
Bounded repairability for regular tree languages

Gabriele Puppis
Department of Computer Science

University of Oxford, UK

gabriele.puppis@cs.ox.ac.uk

Cristian Riveros
Department of Computer Science

University of Oxford, UK

cristian.riveros@cs.ox.ac.uk

Sławek Staworko
Mostrare, INRIA & LIFL

(CNRS UMR8022)
University of Lille, France

slawomir.staworko@inria.fr

ABSTRACT
We consider the problem of repairing unranked trees (e.g.,
XML documents) satisfying a given restriction specification
R (e.g., a DTD) into unranked trees satisfying a given tar-
get specification T . Specifically, we focus on the question
of whether one can get from any tree in a regular language
R to some tree in another regular language T with a finite,
uniformly bounded, number of edit operations (i.e., dele-
tions and insertions of nodes). We give effective characteri-
zations of the pairs of specifications R and T for which such
a uniform bound exists, and we study the complexity of the
problem under different representations of the regular tree
languages (e.g., non-deterministic stepwise automata, deter-
ministic stepwise automata, DTDs). Finally, we point out
some connections with the analogous problem for regular
languages of words, which was previously studied in [6].

Categories and Subject Descriptors
H.2.m [Information Systems]: Database Management—
Repair

Keywords
XML, edit distance, repair, curry encoding.

1. INTRODUCTION
When a database does not satisfy integrity constraints, a
natural operation to perform is to repair it – modify it min-
imally so that the constraints are satisfied. This approach to
data integrity has been investigated in the relational case for
a variety of integrity constraints – beginning with classical
functional and inclusion dependencies [4], and continuing to
wider classes such as tuple generating dependencies [1]. A
number of different modification operators have been con-
sidered in the relational case, including inserting, changing,
and deleting tuples. In addition to finding repairs of doc-
uments, much of this line of research deals with querying
inconsistent documents via their repairs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDT 2012, March 26–30, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-0791-8/12/03 ...$10.00

For XML documents, repair has been studied less exten-
sively. In [15], repair is considered for an extension of clas-
sical relational constraints such as inclusion dependencies,
while in [22] repairs of a document with respect to an XML
schema are studied, with an emphasis on consistent query-
ing over such documents. The notion of modification of an
XML document is based on standard edit operations on the
underlying tree structure, e.g., relabeling a node, deleting
a node, and inserting a new node. Quite a different line
of work deals with editing of schemas, rather than docu-
ments. For example, [14] deals with a similarity measure on
schemas given by considering embeddings that preserve the
DTD structure. The notion of similarity thus depends on
the syntactic presentation of the schema, not the language
of documents that it defines.

In this work we consider the question of the edit distance be-
tween XML schemas as well. Like [14], we provide a method
to notice similarity of schemas that may differ a bit, and like
[22] we will make use of edit distance on trees. Our results
give a means of detecting whether schema R (for restric-
tion) can be edited into schema T (for target). Unlike [14]
we do this on a purely semantic basis – R is repairable into
T exactly when the documents satisfying R can be repaired
into documents satisfying T . More formally, we consider a
schema R to be “almost included” in schema T if every doc-
ument t in R can be repaired to a document t′ in T using
a finite, uniformly bounded number of edits. In this case,
we say that R is bounded repairable into T . The problem is
motivated not only by schema matching, but also from data
cleaning: we have some integrity property that we want to
assure on documents (the target), and we have some prop-
erty that we can assume the documents already have (the
restriction). Bounded repairability states that we can clean
the inputs to ensure conformance to our target constraint
with a bounded amount of distortion of the input data.

The following examples show that it is not at all obvious
whether one schema is bounded repairable into another.

Example 1. Consider the following DTDs:

R: r → d, c*
d → a*, b*
a → EMPTY
b → EMPTY
c → EMPTY

T : r → a*, e
e → b*, c*
a → EMPTY
b → EMPTY
c → EMPTY

155

The left-hand side schema R defines the language of all trees
of the form r(d(a, . . . , a, b, . . . , b), c, . . . , c), while the right-
hand side schema T defines the language of all trees of the
form r(a, . . . , a, e(b, . . . , b, c, . . . , c)). We claim that R is re-
pairable into T with a uniformly bounded number of edit op-
erations. Indeed, given a tree r(d(a, . . . , a, b, . . . , b), c, . . . , c)
satisfying R, one can first delete the node labeled by d, ob-
taining the tree r(a, . . . , a, b, . . . , b, c, . . . , c), and then insert
a new e-labeled node under the root, which adopts as chil-
dren all the nodes labeled by b or c; this results in a tree
r(a, . . . , a, e(b, . . . , b, c, . . . , c)) that satisfies T .

Example 2. Consider the following DTDs:

R′: r → a
a → b*
b → EMPTY

T ′: r → a
a → b*, c
b → EMPTY
c → EMPTY

It is easy to see that R′ is bounded repairable into T ′: any
tree r(a(b, . . . , b)) in R′ can be modified into a tree in T ′ by
inserting a new c-labeled node as a right-sibling of the nodes
labeled by b. However, if we replace in both DTDs R′ and T ′

the rule r → a with the rule r → a∗, we obtain a new pair of
languages R′′ and T ′′ such that R′′ is not bounded repairable
into T ′′. This example suggests that bounded repairability
depends on some interplay between the rules of DTDs and,
more generally, between the specifications of the labellings of
the nodes at different levels of the trees.

We will deal with the notion of bounded repairability for
schemas that are more general than DTDs, e.g., schemas
that are given by regular tree languages [19], and which
capture the structural part of the W3C’s XML schema [13].
We will formalize the edit distance between regular tree lan-
guages, and from this define the bounded repair problem,
that is, the problem of deciding bounded repairability be-
tween two given tree languages R and T . Our main result
is that it is decidable whether or not R can be repaired into
T with a uniformly bounded number of edits.

For regular languages of words, the bounded repair problem
was resolved in [6]: there it was shown that the problem is
coNP-complete when the languages are represented by de-
terministic finite state automata, and a characterization of
bounded repairability was given using a coverability relation
between chains of connected components of the automata.
In the case of tree languages, the problem turns out to be
much more complex, both in terms of complexity and in
terms of proof techniques that are needed to resolve it. We
will provide a characterization of bounded repairability that
exploits a suitable notion of component of a stepwise tree
automaton [11], i.e., a form of automaton that turns out to
be particularly convenient for analyzing repairs. An addi-
tional complication for the tree case is that we need to con-
sider structures of connected components of stepwise tree
automata that take the form of trees, rather than chains.
Our characterization of the bounded repairability of R into
T requires that every component structure of R can be “cov-
ered”by a component structure of T . The notion of covering

is subtle, and the proof that it captures bounded repairabil-
ity requires lifting the notion of edit from the level of the
individual trees to the level of the component trees associ-
ated with the automata for R and T .

Once we have our characterization, we can apply it to get
decidability of the bounded repair problem, and with some
additional optimization we can give complexity bounds. We
can also apply the characterization theorems to show that
bounded repairability is much simpler to check for special
classes of schemas. For example, we show that it is much
less complex for deterministic DTDs when the alphabet is
fixed, and much less complex when the restriction language
R is trivial (i.e., the class of all trees).

Organization. In Section 2 we give some background on
tree languages and edit operations. In Section 3 we give
the formal statement of our main result, that is, a char-
acterization of exactly which pairs of schemas are bounded
repairable. The proof takes up Section 4. Section 5 uses the
characterization theorem to get complexity bounds, while
Section 6 gives a different characterization of bounded re-
pairability for the case where the restriction language is
trivial, and derives the corresponding complexity bounds.
Section 7 gives conclusions and related work.

2. BACKGROUND

2.1 Curried trees and contexts
Throughout this paper we often use the curry encoding to
represent unranked trees. The curry encoding [11, 17], also
known as the extension encoding, represents an unranked
tree labeled with elements of Σ as a binary tree whose inner
nodes are labeled with a distinguished symbol @ and leaves
with elements of Σ. The encoding, denoted ext, is defined
as follows (with a ∈ Σ):

ext(a) = a,
ext(a(t1, . . . , tn)) = @(ext(a(t1, . . . , tn−1), ext(tn))).

To simplify the notations, we write the symbol @ as an infix,
left-associative operator. Figure 1 illustrates the encoding
of an unranked tree. The inverse ext−1 of the encoding is
defined by providing the symbol @ with the semantics of
the extension operator on unranked tree and by evaluating
the expression in a bottom-up fashion, i.e., ext−1(a) = a
and ext−1(a@t1@ . . .@tn) = a(ext−1(t1), . . . , ext−1(tn)). For
a finite set of labels Σ, we denote by TΣ the set of all curried
trees over Σ.

We make an important observation that the root node of an
unranked tree corresponds to the leftmost leaf in the corre-
sponding curried tree. Other remarks follow [11, 17]. We
point out that ext is a one-to-one mapping between the set
of unranked trees and the set of curried trees. We also note
that there is a one-to-one correspondence between the nodes
of an unranked tree and the leaves of the curried encoding.
Moreover, the yield of a curried tree, i.e., the sequence of
leaves taken from left to right, corresponds to the standard
left-to-right pre-order traversal of the unranked tree. An-
other observation follows from the semantics of the exten-
sion operator: the inner nodes of a curried tree, labeled with
@, correspond to the edges of the unranked tree.

156

r

a

a

d

b

a

a

a

c c c
ext

@

@
r @
a a @

@

@

@

d @

b @
a @
a a

c

c

c

Figure 1: Curry encoding of an unranked tree.

As usual, we use sequences of natural numbers to identify
unambiguously the nodes in a tree: ε is the root node and x⋅i
is the i-th child of node x. We denote by nodes(t) the set of
all nodes in the tree t. For a tree t and a node x ∈ nodes(t),
we denote by t(x) the label of the node x in t. We also
introduce the partial orders ≼post

t and ≼anc
t on the nodes of a

tree t; these two partial orders are induced by the standard
post-order and ancestor relation of t, respectively.

We fix a special label ● not in Σ to be used as a placeholder in
contexts. Formally, a (curried) context over Σ is an element
of TΣ∪{●} with ● occurring exactly once in a leaf. By CΣ we
denote the set of all contexts over Σ. The empty context
is the context ● having exactly one node. For a context
C and a tree t we denote by C ○ t the tree obtained from
the substitution of ● by t in C. Similarly, the composition
C1 ○ C2 of two contexts C1 and C2 is obtained from the
substitution of the placeholder in C1 by C2. (this results
again in a context in CΣ).

2.2 Stepwise tree automata
We use stepwise tree automata [11, 17] to specify regular
tree languages. These are essentially bottom-up tree au-
tomata running over the curry encodings of trees. Formally,
a stepwise automaton is a tuple A = (Σ,Q, δ0, δ, F), where:

1. Σ is a finite set of labels,

2. Q is a finite set of states,

3. δ0 ∶ Σ→ 2Q is an assignment of initial states to labels,

4. δ ∶ Q ×Q→ 2Q is a transition function,

5. F ⊆ Q is a set of final states.

We say that A is deterministic if δ0 (resp., δ) can be de-
scribed as a partial function from Σ (resp., Q ×Q) to Q. It
is often convenient to represent δ0 and δ as a set of rules.
For instance, we write a → q to indicate that q ∈ δ0(a) and
q1@q2 → q to indicate that q ∈ δ(q1, q2).

A run of a stepwise automaton A = (Σ,Q, δ0, δ, F) on a tree
t ∈ TΣ is a function ρ ∶ nodes(t)→ Q such that

� for every leaf node x, ρ(x) ∈ δ0(t(x)),
� for every inner node x, ρ(x) ∈ δ(ρ(x ⋅ 1), ρ(n ⋅ 2)).
A run ρ is accepting if ρ(ε) ∈ F . The language recognized
by A, denoted L (A), is the set of all trees t ∈ TΣ on which
A has an accepting run.

Example 3. As a running example, consider the two
DTDs:

@

@

r @

a a @

@

@

@

d @

b @

a @

a a

c

c

c

pr2

pr1

pr0 pa1

pa0 pa0 pd1

pd1

pd1

pd1

pd0 pb1

pb0 pa1

pa0 pa1

pa0 pa0

pc0

pc0

pc0

@

@

@

@

r @

@

d @

a @

a b

@

a @

a @

a b

c

c

c

qr1

qr1

qr1

qr1

qr0 qd2

qd1

qd0 qa1

qa0 qa1

qa0 qb0

qa1

qa0 qa1

qa0 qa1

qa0 qb0

qc0

qc0

qc0

Figure 2: Runs of two automata R and T .

D: r → a, d
a → a ∣ EMPTY
d → b, c*
b → a
c → EMPTY

D′: r → d, c*
d → a, a
a → a ∣ b
b → EMPTY
c → EMPTY

The following two stepwise automata capture (modulo the
curry encoding) the languages defined by the previous DTDs
(the underlined states are final and any rule using qa? trans-
lates to two rules using qa0 and qa1):

R ∶ r → pr0

a→ pa0

d→ pd0

b→ pb0

c→ qc0

pr0@pa? → pr1

pr1@pd1 → pr2

pa0@pa? → pa1

pd0@pb1 → pd1

pd1@pc0 → pd1

pb0@pa? → pb1

T ∶ r → qr0

d→ qd0

a→ qa0

b→ qb0

c→ qc0

qr0@qd2 → qr1

qr1@qc0 → qr1

qd0@qa1 → qd1

qd1@qa1 → qd2

qa0 @qa1 → qa1

qa0 @qb0 → qa1

Figure 2 presents the (accepting) runs of the automata R
and T on the curry encodings of some trees t and t′, respec-
tively.

Stepwise automata capture exactly the class of regular (un-
ranked) tree languages [11] and they are more succinct than
many other classes of tree automata [17]. Other models that
capture the same class of languages, such as unranked tree
automata [19] are more frequently used. Since unranked
tree automata can be converted into stepwise tree automata
in polynomial time, algorithms for analyzing stepwise au-
tomata provide the same complexity bounds for unranked
tree automata – all of our theorems will apply to unranked
tree automata as well as stepwise tree automata. The main
advantage of using stepwise automata in our proofs is due
to their ability of capturing the cyclic behavior of a regu-
lar tree language, defined via a suitable notion of strongly
connected component (see Section 3 for more details).

In the sequel, we will work with trimmed automata only,
namely, we assume that every state of an automaton appears
in some accepting run (this implies that all states are both
accessible and co-accessible). Every automaton can be made
trimmed in linear time.

157

r

a a

b xxx

c c

b

delete x

r

a a

b c c b

insert y

r

a a

yyy

b c

c b

Figure 3: Edit operations on unranked trees.

As is usual for word automata, we extend the transition
function δ of a stepwise automaton to trees in TΣ and to
contexts in CΣ. Precisely, we define the function δ∗ ∶ TΣ → 2Q

such that q ∈ δ∗(t) iff there exists a run ρ of A on t and
ρ(ε) = q. Similarly, we define the function δ∗● ∶ Q × CΣ → 2Q

such that q′ ∈ δ∗● (q,C) iff there exists a run ρ of Aq = (Σ ∪
{●},Q, δ0 ∪ {(●, q)}, δ,Q) on C and ρ(ε) = q′ (intuitively, we
simulate some computation of A on C under the assumption
that the placeholder is assigned state q). By an abuse of
notation, we will denote δ∗ and δ∗● simply by δ.

2.3 Edit distance and bounded repairability
We briefly recall the definitions of some standard edit opera-
tions on unranked trees. The first operation, called deletion,
consists of removing a distinguished (non-root) node x from
a tree t and promoting its subtrees as children of its parent.
The second operation, called insertion, consists of adding
a new node x in an unranked tree t, with a possible adop-
tion of a list of subsequent children from the parent of x.
Figure 3 gives an example of these two operations. These
are the standard edit-operations that are used to define the
edit-distance between trees [7]. Note that the operation of
relabeling a node in an unranked tree, which is sometimes
used as a standard edit operation, is subsumed by the pre-
vious two operations.

We study the bounded repair problem for regular tree lan-
guages, which consists of deciding, given two regular tree
languages R and T , whether one can transform any tree
t ∈ R into a tree t′ ∈ T using a finite, uniformly bounded
number of edits. Formally, given two unranked trees t and
t′, we denote by dist(t, t′) the minimum number of edits that
are needed for transforming t into t′. Given two regular tree
languages R and T , we then define

dist(R,T) = max
t∈R

min
t′∈T

dist(t, t′)

to be the worst-case cost of repairing R into T . If the cost
dist(R,T) is finite, then we say that R is bounded repairable
into T and we write R ↪BR T for short.

Note that the bounded repairability relation ↪BR satisfies
some key properties, which will be used later on:

� Subset-subsumption, i.e., R ⊆ T implies R ↪BR T .

� Transitivity, i.e., R ↪BR T ↪BR S implies R ↪BR S.

� Union-compatibility, i.e., R ↪BR T and R′ ↪BR T ′

imply R ∪R′ ↪BR T ∪ T ′.

3. MAIN CHARACTERIZATION
In this section we give an effective characterization of the
bounded repairability relation between regular tree lan-
guages. Similarly to the string case [6], this characterization

GR ∶

pr0 pr1 pr2

pd0 pd1

pb0 pb1 pc0

pa0 pa1

GT ∶

qr0 qr1

qd0 qd1 qd2 qc0

qa0 qa1

qb0

Figure 4: Transitions graphs of automata R and T .

is based on the notion of strongly connected component of
the transition graph of a stepwise automaton. In the string
case, a suitable coverability relation between chains of com-
ponents is used to characterize bounded repairability. Be-
cause here we work with trees, we need to generalize the
notion of coverability to a relation over the so-called synop-
sis trees, i.e., full binary trees with nodes labeled by strongly
connected components.

3.1 Components of stepwise automata
Given a stepwise automaton A = (Σ,Q, δ0, δ, F), the transi-
tion graph of A is the graph GA = (Q,Eh ∪Ev), where

Eh = {(q1, q) ∈ Q ×Q ∣ ∃q2. q ∈ δ(q1, q2)},
Ev = {(q2, q) ∈ Q ×Q ∣ ∃q1. q ∈ δ(q1, q2)}.

We call the edges in Ev (resp., Eh) vertical (resp., horizon-
tal). Note that an edge may be both vertical and horizontal.
As an example, Figure 4 depicts the transition graphs of the
automata R and T of Example 3 (dashed arrows represent
horizontal edges, solid arrows represent vertical edges).

Recall that a set X of nodes of a graph G = (V,E) is a
strongly connected component (or simply a component) iff
X is maximal such that for every two x, y ∈ X, there is a
path from x to y visiting nodes in X only. By SCC(A) we
denote the set of all strongly connected components in the
transition graph of A. We associate with each component
X ∈ SCC(A) the language L (A ∣ X) of contexts that are
realizable within X:

L (A ∣X) = {C ∈ CΣ ∣ ∃p, q ∈X. q ∈ δ(p,C)}.

Below, we identify particular types of components in the
transition graph of an automaton. We say that a curried
context C is horizontal if its placeholder ● appears at the
leftmost leaf (possibly at the root, if the context is a single-
ton). Essentially, a horizontal context C represents a hedge,
i.e., a sequence of unranked trees that are encoded by the
sub-trees below the leftmost branch of C. Concatenations
of hedges thus correspond to compositions of horizontal con-
texts. For instance, given two horizontal contexts C and C′,
C ○C′ is a horizontal context that represents the concatena-
tion of the two hedges represented by C and C′, respectively.

A component X ∈ SCC(A) is horizontal iff it realizes hori-
zontal contexts only, namely, for every C ∈ L (A ∣ X), C is
horizontal. Notice that an horizontal component of A can

158

τ ∶ {pr2}

{pr1}

{pr0} {p
a
1}

{pa0} {p
a
0}

{pd1}

{pd0} {p
b
1}

{pb0} {p
a
1}

{pa0} {p
a
0}

σ ∶ {qr1}

{qr1}

{qr0} {qd2}

{qd1}

{qd0} {qa1}

{qa0} {qb0}

{qa1}

{qa0} {qb0}

{qc0}

Figure 5: Synopsis trees τ and σ of automata R and
T .

also be seen as a sub-automaton of A that contains horizon-
tal transitions only. Similarly, we say that X is trivial iff it
realizes the empty context only, i.e., L (A ∣ X) = {●}. Note
that trivial components are horizontal.

As an example, consider again the transition graphs of Fig-
ure 4. All components except {pd1}, {pa1}, {qr1}, and {qa1} are
trivial. The components {pd1} and {qr1} are non-trivial hori-
zontal, since they both realize the contexts ●, ●@c, (●@c)@c,
. . . The components {pa1} and {qa1} are non-horizontal, since
they both realize the contexts ●, a@●, a@(a@●), . . .

3.2 Synopsis trees
We now introduce a suitable structure that eases the char-
acterization of bounded repairability, namely, the synopsis
tree. Formally, a synopsis tree of an automatonA is a full bi-
nary tree whose nodes are labeled with elements of SCC(A).
The semantics ⟦τ⟧A of a synopsis tree τ of A is the language
of curried trees recursively defined as follows:

⟦X⟧A = {C ○ a ∣ C ∈ L (A ∣X), a ∈ Σ}

⟦X(τ1, τ2)⟧A = {C ○ (t1@t2) ∣ C ∈ L (A ∣X),
t1 ∈ ⟦τ1⟧A, t2 ∈ ⟦τ2⟧A

}

with X ∈ SCC(A). Figure 5 contains two synopsis trees τ
and σ, respectively for the automata R and T of Example 3.

Next, we identify a family of synopsis trees that captures
“closely enough” the language recognized by an automaton.

Definition 1. A primitive synopsis tree of an automaton
R = (Σ,Q, δ0, δ, F) is a synopsis tree τ of R such that:

1. τ respects the transition function of R, i.e., for all
nodes x, x ⋅ 1, and x ⋅ 2 in τ , there exist some states
q ∈ τ(x), q1 ∈ τ(x ⋅ 1), and q2 ∈ τ(x ⋅ 2) such that q ∈
δ(q1, q2);

2. every internal node of τ has label different from the
labels of its children, i.e., for all nodes x, x ⋅1, and x ⋅2
in τ , τ(x ⋅ 1) ≠ τ(x) ≠ τ(x ⋅ 2).

PST(R) denotes the set of all primitive synopsis trees of A.

The tree τ depicted in Figure 5 is a primitive synopsis tree.
In particular, this tree respects the transitions of the run of
the automaton R on the left-hand side of Figure 2.

@

@

r @

a a @

@

@

@

d @

b @

a @

a a

c

c

c

p
r
2

p
r
1

p
r
0

p a
1

p
a
0

p a
0

p d
1

p
d
1

p
d
1

p
d
1

p
d
0

p b
1

p
b
0

p a
1

p
a
0

p a
1

p
a
0

p a
0

p c
0

p c
0

p c
0

Figure 6: Decomposition of a tree.

The idea underlying the notion of primitive synopsis tree is
to capture the “cyclic behavior” of the components of the
restriction automaton. This cyclic behavior has to be taken
into account in the characterization of bounded repairability
because it could generate arbitrary large fragments of trees
that cannot be edited with uniformly bounded cost. More-
over, the use of primitive synopsis trees as a representation
of the restriction language L (R) is sound because the set
of primitively synopsis trees contains (via the previously de-
fined semantics of synopsis tree) the language L (R):

Lemma 1. L (R) ⊆ ⋃τ∈PST(R) ⟦τ⟧R for any stepwise au-
tomaton R.

We illustrate the proof of this lemma on the tree t from
Figure 1 and the automaton R from Example 3. For this
we consider the accepting run of R of Figure 2 and we use
it to decompose t into a binary tree of contexts, where each
context is realized by some SCC of R. We present this
decomposition in Figure 6, where for better visualization we
place the states of the run not on the nodes but on the edges
above them and we add a virtual edge for the root.

The decomposition procedure works in a recursive man-
ner and begins at the root node. When executed at a
node x with a state q (which belongs to some component
X ∈ SCC(R)), the procedure creates an empty context C = ●
which spans the edge above the node. If a child of x has a
state that belongs to the same component X, then the pro-
cedure moves to this node and expands the context C to
span the edge above the node child and the whole subtree

159

rooted at the opposite child. This step is repeated iteratively
until the procedure reaches a leaf node or a node whose both
children have states not in X. In the latter case, the pro-
cedure is called recursively on both children nodes, creating
two separate children context nodes.

Clearly, the contexts created during the decomposition are
realized by some components of R and the structure of these
components takes the form of a synopsis tree. For instance,
for the decomposition of Figure 6 the resulting synopsis tree
is τ in Figure 5. Naturally, this synopsis tree respects the
transitions of the run of R on the input tree. Furthermore,
since every context has been maximally expanded, every
node of the synopsis tree does not share the same label with
any of its children. This shows that the constructed synopsis
tree is primitive.

We also remark that the height of a primitive synopsis tree
of a stepwise automaton R is bounded by the number of
different components in GR and hence by the number of
states of R. Consequently, PST(R) is a finite language and,
moreover, it can be represented with a simple deterministic
binary bottom-up tree automaton whose size is polynomial
in the size of R.

In order to represent the target language and the possible
edited trees, one needs a relaxed version of primitive synop-
sis trees:

Definition 2. A basic synopsis tree of an automaton T
is a synopsis tree σ of T that respects the transition function
of T (cf. Definition 1). We denote by BST(T) the set of all
basic synopsis trees of T .

For example, the tree σ in Figure 5 is a basic synopsis tree
that respects the transitions of the run of the automaton T
depicted on the right-hand side of Figure 2.

Notice that the set of basic synopsis trees of an automaton T
can be represented by a deterministic binary bottom-up tree
automaton of size polynomial in the size of T , even though
this set is not necessarily finite.

The following lemma shows that the language given by the
semantics of a basic synopsis tree of T is bounded repairable
into the language L (T).

Lemma 2. ⟦σ⟧T ↪BR L (T) for any stepwise automaton
T and any σ ∈ BST(T).

The proof of this lemma is technical and is based on the
following observations. Any tree t ∈ ⟦σ⟧T can be seen as a
composition of contexts, one for every node of σ and each
belonging to the language of the corresponding component.
Every such context can be decorated with states from a run
of T that justifies that the context belongs to the language
of its corresponding component. To make this decoration
a proper run of T , one needs to insert additional contexts
that allow the transition from one component to the other
– this is possible because the basic synopsis tree σ respects

τ ∶ {pr2}

{pr1}

{pr0} {p
a
1}

{pa0} {p
a
0}

{pd1}

{pd0} {p
b
1}

{pb0} {p
a
1}

{pa0} {p
a
0}

σ ∶ {qr1}

{qr1}

{qr0} {qd2}

{qd1}

{qd0} {qa1}

{qa0} {qb0}

{qa1}

{qa0} {qb0}

{qc0}

Figure 7: Covering of PST τ by BST σ.

the transition function of T and because σ is labeled with
strongly connected components. Additionally, the symbols
used for substitution in the semantics of the leaf nodes of
σ may need to be replaced by appropriate tree fragments.
Finally, we observe that the number of inserted contexts
and tree fragments depends only on the size of σ and their
sizes depend only on the size of T , which means that the
number of edits that are required to repair t into L (T) is
independent of the size of t.

3.3 Coverings
The remaining part of the puzzle is to identify how to con-
nect the primitive synopsis trees of the restriction automa-
ton R to a finite subset of basic synopsis trees of the target
automaton T . This is accomplished by the notion of cover-
ability between synopsis trees.

Definition 3. Given two automata R and T and two
synopsis trees τ of R and σ of T , we say that σ covers τ iff
there exists an injective mapping λ of non-trivial nodes of τ
to non-trivial nodes of σ such that:

1. λ maps components in a compatible manner, i.e.,
L (R ∣ τ(x)) ⊆ L (T ∣ σ(λ(x))) for every non-trivial
node x of τ ;

2. λ preserves the post-order of non-trivial nodes, i.e.,
x ≼post

τ y iff λ(x) ≼post
σ λ(y) for any two non-trivial

nodes x and y of τ ;

3. λ preserves the ancestorship of non-horizontal nodes,
i.e., x ≼anc

τ y iff λ(x) ≼anc
σ λ(y) for every non-horizontal

node x of τ and every non-trivial node y of τ .

Figure 7 presents a covering of a primitive synopsis tree τ
of R by a basic synopsis tree σ of T (square boxes represent
non-trivial nodes, and they have double borders when the
component is non-horizontal).

We are now able to state the main theorem of the paper:

Theorem 1 (Characterization). Given two regular
tree languages specified by stepwise automata R and T ,
L (R) is bounded repairable into L (T) iff every primitive
synopsis tree of R is covered by some basic synopsis tree of
T .

Before turning to the proof of the above result, we explain
the main ideas underlying the notion of covering. As a

160

r

a a

bxxx

c c

b

@

@

r a @

@

@

a b @

@

xxx c

c

b

C

t′

C′

delete x

@

@

r a @

@

@

@

a b

c

c

b

C

t′

C′

r

a a

b c c b

Figure 8: Deleting a node in the curry encoding.

first remark, we observe that, given R and T such that
L (R) ↪BR L (T), any reasonable strategy for repairing
R into T with a uniformly bounded number cost will ap-
ply the edit operations only at the “junctions” of contexts
realized by different components. Intuitively, this property
holds because the non-trivial components of R can realize
arbitrary large repetitions of the same context – these rep-
etitions either do not need any editing at all, or they need
an arbitrary large amount of editing. This gives an intuitive
account for enforcing containments between languages rec-
ognized by components in the first condition of Definition
3 (not surprisingly, a similar condition was introduced in
[6] for characterizing bounded repairability between regular
languages of words).

As for the other two conditions, it is worth looking at the
effect of an edit operation on the curry encoding of an un-
ranked tree. Let us consider an unranked tree t with a distin-
guished node x that has to be deleted. There is a unique way
to represent the curry encoding of t together with the node
x as an expression of the form C ○ (t′@(C′ ○ a)), where C′

is a horizontal context that represents the hedge of subtrees
under x and a is the label of x. The result of the deletion
of x from t is encoded by the curried tree C ○ (C′ ○ t′) (see
Figure 8 for an example). Note that this operation does not
allow the deletion of the leftmost leaf node in the curried tree
(this would correspond to deleting the root node in an un-
ranked tree, an operation that is typically prohibited). The
operation of inserting a new node y in an unranked tree t
can be described in a similar way using curry encodings and
horizontal contexts. Precisely, given an unranked tree t with
curry encoding C ○(C′○t′), where C′ is a horizontal context,
the curried tree C ○ (t′@(C′ ○ a)) represents the unranked
tree that results from the insertion of a new a-labeled node
y in t having as children the hedge represented by C′.

We now observe that the transformations on curried trees
described above satisfy two crucial properties: (i) they pre-
serve the post-order of the nodes and (ii) they preserve the
ancestorship of non-horizontal contexts (e.g., C in Figure
8) with their descendants. These properties are precisely
captured by the last two conditions of Definition 3.

4. PROOF OF THE MAIN RESULT
The following subsections are devoted to prove the two di-
rections of the characterization given in Theorem 1.

4.1 From covering to repair
We begin with the proof of the “if” direction of Theorem 1,
namely, we show how we can derive a strategy for repairing
L (R) into L (T) with a uniformly bounded number of ed-
its, under the assumption that every primitive synopsis tree
of R is covered by some basic synopsis tree of T .

In addition to Lemmas 1 and 2, we need the following crucial
property:

Lemma 3. For any synopsis tree τ of R and any synopsis
tree σ of T , if σ covers τ , then ⟦τ⟧R ↪BR ⟦σ⟧T .

Before sketching the proof of Lemma 3, we explain how the
“if” direction of Theorem 1 follows from it. By Lemma 1,
the restriction language is contained in the union of the lan-
guages induced by the semantics of the primitive synopsis
trees of R. By hypothesis, each of these trees is covered
by a basic synopsis tree of the target automaton T . Thus
by Lemma 3 their languages can be transformed into the
languages induced by the semantics of some basic synop-
sis trees, using a bounded number of edits. By Lemma 2
the languages of the basic synopsis trees can be in turn re-
paired into the target language. The result now follows from
the fact that there are only finitely many primitive synopsis
trees and the fact that bounded repairability is a transitive
relation and is preserved under finite unions.

We now turn to the proof of Lemma 3. For a technical
reason, we need to slightly extend the definition of synop-
sis tree by allowing the use of a special node labeled ε that
represents a dummy trivial component. The semantics is
extended in the natural way by letting L (A ∣ ε) = {●} (for
any stepwise automaton A). Because all trivial components
have the same semantics (i.e., they all recognize the lan-
guage {●}), we shall often identify a trivial component of an
automaton with the dummy component ε.

The first step consists of “interpolating” the two synopsis
trees τ and σ by a synopsis tree θ of R such that:

� θ has the same labels (i.e., components) of τ on the
non-trivial nodes and it covers τ via a bijection (be-
tween non-trivial nodes) that maps any non-trivial
node of τ with label X ∈ SCC(R) to a non-trivial node
of θ with the same label X (we say that τ strongly
covered θ),

� θ has the same domain (i.e., set of nodes) of σ and
it is covered by σ via the identity function between
non-trivial nodes (we say that θ is embedded in σ).

It is not difficult to show that such an interpolating synopsis
tree θ exists and that the language ⟦θ⟧R is contained in the
language ⟦σ⟧R:

Lemma 4. If τ is covered by σ, then there is an synopsis
tree θ of R such that τ is strongly covered by θ and θ is
embedded in σ.

Lemma 5. For a synopsis tree θ of R and a synopsis tree
σ of T , if θ is embedded in σ, then ⟦θ⟧R ⊆ ⟦σ⟧T .

161

X

α H1

β1

Hk

βk
ε

. .
.

promotion

X

εH1

β1

Hk

βk
α

. .
.

α
demotion

ε

ε
α

ε

α
ε

reduction
α

Figure 9: Synopsis tree operations.

Recall that ⟦θ⟧R ⊆ ⟦σ⟧T implies ⟦θ⟧R ↪BR ⟦σ⟧T and that
the bounded repairability relation ↪BR is transitive. We
thus reduced the problem to showing that ⟦τ⟧R ↪BR ⟦θ⟧R.
Towards this goal, we can take advantage of the notion of
strong coverability, and in particular of the fact that this is
an equivalence relation, namely, it is reflexive, symmetric,
and transitive (note that symmetry and transitivity follow
from the fact that the mapping that witness strong cover-
ability is a bijection between non-trivial nodes and preserves
the labeling). In the sequel we only work with synopsis trees
of the automaton R. This allows us to remove the automa-
ton R from the notation that follows.

The next step is to associate with any synopsis tree ζ (of R)
a suitable normal form ζ∗ that can be used as a canonical
representative of the equivalence class of ζ induced by the
strong coverability relation. In order to derive the normal
form of a given synopsis tree, we will introduce generic edit-
ing operations on synopsis trees that preserve the strong
coverability relation and entail bounded repairability. We
will then prove that ⟦τ⟧ can be repaired into ⟦θ⟧ with a
uniformly bounded number of edits by first repairing ⟦τ⟧
into ⟦τ∗⟧ and then repairing ⟦θ∗⟧ (= ⟦τ∗⟧) into ⟦θ⟧ (recall
that τ and θ strongly cover each other and hence τ∗ = θ∗
by canonicity of the normal form). The repair strategy that
witnesses bounded repairability between ⟦τ⟧ and ⟦τ∗⟧ (resp.,
⟦θ∗⟧ and ⟦θ⟧) can be read off the sequence of generic editing
operations that takes τ to its normal form τ∗ (resp., θ to its
normal form θ∗).

We describe below the structure of a synopsis tree in normal
form.

Definition 4. A synopsis tree ζ is in normal form iff
one of the following cases holds:

1. ζ = ε, namely, ζ consists of a single node labeled with
a trivial component,

2. ζ = X(α, ε), where X is a non-trivial horizontal com-
ponent and α is a synopsis tree in normal form,

3. ζ = ε(α,X(β, ε)), where X is a non-horizontal compo-
nent and α and β are synopsis trees in normal form.

We observe that the root of a synopsis tree in normal form is
a horizontal (possibly trivial) node and that its left sub-tree
is also in normal form. In particular, this means that all
components along the leftmost branch of a synopsis tree in
normal form are horizontal.

The following lemma shows that synopsis trees in normal
form can be used as canonical representatives of the equiv-
alence classes induced by the strong coverability relation.
The proof of this lemma is by simple structural induction
and case analysis.

Lemma 6. If τ and ζ are two synopsis trees in normal
form that strongly cover each other, then τ and ζ are iso-
morphic.

Thanks to Lemma 6, we can define the normal form ζ∗ of
a synopsis tree ζ as the unique synopsis tree that is in nor-
mal form and that strongly covers ζ, provided that this tree
exists.

Our next goal is to prove that the normal form ζ∗ of ζ
indeed exists, and that can be attained by a finite se-
quence of generic editing operations on synopsis trees. These
operations are called promotion, demotion, and reduction,
and are presented in Figure 9. There, ε represents a
trivial component, X represents an arbitrary component,
H1, . . . ,Hk represent horizontal (possibly trivial) compo-
nents, and α,β1, . . . , βk represent arbitrary synopsis trees.
Note that the figure describes the case where the promo-
tion, demotion, and reduction operations are applied at the
root of a synopsis tree – in general, these operations can be
applied to any sub-tree of a synopsis tree. We write ζ →∗

op ζ
′

whenever ζ ′ can be obtained from ζ by applying a finite se-
quence of promotion, demotion, and reduction operations.
In order to give further intuition about these operations,
we remark an analogy between the operations of promotion,
depicted in Figure 9, and deletion, depicted in Figure 8 (a
similar correspondence holds between the operations of de-
motion and insertion of a new root). In this case, the root
X of the synopsis tree is acting as the the context C of the
curried tree, the sub-tree α is acting as the curried sub-tree
t′, and the sub-tree rooted at H1 is acting as the horizontal
context C′.

It is important to point out that the editing operations
on synopsis trees described above preserve the post-order
of non-trivial nodes and the ancestorship of non-horizontal
nodes. From this it follows that they also preserve the strong
coverability relation. Furthermore, the following lemma
shows that the normal form of a synopsis tree exists and
can be obtained via a sequence of promotion, demotion, and
reduction operations:

162

Lemma 7. For any synopsis tree ζ, we have ζ →∗
op ζ

∗.

The proof goes by a structural induction on the synopsis
tree ζ that has to be normalized. Specifically, one first nor-
malizes the left and right sub-trees of ζ separately using
induction. One then completes the normalization procedure
by applying suitable operations on the basis of the compo-
nent at the root of ζ: if this component is non-horizontal,
then one applies a promotion operation followed by a demo-
tion operation; if it is horizontal and non-trivial, then one
only applies a promotion operation; if it is trivial, then one
applies a promotion followed by a reduction operation.

The next lemma shows that if ζ →∗
op ζ

′, then the two lan-
guages ⟦ζ⟧ and ⟦ζ ′⟧ are repairable one into each other with a
uniformly bounded number of edits. In other words, the ap-
plication of a promotion, demotion, or reduction operation
to a synopsis tree ζ corresponds to a small amount of edits
over ⟦ζ⟧. The proof of this result is via a simple analysis
of the transformations on languages of unranked trees that
are induced by the operations of promotion, demotion, and
reduction.

Lemma 8. For any pair of synopsis trees ζ and ζ ′, if
ζ →∗

op ζ
′, then ⟦ζ⟧↪BR ⟦ζ ′⟧ and ⟦ζ ′⟧↪BR ⟦ζ⟧.

We have now all the ingredients to prove Lemma 3. Re-
member that by Lemmas 4 and 5 it only remains to show
that ⟦τ⟧R ↪BR ⟦θ⟧R. The latter claim can be proved by
combining Lemmas 6, 7, and 8. Indeed, we know from
Lemma 7 that τ and θ can be converted into the normal
forms τ∗ and θ∗, respectively, by applying sequences of pro-
motions, demotions, and reductions. Lemma 8 implies that
⟦τ⟧R ↪BR ⟦τ∗⟧R and, symmetrically, ⟦θ∗⟧R ↪BR ⟦θ⟧R.
Since τ strongly covers θ, Lemma 6 implies τ∗ = θ∗. We
thus conclude that ⟦τ⟧R ↪BR ⟦θ⟧R from the transitivity of
the bounded repairability relation.

4.2 From repair to covering
We now sketch the proof of the“only if”direction of Theorem
1.

We fix for the rest of the section two stepwise hedge au-
tomata R = (Σ,Q, δ0, δ, F) and T = (∆,Q′, δ′0, δ

′, F ′) recog-
nizing the restriction and the target languages, respectively.
We assume that L (R) is bounded repairable into L (T) and
we prove that every primitive synopsis tree of R is covered
by some basic synopsis tree of T .

The general idea of the proof is to associate with any prim-
itive synopsis tree τ of R a suitable tree tτ ∈ L (R), called
witness tree of τ , such that from any optimal repair of tτ
into L (T) one can extract a basic synopsis tree σ of T that
covers τ . Intuitively, the witness tree tτ is obtained from the
primitive synopsis tree τ by replacing every non-trivial node
x with a sufficiently large number of repetitions of a spe-
cial context in L (R ∣ τ(x)), called fingerprint context. The
number of repetitions of each fingerprint context will depend
on the worst-case repair cost N = dist(L (R),L (T)). Using
the definition of the witness tree tτ and the assumption that

tτ can be repaired into some tree sτ ∈ L (T) with at most
N edits, one can then argue that sτ contains at least one
copy of the fingerprint context associated with each non-
trivial node x of τ and, furthermore, the arrangements of
the occurrences of these fingerprints inside tτ and inside sτ
coincide both with respect to the post-order relation and
with respect to the ancestorship of the non-horizontal com-
ponents. One finally looks at some run of T that accepts
the tree sτ : this run, together with the structure of the fin-
gerprints inside sτ , induces a basic synopsis tree σ of T and
a coverability relation from τ to σ.

Below, we illustrate in more details the above arguments.
We divide up the proof into defining the witness tree tτ and
building the cover from its repair.

Constructing the witness tree. Before constructing the
witness tree, we give the following lemma, which defines
what we call a fingerprint context of a component of R.
Basically, the lemma shows that given a component X ∈
SCC(R), one can find a context CX that can be “pumped”
inside the language L (R ∣X) (i.e., CX○. . .○CX ∈ L (R ∣X))
and such that L (R ∣ X) ⊆ L (T ∣ Y) iff CX ∈ L (T ∣ Y),
for any component Y ∈ SCC(T). We say that a context C is
cyclic for a component X if there is a state q ∈X such that
q ∈ δ(q,C).

Lemma 9. For every X ∈ SCC(R), there exists a cyclic
context CX ∈ L (R ∣X) such that, for every Y ∈ SCC(T),

L (R ∣X) ⊆ L (T ∣ Y) iff CX ∈ L (T ∣ Y).

We associate with each component X a context CX that
satisfies Lemma 9, and call it a fingerprint context of X.

We now fix a primitive synopsis tree τ of R and we define
the corresponding witness tree tτ by using an induction on
τ . In doing so, we will guarantee that δ(tτ) ∩ τ(ε) ≠ ∅,
namely, that there is a run of R on the witness tree tτ that
reaches a state of the component at the root of τ . We omit
the construction for the base case, where τ is a singleton,
since it can be easily derived from what follows. Thus, we
assume that X is the component at the root of τ and that
τ1 and τ2 are the non-empty left and right sub-trees of τ .
By induction hypothesis, we can denote by tτ1 and tτ2 the
witness trees of τ1 and τ2, respectively. Moreover, we can
fix a state q1 (resp., q2) in the non-empty set δ(tτ1) ∩ τ1(ε)
(resp., δ(tτ2)∩τ2(ε)). The construction of the witness tree tτ
is done in a bottom-up way using the three steps described
below (the reader can also refer to Figure 10).

The first step consists of merging the two trees tτ1 and tτ2
into a single tree that can be parsed by the automaton R
ending up in the component X. We know from the defi-
nition of primitive synopsis tree that τ respects the tran-
sition function of R. In particular, this means that there
exist some states q′ ∈ X, q′1 ∈ τ1(ε), and q′2 ∈ τ2(ε) such
that q′ ∈ δ(q′1, q′2). Moreover, since q1 and q′1 (resp., q2
and q′2) belong to the same component at the root of τ1
(resp., τ2), there exist some contexts C1 ∈ L (R ∣ τ1(ε)) and
C2 ∈ L (R ∣ τ2(ε)) such that q′1 ∈ δ(q1,C1) and q′2 ∈ δ(q2,C2).

163

tτ1 tτ2

C1 C2

q1 q2

@q′1 q′2

C

CkX

q′

q

q

⎫
⎪⎪
⎬
⎪⎪
⎭

=

C′

CNn.h. when X is

non-horizontal

Figure 10: Construction of the witness tree tτ .

This allows us to construct the tree

(C1 ○ tτ1) @ (C2 ○ tτ2)

and claim that R can parse it and end up in state q′ of
component X.

The next step consists of prolonging the above tree in such
a way that one can later attach repetitions of the fingerprint
context CX . This is done by identifying a “recurrent” state
q such that q ∈ δ(q,CX) (this state exists since CX is cyclic)
and then connecting it to the state q′ using a suitable context
C ∈ L (R ∣ X) such that q ∈ δ(q′,C) (note that q and q′

belong to the same component X). The resulting tree is of
the form

C ○ ((C1 ○ tτ1) @ (C2 ○ tτ2)).

In order to avoid that an editing of the witness tree tτ
could modify the ancestorship of CX with the nodes of the
two sub-trees tτ1 and tτ2 , we further assume that, if X is
a non-horizontal component, then the context C that is
used for connecting q to q′ is of the form CNn.h. ○ C′, where
N = dist(L (R),L (T)), C′,Cv ∈ L (R ∣ X), and Cn.h. is
a cyclic non-horizontal context. Recall that the ancestor-
ship of non-horizontal contexts is preserved by the editing
operations.

The last step consists of plugging in a sufficiently long rep-
etition of the fingerprint context CX . For this, we define
k = m ⋅ (2N + 1), where N = dist(L (R),L (T)) and m is
the number of SCCs of T . We then attach the k-fold rep-
etition CkX of the fingerprint context CX to the tree so far
constructed, thus obtaining the witness tree

tτ = CkX ○ C ○ ((C1 ○ tτ1) @ (C2 ○ tτ2)).

Note that R can parse tτ and end up in state q ∈ X. This
shows that the invariant δ(tτ) ∩X ≠ ∅ is satisfied.

We remark that it may happen that δ(tτ)∩F = ∅ and hence
tτ ∉ L (R). Strictly speaking, this could violate the claim
that one can repair tτ into L (T) with at most N edits.
However, from the assumption that R is trimmed it follows

that there is a context CF such that δ(q,CF) ∩F ≠ ∅. This
means that one can always prolong tτ to obtain a tree inside
the language L (R). From now on, we assume for the sake
of simplicity that tτ ∈ L (R).

Building the covering from a repaired witness tree.
We now turn to deriving a covering of τ by looking into the
repair of tτ . We fix, once and for all, some tree sτ in the
target language L (T) that is obtained by repairing tτ with
at most N edits.

Remember that the witness tree tτ contains k =m ⋅ (2N +1)
copies of each fingerprint context CX , where X = τ(x) for
any non-trivial node x of τ . As a consequence, the repaired
tree sτ must contain an m-fold repetition CmX of each finger
context CX . In the following, we will look at the occurrences
of these repeated fingerprint contexts inside sτ and compare
their post-order and ancestor relationships with those in-
duced by tτ . For this we need some definitions.

Given a context C and a node x of a tree t, we say that
C occurs at node x if there exist a context C′ and a tree t′

such that (i) t can be written as C′ ○C ○ t′ and (ii) x is the
node where the sub-tree C ○ t′ of t hangs from. We denote
an occurrence of a context C at a node x of a tree t by
the pair (C,x). Furthermore, we say that two occurrences
(C,x) and (C′, x′) of two contexts inside the same tree t
are non-overlapping (resp., in post-order relation, ancestor
relation) if {x} ⋅ nodes(C) ∩ {y} ⋅ nodes(C ′) = ∅ (resp.,
x ≼post

t y, x ≼anc
t y).

The following lemma shows that the occurrences of the con-
texts CmX inside tτ are in the same post-order relation as the
corresponding occurrences inside sτ , and similarly for the
ancestor relation when X is a non-horizontal component.

Lemma 10. One can find a mapping f from the non-
trivial nodes x of the primitive synopsis tree τ to the nodes
f(x) of the repaired witness tree sτ such that:

� the context CmX , where X = τ(x), occurs at node f(x)
in sτ , for all non-trivial nodes x of τ ,

� all occurrences (CmX , f(x)), with X = τ(x) and x non-
trivial node of τ , are pairwise non-overlapping,

� x ≼post
τ y iff f(x) ≼post

sτ f(y), for all pairs of non-trivial
nodes x, y of τ ,

� x ≼anc
τ y iff f(x) ≼anc

sτ f(y), for all pairs of non-trivial
nodes x, y of τ , with τ(x) non-horizontal component.

It only remains to show how to extract a basic synopsis tree
σ that covers τ from an accepting run of T on sτ .

Let ρ be a run of T that accepts sτ , let x be a non-trivial
node of τ with label X, and let f(x) be the correspond-
ing node in sτ induced by the mapping f , as defined in
Lemma 10. By the previous arguments, the context CmX oc-
curs at node f(x) in sτ . Let y be the position of the place-
holder ● in the fingerprint context CX and observe that CX
occurs m times at nodes ε, y, y ⋅ y, . . ., ym−1 of CmX . Let
yx,0 = f(x), yx,1 = f(x) ⋅ y, . . ., yx,m−1 = f(x) ⋅ ym−1, and
yx,m = f(x) ⋅ ym. Clearly, (CX , yx,0), . . ., (CX , yx,m−1) are
non-overlapping occurrences of the context CX inside sτ .

164

Consider now the states that occur at the m + 1 nodes
yx,0, yx,1, . . . , yx,m of the run ρ. From the Pigeonhole Prin-
ciple, we know that there exist two nodes yx,i and yx,j , with
0 ≤ i < j ≤m, and a component Y of T such that both states
ρ(yx,i) and ρ(yx,j) belong to Y . In fact, by the definition of
strongly connected component, we can assume j = i + 1 and
hence CX ∈ L (T ∣ Y). Notice that, until this point, we have
not used the property of fingerprint contexts (Lemma 9). In
particular, the fact that CX is a fingerprint context of X
and CX ∈ L (T ∣ Y) implies that L (R ∣X) ⊆ L (T ∣ Y).

What we have just showed is that it is possible to find a
mapping from any non-trivial node x of τ to a node yx = yx,i
of sτ such that L (R ∣ X) ⊆ L (T ∣ Y), where X = τ(x) and
Y is the component of the state ρ(yx). Thanks to Lemma 10,
we can also claim that, for all non-trivial nodes x,x′ in τ ,

� x ≠ x′ implies yx ≠ yx′ ,
� x ≼post

τ x′ iff yx ≼post
sτ yx′ ,

� x ≼anc
τ x′ iff yx ≼anc

sτ yx′ , provided that the component
τ(x) is non-horizontal.

We are now ready to define the basic synopsis tree σ that
covers τ . The domain of σ coincides with the domain of sτ ,
i.e., nodes(σ) = nodes(sτ). The labeling σ(x) of a node x of
σ is given by the component X that contains the correspond-
ing state ρ(x), where ρ is a run of T that accepts sτ . Notice
that σ trivially satisfies the properties of a basic synopsis
tree, as its labellings respects the transitions of T given by
the run ρ. In a similar way, we can define the mapping λ
that witnesses the coverability of τ by σ: for this we simply
let λ map any non-trivial node x of τ to the node yx of σ.
The fact that λ satisfies Definition 3 follows easily from the
properties described by the three items above (for instance,
the fact that λ is injective follows from the first item). This
completes the proof that τ is covered by a basic synopsis
tree of T .

5. COMPLEXITY RESULTS
In this section we will exploit the characterization given
in Theorem 1 to obtain some complexity bounds for the
bounded repair problem. We will first consider the case
where the regular tree languages are represented by non-
deterministic stepwise automata. Then, we will concentrate
on less succinct and less expressive representations, such as
deterministic stepwise automata and DTDs.

5.1 Languages defined by automata
Below, we show that the bounded repair problem between
restriction and target languages represented by two non-
deterministic stepwise automata R and T is in ΠEXP

2 (i.e.,
coNEXPTIMENEXPTIME). To achieve this bound we ana-
lyze the size of a primitive synopsis tree τ of R and the
minimal size of some basic synopsis tree of T that covers τ .

It follows easily from Definition 1 that any primitive synopsis
tree of R has height less than the number of components of
R, and hence size at most 2∣SCC(R)∣. As for the minimal size
of the basic synopsis trees of T that cover a given primitive
synopsis tree of R, we can prove the following:

Lemma 11. Given two stepwise automata R and T and
two synopsis trees τ ∈ PST(R) and σ ∈ BST(T), if σ covers

τ , then there is σ′ ∈ BST(T) that covers τ and has size at
most 2 ⋅ ∣τ ∣ ⋅ ∣SCC(T)∣, where ∣τ ∣ is the number of nodes of τ
and ∣SCC(T)∣ is the number of components of T .

The above lemma, together with Theorem 1, gives a ΠEXP
2

algorithm that receives two non-deterministic stepwise au-
tomata R and T and decides whether L (R) is bounded
repairable into L (T). The algorithm universally guesses a

primitive synopsis tree τ of R of size at most 2∣SCC(R)∣, then
it existentially guesses a basic synopsis tree σ of T of size at
most 2∣SCC(R)∣+1 ⋅ ∣SCC(T)∣ and a function λ from non-trivial
nodes of τ to non-trivial nodes of σ, and finally it checks that
λ is a covering of τ by σ (this amounts at deciding language
inclusions, which can be done in exponential time [21]).

Proposition 1. The bounded repair problem between
languages represented by non-deterministic stepwise au-
tomata is in ΠEXP

2 .

As for the complexity lower bound, we are only able to prove
that the considered problem is EXPTIME-hard by using a
straightforward reduction from the containment problem for
non-deterministic stepwise automata [21]. Precisely, given
two non-deterministic stepwise automata R and T , one can
decide whether L (R) ⊆ L (T) by first constructing two
automata R∗ and T ∗ that recognize the languages L (R∗) =
{#(t1, ..., tn) ∣ n ∈ N, ∀1 ≤ i ≤ n. ti ∈ L (R)} and L (T ∗) =
{#(t1, ..., tn) ∣ n ∈ N, ∀1 ≤ i ≤ n. ti ∈ L (T)}, respectively,
where # is a fresh symbol not belonging to the alphabets
of R and T , and then checking whether L (R∗) is bounded
repairable into L (T ∗). Note that the latter condition holds
iff L (R) ⊆ L (T).

Proposition 2. The bounded repair problem between
languages represented by non-deterministic stepwise au-
tomata is EXPTIME-hard.

5.2 Languages defined by DTDs
We now analyze the complexity of the bounded repair prob-
lem when the languages are represented by DTDs.

Recall that a DTD is a function mapping any letter a in
the underlying alphabet to a regular expression D(a) over
the same alphabet. The language defined by a DTD D is
the set of all unranked trees t such that (i) the root of t is
labeled with some letter from a distinguished set of initial
symbols and (ii) for every node x ∈ nodes(t), the sequence
of labels of the children of x is a word inside the language
D(t(x)). A DTD D is non-recursive if its dependency graph
(i.e., the graph that connects a letter a to a letter b when-
ever b occurs in the language D(a)) is acyclic. A DTD
D is deterministic if all its regular expressions D(a) are 1-
unambiguous [10]. This is also equivalent to saying that the
Glushkov automata [10] that correspond to the regular ex-
pressions of the DTD are deterministic. From results in [12]
(in particular, from Proposition 4 and Theorem 5) it follows
that any deterministic DTD can be turned in polynomial
time into an equivalent deterministic stepwise automaton.

165

As a first remark, we recall that the containment problem for
non-deterministic DTDs is PSPACE-complete. The lower
bound follows easily from the PSPACE-hardness of con-
tainment of regular expressions [23]. The upper bound is
a folklore result: given two DTDs D and D′, one can decide
whether the language defined by D is contained in the lan-
guage defined by D′ by first removing useless rules and then
checking that, for every letter a in the alphabet of D, the
language D(a) is contained in the language D(a′).

Following the same idea in the proof of Proposition 2, one
can reduce the containment problem for regular expressions
to the bounded repairability problem for languages defined
by non-recursive non-deterministic DTDs, thus showing that
the latter problem is at least PSPACE-hard. Proposition 3
below gives a stronger result by showing that PSPACE-
hardness holds also in the presence of non-recursive deter-
ministic DTDs. The proof of this result is technical and uses
a reduction from the corridor tiling problem [8].

Proposition 3. The bounded repair problem between
languages represented by deterministic DTDs is PSPACE-
hard, even for non-recursive DTDs.

For DTDs, even deterministic ones, we do not have a better
upper bound than in the general case. Recall that contain-
ment of deterministic stepwise automata (and hence deter-
ministic DTDs as well) is in PTIME. It is thus conceivable
that a PSPACE upper bound for the bounded repair prob-
lem exists for deterministic DTDs. As we are not able to
provide such a tight complexity bound, we can only reuse
Proposition 1 to claim that the complexity of the bounded
repair problem for deterministic DTDs is between PSPACE
and ΠEXP

2 .

For non-recursive DTDs we can do better, since they define
languages of trees of bounded height, and can be coded by
regular word languages (see, for instance, [20]). The edit
operations on trees translate to edit operations on the word
encodings, and hence we can apply the fact that bounded
repairability for word languages recognized by deterministic
finite automata is in coNP [6]. Because there is an exponen-
tial blow-up in the encoding, this gives us a coNEXPTIME
upper bound for non-recursive DTDs. Again, the best lower
bound we have for non-recursive DTDs is PSPACE.

We now consider a specialization of the problem where the
alphabet Σ of the restriction language is fixed. We show
that, in this case, the problem is between PSPACE and
EXPTIME for languages represented by non-deterministic
DTDs, and between coNP and ΠP

2 (i.e., coNPNP) for lan-
guages represented by deterministic DTDs.

Let us first discuss the complexity upper bounds. Suppose
that D is a DTD defining a restriction language over the
fixed alphabet Σ. A close inspection to the translation from
DTDs to stepwise automata [12] discloses the following cru-
cial property:

Lemma 12. Given a non-deterministic (resp., determin-
istic) DTD D that defines a restriction language R over an

alphabet Σ, one can compute in polynomial time a non-
deterministic (resp., a deterministic) stepwise automaton
R = (Σ,Q, δ0, δ, F) that recognizes R and whose state space
can be partitioned into k ≤ 2∣Σ∣ subsets Q1, . . . ,Qk such that

� every component of R is contained in some set Qi,

� for all states q1, q2, q ∈ Q, if q ∈ δ(q1, q2) and q2 and q
are in different components, then q2 ∈ Qi and q ∈ Qj
for some 1 ≤ i < j ≤ k.

As an example, the automaton R described in Example 3 is
a deterministic stepwise automaton whose state space can be
partitioned into 9 sets that satisfy the first part of the claim:
Q1 = {pa0}, Q2 = {pa1}, Q3 = {pb0}, Q4 = {pb1}, Q5 = {pc0},
Q6 = {pd0}, Q7 = {pd1}, Q8 = {pr0, pr1}, Q9 = {pr2}.

Lemma 12 above implies that any path in the transition
graph ofR (see, for instance, the left-hand side graph of Fig-
ure 4) traverses at most 2∣Σ∣ − 1 vertical edges that connect
pairs of states in different components. As a consequence,
any primitive synopsis tree of R has size at most ∣Q∣2∣Σ∣, i.e.,
polynomial in the size of R when Σ is fixed.

Putting together Lemma 12, Lemma 11, and Theorem 1 one
obtains an EXPTIME (resp., a ΠP

2) algorithm that decides
whether R ↪BR T , where R and T are languages defined by
non-deterministic (resp., deterministic) DTDs and R is over
a fixed alphabet Σ. The algorithm has the same structure
of the one presented in the previous sub-section. Namely,
it translates the input DTDs into equivalent stepwise au-
tomata R and T , then it guesses universally a primitive
synopsis tree τ of R of polynomial size and existentially a
basic synopsis tree σ of T of polynomial size, together with
a function λ from non-trivial nodes in τ to non-trivial nodes
in σ, and finally it checks that λ is a covering of τ by σ. As
previously mentioned, the last step of the algorithm can be
performed in either exponential time or polynomial time, de-
pending on whether the input DTDs are non-deterministic
or deterministic. Note that the complexity upper bounds
do not increase if the target languages are given directly by
non-deterministic/deterministic stepwise automata.

Proposition 4. The bounded repair problem between
a restriction language represented by a non-deterministic
(resp., deterministic) DTD over a fixed alphabet and a tar-
get language represented by a non-deterministic (resp., de-
terministic) stepwise automaton over an arbitrary alphabet
is in EXPTIME (resp., in ΠP

2).

Finally, we show that even strong restrictions, including fix-
ing both alphabets, cannot get us below PSPACE in the
non-deterministic case. We have already discussed how the
containment problem for regular expressions can be reduced
to the bounded repair problem for languages defined by
non-recursive non-deterministic DTDs. The same reduc-
tion holds when we fix the alphabets, thus showing that
the bounded repair problem between non-recursive non-
deterministic DTDs over fixed alphabets is still PSPACE-
hard. We also provide a coNP lower bound for the analo-
gous problem when the languages are represented by non-
recursive deterministic DTDs over fixed alphabets. This

166

lower bound follows quite easily from a reduction from the
validity problem for propositional formulas in disjunctive
form (i.e., the dual of the SAT problem). The idea is to
encode in the restriction language all the possible valua-
tions for the propositional variables and then restrict the
target language to consist only of encodings of valuations
that satisfy at least one clause of the propositional formula.
A similar reduction was given in [6] for languages of words
recognized by deterministic finite automata. The additional
complication here is that we have to fix the restriction and
the target alphabets; however, the reduction is still possible
by encoding the valuation of each variable with a block of
nodes labeled over a binary alphabet.

Proposition 5. The bounded repair problem between
languages represented by non-recursive non-deterministic
(resp., deterministic) DTDs with both restriction and tar-
get alphabets fixed is PSPACE-hard (resp., coNP-hard).

6. THE UNRESTRICTED CASE
In this section we consider the so-called unrestricted case of
the bounded repairability problem, namely, a variant of the
problem where the restriction language is assumed universal
(i.e., equal to TΣ) and the target language is represented by
a stepwise automaton T .

We recall the assumption that any stepwise automaton T is
trimmed (i.e., every state of T appears in some accepting
run of A on some input tree). Under this assumption, we
say that an automaton T is complete over Σ if for every tree
t ∈ TΣ there is a (possibly non-accepting) run of T on t.

In this section we also make use of deterministic visibly push-
down transducers [18, 2] as suitable devices that transform
unranked trees in a streaming fashion, namely, that receive
the serialized version of an unranked tree (i.e., a well-formed
sequence of opening and closing tags corresponding to the
pre-order traversal of a tree) and output the serialized ver-
sion of another unranked tree. By a slight abuse of notation
we identify unranked trees with their serializations. The
following result gives equivalent conditions for bounded re-
pairability in the unrestricted case.

Proposition 6. Given an alphabet Σ and an automaton
T = (∆,Q, δ0, δ, F), the following conditions are equivalent:

� TΣ is bounded repairable into L (T),
� T is complete over Σ,

� there exist k ∈ N and a deterministic visibly pushdown
transducer that receives any unranked tree t over Σ
and outputs an unranked tree t′ such that dist(t, t′) ≤ k
and ext(t′) ∈ L (T).

From the above characterization one can derive a
polynomial-time algorithm that decides whether TΣ is
bounded repairable into L (T), when T is given by a de-
terministic stepwise automaton. For this it is sufficient
to turn T into a trimmed deterministic automaton T ′ =
(Σ,Q′, δ′0, δ

′, F ′) over Σ and then check that (i) for every
symbol a ∈ Σ, δ′0(a) ≠ ∅ and (ii) for every pair of states

q1, q2 ∈ Q′, δ′(q1, q2) ≠ ∅. When the target language is rep-
resented by a non-deterministic stepwise automaton T , the
complexity increases to EXPTIME: one can simply deter-
minize T and then use the decision procedure for the deter-
ministic case.

As one could expect, the above complexity bounds (i.e.,
PTIME for deterministic stepwise automata and EXPTIME
for non-deterministic stepwise automata) are tight – hard-
ness proofs can be derived from reductions of the emptiness
and universality problems, respectively, on the correspond-
ing classes of automata.

Proposition 7. The bounded repair problem in the un-
restricted case when the target language is represented by a
non-deterministic (resp., deterministic) stepwise automaton
is EXPTIME-complete (resp., PTIME-complete).

It is worth remarking some similarities and differences be-
tween the considered problem and the analogous unre-
stricted bounded repair problem for regular languages of
words [6]. First of all, the characterization given in Propo-
sition 6 implies that, in the unrestricted case only, if the
universal tree language TΣ is bounded repairable into a reg-
ular tree language T , then the repair strategy can be im-
plemented by a deterministic visibly pushdown transducer
that works directly on serializations of unranked trees. This
is reminiscent of the equivalence between the unrestricted
repair problems for regular word languages in the non-
streaming and in the streaming settings. We also remark
that bounded repairability for tree languages is a much
stronger property than that for word languages. In [6]
(Corollary 20), it is shown that for every alphabet Σ and ev-
ery regular word language T , Σ∗ is bounded repairable into
T or into its complement T ∁. When considering languages
of trees the situation is quite different: for every alphabet Σ,
there are regular tree languages T such that TΣ is bounded
repairable neither into T nor into its complement T ∁.

7. CONCLUSIONS AND RELATED WORK
In this paper we present the first algorithm for determining
whether one regular tree language can be edited to another
regular tree language with a finite number of edits.

Edit distance between trees has been extensively studied
[7], and several polynomial-time algorithms exist based on
dynamic-programming. The problem of computing the dis-
tance between a tree and a schema has also been studied [9].
Regarding similarity between schemas, syntactic similarity
between schemas were studied in [14] and a similarity set-
based measure was proposed in [3], but both works did not
consider edit operations between trees. Approximation of
regular tree languages by single-type regular tree languages
has been studied in [16] were the setting is restricted to a
particular class of tree languages (single-type) and the ap-
proximation is modeled by language containment. To the
best of our knowledge, the problem of editing all trees in
a schema to trees in another schema has not been studied
explicitly. In the word case, the analogous notion has been
studied only recently [6].

167

We leave several problems open; most importantly, we have
a gap in the complexity for the repair problem. We hope to
close this by lowering the complexity to EXPTIME.

Bounded repairability is a strong notion of inclusion between
schemas: there may be two schemas where the number of
edits is unbounded, but is small as a percentage of the tree
size. In [5] we showed a way to compute this “percentage of
edits” in the word case. We would like to generalize this to
the setting of trees. It would also be interesting to consider
restricted processors that work in an online fashion – in the
word case, the requirement for a repair to be“streaming”has
been studied [6], where the streaming notion is captured
by property that the repairs can be generated by a finite
state transducer without lookahead. For trees, it is not clear
what model should be used as a“streaming repair processor”.
Theorem 6 shows that in the unrestricted case it always
suffices to repair with a visibly pushdown transducer, but in
the general case VPTs maybe too restrictive.

Acknowledgments. We would like to thank Michael
Benedikt for the many helpful remarks on the paper. The
first two authors were supported by the EPSRC (UK) grant
EP/G004021/1 and by the EU project FOX (FP7-ICT-
233599). The third author has been partially supported
by Ministry of Higher Education and Research, Nord-Pas
de Calais Regional Council and FEDER through the Con-
trat de Projets Etat Region (CPER) 2007-2013, and Codex
project ANR-08-DEFIS-004.

8. REFERENCES
[1] Foto N. Afrati and Phokion G. Kolaitis. Repair

checking in inconsistent databases: algorithms and
complexity. In ICDT, pages 31–41, 2009.

[2] Rajeev Alur and Parthasarathy Madhusudan. Adding
nesting structure to words. J. ACM, 56(3), 2009.

[3] Timos Antonopoulos, Floris Geerts, Wim Martens,
and Frank Neven. Generating, sampling and counting
subclasses of regular tree languages. In ICDT, pages
30–41, 2011.

[4] Marcelo Arenas, Leopoldo E. Bertossi, and Jan
Chomicki. Consistent query answers in inconsistent
databases. In PODS, pages 68–79, 1999.

[5] Michael Benedikt, Gabriele Puppis, and Cristian
Riveros. The cost of traveling between languages. In
ICALP, pages 234–245, 2011.

[6] Michael Benedikt, Gabriele Puppis, and Cristian
Riveros. Regular repair of specifications. In LICS,
pages 335–344, 2011.

[7] Philip Bille. A survey on tree edit distance and related
problems. Theor. Comput. Sci., 337(1-3):217–239,
2005.

[8] Peter Van Emde Boas. The convenience of tilings. In
Complexity, Logic and Recursion Theory, volume 187,
pages 331–363, 1997.

[9] Utsav Boobna and Michel de Rougemont. Correctors
for XML data. In XSym, pages 97–111, 2004.

[10] Anne Brüggemann-Klein and Derick Wood.
One-unambiguous regular languages. Inf. Comput.,
140(2):229–253, 1998.

[11] Julien Carme, Joachim Niehren, and Marc Tommasi.
Querying unranked trees with Stepwise Tree

Automata. In RTA, pages 105–118, 2004.

[12] Jérôme Champavère, Rémi Gilleron, Aurélien Lemay,
and Joachim Niehren. Efficient inclusion checking for
deterministic tree automata and XML schemas. Inf.
Comput., 207(11):1181–1208, 2009.

[13] David Fallside and Priscilla Walmsley. XML Schema
Part 0: Primer Second Edition. W3C
Recommendation, October 2004.

[14] Wenfei Fan and Philip Bohannon. Information
preserving XML schema embedding. ACM Trans.
Database Syst., 33(1), 2008.

[15] Sergio Flesca, Filippo Furfaro, Sergio Greco, and Ester
Zumpano. Querying and repairing inconsistent XML
data. In WISE, pages 175–188, 2005.

[16] Wouter Gelade, Tomasz Idziaszek, Wim Martens, and
Frank Neven. Simplifying XML schema: single-type
approximations of regular tree languages. In PODS,
pages 251–260, 2010.

[17] Wim Martens and Joachim Niehren. On the
minimization of XML schemas and tree automata for
unranked trees. J. Comput. Syst. Sci., 73(4):550–583,
2007.

[18] Jean-François Raskin and Frédéric Servais. Visibly
pushdown transducers. In ICALP, pages 386–397,
2008.

[19] Thomas Schwentick. Automata for XML - a survey. J.
Comput. Syst. Sci., 73(3):289–315, 2007.

[20] Luc Segoufin and Victor Vianu. Validating streaming
XML documents. In PODS, pages 53–64, 2002.

[21] Helmut Seidl. Deciding equivalence of finite tree
automata. SIAM J. Comput., 19(3):424–437, 1990.

[22] Slawomir Staworko and Jan Chomicki.
Validity-sensitive querying of XML databases. In
EDBT Workshops, pages 164–177, 2006.

[23] Larry J. Stockmeyer and Albert R. Meyer. Word
problems requiring exponential time. In STOC, pages
1–9, 1973.

168

