
Equivalence and Minimization of Conjunctive Queries
Under Combined Semantics

(extended abstract)

Rada Chirkova
Department of Computer Science

NC State University, Raleigh, NC 27695, USA
chirkova@csc.ncsu.edu

ABSTRACT
The problems of query containment, equivalence, and mini-
mization are fundamental problems in the context of query
processing and optimization. In their classic work [2] pub-
lished in 1977, Chandra and Merlin solved the three prob-
lems for the language of conjunctive queries (CQ queries)
on relational data, under the “set-semantics” assumption for
query evaluation. While the results of [2] have been very
influential in database research, it was recognized long ago
that the set semantics does not correspond to the seman-
tics of the standard commercial query language SQL. Al-
ternative semantics, called bag and bag-set semantics, have
been studied since 1993; Chaudhuri and Vardi in [5] out-
lined necessary and sufficient conditions for equivalence of
CQ queries under these semantics. (The problems of con-
tainment of CQ bag and bag-set queries remain open to this
day.) More recently, Cohen [7, 8] introduced a formalism
for treating (generalizations of) CQ queries evaluated under
each of set, bag, and bag-set semantics uniformly as special
cases of the more general combined semantics. This for-
malism provides tools for studying broader classes of practi-
cal SQL queries, specifically important types of queries that
arise in on-line analytical processing (OLAP). Cohen in [8]
provides a sufficient condition for equivalence of (general-
izations of) combined-semantics CQ queries, as well as suffi-
cient and necessary equivalence conditions for several proper
sublanguages of the query language of [8]. To the best of our
knowledge, no results on minimization of CQ queries beyond
set-semantics queries have been reported in the literature.

Our goal in this paper is to continue the study of equiv-
alence and minimization of CQ queries. We consider the
problems of (i) finding minimized versions of combined-sem-
antics CQ queries, and of (ii) determining whether two CQ
queries are combined-semantics equivalent. We continue the
tradition of [2, 5, 8] of studying these problems using the
tool of containment between queries. We extend the contain-
ment, equivalence, and minimization results of [2] to general

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDT 2012, March 26–30, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-0791-8/12/03 ...$10.00

combined-semantics CQ queries, and show the limitations of
each extension. We show that the minimization approach of
[2] can be extended to general CQ queries without limita-
tions. We also propose a necessary and sufficient condition
for equivalence of queries belonging to a large natural sub-
language of combined-semantics CQ queries; this sublan-
guage encompasses (but is not limited to) all set, bag, and
bag-set queries. Our equivalence and minimization results,
as well as our general sufficient condition for containment of
combined-semantics CQ queries, reduce correctly to the spe-
cial cases reported in [5] for bag and bag-set semantics. Our
containment and equivalence conditions also properly gen-
eralize the results of [8], provided the latter are restricted to
the language of (combined-semantics) CQ queries.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—query process-
ing

General Terms
Algorithms, performance, theory

Keywords
query equivalence and minimization; query optimization;
conjunctive queries; set, bag, bag-set, combined semantics
for query evaluation

1. INTRODUCTION
Query containment and equivalence are recognized as fun-

damental problems in evaluation and optimization of databa-
se queries. The reason is, for conjunctive queries (CQ queries)
— a broad class of frequently used queries, whose expressive
power is sufficient to express select-project-join queries in re-
lational algebra — query equivalence can be used as a tool
in query optimization. Specifically, to find a more efficient
and answer-preserving formulation of a given CQ query, it is
enough to “try all ways” of arriving at a “shorter” query for-
mulation, by removing query subgoals, in a process called
query minimization [2]. A subgoal-removal step succeeds
only if equivalence (via containment) of the “original” and
“shorter” query formulations can be ensured. The equiv-
alence test of [2] for CQ queries is NP complete, whereas
equivalence of general relational queries is undecidable.

The query-minimization algorithm of [2] works under the
assumption of set semantics for query evaluation, where

262

both the database (stored) relations and query answers are
treated as sets. Query answering and reformulation in the
set-semantics setting have been studied extensively in the
database-theory literature. As a basis, these studies have
all used the necessary and sufficient containment condition
of [2] for CQ queries. At the same time, the set semantics is
not the default query-evaluation semantics in database sys-
tems in practice. For instance, in the standard relational
query language SQL, duplicates are removed from the an-
swer to a SQL query only if the query uses the DISTINCT

keyword in its SELECT clause. This and other discrepancies
between the set semantics for query evaluation and the stan-
dard of SQL have prompted researchers [5, 12] to consider
“bag semantics” and “bag-set semantics” for query evalua-
tion. Under bag semantics, both query answers and stored
relations are treated as bags (that is, multisets). Under bag-
set semantics, query answers are treated as bags, whereas
the database relations are assumed to be sets.

In an extended abstract [5] published in PODS in 1993,
Chaudhuri and Vardi focused on the hard problem of bag
containment for CQ queries. The paper [5] formulates con-
tainment and equivalence results, including equivalence tests,
for bag and bag-set queries. However, the full version of the
paper [5] has never appeared, and the problems of bag and
bag-set containment for CQ queries remain open to this day.

The seminal work by Cohen [7, 8] has provided a Datalog-
based formalism for treating queries evaluated under each of
set, bag, and bag-set semantics uniformly as special cases of
the more general combined semantics. To show the practical
value of the combined-semantics formalism, Cohen exhibited
in [8] a number of real-life SQL queries that can be expressed
as combined-semantics CQ queries, but cannot be expressed
using set, bag, or bag-set semantics. In the following exam-
ple we show another realistic combined-semantics query, and
use it to illustrate issues in equivalence and minimization of
combined-semantics queries.

EXAMPLE 1.1. The application domain used in this ex-
ample is based on a data-warehousing example from [11].
Consider a retailer that has multiple stores. The retailer car-
ries many items and has an elaborate relational database/wa-
rehouse for analysis, marketing, and promotion purposes.
One of the tables in the database has the schema pos(trans-

actionID, itemID, storeID, date, amount); the table
has one million rows. This table represents point-of-sale
transactions, with one tuple for every item sold in a transac-
tion. Each tuple has the transaction ID, the ID of the item
sold, the ID of the store selling it, the date, and the amount
of the sale.

Suppose that the business-development division of this store
chain would like to study the impact, on the total sales, of
those transactions in the stores where the item prices are
the same as on some fixed date.1 We denote this fixed date
of interest by the constant d1. Consider SQL query Q that
could be used for the purpose of this analysis.

(Q) SELECT storeID, amount FROM pos P WHERE EXISTS
(SELECT * FROM pos WHERE itemID = P.itemID AND
storeID = P.storeID AND amount = P.amount AND date = ‘d1’)

1We assume that the transaction amount can be used to
determine the price of the item. This is true, for instance,
for sales of big-ticket items, where each transaction typically
records the sale of one such item. We also assume that item
prices do not change in the middle of a business day.

For each store ID, query Q returns separately the amount
for each transaction that took place in that store on the date
d1. Moreover, for each item that was sold in the store on
the date d1, Q returns all the same purchase amounts for the
same item in the same store, as many times as the purchases
have happened, regardless of the date. If the analysts want
to calculate correctly the total per-store returns for all the
transactions that have the same item prices as the same-
store transactions for the date d1, then all they have to do to
write the query is to (i) add to the query Q the clause GROUP

BY storeID, and to (ii) replace amount by sum(amount) in
the SELECT clause of Q. To evaluate the resulting analysis
query, the query processor would evaluate the query Q, and
would then apply to the answer to Q the above grouping and
aggregation.

Due to the large size of the relation pos, the self-join
of pos in the query Q, via a correlated subquery, should be
avoided if at all possible. However, as we show in the full
version [6] of this paper,2 it turns out that the query Q can-
not be expressed equivalently as a set, bag, or bag-set CQ
query. (The reason that we cannot find an equivalent set,
bag, or bag-set version of Q is that each such version would
return the (store, transaction-amount) pairs with different
multiplicities than Q does. Thus, the total per-store returns
analysis using Q as discussed above, cannot be done correctly
using a set, bag, or bag-set CQ query.) It follows that opti-
mizing the query Q by finding an equivalent efficient rewriting
cannot be done using the results of past work. At the same
time, we can use the results of this current paper to show that
the minimized – and thus the most efficient-in-execution –
version of the query Q is the query itself. 2

Combined-semantics CQ queries such as the query Q of
Example 1.1 with grouping and aggregation added, arise
naturally in on-line analytical processing (OLAP) applica-
tions [14, 15]. Such queries occur whenever a data-analysis
task calls for a query structure with nested subqueries. Such
queries also arise due to joins that go beyond “star-schema
joins” [3, 4], which are the only well-understood joins in the
literature on OLAP query optimization. See [14, 15, 16, 17]
for more detailed discussions of why queries with nested sub-
queries and with “non-star joins” are natural and frequent
in OLAP. (For an additional extended illustration of such
queries, see the full version [6] of this paper.) We can use
the results of [7, 8] to show that the query Q of Example 1.1
cannot be represented equivalently as a SQL query without
subqueries, that is as a CQ set, bag, or bag-set query. At the
same time, to the best of our knowledge, past work cannot
help us determine the most efficient equivalent SQL repre-
sentation of the query Q. It turns out that, by the results in
this current paper, the query Q cannot be simplified further
by equivalent reformulation, specifically by minimization.

Our contributions.
We study equivalence and minimization of unaggregated
SQL queries with equality comparisons and possibly with
subqueries. We follow the approach of [8], where the study
concentrates on Datalog translations of such queries, that
is on combined-semantics CQ queries. The requisite trans-
lations from SQL to Datalog are straightforward (“as ex-

2For all the details that are omitted from this extended ab-
stract, please see the full version [6] of this paper.

263

pected”).3 In the remainder of this paper, all queries are
expressed using the Datalog-based formalism of [8].

We focus on the problems of (i) finding minimized versions
of combined-semantics CQ queries, and of (ii) determining
whether two CQ queries are combined-semantics equivalent.
We continue the tradition of [2, 5, 8] of studying these prob-
lems using the tool of containment between queries. All the
results in this paper hold for queries that may have con-
stants. Our specific contributions are as follows:

• For combined-semantics containment of CQ queries, in
Section 3 we introduce two necessary conditions and a
sufficient condition. The latter result properly gen-
eralizes both (i) the sufficient condition outlined in
[5] for bag containment of CQ queries, and (ii) the
general sufficient containment condition that can be
obtained from [8] for CQ queries. To formulate our
sufficient condition, we introduce “covering mappings”
(CVMs) between CQ queries. We use CVMs in our
results throughout the remainder of the paper.

• In Section 4 we present a necessary condition for CQ-
query equivalence. To formulate this condition, we iso-
late a large class of CQ queries, which we call “explicit-
wave queries”.4 We show that this class of queries
encompasses, but is not limited to, (i) all CQ set,
bag, and bag-set queries, and (ii) all CQ queries for
which [8] provides its sufficient and necessary equiv-
alence tests. We refer to all combined-semantics CQ
queries that are not explicit-wave queries as “implicit-
wave queries.” Our necessary condition for query equiv-
alence is asymmetric – it states that if for CQ queries
Q and Q′ we have the combined-semantics equivalence
Q ≡C Q′, and Q is an explicit-wave query, then there
exists a CVM from Q′ to Q. We discuss why estab-
lishing this result is not trivial.

• In Section 5 we propose a sound and complete algo-
rithm for minimizing combined-semantics CQ queries.
We also show that for all CQ queries, including all
implicit-wave queries, the minimized version of the
query exists and is unique up to an isomorphism CVM.

• Finally, in Section 6 we study our proposed conditions
for equivalence of CQ queries. Our main focus is on
reformulating these conditions using minimized ver-
sions of the queries. The reformulations tie our equiv-
alence conditions together with the results of [2, 5].
Our sufficient and necessary condition for equivalence
of explicit-wave CQ queries is strictly more powerful
than each of the equivalence tests of [8], provided that
the latter are applied to CQ queries only.

Due to the space limit, we present here only an extended
abstract of our results. All the details are available in the
full version [6] of this paper.

The results of this paper can be used directly in query
optimizers for database-management systems, as well as for
developing minimization methods for queries in more expres-
sive languages than CQ queries and in presence of integrity
constraints. Our results can also be used for developing

3Section 1 in [8] provides some details of the translations.
4The term “explicit-wave query” is due to the structures
generated by the proof of the main result of Section 4.

algorithms for rewriting queries using views, and for view
selection under combined semantics.

2. PRELIMINARIES

2.1 Combined semantics: The framework [8]

2.1.1 Syntax of queries
Predicate symbols are denoted as p, q, r. Databases con-

tain ground atoms for a given set of predicate symbols; we
consider finite-size databases only. A database may have
several copies of the same atom. To denote this fact, each
atom in the database is associated with a copy number N .
Formally, if p is an n-ary predicate, for an n ∈ N+ (with
N+ the set of natural numbers), we write p(c1, . . . , cn;N),
with N ∈ N+, to denote that there are precisely N copies
of p(c1, . . . , cn) in the database. As a shorthand, if N = 1,
we often omit the copy number N . The active domain of
database D, denoted adom(D), is the set of all constants
mentioned in the ground atoms of D. We adopt a con-
vention by which, for each atom of the form p(c1, . . . , cn)
such that database D has N ≥ 1 copies of that atom, N is
an element of adom(D) only if there exists in D an atom
r(c′1, . . . , c

′
m) (where r and p may or may not be the same

predicate) such that N is one of c′1, . . ., c′m.
For query syntax, we denote variables using X, Y , Z,

possibly with subscripts, and i, j, k. The former range over
constants in the database (i.e., over adom(D)), whereas the
latter range over copy numbers. For this reason, we call the
former regular variables (or simply variables for short), and
we call the latter copy variables. We use c, d to denote con-
stants. A term, denoted as S, T , is a variable or a constant.

A relational atom has the form p(S1, . . . , Sn), where p is a
predicate of arity n. We also use the notation p(S̄), where S̄
stands for a sequence of terms S1, . . . , Sn. A copy-sensitive
atom has the form p(S̄; i), and is simply a relational atom
with copy variable i. We call relational atom p(S̄) the re-
lational template of copy-sensitive atom p(S̄; i). For each
relational atom, its relational template is the atom itself. A
condition, denoted as L, is a conjunction of relational and
copy-sensitive atoms, with duplicate atoms allowed, such
that all copy variables in L are unique (i.e., appear in a sin-
gle copy-sensitive atom, and do not appear in other atoms).
Sometimes it will be convenient for us to view condition L
as a bag of all and only the elements in the conjunction L.

We distinguish between the variables that appear in the
head of a query, and those that only appear in the body.
The former are distinguished (head) variables, and the latter
are nondistinguished (nonhead) variables. Nondistinguished
variables come in two flavors: set variables and multiset vari-
ables. The intuition for the difference between these two
types of variables is as follows. When evaluating a query,
different assignments for set variables do not contribute to
the multiplicity in which a particular answer is returned by
the query. On the other hand, different assignments for
multiset variables do contribute to the multiplicity of the
returned answers. Technically, in order to differentiate be-
tween set variables and multiset variables, we always specify
the set of multiset variables in each condition immediately
to the right of the condition. As a syntactic requirement, all
copy variables must be in the set of multiset variables.

264

Definition 2.1. (Query syntax: CCQ query) A copy-
sensitive conjunctive query (CCQ query) is a nonrecursive
expression of the form

Q(X̄)← L,M,

where X̄ contains at least one term, L is a nonempty con-
dition, and M is a set of variables, such that:

• L contains all the variables in X̄; that is, Q is safe;

• M is a subset of the set of nondistinguished variables
of L and contains all copy variables of L. We denote
all the copy variables of Q collectively as Mcopy ⊆ M ,
and all the remaining (“multiset noncopy”) variables in
M as Mnoncopy := M −Mcopy. 2

We call each element of the condition L a subgoal of Q.
The variables in M are the multiset variables of Q. The
variables in L that are not in X̄ or in M are the set variables
of Q. Consider an illustration.

EXAMPLE 2.1. Let CCQ query Q be as follows.

Q(X)← p(X,X, Y ; i), p(X,Z, Y), {Y, i}.

The condition L of the query Q is the conjunction of the
two subgoals of Q with the predicate p. X is the (only) head
variable of the query Q, and Z is its (only) set variable.
The set {Y, i} is the set M of multiset variables of Q; the
set Mcopy of Q comprises the (only) copy variable i of Q,
and the set Mnoncopy of Q has the multiset noncopy variable
Y of Q. By definition, M = Mcopy ∪ Mnoncopy . 2

We use S(Q) to denote an arbitrary vector, without rep-
etitions, of the set variables of Q, and S̄(Q) to denote an
arbitrary vector, without repetitions, of the remaining vari-
ables of Q (i.e., the distinguished and multiset variables of
Q). By abuse of notation, we will often refer to a query
by its head Q(X̄) or simply by its head predicate Q. For a
vector of terms X̄ with k ≥ 1 elements, we say that a CCQ
query with head Q(X̄) is a CCQ k-ary query.

We will sometimes be interested in special types of queries.
A CCQ query Q is a set query if it has no multiset variables,
that is, if M = ∅. Query Q is a multiset query if Q has no
set variables. Further, a multiset query Q is (i) a bag query
if Q has only copy-sensitive subgoals, and is (ii) a bag-set
query if Q has only relational subgoals.

2.1.2 Combined semantics for queries
We define how CCQ query Q(X̄)← L,M yields a multiset

of tuples on database D. Intuitively, we start by considering
satisfying assignments of the condition L. We then restrict
these assignments to the nonset variables of L, that is to
S̄(Q). Each of these restricted assignments yields a tuple in
the result. A formal description of the semantics follows.

Let γ be a mapping of the terms in condition L to values.
We will also apply γ to a sequence of terms to derive a
sequence of values, in the obvious way. We say that γ is a
satisfying assignment of L with respect to database D if all
of the following conditions hold:

• γ is the identity mapping on constants;

• for all relational atoms p(T̄) ∈ L, there exists an N ∈
N+ such that we have p(γT̄ ;N) ∈ D; and

• for all copy-sensitive atoms p(T̄ ; i) ∈ L, the following
two conditions hold:

– γi ∈ N+ (i.e, γi is a positive natural number);
– there is an N ≥ γi such that p(γT̄ ;N) ∈ D.

Let Γ(Q,D) denote the set of satisfying assignments of L
with respect to database D. Let γ be an assignment of the
variables in S̄(Q) to constants. We say that γ is satisfiably
extendible if there is an assignment γ′ ∈ Γ(Q,D) such that
γ and γ′ coincide on all terms for which γ is defined, that
is, γ′(X) = γ(X) for all X ∈ S̄(Q). Intuitively, this means
that it is possible to extend γ to derive a satisfying assign-
ment of L. We use ΓS̄(Q,D) to denote the set of satisfiably
extendible assignments of S̄(Q) with respect to D. For the
γ ∈ ΓS̄(Q,D) and for the γ′ ∈ Γ(Q,D) as specified in this
paragraph, we say that γ′ contributes γ to ΓS̄(Q,D).

We now define the result of applying a query Q to a
database D. (We use {{. . .}} to denote a bag of values.)

Definition 2.2. (Combined semantics) Let Q(T̄) ←
L,M be a CCQ query and let D be a database. The re-
sult of applying Q to D under combined semantics, denoted
ResC(Q,D), is defined as

ResC(Q,D) := {{ γ(T̄) | γ ∈ ΓS̄(Q,D) }} . 2

Note that ResC(Q,D) is a bag of tuples, that is, ResC(Q,
D) may contain multiple occurrences of the same tuple.
Consider an illustration.

EXAMPLE 2.2. Let CCQ query Q be as in Example 2.1,
and consider database D = { p(1, 1, 3; 2), p(1, 1, 4; 3) }. Then
ResC(Q,D) is a bag of exactly five copies of tuple (1). Two
of these copies in ResC(Q,D) are due to the atom p(1, 1, 3; 2)
in the database D, and the three remaining copies of (1) in
ResC(Q,D) are due to to the atom p(1, 1, 4; 3) in D. 2

Under certain circumstances, combined semantics coin-
cides with set, bag, or bag-set semantics. Please see [8] for
the details on the three traditional query semantics, specif-
ically on how these semantics can be formulated as special
cases of combined semantics.

2.1.3 Query containment and equivalence
Query containment under combined, set, bag, and bag-set

semantics is defined in the standard manner. Formally, Q is
contained in Q′ under a given semantics if, for all databases,
the bag of values returned by Q is a subbag of the bag of
values returned by Q′. We write Q vC Q′, Q vS Q

′, Q vB

Q′, and Q vBS Q
′ if Q is contained in Q′ under combined,

set, bag, and bag-set semantics, respectively. Similarly, we
use Q ≡C Q′, Q ≡S Q

′, Q ≡B Q′, and Q ≡BS Q
′ to denote

the fact that Q is equivalent to Q′ under each semantics.
Q ≡C Q′ holds if and only if Q vC Q′ and Q′ vC Q both
hold. The definitions of Q ≡S Q

′, Q ≡B Q′, and Q ≡BS Q
′

parallel that of Q ≡C Q′ in the obvious manner.
For CCQ queries Q and Q′, we have that (1) Q vS Q

′ iff
Q vC Q′, in case Q and Q′ are set queries; (2) Q vB Q′

iff Q vC Q′, in case Q and Q′ are bag queries; and (3)
Q vBS Q

′ iff Q vC Q′, in case Q and Q′ are bag-set queries.
For a class Q of queries: The Q-containment problem for

combined semantics is: Given queries Q and Q′ in Q, de-
termine whether Q vC Q′. The Q-equivalence problem is
defined similarly using ≡C instead of vC . The two prob-
lems can be defined similarly for other semantics.

265

2.2 Equivalence and minimization results
Homomorphisms and set queries. Given two condi-

tions φ(Ū) and ψ(V̄), a homomorphism from φ(Ū) to ψ(V̄)
is a mapping h from the set of terms in Ū to the set of
terms in V̄ such that (1) h(c) = c for each constant c,
(2) for each relational atom r(U1, . . . , Un) of φ we have
that r(h(U1), . . . , h(Un)) is in ψ, and (3) for each copy-
sensitive atom p(W1, . . . ,Wn; i) of φ we have that p(h(W1),
. . . , h(Wn);h(i)) is in ψ. Given two CCQ k-ary queries
Q1(X̄)← φ(X̄, Ȳ),M1 and Q2(X̄ ′)← ψ(X̄ ′, Ȳ ′),M2, a con-
tainment mapping from Q1 to Q2 is a homomorphism h from
φ(X̄, Ȳ) to ψ(X̄ ′, Ȳ ′) such that h(X̄) = X̄ ′.

Theorem 2.1. [2] Given two CCQ set queries Q1 and Q2

of the same arity, Q1 vS Q2 holds if and only if there is a
containment mapping from Q2 to Q1. 2

This classic result of [2] forms the basis for a sound and
complete test for set-equivalence of CCQ set queries Q and
Q′, by definition of set-equivalence Q ≡S Q

′.
We now introduce the notion of a“reduced-condition query”

for CCQ query. Given a CCQ query Q(X̄)← L,M , a CCQ
query Q′(X̄)← L′,M ′ is a (proper) reduced-condition query
for Q if (i) L′ is a (proper) subbag of L, (ii) the set M ′ is
the set of all elements of M that occur in L′, and (iii) Q′ is
a safe query (i.e., L′ contains all the variables in X̄).

Definition 2.3. (Minimized CCQ query; minimized
version of CCQ query) A CCQ query Q is a minimized
CCQ query if for each subgoal s of Q, the removal of s from
the condition of Q results in a query Q′ such that Q ≡C/ Q′.
A CCQ query Q is a minimized version of CCQ query Q′ if
(1) Q is a reduced-condition query for Q′, (2) Q is a mini-
mized query, and (3) Q ≡C Q′. 2

Theorem 2.2. [2] Given two CCQ set queries Q1 and Q2

of the same arity:

(1) The minimized version of Q1 exists and is unique up
to isomorphism; and

(2) Q1 ≡S Q2 holds if and only if the minimized versions
of Q1 and of Q2 are isomorphic. 2

(Two CCQ queries Q1 and Q2, with respective sets of
multiset variables M1 and M2, are isomorphic if there exists
a one-to-one containment mapping from Q1 onto Q2 such
that the mapping induces a bijection from M1 to M2, and
there exists another containment mapping from Q2 onto Q1,
with (symmetrically) the same properties.)
Bag and bag-set queries. For bag and bag-set se-

mantics, the following conditions are known for CCQ query
equivalence. (Query Qc is a canonical representation of
query Q if Qc is the result of removing all duplicate atoms
from the condition of Q.)

Theorem 2.3. [5] Let Q and Q′ be CCQ queries. Then
(1) When Q and Q′ are bag queries, Q ≡B Q′ iff Q and
Q′ are isomorphic. (2) When Q and Q′ are bag-set queries,
Q ≡BS Q

′ iff Qc and Q′c are isomorphic. 2

Combined-semantics queries. The next result is a suf-
ficient condition of [8] for equivalence of two queries under
combined semantics. In [8], Cohen formulates each of Defi-
nition 2.4 and Theorem 2.4 for CCQ queries that may also

contain negation and inequality comparisons. (In condition
(3) of Definition 2.4 we treat the query conditions, which are
conjunctions of atoms, as bags of the same atoms. Given a
bag B, we call a set S the core-set of B if S is the result of
dropping all duplicates of all elements of B.)

Definition 2.4. (Multiset-homomorphism [8]) Let
Q(X̄) ← L,M and Q′(X̄ ′) ← L′,M ′ be two k-ary CCQ
queries, for k ≥ 1. Let ϕ be a mapping from the terms
of Q′ to the terms of Q.5 We say that ϕ is a multiset-
homomorphism from Q′ to Q if ϕ satisfies all of the follow-
ing conditions:

1. ϕX̄ ′ = X̄ ;

2. ϕ is the identity mapping on constants;

3. the core-set of ϕL′ is a subset of the core-set of L ;

4. ϕM ′ ⊆M ; and

5. ϕY 6= ϕY ′ for every two variables Y 6= Y ′ ∈M ′. 2

For every mapping ϕ that satisfies conditions 1–3 of Def-
inition 2.4, we call ϕ a generalized containment mapping
(GCM).

We say that two CCQ queries Q andQ′ are multiset homo-
morphic whenever there is a multiset-homomorphism from
Q to Q′ and another from Q′ to Q.

Theorem 2.4. [8] Given CCQ queries Q and Q′. If Q
and Q′ are multiset homomorphic then Q ≡C Q′. 2

Note 1. Theorem 2.4 is proved in [8] via showing that for
two (generalized) CCQ queries Q and Q′, the existence of a
multiset-homomorphism from Q′ to Q implies Q vC Q′.

It is shown in [8] that the sufficient equivalence condition
of Theorem 2.4 is not necessary for the query classes consid-
ered in [8].

3. CONTAINMENT AND MAPPINGS
In this section, for combined-semantics containment of

CCQ queries, we introduce two necessary conditions, The-
orems 3.1 and 3.2, and a sufficient condition, Theorem 3.3.
The latter result properly generalizes both (i) the sufficient
condition outlined in [5] for bag containment of CQ queries,
and (ii) the general sufficient containment condition for CCQ
queries that can be obtained from [8]. To formulate Theo-
rem 3.3, we introduce “covering mappings” (CVMs) between
CCQ queries. We use CVMs in our results throughout the
remainder of this paper.

Throughout this paper, we use the notationQ(X̄)← L,M
and Q′(X̄ ′) ← L′,M ′ for the definitions of CCQ queries Q
and Q′. The conditions of Q and Q′ may have constants.

3.1 Necessary conditions for containment
We introduce two necessary conditions, Theorems 3.1 and

3.2, for a CCQ query Q being combined-semantics contained
in CCQ query Q′. (We denote by |S| the cardinality of set
S.)

Theorem 3.1. Let Q and Q′ be two k-ary CCQ queries.
Then Q vC Q′ implies both |Mcopy| ≤ |M ′copy| and |Mnoncopy|
≤ |M ′noncopy|. 2

5We also apply ϕ to atoms and conjunctions of atoms, in
the obvious way, e.g., ϕ(p(S̄)) = p(ϕ(S̄)).

266

The idea of the proof of Theorem 3.1, see [6], is that we
use the definition of query Q to construct a special database
D. Some answer to Q on D has a multiplicity (in the bag

ResC(Q,D)) that is proportional to |adom(D)||M|. Then
we can use several versions of the database D to prove The-
orem 3.1 by contradiction: We assume either |Mcopy| >
|M ′copy| or |Mnoncopy| > |M ′noncopy|, and obtain that Q vC

Q′ cannot hold. The challenge in the proof is in the com-
bination of allowing constants in the condition of Q and of
arriving at “the right” multiplicity of the answer to Q on
D when we are to show that |Mcopy| ≤ |M ′copy| must hold
whenever Q vC Q′.

We call a pair (Q, Q′) of CCQ queries a containment-
compatible CCQ pair if (i) The (positive) head arities of
Q and Q′ are the same; (ii) |Mcopy| ≤ |M ′copy|; and (iii)
|Mnoncopy| ≤ |M ′noncopy|. (Note the asymmetry in the nota-
tion for the pair.) Further, we call a pair (Q, Q′) of CCQ
queries an equivalence-compatible CCQ pair if each of (Q,
Q′) and (Q′, Q) is a containment-compatible CCQ pair. By
Theorem 3.1 we have that, whenever Q vC Q′ (Q ≡C Q′, re-
spectively) holds, then (Q, Q′) is a containment-compatible
(an equivalence-compatible, respectively) CCQ pair.

We now generalize the “only-if” part of the classic result
of [2], see Theorem 2.1 in Section 2.2, to CCQ queries. For
the definition of generalized containment mapping, GCM,
see Section 2.2. We begin by introducing another definition
that we need to formulate our generalization, Theorem 3.2.

For a CCQ query Q, we say that CCQ query Qce is a
copy-enhanced version of Q if Qce is the result of adding a
distinct copy variable to each relational subgoal of Q. (We
can show that for a query Q, all copy-enhanced versions of Q
are identical up to renaming of the copy variables introduced
in the construction of Qce.) Further, for each CCQ query
Q′ that is a reduced-condition query for CCQ query Q, we
obtain the query Q′ce by removing from Qce those subgoals
that do not correspond to the subgoals of Q′. (See [6] for
the formal definition.)

We are now ready to formulate Theorem 3.2.

Theorem 3.2. Given CCQ queries Q and Q′ such that
Q vC Q′. Then there exists a GCM from Q′ce to Qce. 2

The proof of Theorem 3.2, see [6], is a generalization of
the proof, via canonical databases, of the result of [2].

Neither Theorem 3.1 not Theorem 3.2 provides a suffi-
cient condition for combined-semantics containment of CCQ
queries: Example 3.1 is a counterexample in both cases.

EXAMPLE 3.1. Consider CCQ queries Q and Q′:

Q(X)← p(X,Y), p(Y,Z), p(Z,X; i), {Y, i}.
Q′(X)← p(X,Y), p(Y,Z), p(Z,X; i), {Z, i}.

Apart from the choice of multiset variables, Q and Q′ are
clearly isomorphic. However, Q ≡C Q′ does not hold, as
witnessed by database D = {p(1, 2), p(2, 3), p(3, 1), p(1, 4),
p(4, 3)}. Our results in this paper permit us to determine
Q ≡C/ Q′ syntactically, see Section 4. To the best of our
knowledge, no previous work provides a formal procedure to
determine Q ≡C/ Q′ for queries such as in this example. 2

Each of Theorem 3.1 and Theorem 3.2 yields a neces-
sary condition for combined-semantics equivalence of CCQ
queries in a natural way. For instance:

Corollary 3.1. Let Q and Q′ be two k-ary CCQ queries
such that Q ≡C Q′. Then we have |Mcopy| = |M ′copy| and
|Mnoncopy| = |M ′noncopy|. 2

3.2 Covering mappings for CCQ queries
In this subsection, we define covering mappings (CVMs)

between CCQ queries, and study properties of CVMs. (See
[6] for the proofs of all the results of this subsection.)

Definition 3.1. (Covering mapping (CVM)) For
CCQ queries Q and Q′, a mapping, µ, from the terms of Q′

to the terms of Q is called a covering mapping (CVM) from
Q′ to Q whenever µ satisfies all of the following conditions:

(1) µ maps each constant (if any) in Q′ to itself;

(2) applying µ to the vector X̄ ′ yields the vector X̄;

(3) the set of terms in µM ′copy is exactly Mcopy, and the
set of terms in µM ′noncopy includes all of Mnoncopy;

(4) for each relational subgoal of Q′, of the form s(Ȳ),
there exists in Q a relational subgoal s(µ(Ȳ)) or a copy-
sensitive subgoal s(µ(Ȳ); i), with i ∈Mcopy; and

(5) for each copy-sensitive subgoal of Q′ of the form s(Ȳ ; i),
there exists in Q a subgoal s(µ(Ȳ);µ(i)). 2

By Definition 3.1, if there exists a CVM from CCQ query
Q′ to CCQ queryQ, then (Q, Q′) is a containment-compatib-
le CCQ pair. It is immediate from Definition 3.1 that if a
mapping µ is a CVM from Q′ to Q, then µ induces a surjec-
tion from the set of copy-sensitive subgoals of Q′ to the set
of copy-sensitive subgoals of Q. Observe also that in case
both Q and Q′ are set queries, Definition 3.1 becomes the
definition of containment mapping [2] from Q′ to Q.

For the special case where (Q, Q′) is an equivalence-compat-
ible CCQ pair, we call each CVM from Q′ to Q a same-scale
covering mapping (SCVM) from Q′ to Q. By definition,
each SCVM from Q′ to Q is a bijection from the set M ′ to
the set M when restricted to the domain M ′.

The intuition for Definition 3.1 comes from our use of
CVMs later in this paper (Section 5) as a tool for minimizing
CCQ queries. Consider the following illustration.

EXAMPLE 3.2. Let queries Q and Q′ be as follows.

Q(X)← p(X,X, Y ; i), p(X,Z, Y), {Y, i}.
Q′(X)← p(X,X, Y ; i), {Y, i}.
By Definition 2.4, there does not exist a multiset homomor-
phism [8], or even a GCM, from Q to Q′. At the same time,
by our results of Section 5, Q′ is a minimized version of Q.
We can ascertain this fact by using a CVM, µ, from Q to
Q′: µ = { X → X, Y → Y , i→ i, Z → X } . 2

As illustrated by Example 3.2, CVMs are not GCMs. In-
deed, the definition of CVMs gives up explicitly on condition
(3) for GCMs (see Definition 2.4); by this condition, for each
subgoal s of Q in Example 3.2, we must have that µ(s) is a
subgoal of Q′. While CVMs are not GCMs, a nice relation-
ship exists between CVMs and GCMs, see Proposition 3.2.
To formulate Proposition 3.2, we use the following definition,
in which we treat query conditions as bags of atoms.

Given CCQ query Q, let T (Q) be the set of relational
templates of all (if any) copy-sensitive subgoals of Q. We
recall that CCQ query Qc is a canonical representation of
CCQ query Q if Qc is the result of removing all duplicate
atoms from the condition of Q.

267

Definition 3.2. ((Un)regularizing a CCQ query)
Given CCQ query Q, with canonical representation Qc. Then
(1) A regularized version of Q is a CCQ query Qr obtained
by dropping from the condition of Qc all elements of the set
T (Q); (2) A deregularized version of Q is a CCQ query Qd

obtained by adding to the condition of Qr all elements of the
set T (Q); (3) An unregularized version of Q is a CCQ query
Qu obtained by adding to the condition of Qr one or more
duplicates of the existing relational subgoals, and/or one or
more elements (possibly with duplicates) of the set T (Q). 2

The following result is straightforward.

Proposition 3.1. Given a CCQ query Q. Then (1) Each
of Qr and Qd is a well defined, unique and polynomial-time
computable CCQ query; (2) Qr ≡C Q and Qd ≡C Q both
hold; and (3) For each unregularized version Qu of Q, we
have that Qu ≡C Q holds. 2

(See [6] for an illustration and for a discussion of the query
versions as specified in Definition 3.2.)

We are now ready to formulate Proposition 3.2.

Proposition 3.2. Given CCQ queries Q and Q′. Then
for each CVM, µ, from Q to Q′, we have that (1) µ is a
GCM from Q to the deregularized version of Q′, and (2) µ
is a CVM from Q to the regularized version of Q′. 2

In Example 3.2, we are given the regularized version Q′r of
the query Q′. The deregularized version of Q′ is Q′d(X) ←
p(X,X, Y ; i), p(X,X, Y), {Y, i}. The mapping µ of Exam-
ple 3.2 (i) is a GCM from Q to Q′d, (ii) is a CVM from Q to
Q′r, and (iii) is not a GCM from Q to Q′r.

It turns out that CVMs furnish a rather general sufficient
condition for CCQ combined-semantics containment:

Theorem 3.3. Given CCQ queries Q and Q′, such that
there exists a CVM from Q′ to Q. Then Q vC Q′ holds. 2

Theorem 3.3 generalizes properly both (i) the sufficient
condition of [2] for containment between CCQ set queries,
see Theorem 2.1, and (ii) the well-known result of [5] stating
that a containment mapping6 from CCQ bag query Q′ onto
CCQ bag query Q ensures containment Q vB Q′. In fact,
to the best of our knowledge, the proof of our Theorem 3.3
is the first formal proof of the latter result from [5].

The condition of Theorem 3.3 does not appear to be a nec-
essary condition for containment of CCQ queries. Indeed, a
well-known example of [5] claims (without proof) contain-
ment Q vC Q′, but no CVM exists from Q′ to Q in that
example. (See [6] for the details.)

Finally, we compare CVMs with multiset homomorphisms
[8], see Definition 2.4. For a fixed pair of CCQ queries Q
and Q′, with respective sets of multiset variables M and
M ′, each CVM from Q′ to Q has the range at least M when
restricted to the domain M ′, and each multiset homomor-
phism from Q′ to Q has the range at most M when restricted
to the domain M ′. Therefore, general CVMs and multiset
homomorphisms are incomparable when applied to pairs of
CCQ queries. At the same time, we have the following result
for SCVMs and multiset-homomorphisms.

6The “containment mapping” terminology of [5] results from
the use in that paper of a syntax for bag queries that does
not coincide with the syntax of [8] used in this current paper.
See [6] for a detailed discussion.

Proposition 3.3. Given an equivalence-compatible CCQ
pair (Q, Q′). Then each SCVM from Q′ to Q is a multiset-
homomorphism from Q′ to the deregularized version of Q,
and vice versa. 2

For instance, consider the mapping µ of Example 3.2 from
the terms of the query Q to the terms of the query Q′ of the
example. This mapping is a CVM from Q to Q′ and is
also a multiset-homomorphism from Q to the deregularized
version Q′d of Q′, Q′d(X)← p(X,X, Y ; i), p(X,X, Y), {Y, i}.
(Observe that there is no GCM from query Q′d to query Q′.)

As an immediate corollary of Propositions 3.2 and 3.3, we
have that for each equivalence-compatible CCQ pair (Q,Q′),
the existence of a multiset-homomorphism from Q′ to Q im-
plies the existence of a CVM from Q′ to Q. From this result
and from Example 3.2, we obtain that the restriction of The-
orem 2.4 (due to [8]) to CCQ queries does not have quite
the same power as the sufficient condition for equivalence of
CCQ queries that is immediate from Theorem 3.3. (See The-
orem 6.1 here for an explicit formulation; by Theorem 6.1,
we have Q ≡C Q′ for the queries of Example 3.2.) In fact, by
Example 3.2 we have that our Theorem 3.3 is a proper gen-
eralization of the (implicit) query-containment condition of
[8], provided that the latter is applied to CCQ queries only;
see Note 1 in Section 2.2. (By Definition 2.4 and by The-
orem 3.1, the existence of a multiset-homomorphism from
CCQ query Q′ to CCQ query Q implies Q vC Q′ only when
(Q,Q′) is an equivalence-compatible CCQ pair.)

4. EQUIVALENCE: ASYMMETRIC
NECESSARY CONDITION

In this section we present a necessary condition for CCQ
query equivalence, Theorem 4.1. To formulate Theorem 4.1,
we isolate a large well-behaved class of combined-semantics
CQ queries, which we call “explicit-wave queries.” Theo-
rem 4.1 is asymmetric: It states that if for CCQ queries Q
and Q′ the combined-semantics equivalence Q ≡C Q′ holds,
and we have that Q is an explicit-wave query, then there
exists a CVM from Q′ to Q. We discuss why establishing
this result is not trivial. (See [6] for the full proof.)

We begin by introducing Definition 4.1. This technical
definition is required for the proof of Theorem 4.1 to go
through. Given a CCQ query Q, with set Mnoncopy 6= ∅ of
multiset noncopy variables, we say that a GCM µ from Q to
itself is a noncopy-permuting GCM if the mapping resulting
from restricting the domain of µ to Mnoncopy is a bijection
from Mnoncopy to itself. For two noncopy-permuting GCMs,
µ1 and µ2, from Q to itself, we say that µ1 and µ2 agree
on Mnoncopy if µ1 and µ2 induce the same mapping from
Mnoncopy to itself. If for CCQ query Q we have Mnoncopy

= ∅, we say that all GCMs from Q to itself are noncopy-
permuting GCMs, and that all pairs of such GCMs agree on
Mnoncopy.

In Definition 4.1, for a CCQ query Q and for its copy-
enhanced versionQce, we will call“the original copy-sensitive
subgoals of Q” those copy-sensitive atoms that are present
in the conditions of both Q and Qce.

Definition 4.1. (Explicit-wave CCQ query) A CCQ
query Q is an explicit-wave (CCQ) query if one of the fol-
lowing conditions holds:

268

(1) Q has at most one copy-sensitive subgoal; or

(2) For the set Mnoncopy of multiset noncopy variables of
Q, and for each pair (µ1, µ2) of noncopy-permuting
GCMs from Qce to itself, such that µ1 and µ2 agree
on Mnoncopy, for each original copy-sensitive subgoal,
s, of Q we have that µ1(s) and µ2(s) have the same
relational template.

2

The problem of determining whether a given CCQ query
is an explicit-wave query can easily be seen to be in co-NP.
It is open whether this upper complexity bound is tight.

As an example, any CCQ query Q that has a distinct
predicate name for each subgoal (i.e., is a query “without
self-joins”) can be shown to be an explicit-wave query.

For each CCQ query Q that is not explicit-wave, we call
Q an implicit-wave query. Consider an illustration.

EXAMPLE 4.1. Consider CCQ queries Q and Q′.

Q(X1)← r(X1, Y1, Y2, X2; i), r(X1, Y1, Y2, X3; j),
{Y1, Y2, i, j}.

Q′(X1)← r(X1, Y1, Y2, X2; i), r(X1, Y1, Y2, X2; j),
{Y1, Y2, i, j}.

The only difference between the queries is that the two
subgoals of the query Q have different set variables, X2 and
X3, whereas the two subgoals of Q′ have the same set variable
X2. We can show [6] that Q is an implicit-wave query.

There exist both a multiset homomorphism and a CVM
from the query Q to the query Q′. (Recall that each of the
two mappings provides a sufficient condition for Q′ vC Q.)
Observe that there is no isomorphism between Q and Q′.
The remarkable part is that no multiset homomorphism or
CVM exists in the opposite direction, that is from Q′ to Q.
Yet, Q ≡C Q′ does hold [6]. It does not help much that there
exists a GCM from Q′ to Q. By Theorem 3.2, the existence
of a GCM is a necessary, rather than sufficient, condition for
the containment Q vC Q′. (To apply Theorem 3.2, observe
that Q and Qce are identical, as are Q′ and Q′ce.) 2

Queries such as the query Q of Example 4.1 are of the
kind that does not seem to have been studied before. For
instance, implicit-wave CCQ queries cannot occur under set,
bag, or bag-set semantics.7 By the main result of this sec-
tion, Theorem 4.1, under these three traditional semantics,
as well as in other cases of combined semantics, there ex-
ist “symmetric” CVM mappings between equivalent CCQ
queries. That is, for each pair (Q, Q′) of CCQ queries such
that each of Q and Q′ is an explicit-wave query, Q ≡C Q′

implies that a CVM exists from Q to Q′. What is important
is that in all such cases, a mapping of the same type (i.e.,
also a CVM) always exists also from Q′ to Q. Example 4.1
illustrates that such symmetry does not hold for unrestricted
pairs of CQ queries under combined semantics.

We now state Theorem 4.1.

Theorem 4.1. Given CCQ queries Q and Q′, such that
(i) Q is an explicit-wave query, and (ii) Q ≡C Q′. Then
there exists a SCVM from Q′ to Q. 2

Theorems 3.3 and 4.1 yield immediately a necessary and
sufficient equivalence condition for CCQ explicit-wave quer-
ies. We study this equivalence condition in Section 6.

7We prove this claim in Section 6.

Due to the well-known example given without proof in [5],
it appears that condition (ii) of Theorem 4.1 cannot be re-
placed by condition Q vC Q′ (while also replacing SCVMs
by CVMs), even when Q is an explicit-wave query. Alter-
natively, we cannot remove condition (i) of Theorem 4.1.
Indeed, in Example 4.1 there is a SCVM from query Q to
explicit-wave query Q′, but there is no SCVM from Q′ to
Q, even though Q ≡C Q′ holds [6]. Thus, Theorem 4.1
provides an asymmetric necessary condition for CCQ-query
equivalence. This asymmetry does not appear to have been
explored in previous work. One reason for this is that, as
we have mentioned, under the three traditional semantics
all CCQ queries are explicit-wave queries. In [8], Cohen ex-
plores query classes that properly subsume the class of CCQ
queries. When restricted to CCQ queries, all the necessary
and sufficient conditions of [8] for combined-semantics query
equivalence require the queries to be explicit-wave queries.
We note that none of the necessary and sufficient conditions
of [8] applies to our Examples 3.1 or 3.2, even though all
the queries in the two examples are explicit-wave queries.
Yet, by an equivalence test that is immediate from our The-
orems 3.3 and 4.1, we have Q ≡C/ Q′ for the queries of
Example 3.1, and Q ≡C Q′ for the queries of Example 3.2.

In the remainder of this section we outline the idea of
the proof [6] of Theorem 4.1. Intuitively, we generalize the
proof, via canonical databases, of the existence of a contain-
ment mapping from CCQ set query Q′ to CCQ set query
Q whenever Q ≡S Q′. There is a major challenge in the
generalization: We are now looking not just for a contain-
ment mapping, but for a SCVM from Q′ to Q. That is, the
desired mapping must map each multiset variable of Q′ into
a distinct multiset variable of Q. Showing that we have con-
structed a mapping with this property is thus an essential
part of the proof. (Note that in Theorem 4.1, we have no
information about the structural, i.e. syntactic, relationship
between the given queries Q and Q′.)

For a given CCQ query Q, the proof of Theorem 4.1 con-
structs an infinite number of databases, where each database
DN̄(i)(Q), i ≥ 1, can be thought of as a union of “extended
canonical databases” for Q. Similarly to canonical databases
for CCQ set queries, each ground atom in each database
DN̄(i)(Q) can be associated, via a mapping that we denote

ν
(i)
Q , with a unique subgoal of the query Q.
The role of each database DN̄(i)(Q) in the proof of Theo-

rem 4.1 is that the database represents a particular combi-
nation of multiplicities of the values of (some of) the multi-
set variables Y1, Y2, . . . , Yn, for some n ≥ 1, of the query
Q. (We have that n ≥ 1 for all CCQ queries Q and Q′

such that Q ≡C Q′ and at least one of Q and Q′ is not a
set query.) For each database DN̄(i)(Q), we represent the

n respective multiplicities as natural numbers N
(i)
1 through

N
(i)
n , or equivalently via the n-ary vector N̄ (i).
By construction of the databases DN̄(i)(Q), we have that

some fixed tuple, t∗Q, is an element of the bag ResC(Q,
DN̄(i)(Q)) for each i ≥ 1. Moreover, for all queries Q′′

such that (Q, Q′′) is an equivalence-compatible CCQ pair,
we have that the multiplicity of the tuple t∗Q in each bag
ResC(Q′′, DN̄(i)(Q)) (that is, for each i ≥ 1) can be ex-
pressed using the symbolic representations, N1 through Nn,

of the respective elements N
(i)
1 , . . . , N

(i)
n of the vector N̄ (i).

That is, for each such query Q′′, we can obtain explic-

itly a function, F (Q′′)
(Q) , in terms of the n variables N1, . . . ,

269

Nn, such that whenever we substitute N
(i)
j for Nj , for each

j ∈ {1, . . . , n}, the resulting expression in terms of N
(i)
1 , . . . ,

N
(i)
n evaluates to the multiplicity of the tuple t∗Q in the bag

ResC(Q′′, DN̄(i)(Q)).
A key observation in the proof of Theorem 4.1 is that for

our fixed query Q and for each CCQ query Q′ such that

Q′ ≡C Q, it must be that the functions F (Q′)
(Q) and F (Q)

(Q)

output the same value on each database DN̄(i)(Q), i ≥ 1.
Consider the simplest case, where our query Q has no self-

joins and has |M | = n ≥ 1. In this case, by construction of

the databases, we have that the function F (Q)

(Q) for the query

Q is the monomial Πn
j=1Nj . Consider an arbitrary assign-

ment, γ, from Q to a DN̄(i)(Q). We have that each such γ
has contributed to the construction of the database; we call
γ a generative assignment from Q to DN̄(i)(Q). We can show

that the composition ν
(i)
Q ◦ γ is a SCVM from Q to itself.

(Note the presence in the product Πn
j=1Nj of the variables

for all the n multiset variables of Q.) Moreover, for each

query Q′ such that Q′ ≡C Q, the function F (Q′)
(Q) is forced

(by Q′ ≡C Q and by F (Q)

(Q) being a multivariate polynomial)

to be exactly Πn
j=1Nj , regardless of the structural relation-

ship between Q and Q′. We show that whenever F (Q′)
(Q) =

Πn
j=1Nj , an assignment from Q′ to a database DN̄(i)(Q) can

be composed with the mapping ν
(i)
Q to yield a SCVM from

Q′ to Q, precisely due to the presence in the function F (Q′)
(Q)

of the “representative”Nj of each multiset variable Yj of the
query Q, for 1 ≤ j ≤ n.

We now use the discussion of this simplest special case to
provide a general high-level intuition of the proof of Theo-
rem 4.1: It turns out that for all CCQ queries Q, there is
a monomial, in terms of all of N1, . . ., Nn, that contributes

to the construction of the function F (Q)

(Q) and that reflects

the multiplicity, in the set8 Γ
(t∗Q)

S̄
(Q,DN̄(i)(Q)), of all gen-

erative assignments from Q to databases DN̄(i)(Q). We call

this monomial, P(Q)
∗ , the wave of the query Q. Suppose that,

for a query Q′ such that Q′ ≡C Q, we can show that the

function F (Q′)
(Q) has, as a term, the wave of Q backed up by

assignments from Q′ to the databases DN̄(i)(Q). Then we

can use these assignments and the mapping ν
(i)
Q to construct

a SCVM from Q′ to Q.
There are two significant challenges in extending this idea

to all CCQ queries. First, the term P(Q)
∗ may not be“visible”

in the expression for F (Q)

(Q) . As a result, we can show that

P(Q)
∗ does not necessarily contribute to the construction of

the function F (Q′)
(Q) , even in case Q ≡C Q′. Second, in gen-

eral, function F (Q′)
(Q) may have terms that are not backed up

by assignments from Q′ to databases DN̄(i)(Q). Both chal-

lenges arise from the fact that the function F (Q′′)
(Q) , in terms

of N1, . . . , Nn, is, in general, not a multivariate polynomial
on its entire domain.

To overcome the first challenge, we introduce the restric-

8For a CCQ k-ary query Q (k ≥ 1), for a database D, and

for a fixed k-tuple t, we denote by Γ
(t)

S̄
(Q,D) the set of all

tuples t′ in ΓS̄(Q,D) such that the projection of t′ on the
vector of the head arguments of the query Q is the tuple t.

tion that Q be an explicit-wave query. (Hence Definition 4.1
is necessarily technical.) Even under this restriction, over-
coming the second challenge requires a nontrivial proof.

5. MINIMIZING CCQ QUERIES
In this section we propose a sound and complete algo-

rithm for minimizing CCQ queries. We also show that for
all CCQ queries, including implicit-wave queries, the min-
imized version of the query exists and is unique up to an
isomorphism SCVM. (An isomorphism SCVM from CCQ
query Q to CCQ query Q′ is a SCVM from Q to Q′ that is
an isomorphism mapping from the terms of Q to the terms
of Q′.) It turns out that minimizing arbitrary CCQ queries
is at most as hard as minimizing CQ set queries using the
approach of [2]. Besides being contributions of this paper
in their own right, the results of this section permit us to
formulate, in Section 6, equivalence tests for CCQ queries
that tie our results together with those of [2, 5].

By Definition 2.3, to find a minimized version of a CCQ
query Q, one would remove subsets of subgoals of Q so as
to arrive at a minimized query Q′ such that Q′ ≡C Q. Our
approach is to generalize to the case of CCQ queries the
minimization approach that was applied in [2] to CQ set
queries: Given a CCQ query Q, the search space of all can-
didate minimized versions of Q can be restricted to the set
Qmin(Q). This set comprises all reduced-condition queries
Q′ for Q such that (i) Q′ has all the multiset variables of
the query Q, and such that (ii) there exists a GCM from
Qce onto Q′ce. By Theorems 3.1 and 3.2, the set Qmin(Q)
contains all minimized versions of the query Q.

It turns out that for every CCQ query Q, the search space
Qmin(Q) can be found by generating all CCQ queries ob-
tainable by applying to Q all possible SCVMs of a certain
type from Q to itself. This result holds by Proposition 5.1.
For CCQ queries Q(X̄) ← L,M and Q′(X̄) ← L′,M (note
the same head vector and the same set M) and for a SCVM
µ from Q to Q′, we call µ an M-identity SCVM whenever µ
maps each multiset variable of Q to itself. SCVM µ induces
a mapping from L onto some subbag L′′ of L′. (Here we
treat the conjunctions L′, L′′ as bags of atoms.) We define
µ(Q) as a CCQ query that is identical to Q except that the
condition of µ(Q) is L′′.

Proposition 5.1. Given a CCQ query Q, with reduced-
condition query Q′ that retains all the multiset variables of
Q. Then there exists a GCM from Qce onto Q′ce if and only
if there exists an M-identity SCVM from Q onto Q′. 2

The intuition for the only-if part of the proof (in [6]) is that
each GCM, ν, from Qce onto Q′ce induces an automorphism
from the condition of Q′ as part of the condition of Q, to
the condition of Q′ (in Q′). One can use this fact to take an
inverse of the mapping resulting from restricting the domain
of ν to the range of ν, and by composing that inverse with
ν to obtain the desired M-identity SCVM from Q onto Q′.
Consider an illustration.

EXAMPLE 5.1. Let queries Q and Q′ be as follows.

Q(X)← p(X,Y,W ; i), p(X,W, Y), p(X,Y, Z), {Y, i}.
Q′(X)← p(X,Y,W ; i), p(X,W, Y), {Y, i}.

Q′ is a proper reduced-condition query for Q that preserves
the multiset variables of Q. Qce and Q′ce are as follows.

270

Qce(X)← p(X,Y,W ; i), p(X,W, Y ; j), p(X,Y, Z; k),
{Y, i, j, k}.

Q′ce(X)← p(X,Y,W ; i), p(X,W, Y ; j), {Y, i, j}.

There exists a GCM ν from Qce onto Q′ce: ν = { X → X,
Y → W , Z → Y , W → Y , i → j, j → i, k → j }. Observe
that the mapping ν1 resulting from restricting the domain of
ν to the range of ν, that is to the set X = { X, Y , W , i, j
}, is a bijection. Thus, there exists an inverse mapping, ν−1

1

= { X → X, Y → W , W → Y , i → j, j → i }. Further,
the mapping ν′ = ν−1

1 ◦ ν is well defined, because the range
of ν is the domain of ν−1

1 . Finally, when the domain of ν′

is restricted to the set X , then the resulting mapping is an
identity mapping by definition. Hence, we obtain that ν′ is
a GCM from Qce onto Q′ce, and that the mapping resulting
from restricting the domain of ν′ to the set of variables of
the query Q is an M-identity SCVM from Q onto Q′. 2

We use the result of Proposition 5.1 to develop algorithm
Minimize-CCQ-queries. The pseudocode is as follows.

Algorithm Minimize-CCQ-queries:
Input: CCQ query Q.
Output: CCQ query Qmin such that Qmin is a minimized
version of Q by Definition 2.3.

1. Set Qmin to the regularized version of Q;
// Note that Qmin ∈ Qmin(Q)

2. While (there exists an M-identity SCVM µ from
Qmin to itself such that µ(Qmin) has fewer subgoals
than Qmin) // Note that µ(Qmin) ∈ Qmin(Q)

3. Set Qmin to µ(Qmin);
4. Output Qmin.

Algorithm Minimize-CCQ-queries is a straightforward
generalization to CCQ queries of the minimization algorithm
applied by [2] to CCQ set queries. That is, our algorithm ob-
tains recursively “shorter-condition” reduced-condition
queries Q′ for the input query Q, such that each Q′ ∈
Qmin(Q). The algorithm terminates once no more M-identity
SCVM can “shorten” any further the condition of Q′.

Proposition 5.2. Given a CCQ query Q, algorithm Min-
imize-CCQ-queries outputs a minimized version of Q. 2

The proof [6] of Proposition 5.2 is by showing that for each
input CCQ query Q, the output of the algorithm Minimize-
CCQ-queries satisfies Definition 2.3 with respect to Q.

In addition to being sound, algorithm Minimize-CCQ-
queries is also complete, due to the following result:

Theorem 5.1. Given a CCQ query Q, the minimized ver-
sion of Q exists and is unique up to an isomorphism M-
identity SCVM. 2

Note that Theorem 5.1 reduces correctly to the special
case of set queries, see Theorem 2.2 (1). (Recall that CCQ
set queries have zero multiset variables.)

Theorem 5.2. Algorithm Minimize-CCQ-queries is
sound and complete for CCQ queries. 2

The result of Theorem 5.2 is immediate from Proposi-
tion 5.2 and from Theorem 5.1.

The asymptotic worst-case time complexity of the algo-
rithm Minimize-CCQ-queries is the same as that for the

minimization algorithm of [2] (for CCQ set queries). Indeed,
by definition of M -identity SCVMs and from the fact that
CCQ set queries have zero multiset variables, finding a min-
imized version of a set query is at least as hard as finding a
minimized version of any CCQ query. This fact is due to the
absence, in case of set queries, of any “identity bindings” for
multiset variables of the query, in an M-identity SCVM from
a set query to itselt. As a result, we obtain the following.

Proposition 5.3. Finding a minimized version of a CCQ
query is NP complete. 2

We now provide an intuition for the proof of Theorem 5.1.
In the proof, we use the following result (established in [6]).

Proposition 5.4. Given CCQ queries Q1 and Q2 such
that there exists a CVM µ1 from Q1 onto Q2, and another
CVM µ2 from Q2 onto Q1. Then each of µ1 and µ2 is an
isomorphism SCVM. 2

The idea of the proof of Theorem 5.1, see [6], is as fol-
lows. First, the existence of a minimized version of Q follows
from Proposition 5.2. Second, suppose that there exist two
distinct minimized versions of Q, Q1 and Q2, where each
of Q1 and Q2 satisfies Definition 2.3 w.r.t. Q. The proof
of Theorem 5.1 establishes that there exists an M-identity
SCVM from Q1 onto Q2, and another from Q2 onto Q1.
Then Proposition 5.4 is used to conclude that each of the
two M-identity SCVMs is an isomorphism SCVM. Consider
an illustration.

EXAMPLE 5.2. Consider CCQ query Q and two reduced-
condition queries for Q, Q1 and Q2.

Q(X)← p(X,Y ; i), p(Y,W), p(Y, T), {Y, i}.
Q1(X)← p(X,Y ; i), p(Y,W), {Y, i}.
Q2(X)← p(X,Y ; i), p(Y, T), {Y, i}.

By Definition 2.3 and by Theorem 3.3, each of Q1 and Q2

is a minimized version of the query Q.
Consider mapping µ1 from Q to Q1: µ1 = { X → X,

Y → Y, i → i, W → W, T → W }. This mapping is
an M-identity SCVM from Q onto Q1. When restricted to
the domain that is the set of terms of the query Q2, call
this mapping ν1, mapping µ1 furnishes an isomorphism M-
identity SCVM from Q2 onto Q1. The mapping ν−1

1 is an
isomorphism M-identity SCVM from Q1 onto Q2. 2

We now contrast these results with our Theorem 4.1. By
the results of this current section, a SCVM always exists
from an arbitrary CCQ query into its minimized version.
This holds even for implicit-wave queries, intuitively be-
cause a minimized version Qmin of a query Q is a reduced-
condition query for Q. Hence, in some sense we know the
structure of Qmin. In contrast, for two general CCQ queries
Q and Q′ such that Q ≡C Q′, all we know is that on all
databases D, the bags ResC(Q,D) and ResC(Q′, D) are
identical. In general, no information is available about the
relationship between the structures of Q and Q′. Thus, The-
orem 4.1 does not necessarily hold for the case of implicit-
wave queries.

6. CCQ-QUERY EQUIVALENCE
In this section we study those conditions of combined-

semantics equivalence of CCQ queries that are immediate

271

from the results of Sections 3–4. Our focus is on reformu-
lating these conditions using minimized query versions. The
reformulations tie our equivalence conditions together with
the results of [2, 5]. Our necessary and sufficient query-
equivalence condition, Theorem 6.3, applies to the class of
all explicit-wave CCQ queries. We show that this class en-
compasses strictly more queries than (i) all CCQ set, bag,
and bag-set queries, and than (ii) all CCQ queries for which
[8] provides both sufficient and necessary equivalence condi-
tions.9

First, Theorem 3.3 (Section 3) gives us a sufficient condi-
tion for combined-semantics equivalence of CCQ queries:

Theorem 6.1. Given CCQ queries Q1 and Q2: If there
exists a CVM from Q1 to Q2, and another from Q2 to Q1,
then we have Q1 ≡C Q2. 2

We reformulate this theorem using the results of Section 5:

Theorem 6.2. Given CCQ queries Q1 and Q2, with re-
spective minimized versions Qmin

1 and Qmin
2 . If there exists

an isomorphism SCVM from Qmin
1 to Qmin

2 , and another
from Qmin

2 to Qmin
1 , then we have Q1 ≡C Q2. 2

It turns out that the sufficient query-equivalence condi-
tions of Theorems 6.1 and 6.2 have the same power. (The
proof of Theorem 6.2 is immediate from Theorem 6.1 and
Proposition 6.1.)

Proposition 6.1. Given CCQ queries Q1 and Q2, with
respective minimized versions Qmin

1 and Qmin
2 . Then:

• There exists a CVM from Q1 to Q2, and another from
Q2 to Q1, if and only if

• There exists an isomorphism SCVM from Qmin
1 to

Qmin
2 , and another from Qmin

2 to Qmin
1 . 2

See [6] for the proof of Proposition 6.1. The only-if part
of the proof is based on Proposition 5.4.

Neither Theorem 6.1 nor Theorem 6.2 gives us a neces-
sary condition for combined-semantics equivalence of two
CCQ queries. (We have Example 4.1 as a counterexample.
Observe that both queries in Example 4.1 are represented
by their minimized versions.)

At the same time, we use Theorems 4.1 and 6.2, as well
as Proposition 6.1, to formulate a sufficient and necessary
condition for equivalence of explicit-wave CCQ queries.

Theorem 6.3. Given explicit-wave CCQ queries Q1 and
Q2, with respective minimized versions Qmin

1 and Qmin
2 . Then

Q1 ≡C Q2 if and only if there exists an isomorphism SCVM
from Qmin

1 to Qmin
2 , and another from Qmin

2 to Qmin
1 . 2

Another sufficient and necessary condition for equivalence
of explicit-wave CCQ queries, in terms of CVMs, can be
obtained by using only Theorems 4.1 and 6.1; see [6].

We now show that Theorem 6.3 generalizes Theorem 2.2
(2), due to [2], as well as Theorem 2.3, due to [5]. To do
this, we show that all CCQ set, bag, and bag-set queries
are explicit-wave queries, and then consider minimization of
CCQ bag and bag-set queries.

By Condition (1) of Definition 4.1, we have that all set
and bag-set CCQ queries are explicit-wave queries. Besides

9In fact, we already showed (ii) in Section 4.

that condition, one can formulate a number of easy syntac-
tic tests, each of which is a sufficient condition for a CCQ
query to be an explicit-wave query. (E.g., it is immediate
from Definition 4.1 that a CCQ query without self-joins is
an explicit-wave query.) One sufficient condition is that a
CCQ query Q is an explicit-wave query whenever each copy-
sensitive subgoal of Q has no set variables. (In this case, it
is easy to see that Condition (2) of Definition 4.1 is always
satisfied; see [6].) By this condition, all CCQ bag queries
are explicit-wave queries. Other sufficient conditions could
generalize the case of the explicit-wave CCQ query Q′ of Ex-
ample 4.1 (note that while being an explicit-wave query, this
query does not satisfy any of the above sufficient conditions
for a query to be explicit-wave), and so on. As a result, we
have the following:

Proposition 6.2. The set of all CCQ set, bag, and bag-
set queries is a proper subset of the set of all explicit-wave
CCQ queries. 2

One can argue that CCQ queries that have set variables
in copy-sensitive subgoals, such as the implicit-wave query
Q of Example 4.1, would not tend to be popular – and may
not even be expressible – in practical applications. Hence,
we posit that implicit-wave queries may be unlikely to arise
in practice.

Now that we know that all CCQ set queries are explicit-
wave queries, it is easy to see that Theorem 6.3 generalizes
properly Theorem 2.2 (2). (Theorem 2.2 (2) does not gen-
eralize to the case of all CCQ queries because not all CCQ
queries are explicit wave, see discussion of Example 4.1 ear-
lier in this section.) For instance, by Theorem 6.3 we have
that for the queries of Example 3.2, Q ≡C Q′ holds. The
reason is, both Q and Q′ in that example are explicit-wave
queries and, in addition, Q′ is the minimized version of Q.

Observe that Theorem 6.3 is not a trivial generalization
of Theorem 2.2 (2). Indeed, the two explicit-wave CCQ
queries of Example 3.1 are isomorphic but, by Theorem 6.3,
are not combined-semantics equivalent. (Both queries of
Example 3.1 are represented by their minimized versions.)

Finally, we consider minimization of CCQ bag and bag-
set queries. Recall that each subgoal of a CCQ bag query
has a copy variable. Hence, by Theorem 3.1, each CCQ bag
query is its unique minimized version. We conclude that the
result (due to [5]) of Theorem 2.3 (1) is a special case of
Theorem 6.3.

In case of CCQ bag-set queries, the only terms that can
appear in such a query are multiset noncopy variables, head
variables, and constants. We have from the results of Sec-
tion 5 that for each CCQ query, there exists an M-identity
SCVM from the regularized version of the query to its min-
imized version. Now the regularized version Qr of a CCQ
bag-set query Q is the canonical representation [5] of Q,
that is, the result of dropping all duplicate subgoals from
the condition of Q. By definition of M-identity SCVM, we
have for all CCQ bag-set queries Q that for each subgoal, s,
of Qr, each M-identity SCVM maps s into itself. It follows
that each M-identity SCVM maps Qr onto itself. Thus, for
each CCQ bag-set query Q, its canonical representation Qr

is its unique minimized version. Hence Theorem 2.3 (2) is a
special case of Theorem 6.3.

272

7. RELATED WORK
In their classic paper [2], Chandra and Merlin presented

an NP-complete containment test for CQ queries under set
semantics. This sound and complete test has been used in
optimization, via minimization, of CQ set-semantics queries,
as well as in developing algorithms for rewriting queries
(both equivalently and nonequivalently) using views. We
are not aware of past work that studies minimization of
queries beyond the language of CQ set-semantics queries.
In this current paper we extend the results of [2] to general
CQ combined-semantics queries, and show the limitations
of each extension. We show that the minimization approach
of [2] can be extended to general CQ queries without limi-
tations. Remarkably, minimizing arbitrary CQ queries is at
most as hard as minimizing CQ set-semantics queries.

Equivalence tests for CQ bag and bag-set queries were for-
mulated by Chaudhuri and Vardi in [5]; correctness of the
tests follows from the results of [8]. Our equivalence and
minimization results for CQ combined-semantics queries re-
duce correctly to the special cases of CQ bag and bag-set
queries, as given in [5]. Further, this current paper pro-
vides a nontrivial generalization and the first known proof
of the well-known sufficient containment condition for CQ
bag queries, as outlined in [5].

Definitive results on containment between CQ queries un-
der bag and bag-set semantics have not been obtained so
far. Please see Jayram, Kolaitis, and Vee [13] for original
undecidability results on containment of CQ queries with in-
equalities under bag semantics. The authors point out that
it is not known whether the problem of bag containment for
CQ queries is even decidable. For the case of bag-set seman-
tics, sufficient conditions for containment of two CQ queries
can be expressed via containment of (the suitable) aggre-
gate queries with aggregate function count(*). The latter
containment problem can be solved using the methods pro-
posed in [9]. Please see [5, 1] for other results on bag and
bag-set containment of CQ queries. The general problems
of containment for CQ bag and bag-set queries remain open.

In her papers [7, 8], Cohen provided an elegant and pow-
erful formalism for treating queries evaluated under each of
set, bag, and bag-set semantics uniformly as special cases of
the more general combined semantics. The papers also con-
tain a general sufficient condition for combined-semantics
equivalence of CQ queries with disjunction, negation, and
arithmetic comparisons, as well as necessary and sufficient
equivalence conditions for special cases. (When we restrict
the language of the queries in question to the language of
CQ queries, it turns out that all the necessary and sufficient
query-equivalence conditions of [8] hold for queries belonging
collectively to a proper subclass of the class of explicit-wave
CQ queries, which (class) we introduce in this current pa-
per.) The proof in [8] of its general sufficient condition for
equivalence of queries is in terms of containment between
the queries under combined semantics. That (implicit) suf-
ficient query-containment condition is proved in [8] for the
case where the two queries have the same number of multiset
variables. In this current paper we provide proper general-
izations of all the results of [8], including its implicit suf-
ficient condition for query containment, provided that the
results of [8] are applied to CQ queries only.

In [10], DeHaan presented, among other results, a suf-
ficient and necessary condition for equivalence of all CQ
combined-semantics queries. Example 4.1 in this current pa-

per provides a counterexample to the necessary part of the
condition of [10]. The reason is, that necessary condition of
[10] requires the existence of a certain type of mapping be-
tween two equivalent queries, and such a mapping does not
exist from the query Q′ to the query Q in our Example 4.1.

A discussion of query equivalence and containment for
query languages that properly contain the language of CQ
queries is beyond the scope of this paper. The interested
reader is referred to [8], which contains an excellent overview
of the literature in that direction.

8. REFERENCES
[1] F. N. Afrati, M. Damigos, and M. Gergatsoulis. Query

containment under bag and bag-set semantics. Information
Processing Letters, 110(10):360–369, 2010.

[2] A. Chandra and P. Merlin. Optimal implementation of
conjunctive queries in relational data bases. In ACM
STOC, 1977.

[3] S. Chaudhuri and U. Dayal. An overview of data
warehousing and OLAP technology. SIGMOD Record,
26(1):65–74, 1997.

[4] S. Chaudhuri, U. Dayal, and V. R. Narasayya. An overview
of business intelligence technology. Commun. ACM,
54(8):88–98, 2011.

[5] S. Chaudhuri and M. Y. Vardi. Optimization of real
conjunctive queries (extended abstract). In PODS, 1993.

[6] R. Chirkova. Equivalence and minimization of conjunctive
queries under combined semantics. Technical Report
TR-2010-24, NCSU, 2010. Available from
http://www.csc.ncsu.edu/research/tech/reports.php.

[7] S. Cohen. Equivalence of queries combining set and bag-set
semantics. In PODS, pages 70–79, 2006.

[8] S. Cohen. Equivalence of queries that are sensitive to
multiplicities. The VLDB Journal, 18:765–785, 2009.

[9] S. Cohen, W. Nutt, and Y. Sagiv. Containment of
aggregate queries. In ICDT, pages 111–125, 2003.

[10] D. DeHaan. Equivalence of nested queries with mixed
semantics. In PODS, pages 207–216, 2009.

[11] A. Gupta and I. S. Mumick, editors. Materialized Views:
Techniques, Implementations, and Applications. The MIT
Press, 1999.

[12] Y. Ioannidis and R. Ramakrishnan. Containment of
conjunctive queries: beyond relations as sets. ACM TODS,
20(3):288–324, 1995.

[13] T. Jayram, P. Kolaitis, and E. Vee. The containment
problem for real conjunctive queries with inequalities. In
PODS, pages 80–89, 2006.

[14] W. Lehner. Query processing in data warehouses. In
Encyclopedia of Database Systems, pages 2297–2301.
Springer, 2009.

[15] N. Pendse and R. Creeth. The OLAP report. Business
Intelligence, 1995. The 2008 update available at http://
www.bi-verdict.com/fileadmin/FreeAnalyses/fasmi.htm.

[16] A. Shukla, P. Deshpande, and J. F. Naughton. Materialized
view selection for multi-cube data models. In EDBT, 2000.

[17] M. Zaharioudakis, R. Cochrane, G. Lapis, H. Pirahesh, and
M. Urata. Answering complex SQL queries using automatic
summary tables. In SIGMOD, pages 105–116, 2000.

273

