals [10].

For commercial database vendors like Teradata, targeting
industrial applications coupled with complex queries and
heavy workloads, such a tradeoff between implementation
feasibility and performance impact becomes a real challenge.
To meet this challenge, Teradata made the decision to follow
the functional rewrite approach and tightly integrate it with
its existing optimizer rewrite rule engine (ORRE). The pri-
mary principle of this decision is to develop new functional
rewrites to handle temporal semantics (e.g., temporal quali-
fiers and joins) and to leverage existing Teradata’s optimiza-
tion rewrites (e.g., predicate move-around and view folding)
to optimize the performance [6, 7]. Implementation feasi-
bility is then realized via the simplicity and extensibility of
the rewrite approach and optimized performance is achieved
through Teradata’s robust and intelligent optimizer.

Our contributions in this paper are as follows. First, we
discuss why Teradata adopted the rewrite approach. Specif-
ically, we analyze in details the technical challenges of im-
plementing temporal feature natively with regard to main
DBMS components. Second, we describe how Teradata per-
forms temporal rewrites. Particularly, we explain how func-
tional temporal rewrites are actually done for different query
clauses and how existing optimization rewrites are leveraged
to address potential structural complexity in queries result-
ing from functional rewrites. Finally, we present an evalu-
ation of the performance of our approach through an em-
pirical study conducted on a variation of the TPC-H bench-
mark with temporal tables and queries [2]. The results of
experiments show that temporal queries with our rewrite
approach perform comparably to their non-temporal coun-
terparts running on tables with the same row count and size.

The rest of the paper is organized as follows. Section 2
introduces an overall overview of Teradata temporal feature.
Section 3 discusses the implementation approach. Section
4 presents the performance evaluation. Section 5 reviews
related work. Finally, Section 6 concludes the paper and
points to avenues for future work.

2. TERADATA’S TEMPORAL FEATURE
In this section, we give a general overview of the temporal

feature in Teradata.

2.1 Temporal Data Model
Temporal data model in Teradata associates a temporal

dimension (valid time and/or transaction time) to the entire
row. Valid time is the time period during which the associ-
ated attribute values are deemed genuine in reality. Trans-

574

action time is the time period during which attribute values
are actually stored in the database. Valid time and trans-
action time are stored as a PERIOD data type in a single
column if that column is defined using the AS VALIDTIME
construct and the AS TRANSACTIONTIME construct, re-
spectively. A temporal table can contain only a valid time
column (valid-time table), only a transaction time column
(transaction-time table), or both (bi-temporal table).

In a valid-time table, a row can be history if its valid time
ends before current time, current if its valid time overlaps
current time, or future if its valid time begins after current
time. Current and future rows can be assigned an open-
ended value of UNTIL CHANGED for the end of their valid
time column in case such a value is not known beforehand.
In a transaction-time table, a row can be either closed if
it has a transaction time that ends before current time, or
open if has a transaction time that overlaps current time. An
open row is automatically assigned an open-ended value of
UNTIL CLOSED for the end of its transaction time value.

2.2 Temporal Qualifiers
Temporal qualifiers, proposed by Snodgrass [13, 14], allow

for time-slicing queries over temporal tables. These quali-
fiers are in the form of current, sequenced, and non-sequenced
modes. The current mode (defined using CURRENT key-
word) applies to current rows. The sequenced mode (defined
using SEQUENCED keyword) pertains to rows whose valid
time overlaps a time period given in the query. In the ab-
sence of a given period, it applies to history, current, and
future rows. The non-sequenced mode (defined using NON-
SEQUENCED keyword) discards the temporal semantics
and handles rows in a way similar to regular query process-
ing. CURRENT queries do not return temporal informa-
tion in the result, while SEQUENCED queries do. NONSE-
QUENCED queries return user specified columns including
time period columns but without any temporal meaning.

2.3 Temporal Comparisons
Temporal comparisons are done using temporal predicates

and functions. Temporal predicates, such as overlaps and
contains, are constructs for comparing two time periods.
Temporal functions, such as begin and end, apply to a time
period and return a value extracted from that period.

2.4 Temporal Constraints
Temporal constraints can be enforced at the level of each

table and between tables. Table-level (e.g., check and unique)
constraints are expressed by associating a temporal quali-
fier and time dimension with the defined constraint. For a
valid-time table, a constraint can be defined as CURRENT,
SEQUENCED, or NONSEQUENCED. A transaction-time
table only allows a constraint to be CURRENT. Constraints
on bi-temporal tables apply to rows that qualify in the valid-
time dimension and open in the transaction time dimension.

Temporal constrains across tables represent temporal ref-
erential integrity. Similar to table-level constraints, referen-
tial integrity becomes temporal when defined with respect
to time.Temporal referential integrity can be flexibly defined
with the child table being either temporal or regular table.

2.5 Other Temporal Elements
Temporal tables can be physically partitioned. Horizon-

tally (i.e., row) partitioning is particularly useful if a table

is partitioned in order to separate history and current rows,
which can improve the performance of various processing
modes. Vertical (i.e., column) partitioning over temporal
tables can also improve the performance of temporal queries
by directly projecting relevant columns without the need to
access the entire set of columns. Join indexes can be also
defined over temporal tables to enhance the performance of
temporal queries by directly accessing a relatively smaller
portion of the data without the need to physically access
base tables. Other key elements of Teradata temporal fea-
tures include, for example, archiving and loading utilities.

3. IMPLEMENTATION APPROACH
In this section, we present our contributions by discussing

why and describe how Teradata implemented its temporal
feature following the rewrite approach. First, we analyze the
technical challenges of a native implementation and contrast
that to the rewrite approach. Second, we describe how tem-
poral functional rewrites are performed. Third, we explain
how existing optimization rewrites are used to address com-
plexity of queries resulting from functional rewrites. Finally,
we conclude with a discussion on using the rewrite approach
further to support other temporal-specific operators.

3.1 Native vs. Rewrite
A native temporal implementation is mainly about sup-

porting temporal tables as a new type of objects. This in-
volves different storage structure to accommodate current
and history portions of the data. These new tables demand
for changes to all SQL execution code from joins and ag-
gregations to window function processing. For example, ex-
isting hash join execution code needs to be extended for
SEQUENCED and CURRENT joins. Also, all aspects of
query optimization need to be addressed for new temporal
tables and their execution. Examples are as follows. Access
path analysis and statistics need to work on new tempo-
ral tables. Query rewrite and join planning need to handle
new SEQUENCED and CURRENT queries. Join planning
search space should be expanded with new temporal oper-
ations. Calibration is needed for new temporal coefficients
and low-level cost formulas should be developed accordingly.
Beyond optimizer and execution engine, a native implemen-
tation impacts code quality and extensibility negatively with
deeper changes and certain level of code duplication in the
basic DBMS code areas. This can come with a higher risk
on code quality and make extensibility harder and costly.

In contrast, the rewrite approach has no impact on execu-
tion and little impact on the optimizer and main code path.
It is also less risky since it is applied as a separate compo-
nent just before the query optimizer. The DBMS code can
be generally extended easily because of early conversion to
non-temporal qualifiers and constraints. The main issue of
this approach is the added complexity of query structure.
Section 3.3 shows an example of such complexity and how it
is handled by the existing rewrite optimizations in Teradata.

3.2 The Rewrite Approach
As Figure 1 shows, functional and optimization rewrites

jointly represent the core infrastructure for temporal query
processing in Teradata. We developed new functional rewrites
to manage temporal semantics (e.g., temporal joins) and
leveraged existing optimization rewrites (e.g., predicate move-
around and view folding) to optimize the performance.

575

Figure 1: Temporal Support in Teradata

Functional rewrites for temporal support is essentially about
the consequences of temporal qualifiers on: 1) projection list
and 2) selection and join conditions. Projection concerns the
inclusion or exclusion of time dimension from the SELECT
clause resulting from the rewrites. Selection and join con-
ditions pertain to the WHERE and the ON clauses. We
explain our functional query rewrites mechanism for these
two aspects with examples using the following temporal ta-
bles definitions and assuming current date is “10-11-2012”:

Table1 (i1 int, c1 char(1), d1 double, f1 float,
validity1 PERIOD(DATE) AS VALIDTIME);

Table2 (i2 int, c2 char(1), d2 double, f2 float,
validity2 PERIOD(DATE) AS VALIDTIME);

3.2.1 Projection list
The central issue with projection list rewrites is about

the resolution of “*”. This particular issue has been a point
for discussion for different temporal SQL proposals [9]. In
Teradata’s temporal implementation, the presence of “*” is
resolved with regard to temporal qualifier specified in the
query. For CURRENT queries, “SELECT *” is transformed
to the list of all columns excluding valid or transaction time
column since these queries are interested in recent data with
no particular emphasis on the associated time periods. The
following query is an example with CURRENT qualifier:

T Q 1.
CURRENT VALIDTIME
SELECT *
FROM Table1;

which is transformed to exclude valid time from query out-
put (Note the condition added to the WHERE clause for
the semantics of CURRENT. Details are in section 3.2.2):

Q 1.
SELECT i1, c1, d1, f1
FROM Table1
WHERE BEGIN(Table1.validity1) <= ‘10-11-2012’
AND END (Table1.validity1) > ‘10-11-2012’;

For SEQUENCED queries,“SELECT *”projects all columns
with explicit VALIDTIME or TRANSACTIONTIME columns.
Because these queries look for the history and current data,
it becomes necessary to include the time dimension in the re-
sult. The following is an example of a SEQUENCED query:

T Q 2.
SEQUENCED VALIDTIME
SELECT *
FROM Table1;

which is transformed to include the valid time dimension as
a VALIDTIME column:

Q 2.
SELECT i1, c1, d1, f1, validity1 as VALIDTIME
FROM Table1;

For NONSEQUENCED queries, all columns including the
valid or transaction time column are projected as regular
columns because these queries discard any temporal seman-
tics. The following is an example NONSEQUENCED query:

T Q 3.
NONSEQUENCED VALIDTIME
SELECT *
FROM Table1;

which is rewritten with all columns in the projection list
without distinguishing valid time column from other columns:

Q 3.
SELECT i1, c1, d1, f1, validity1
FROM Table1;

A relevant issue for projection list rewrites concerns SE-
QUENCED VALIDTIME queries with ORDER BY clause.
For these queries, if valid-time is not explicitly listed in the
ORDER BY clause, it will be appended at the end of the
clause. The rationale behind that is to further order the
rows based on their time validity since these queries are in-
terested in history (SEQUENCED) and they are explicitly
projecting valid-time column (VALIDTIME).

3.2.2 Selection and join conditions
For single-table queries, with or without selection condi-

tions, the WHERE clause needs to be adjusted to go after
rows overlapping with the time period of interest. For CUR-
RENT qualifier and when SEQUENCED qualifier specifies
an explicit time period, this is achieved by appending time-
based predicates to the WHERE clause to filter out the re-
maining rows. For NONSEQUENCED qualifier or when
SEQUENCED qualifier has no explicit time period defined,
query should run after all rows in the table with no changes
to the WHERE clause. Recall T Q 1 and its corresponding
Q 1 for an example with CURRENT qualifier.

For join conditions, semantically, temporal qualifiers need
to be applied on temporal tables prior to joins. For inner
joins, it is semantically equivalent to apply join conditions
first and then filter out non qualifying rows. Hence, func-
tional rewrites for inner joins convert temporal qualifiers to
predicates appended to the join condition in either the ON
or the WHERE clause. Consider, for example, the following
temporal inner join query:

T Q 4.
CURRENT VALIDTIME
SELECT Table1.c1, Table2.c2
FROM Table1 INNER JOIN Table2
ON Table1.i1 = Table2.i2;

which is transformed to a non-temporal counterpart with
predicates attached to the ON clause:

Q 4.
SELECT Table1.c1, Table2.c2
FROM Table1 INNER JOIN Table2
ON Table1.i1 = Table2.i2
AND BEGIN(Table1.validity1) <= ‘10-11-2012’
AND END(Table1.validity1) > ‘10-11-2012’
AND BEGIN(Table2.validity2) <= ‘10-11-2012’
AND END(Table2.validity2) > ‘10-11-2012’;

The following is an example with SEQUENCED qualifier:

T Q 5.
SEQUENCED VALIDTIME
SELECT Table1.c1, Table2.c2
FROM Table1 INNER JOIN Table2
ON Table1.i1 = Table2.i2;

transformed to a non-temporal counterpart as follows:

Q 5.
SELECT Table1.c1, Table2.c2,
Table1.validity1 P_INTERSECT Table2.validity2
FROM Table1 INNER JOIN Table2
ON Table1.i1 = Table2.i2
AND BEGIN(Table1.validity1) < END(Table2.validity2)
AND END(Table1.validity1) > BEGIN(Table2.validity2);

576

For outer joins, however, following the same rewrite mech-
anism leads to a semantically different query that can pro-
duce incorrect results. By appending temporal predicates to
the ON clause, for example, the outer table’s rows belonging
to the history and those that are current but do not qualify
under the original join condition will both erroneously be
in the result of outer join query. To address this problem,
we use derived tables. The idea is to propagate the tempo-
ral qualifier of the original outer join query to the definition
of derived tables defined on outer and inner tables. This
propagation filters out rows that do not satisfy the original
temporal qualifier and retain the remaining rows eligible for
join. Then, the outer join is applied on the derived tables.
In the following temporal outer join query example:

T Q 6.
CURRENT VALIDTIME
SELECT Table1.c1, Table2.c2
FROM Table1 LEFT OUTER JOIN Table2
ON Table1.i1 = Table2.i2
AND Table2.f2 < 10;

we can see it is being rewritten with derived outer tables on
inner and outer tables. Time-based predicates reflecting the
semantics of temporal qualifiers are added as conditions on
the derived tables. Then, the outer join condition is applied:

Q 6.
SELECT t1.c1, t2.c2
From
(
SELECT *
FROM Table1
WHERE BEGIN(Table1.validity1) <= ‘10-11-2012’
AND END(Table1.validity1) > ‘10-11-2012’
) t1
LEFT OUTER JOIN
(
SELECT *
FROM Table2
WHERE BEGIN(Table2.validity2) <= ‘10-11-2012’
AND END(Table2.validity2) > ‘10-11-2012’
) t2
ON t1.i1 = t2.i2
AND t2.f2 < 10;

3.3 Query Rewrite Optimizations
As discussed before, temporal functional rewrites may add

structural complexity to the original query. For example, the
rewritten query Q 6 is more complex than the original query
T Q 6. The join in Q 6 is applied between two derived tables
rather than two base tables. A straightforward execution
of Q 6 would scan both Table1 and Table2, produce two
temporary results, and then apply the outer join between
them. An English-like description of such execution is below.

Step1: Do a RETRIEVE step from Table1 table with a residual
condition of BEGIN(Table1. validity1)<= DATE ‘2012-10-11’
AND END(Table1. validity1) > DATE ‘2012-10-11’ into Spool 2.
Step 2: Do a RETRIEVE step from Table2 table with a residual
condition of BEGIN(Table2.validity2) <= DATE ‘2012-10-11’
AND END(Table2. validity2) > DATE ‘2012-10-11’ into Spool 3.
Step 3: Do an outer join between Spool 2 and Spool 3 with
join condition Table1.i1 = Table2.i2 and Table1.f2 < 10.
Save result in Spool 1.
Step 4: Return the contents of Spool 1.

Another issue with this execution plan is the late appli-
cation of the “Table2.f2 < 10” filter which can be applied to
Table2 before the join. Teradata’s optimizer has a rich suite
of optimization rewrites that are used to transform queries
into a more performant structure [6, 7]. Join elimination,
view folding, predicate derivation and move-around are ex-
amples of such rewrites. Applying the optimization rewrites
simplifies Q 6 to Q 7 below by folding the two derived tables.

Q 7.
SELECT Table1.c1, Table2.c2
FROM Table1 LEFT OUTER JOIN Table2
ON Table1.i1 = Table2.i2
AND Table2.f2 < 10
AND BEGIN(Table2.validity2) <= ‘10-11-2012’
AND END(Table2.validity2) > ‘10-11-2012’
WHERE BEGIN(Table1.validity1) <= ‘10-11-2012’
AND END(Table1.validity1) > ‘10-11-2012’;

Note that placing temporal constraint of Table1 in the
WHERE clause accomplishes the semantics of applying these
constraints prior to the outer join. Similarly, the temporal
constraints of Table2 is placed into the ON clause to insure
the semantics of applying them prior to the join.The execu-
tion plan of Q 7 is shown below where the join is applied
directly and “Table2.f2 < 10” filter is applied on Table2.

Step1: Do an outer join between Table1 with a condition of
BEGIN(Table1.validity1) <= DATE ‘2012-10-11’ AND END(Table1
.validity1) > DATE ‘2012-10-11" AND Table2 with a condition
of BEGIN(Table2.validity2) <= DATE ‘2012-10-11’ AND END(
Table2.validity2) > DATE ‘2012-10-11’ AND Table2.f2 < 10.
The outer join is applied with join condition Table1.i1 =
Table2.i2. Save results into Spool 1.
Step 2: Return the contents of Spool 1.

Note that applying “Table2.f2 < 10” condition prior to or
during the join is semantically correct. However, it is more
performant to apply the filter before the join, by moving the
predicate from the ON clause to the access of Table2.

3.4 Further discussion
We envision that our rewrite approach can also be used for

other temporal-specific operations like temporal coalescing.
Coalescing is a core operation for temporal databases [4]. It
combines value-equivalent rows having adjacent/overlapping
timestamps. Due to its value to temporal query processing,
coalescing is placed on top of a list of key future extensions
for ANSI SQL [9]. Our proposal to support temporal coa-
lescing in Teradata through query rewrites is based on using
ordered analytic functions and run-time conditional parti-
tioning [3]. Ordered analytic functions are SQL constructs
to apply aggregation functions to a partition of the data.
Runtime partitioning is a Teradata functional enhancement
to ordered analytic functions to define data-based partition-
ing conditions on window aggregate processing using “RE-
SETWHEN” construct. This novel rewrite idea makes it
possible to express coalescing in a join-free single-scan query.

4. PERFORMANCE STUDY
To measure the performance of Teradata’s temporal im-

plementation, we used a workload similar to the one de-
scribed in [2] that adds a temporal flavor to the TPC-H
benchmark. TPC-H [16] represents a retailer shipping parts
from suppliers to customers with orders of lineitems.

Experiments were run on a Teradata 8-node 2690 appli-
ance with release 13.10, using the TPC-H workload at scale
factor 1000 (1 TB). Temporal portion of the workload was
based on three tables: Partsupp that tracks which suppli-
ers provide what parts, Parttbl and Supplier that contain
data on parts and suppliers, respectively. These tables were
rendered temporal with the addition of VALIDTIME and
TRANSACTIONTIME. But, their physical design is the
same as their non-temporal counterparts to allow for apple-
to-apple performance comparisons. Temporal tables were
updated to produce history data, which increased the num-
ber of rows from twice for the bigger table to nine times

577

Figure 2: Elapsed Time of Benchmark Queries in [2]

for the smaller ones. We focused on VALIDTIME and left
TRANSACTIONTIME out of our SQL which is equivalent
to using CURRENT for TRANSACTIONTIME.

As in [2], 13 TPC-H queries involving the three tempo-
ral tables were run. The queries were run for CURRENT
and AS OF2 in addition to the non-temporal original version
from TPC-H. NONSEQUENCED queries were excluded be-
cause their execution follows the non-temporal path and is
not representative of the temporal implementation. We did
not performed SEQUENCED experiments with the TPC-H
queries because the temporal implementation currently sup-
ports only inner joins and no aggregations for SEQUENCED.

Figure 2 and Figure 3 portray the results with elapsed
times measured in seconds. Figure 2 shows that, on aver-
age, for CURRENT VALIDTIME (labeled C) the elapsed
time increase over non-temporal (labeled NT) is only of the
order of 5%. For AS OF version (labeled AO), we selected a
date for which the number of rows qualifying was similar to
CURRENT. There was only another 5% increase. For the
SEQUENCED directive, we developed three SEQUENCED
inner join queries between the three temporal tables. The
first query joins Part and Partsupp. The second joins Sup-
plier and Partsupp. The third introduces a three way join
between the three tables. Figure 3 shows that elapsed time
of SEQUENCED and non-temporal joins is nearly the same.

In summary, the performance of temporal queries in our
system is comparable to their non-temporal counterparts
running on tables with the same row count and size. This
validates that the rewrite approach is not only simple and
extensible, but also comes with good performance.

5. RELATED WORK
There is a little related work to the scope of our paper that

deals with adding temporal dimension to an existing DBMS.
A few temporal prototype implementations exist on top of
Oracle [11], on top of DB2 [5], and by extending Ingress [1].
These prototypes were built outside the respective DBMS
and have a different scope than what we are looking at.

Both Oracle and DB2 added temporal processing to their
database technologies. Temporal support in Oracle is done
via workspace manager [12]. The implementation is done
through views which is the simplest form of a rewrite. There
are no performance analysis done to that implementation.
For DB2, temporal extensions were added in the “DB2 10
for Z/OS” release [8]. The implementation requires users to
define current (i.e., base) and history tables separately and
link them to form a space for a temporal table. For DML
operations, users just reference the base table and DB2 will
access the history table as needed based on the date ranges.

2AS OF is a directive applicable to valid and transaction
time and it implies an overlap with a specific point in time.

Figure 3: Elapsed Time of Join Queries

6. CONCLUSION AND FUTURE WORK
In this paper, we shared our industrial experience with im-

plementing temporal query processing in Teradata. We dis-
cussed in depth the pros and cons of the rewrite and native
implementation approaches, and explained why and how we
used the rewrite approach. In addition, we validated our ap-
proach with a performance study. Our contributions in this
paper open avenues for future work. One example is to in-
vestigate how the flexibility of our implementation approach
can be utilized to further implement other temporal-specific
operators (e.g., temporal coalescing as suggested in 3.4).

7. REFERENCES
[1] I. Ahn and R. Snodgrass. Performance evaluation of a

temporal database management system. In SIGMOD,
pages 96–107, 1986.

[2] M. Al-Kateb, A. Crolotte, A. Ghazal, and L. Rose.
Adding a temporal dimension to the TPC-H
benchmark. In TPCTC, 2012.

[3] M. Al-Kateb, A. Ghazal, and A. Crolotte. An efficient
SQL rewrite approach for temporal coalescing in the
teradata RDBMS. In DEXA, pages 375–383, 2012.

[4] M. H. Böhlen, R. T. Snodgrass, and M. D. Soo.
Coalescing in temporal databases. In VLDB, pages
180–191, 1996.

[5] C. X. Chen, J. Kong, and C. Zaniolo. Design and
implementation of a temporal extension of SQL. In
ICDE, pages 689–691, 2003.

[6] A. Ghazal, R. Bhashyam, and A. Crolotte. Block
optimization in the teradata RDBMS. In DEXA,
pages 782–791, 2003.

[7] A. Ghazal, D. Y. Seid, A. Crolotte, and B. McKenna.
Exploiting interactions among query rewrite rules in
the teradata DBMS. In DEXA, pages 596–609, 2008.

[8] IBM. Temporal data management in DB2 for z/OS:
http://www.ibm.com/developerworks/data/
library/techarticle/dm-1204db2temporaldata/.

[9] K. Kulkarni and J.-E. Michels. Temporal features in
SQL:2011. SIGMOD Rec., 41(3):34–43, Oct. 2012.

[10] D. B. Lomet and F. Li. Improving transaction-time
DBMS performance and functionality. In ICDE, pages
581–591, 2009.

[11] R. Mata-Toledo and M. Monger. Implementing a
temporal data management system within Oracle. J.
Comput. Sci. Coll., 23(3):76–81, Jan. 2008.

[12] Oracle. Oracle flashback technologies:
http://www.oracle.com/technetwork/database/
features/availability/flashback-overview-
082751.html.

[13] R. T. Snodgrass, editor. The TSQL2 Temporal Query
Language. Kluwer, 1995.

[14] R. T. Snodgrass. Developing Time-Oriented Database
Applications in SQL. Morgan Kaufmann, 1999.

[15] Teradata. Teradata temporal analytics
www.teradata.com/database/teradata-temporal/.

[16] TPC. TPC-H benchmark:
http://www.tpc.org/tpch/spec/tpch2.14.4.pdf.

578

