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ABSTRACT
The framework of database repairs is a principled approach to man-
aging inconsistency in databases. In particular, the consistent an-
swers of a query on an inconsistent database provide sound seman-
tics and the guarantee that the values obtained are those returned by
the query on every repair of the given inconsistent database. In this
paper, we carry out a systematic investigation of the data complex-
ity of the consistent answers of conjunctive queries for set-based re-
pairs and with respect to classes of constraints that, in recent years,
have been extensively studied in the context of data exchange and
data integration. Our results, which range from polynomial-time
computability to undecidability, complement or improve on earlier
work, and provide a fairly comprehensive picture of the data com-
plexity of consistent query answering. We also address the problem
of finding a “representative" or “useful" repair of an inconsistent
database. To this effect, we introduce the notion of a universal
repair, as well as relaxations of it, and then apply it to the investi-
gation of the data complexity of consistent query answering.

Categories and Subject Descriptors
H.2.4 [Systems]: Relational databases

General Terms
Algorithms, Theory

Keywords
Inconsistent databases, constraints, repairs, consistent answers

1. INTRODUCTION
An inconsistent database is a database that fails to satisfy one

or more integrity constraints that the data are hand are supposed
to obey. Inconsistency in databases arises in a variety of applica-
tions, including data integration and data warehousing, where the
task is to bring together data distributed over different sources that
may obey mutually incompatible constraints. In practice, incon-
sistency is handled mainly via data cleaning, which means that
the inconsistent database is transformed, through deletions or ad-
ditions, to a consistent one that is then used for query answering
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or for warehousing purposes. This process, however, forces arbi-
trary choices to be made since, in general, there is a multitude of
ways in which an inconsistent databases can be transformed to a
consistent one. Arenas, Bertossi and Chomicki [4] introduced a
principled approach to the management of inconsistency by for-
mulating the notions of a repair of an inconsistent database and
of consistent query answering. Intuitively, a repair of an incon-
sistent database I is a consistent database J that differs from I
in a “minimal" way. Furthermore, the consistent answers of a
query q on an inconsistent database I are defined to be the inter-
section

⋂
{q(J) : J is a repair of I}. Thus, the inconsistencies in

the database are kept, but are handled at query time by considering
all repairs and returning the tuples that are guaranteed to be in the
result of the query on every repair.

Two algorithmic problems concerning repairs of inconsistent
databases naturally arise. The first is, of course, the problem of
computing the consistent answers of a query over an inconsistent
database. The second is the repair checking problem, which can be
thought of as the model-checking problem for repairs: given two
database instances I and J , is J a repair of I? Since the publica-
tion of [4] in 1999, these two problems have been extensively ex-
plored for different types of repairs (set-based repairs, cardinality-
based repairs, attribute-based repairs) and for different types of
constraints. As regards types of constraints, the earlier work on
repair checking and consistent query answering focused on func-
tional dependencies, inclusion dependencies, and denial constraints
(see the overviews [6, 10]). More recently, broader classes of con-
straints, such as tuple-generating dependencies (tgds) and equality-
generating dependencies (egds), have also been considered in the
study of repair checking and consistent query answering. As is well
known, these classes of constraints were originally investigated in
the context of classical dependency theory, but in the past decade
have found numerous uses in the context of data integration and
data exchange. For some of these broader classes of constraints,
the repair-checking problem has been studied in [2] and [19], and
the consistent query answering problem in [26] and [3].

In this paper, we systematically explore the data complexity of
consistent query answering for sets of tgds and egds. This means
that for every fixed set Σ of tgds and egds and for every fixed con-
junctive query q, we consider the complexity of the following algo-
rithmic problem: given a database instance I , compute the consis-
tent answers of q on I w.r.t. Σ. Concerning the types of repairs, we
consider set-based repairs, that is, subset-repairs, superset-repairs,
and ⊕-repairs (symmetric difference repairs).

Our main results about the data complexity of consistent query
answering, together with previously known results, are summarized
in Table 1. In this table, by an entry such as “C/C-comp." we mean
that for every fixed set of dependencies in the class considered and
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Dependencies ?-repair checking, where superset-CQA subset-CQA ⊕-CQA
? ∈ {⊕, subset, superset}

LAV tgds PTIME† PTIME† PTIME† PTIME†

GAV tgds1 PTIME [26] PTIME [13] (implicit) CONP[26] /CONP-comp.† CONP[26]/CONP-comp.†

weakly acyclic tgds1 CONP/CONP-comp. [2, 19] PTIME [13] (implicit) Πp
2/ Πp

2-comp.† Πp
2/ Πp

2-comp.†

arbitrary tgds1 CONP/CONP-comp. [2, 19] undecidable [22] (implicit) Πp
2/ Πp

2-comp.† undecidable†
1 Indicates that all results hold also in the presence of egds. †Indicates new result obtained in this paper.

Table 1: Data complexity of the repair checking problem and the consistent query answering problem for conjunctive queries.

for every fixed conjunctive query, the problem is in C and that there
is a set of dependencies in the class and a conjunctive query for
which the problem is C-complete.

One finding of our investigation is that the class of LAV (local-
as-view) tgds exhibits tractable algorithmic behavior as regards the
data complexity of consistent query answering with respect to all
three types of set-based repairs considered here; this extends earlier
results about inclusion dependencies and subset-repairs [11]. An-
other finding is that there is a set (in fact, a singleton set) of GAV
(global-as-view) tgds for which the data complexity of the consis-
tent query answering with respect to both subset-repairs and ⊕-
repairs is CONP-complete; this strengthens a CONP-completeness
result for GAV tgds and functional dependencies with respect to
⊕-constraints in [26]. We also show that there are sets of weakly
acyclic sets of tgds for which the data complexity of the con-
sistent query answering problem is Πp

2-complete with respect to
both subset-repairs and ⊕-repairs; earlier, Πp

2-completeness re-
sults had been obtained for the data complexity of consistent query
answering for sets of functional dependencies and universal con-
straints [26] with respect to ⊕-repairs. Finally, we show that the
assumption of weak acyclicity is of the essence for the decidabil-
ity of the consistent query answering problem. Specifically, we
show that there is a fixed set of tgds and a fixed conjunctive query
for which the consistent query answering problem is undecidable
with respect to ⊕-repairs; furthermore, a similar undecidability re-
sult holds for superset-repairs. Previously, it was known that the
consistent query answering problem was undecidable in combined
complexity for conjunctive queries and for sets of inclusion de-
pendencies and functional dependencies with respect to superset-
repairs [25]. It was also known that the consistent query answer-
ing problem was undecidable in combined complexity for unions
of conjunctive queries and for sets of inclusion dependencies and
functional dependencies with respect to ⊕-repairs [9]. Finally, it
was known that there is a fixed set of universal constraints and a
fixed universal query for which consistent query answering is un-
decidable with respect to ⊕-repairs [3].

In addition to the data complexity of consistent query answering,
we also addressed the following question: For which types of de-
pendencies is it the case that, given a database instance, there is an
efficient way to compute a “representative" and “useful" repair?

We formalized and answered this question by introducing the
notion of a universal repair and the notion of an n-universal re-
pair, where n is a positive integer. These notions are analogous to
and, in fact, are motivated from the notion of a universal solution
in data exchange [13]. Furthermore, the notion of universal repair
is closely related to the notion of nucleus in [27], since a universal
repair is nucleus that is also a repair. Informally, a universal repair
is a repair such that the consistent answers of an arbitrary conjunc-
tive query can be computed by essentially evaluating the query on
the universal repair. Similarly, an n-universal repair has the same
property but only for conjunctive queries with at most n atoms. We
study the existence of universal repairs and of n-universal repairs,

as well as structural properties of such repairs and the complex-
ity of computing them. We show that, if Σ is a set of LAV tgds,
then every database instance has a unique universal⊕-repair that is
also a universal subset-repair and can be computed in polynomial
time. Furthermore, while not every database instance has a univer-
sal superset-repair, we show that for every n ≥ 1, an n-universal
superset-repair exists and can be computed in polynomial time. If
Σ is a weakly acyclic set of tgds and egds, things are the other way
around: every database instance has a universal superset-repair that
can be computed in polynomial time, but not every instance has
a universal, or even a 1-universal, ⊕-repair; furthermore, similar
limitations hold true for subset-repairs.

2. BASIC NOTIONS
A schema R is a finite sequence (R1, . . . , Rk) of relation sym-

bols, each of a fixed arity. An instance I over R is a sequence
(RI1, . . . , R

I
k), where each RIi is a relation of the same arity as Ri.

For notational simplicity, we shall write Ri to denote both the re-
lation symbol and the relation RIi that interprets it. A fact of an
instance I (over R) is an expression Ri(v1, . . . , vm), where Ri
is one of the relations of I and v1, . . . , vm are values such that
(v1, . . . , vm) ∈ Ri. Every instance can be identified with the set
of its facts. We assume that all instances I considered are finite,
which means that every relation Ri of I is finite, for 1 ≤ i ≤ k.

DEFINITION 2.1 (DEPENDENCIES). A tuple-generating de-
pendency (tgd) is a first-order sentence of the form

∀x(φ(x)→ ∃y ψ(x,y)),

where φ, ψ are conjunctions of atomic formulas, x = (x1, . . . , xn)
and y = (y1, . . . , ym) are tuples of variables, and every univer-
sally quantified variable xi occurs in φ.

An equality-generating dependency (egd) is a first-order sen-
tence of the form

∀x(φ(x)→ xk = x`),

where φ is a conjunction of atomic formulas, x = (x1, . . . , xn) is
a tuple of variables, 1 ≤ k, ` ≤ n, and each universally quantified
variable xi occurs in φ.

By the term dependency, we will mean a tgd or an egd. Also, by
a set of dependencies, we will mean a finite set of dependencies.

DEFINITION 2.2. A local-as-view or, simply, LAV tgd is a tgd
∀x(φ(x)→ ∃y ψ(x,y)) in which φ is a single atomic formula.

A global-as-view or, simply, GAV tgd is a tgd ∀x(φ(x) →
ψ(x′)) in which ψ is a single atomic formula such that the vari-
ables in x′ are among the variables of x.

For example, the copy tgd ∀x∀y(E(x, y) → F (x, y)) is both a
LAV tgd and a GAV tgd. In contrast,

∀x∀y(E(x, y)→ ∃z(F (x, z) ∧ F (z, y)))
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is a LAV tgd that is not a GAV tgd, while

∀x∀y∀z(E(x, z) ∧ E(z, y)→ F (x, y))

is a GAV tgd that is not a LAV tgd. Note that every inclusion de-
pendency is a LAV tgd. Furthermore, every tgd with no existential
quantifiers in its right-hand side (such tgds are called full) is logi-
cally equivalent to a set of GAV tgds.

From now on and for the sake of readability, we will often drop
the universal quantifiers when writing dependencies.

As mentioned in the Introduction, tgds play an important role in
data exchange and data integration, where they are used to spec-
ify the relationship between a source (local) schema and a tar-
get (global) schema or to express constraints in a target (global)
schema. Moreover, it is known that weakly acyclic sets of tgds
have good algorithmic properties as regards data exchange that, in
general, are not possessed by arbitrary sets of tgds.

DEFINITION 2.3 (WEAK ACYCLICITY [12, 13]). Let Σ be
a set of tgds and egds over a schema S.

• The dependency graph of Σ is the following directed graph.

The nodes are the pairs (R, i), where R ∈ S is a relation of
some arity k, and 1 ≤ i ≤ k. We call such pairs positions.

There is an edge from position (R, i) to position (S, j) if Σ
contains a tgd ∀x(φ → ∃yψ) such that some variable from x
occurs in position (R, i) in φ and in position (S, j) in ψ.

There is a special edge from position (R, i) to position (S, j)
if Σ contains a tgd ∀x(φ → ∃yψ) such that (i) some variable
from x occurs in position (R, i) in φ and also occurs in ψ, and
(ii) some variable from y occurs in position (S, j) in ψ.

• We say that Σ is weakly acyclic if the dependency graph con-
tains no cycle going through a special edge.

• We say that a tgd θ is weakly acyclic if so is the set {θ}.

Every set of GAV tgds is weakly acyclic, since the dependency
graph has no special edges. It is also easy to see that every acyclic
set of inclusion dependencies is weakly acyclic. However, the set
Σ = {D(x, y) → M(y),M(y) → ∃xD(x, y)} is a cyclic, yet
weakly acyclic set of inclusion dependencies. Finally, the inclusion
dependency R(x, y) → ∃zR(y, z) is not weakly acyclic because
the dependency graph contains a self-loop on position R.2.

Intuitively, a repair of an instance I with respect to a set of de-
pendencies Σ is an instance J that satisfies Σ and “differs mini-
mally” from I . Here, we will consider three different set-theoretic
types of repairs. If I and J are instances, we will write I ⊕ J to
denote the symmetric difference (I \ J) ∪ (J \ I) of I and J , that
is, I ⊕ J is the set of all facts that either belong to I and not to J ,
or belong to J and not to I .

DEFINITION 2.4 (REPAIRS). Let I, J be instances, and Σ a
set of dependencies. We say that J is an ⊕-repair of I w.r.t. Σ if
J |= Σ and there is no instance J ′ such that J ′ |= Σ and I ⊕J ′ (
I ⊕ J .

If, in addition, J ⊆ I (or, I ⊆ J), then J is called a subset-repair
(respectively, a superset-repair) of I w.r.t. Σ.

Equivalently, J is a subset-repair of I w.r.t. Σ if J ⊆ I , J |= Σ
and there is no instance J ′ ⊆ I such that J ′ |= Σ and J ( J ′.
Likewise, J is a superset-repair of I w.r.t. Σ if I ⊆ J , J |= Σ, and
there is no instance J ′ such that I ⊆ J ′, J ′ |= Σ and J ′ ( J .

For example, let Σ = {P (x) → Q(x)}, I = {P (a), P (b)},
J1 = {P (a), P (b), Q(a), Q(b)}, J2 = ∅, and J3 =
{P (a), Q(a)}. All three instances J1, J2, J3 are ⊕-repairs of I .

However, only J1 is a superset-repair of I , and only J2 is a subset-
repair of I . Furthermore, J1 is the only superset-repair of I , while
J2 is the only subset-repair of I .

For a different example, let Σ = {R(x, y) → ∃zR(y, z)} and
I = {R(1, 2)}. It is easy to see that, for every n ≥ 1, the cycle

Jn = {R(i, i+ 1) | 1 ≤ i < n} ∪ {R(n, 1)}

is a superset-repair (hence, also a ⊕-repair) of I w.r.t. Σ. Thus, I
has infinitely many, and arbitrarily large, superset-repairs w.r.t. Σ.

Next, we give the definitions of the main algorithmic problems
in the study of repairs.

DEFINITION 2.5 (REPAIR CHECKING). Let Σ be a set of de-
pendencies, and let ? ∈ {⊕, subset, superset}. The ?-repair check-
ing problem w.r.t. Σ asks: given instances I and I ′, check whether
I ′ is a ?-repair of I w.r.t. Σ.

DEFINITION 2.6 (CONSISTENT ANSWERS). Let Σ be a set
of dependencies, q a conjunctive query, I an instance, and ? ∈
{⊕, subset, superset}.
• The ?-consistent answers of q on I w.r.t. Σ, denoted by
?-Con(q, I,Σ), is the intersection⋂

{q(J) | J is a ?-repair of I w.r.t. Σ}.

• The ?-consistent query answering problem of q w.r.t. Σ asks:
given an instance I , compute the ?-consistent answer of q on I
with respect to Σ.

Several remarks are in order now. First, we wish to emphasize
that only finite instances and only finite repairs are considered in
this paper. It is known that there exist sets of dependencies Σ, con-
junctive queries q, and instances I such that the consistent answer
to q on I w.r.t. Σ would yield a different result if infinite repairs
would be considered as well (see [25]). Second, if Σ consists of
tgds and egds, there is always a subset repair and, hence, also an
⊕-repair. Indeed, the empty instance satisfies Σ, hence, for ev-
ery instance I that fails to satisfy Σ, there is a maximal (w.r.t.
⊆) instance J such that J ⊆ I and J |= Σ. Finally, it is easy
to see that, for all ? ∈ {⊕, subset, superset}, it is the case that
the ?-repair checking problem is in CONP. Moreover, the subset-
consistent query answering is always in Πp

2 . For example, to check
that J is not an ⊕-repair of I , one has to guess an instance J ′ of
size at most |I|+ |J | and verify that J ′ |= Σ and I ⊕ J ′ ⊂ I ⊕ J .

Note that the notion of superset-consistent answers is closely
related to the notion of certain answers in incomplete information
and in data exchange. To make the connection with data exchange
precise, recall first that if M is a schema mapping, q is a query
over the target schema ofM, and I is an instance over the source
schema ofM, then the certain answers of q on I w.r.t.M, denoted
by certain(q, I,M), are defined as follows:

certain(q, I,M) =
⋂
{q(J)|J is solution for I w.r.t.M}.

The connection between superset-consistent answers and certain
answers is given by the next proposition.

PROPOSITION 2.7. Let Σ is a set of dependencies and letMΣ

be the schema mapping defined as follows:

(i) The source-to-target tgds of MΣ are copy tgds of the form
R′(x) → R(x), where R is a relation symbol of the schema
of Σ and R′ is a new relation symbol whose arity is that of R.

(ii) The target tgds ofMΣ are the tgds in Σ.
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Then for every conjunctive query q and every instance I ,

superset-Con(q, I ′,Σ) = certain(q, I,MΣ),

where I ′ is the copy of the instance I obtained by changing the
name of every relation R of I to R′.

The preceding proposition is proved by combining the mono-
tonicity of conjunctive queries with the fact that every solution J
for I ′ w.r.t. MΣ contains a superset-repair of I . We will make
use of this connection in some of our complexity results for the
superset-consistent query answering problem.

3. UNIVERSAL REPAIRS
By analogy to the notion of a universal solution in data ex-

change [13], we will now introduce the notion of a universal re-
pair. Since it will turn out that universal repairs often do not exist,
we also introduce a weaker notion, namely, that of a n-universal
repair, n ≥ 1.

DEFINITION 3.1. Let Σ be a set of dependencies, I an instance,
and ? ∈ {⊕, subset, superset}.
• A universal ?-repair of I w.r.t. Σ is a ?-repair J of I w.r.t. Σ

such that if q is a conjunctive query, then

?-Con(q, I,Σ) = q(J)↓,

where q(J)↓ is the set of tuples in q(J) containing only values
from the active domain of I .

• For n ≥ 1, an n-universal ?-repair of I w.r.t. Σ is a ?-repair J
of I w.r.t. Σ such that if q is conjunctive query with at most n
atoms, then

?-Con(q, I,Σ) = q(J)↓.

Clearly, a universal repair is also a n-universal repair, for every
n ≥ 1. The notion of a universal repair is closely related to the
notion of a nucleus [27]. More precisely, a universal repair is a
nucleus that is also a repair.

The next proposition, which follows immediately from the defi-
nitions and the fact that the data complexity of conjunctive queries
is in PTIME, justifies the introduction of the notions of universal
repairs and n-universal repairs.

PROPOSITION 3.2. Assume that Σ is a set of dependencies and
that n is a positive integer such that there is a polynomial-time al-
gorithm that, given a instance I , it returns an n-universal ?-repair
of I , where ? ∈ {⊕, subset, superset}. Then the data complexity of
the ?-consistent query answering problem for conjunctive queries
with at most n atoms is in PTIME.

Several examples are in order now.

EXAMPLE 3.3. Let Σ = {R(x, y)→ ∃zR(y, z)}.
Consider the instance I = {R(1, 2), R(2, 2), R(1, 3), R(3, 4)}.

Then the instance J = {R(1, 2), R(2, 2)} is a universal subset-
repair of I w.r.t. Σ, because it is the only subset-repair of I .

Next, consider the instance I = {R(1, 2)}. Then I has no uni-
versal superset-repair; indeed, this is so because every superset-
repair of I must contain a cycle of some length n0 (recall that
all repairs must be finite), and therefore cannot be universal since,
as seen earlier, not every superset-repair contains a cycle of the
same length n0. However, for every n ≥ 1, there is a n-universal
superset-repair of I . Specifically, such a repair is the cycle

Jn = {R(i, i+ 1)|1 ≤ i < n} ∪ {R(n, 1)}.

EXAMPLE 3.4. Let Σ = {P (x) ∧ Q(x) → R(x)} and
I = {P (a), Q(a)}. The instance J = {P (a), Q(a), R(a)} is
a universal superset-repair of I w.r.t. Σ, because it is the only
superset-repair of I . However, I has no universal subset-repair,
since its subset-repairs are {P (a)} and {Q(a)}. In fact, I does not
even have a 1-universal subset-repair, since the queries P (x) and
Q(x) return different values on the two subset-repairs of I .

EXAMPLE 3.5. Let Σ = {P (x) ∧ Q(y) → x = y} and I =
{P (a), Q(b)}. First, I has no superset-repair w.r.t. Σ, hence it
has no 1-universal superset-repair. Furthermore, it has neither a
1-universal subset-repair, nor a 1-universal ⊕-repair w.r.t. Σ.

The next proposition describes some basic properties of the differ-
ent types of universal repairs, and the relationship between them.

PROPOSITION 3.6. Let Σ be a set of dependencies.

1. Every instance has at most one universal superset-repair, up to
isomorphism.

2. An instance has a universal subset-repair if and only if it has
exactly one subset-repair. Consequently, every instance has at
most one universal subset-repair.

3. Every universal⊕-repair of an instance I is a universal subset-
repair of I . Consequently, every instance has at most one uni-
versal⊕-repair. In contrast, a universal subset-repair need not
be a universal ⊕-repair.

PROOF. 1. Let J1 and J2 be universal superset-repairs of I .
Let q1 and q2 be the canonical conjunctive queries of J1 and J2,
where the values from the active domain of I are treated as free
variables of the queries, and the values outside of the active domain
of I are treated as existentially quantified variables of the queries.
By universality, q1(J1)↓ = q1(J2)↓ and q2(J1)↓ = q2(J2)↓.
This implies that there are homomorphisms h1 : J1 → J2 and
h2 : J2 → J1 such that h1(a) = a and h2(a) = a for all val-
ues a from the active domain of I . Consequently, J1 and J2 are
homomorphically equivalent, when the values from the active do-
main of I are treated as constant. Furthermore, since J1 and J2 are
repairs, it follows that no instance J ′ such that I ⊆ J ′ ( J1 or
I ⊆ J ′ ( J2 satisfies Σ. Hence, J1 and J2 are cores. But it is
a well known fact that any two homomorphically equivalent core
instances are isomorphic (cf. [14]).

2. If an instance I has exactly one subset-repair J , then, trivially,
J is a universal subset-repair. If, on the other hand, there are (at
least) two different subset-repairs J1 and J2, then, by the definition
of repairs, neither is a subset of the other, and hence, neither can
be universal (each Ji, i = 1, 2, contains a fact, say R(a), that is
not included in all subset-repairs; therefore, Ji does not correctly
compute the consistent answers for the query R(x)).

3. Let J be a universal ⊕-repair of I w.r.t. M. Let J ′ be a
subset-repair of I (recall that every instance has a subset-repair).
Since J is a universal ⊕-repair, every fact R(a) of I that belongs
to J also belongs also to J ′ (for, if not, then evaluating the query
q(x) = R(x) in J would not yield the consistent answers). Con-
sequently, J ′ ⊕ I ⊆ J ⊕ I , and therefore, by the definition of
⊕-repairs, J = J ′. Hence J is a subset-repair.

Not every universal subset-repair is a universal ⊕-repair. To see
this, let Σ = {P (x) → ∃y Q(y), P (x) ∧ Q(x) → R(x)}, let
I = {P (a), Q(a)}, and let J = {Q(a)}. Then J is a universal
subset-repair of I , but not a universal ⊕-repair, as may be seen
by considering the ⊕-repair J ′ = {P (a), Q(b)} and the query
q(x) = Q(x).

Note that parts 2 and 3 of Proposition 3.6 hold with “n-universal"
in place of "universal", where n is an arbitrary positive integer. The
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reason is that universality was applied only to queries with a single
atom. Note also that the notion of a universal superset-repair is
intimately linked to the notion of a core universal solution in data
exchange [14], as seen in the proof of Proposition 3.6. We will
further exploit this connection when we consider superset-repairs
for weakly acyclic sets of tgds and egds.

4. LAV TGDS
The main result of this section is that if Σ is a set of LAV tgds

and q is a conjunctive query, then there is a polynomial-time algo-
rithm for computing the ?-consistent answers of q on a given in-
stance I w.r.t. Σ, where ? ∈ {⊕, subset, superset}. We also show
that there is a polynomial-time algorithm for the ?-repair checking
problem w.r.t. Σ, where ? ∈ {⊕, subset, superset}. In the special
case in which Σ is a set of inclusion dependencies, the tractabil-
ity of the subset-repair checking problem and the subset-consistent
query answering problem for conjunctive queries was established
in [11]. The tractability of the subset and the ⊕-repair checking
problem for a weakly acyclic set of LAV tgds was shown in [2] and
was subsequently extended to the broader class of semi-LAV sets
of tgds [19] (which is still a subclass of the class of weakly acyclic
sets of tgds). Finally, the⊕-consistent query problem for sets of in-
clusion dependencies and universal constraints was studied in [8],
where disjunctive logic programming was used to obtain the ⊕-
consistent answers, but no complexity results were established.

In obtaining our tractability results, we will use extensively the
notions of universal repair and of n-universal repair, n ≥ 1, for sets
of LAV tgds.

We say that a set of dependencies Σ is closed under union if
for all instances I1, I2 such that I1 |= Σ and I2 |= Σ, we have
that I1 ∪ I2 |= Σ. It is well known that every set of LAV tgds
is closed under union (e.g., see [2]). The next result shows that,
in a certain sense, this property is characteristic of LAV tgds. For
completeness, we also include a proof that sets of LAV tgds are
closed under union.

THEOREM 4.1. Every set of LAV tgds is closed under union.
Furthermore, if Σ is a set of tgds that is weakly acyclic and closed
under union, then Σ is logically equivalent to a set of LAV tgds.

PROOF. Let Σ be a set of LAV tgds. Suppose that I1 and I2 are
instances such that both satisfy Σ. Let

∀x(R(x)→ ∃yψ(x, y))

be a tgd in Σ. Then, for every tuple of values a such thatR(a) holds
in I1 ∪ I2, we have that R(a) already holds in I1 or I2, and hence
∃yψ(a, y) holds in I1 or in I2, which implies that it also holds in
I1 ∪ I2. This shows that I1 ∪ I2 |= Σ.

We now prove that the converse holds for weakly acyclic sets of
tgds. Let Σ be a weakly acyclic set of tgds that is closed under
union. Since the schema of Σ consists of finitely many relation
symbols, there are only finitely many possible facts up to renaming
of their members. Since Σ is weakly acyclic, we have that if f
is a fact, then, by chasing {f} with Σ, we obtain a finite instance
If that contains f and has the property that for every instance J
containing f and satisfying Σ, there is a homomorphism from If
to J (in effect, If is a universal solution of {f} w.r.t. a schema
mapping with copy source-to-target tgds and with Σ as its set of
target tgds - see [13]). Without loss of generality, we may assume
that, for distinct facts f and f ′, the active domains of the instances
If and If ′ intersect only on values occurring both in f and in f ′.
Let σf be the LAV tgd whose left-hand side is f and whose right-
hand side is the canonical query of If (the values from the instance

{f} are treated as universally quantified variables of σf ). Let Σ′

be the set of all LAV tgds σf , as f varies over all possible facts.
We now show that Σ is logically equivalent to Σ′. First, Σ

logically implies Σ′. Indeed, this follows from the weak acyclic-
ity of Σ, the monotonicity of the chase, and the aforementioned
properties of the chase. Conversely, assume that I |= Σ′, where
I = {f1, . . . , fn}. Let J = If1 ∪ . . . ∪ Ifn . Since Σ is closed
under union and each instance Ifi satisfies Σ, we have that J |= Σ.
Furthermore, by weak acyclicity and the aforementioned proper-
ties of the chase, there is a homomorphism h : J → I that is the
identity on I . In other words, I is a retract of J . Since the truth of
tgds is preserved when passing from an instance to any one of its
retracts (cf. [18]), we have that I |= Σ.

We leave it as open problem whether or not the weak acyclicity
hypothesis is indispensable in establishing Theorem 4.1. Closure
under union implies that every instance has a universal⊕-repair. In
fact, we have the following:

PROPOSITION 4.2. Let Σ be a set of dependencies. The follow-
ing statements are equivalent:

1. Σ is closed under union.

2. Every instance has a universal ⊕-repair w.r.t. Σ.

3. Every instance has a universal subset-repair w.r.t. Σ.

PROOF. [1⇒2] Let Σ be a set of tgds that is closed under union,
and let I be an instance. Since the empty instance satisfies Σ, I has
at least one subset-repair w.r.t. Σ. In fact, I has a unique subset-
repair1. For, if J1 and J2 are subset-repairs of I , then J1 ∪ J2 is
also a subinstance of I satisfying Σ, and hence, by the definition of
repairs, J1 = J1 ∪ J2 = J2. Clearly, the unique subset-repair J of
I is a universal subset-repair of I . Furthermore, we claim that J is
a universal ⊕-repair of I . Let q be a conjunctive query. We have to
show that

⊕-Con(q, I,Σ) = q(J)↓.

From the definition of ⊕-Con(q, I,Σ) and since J is a ⊕-repair of
I , it follows that⊕-Con(q, I,Σ) ⊆ q(J)↓. For the other inclusion,
let K be a ⊕-repair of I . We have to show that q(J)↓ ⊆ q(K).
Since J andK are⊕-repairs, J � Σ andK � Σ. By closure under
union, Σ is also true in J ∪ K. As J ⊆ I , we have I ⊕ (J ∪
K) ⊆ I ⊕ K. Since K is a ⊕-repair of I , this can only happen
if K ∪ J = K. That is, J ⊆ K. It follows that q(J)↓ ⊆ q(K).
Hence, J is a universal ⊕-repair of I .

[2⇒ 3] Follows immediately from Proposition 3.6.
[3⇒ 1] Let I1, I2 be instances satisfying Σ. Towards a contra-

diction, suppose that I1∪I2 does not satisfy Σ. Let J be the univer-
sal subset-repair of I1∪ I2. Then J must omit some fact of I1∪ I2.
Without loss of generality, we may assume that J omits a fact of
I1. Since I1 satisfies Σ, there must be a subset-repair of I1∪I2 that
contains all facts in I1. But this subset-repair must then be incom-
parable to J , which means that J is not the only subset-repair of I ,
and hence, by Proposition 3.6, J is not a universal subset-repair of
I , a contradiction.

COROLLARY 4.3. If Σ is a set of LAV tgds, then every instance
I has a unique subset repair, which is also the unique universal
subset-repair and the unique universal ⊕-repair of I w.r.t. Σ.

THEOREM 4.4. Let Σ be a set of LAV tgds. There is a
polynomial-time algorithm that, given an instance I , computes
the unique universal subset-repair of I w.r.t. Σ (which is also the
unique universal ⊕-repair of J w.r.t. Σ).
1For inclusion dependencies, this fact was pointed out in [11].
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PROOF. Let I be an instance. By Corollary 4.3, I has a unique
subset repair I0, which is also both the unique universal subset-
repair and the unique universal⊕-repair of I . We will show how to
compute I0 in polynomial time. We start with a definition. Let τ
be a LAV tgd of the form

∀x R(x)→ ∃yψ(x,y).

We say that a fact t falsifies the LAV tgd τ in an instance J if t is
in J , it is of the form S(a), and ∃yψ(a,y) is false in J .

The algorithm works as follows. It starts with the instance I . As
long as the current instance contains a fact S(a) that falsifies some
tgd in Σ, it removes it from the current instance.

Clearly, the algorithm runs in time polynomial in the size of I .
It can be shown by induction that, at any time of the run of the
algorithm, the current instance is a superset of the unique subset-
repair I0 of I . Hence, if J is the instance obtained at the end of
the run of the algorithm, we have that I0 ⊆ J . Moreover, since
there is no tuple falsifying a tgd in Σ in J , we have that Σ is true
in J . Since J � Σ, I0 ⊆ J ⊆ I , and I0 is a subset-repair of I , we
conclude that I0 is equal to J .

The situation for superset-repairs is very different. Example 3.3
shows that an instance may have infinitely many superset-repairs of
arbitrarily large size, and it may have no universal superset-repairs.
The same example shows that superset-repairs may not exist. Nev-
ertheless, we will show that if Σ is a set of LAV tgds then, for every
instance I and every n ≥ 1, there is an n-universal superset-repair
for I w.r.t. Σ that can be computed in polynomial time in the size
of I . For this, we need the following lemma.

LEMMA 4.5. Let Σ be a set of LAV tgds. There is a polynomial
time algorithm that, given instances I and J with I ⊆ J and J |=
Σ, computes a superset-repair K of I w.r.t. Σ such that K ⊆ J .

PROOF. Figure 1 depicts an algorithm that, given I and J with
I ⊆ J and J � Σ, either verifies that J is a repair of I or computes
a set K such that I ⊆ K ( J and K � Σ. By applying repeatedly
the algorithm until it outputs a repair, we obtain the result.

Input: Two instances I and J such that I ⊆ J and J � Σ

Output: Either “J is a repair” or an instance K
such that I ⊆ K ( J and K � Σ

For each fact R(a) in J\I ,
compute the subset-repair L of J\{R(a)}
If I ⊆ L, Then Return L
End If

End For
Return “J is a repair”

Figure 1: Algorithm for the superset-repair checking problem
with respect to a set of LAV tgds

By Theorem 4.4, computing the subset-repair of an instance is in
polynomial time. It follows that the algorithm in Figure 1 runs in
time polynomial in the sizes of I and J .

We prove the correctness of the algorithm. Suppose first that the
algorithm outputs an instanceK. We have to show that I ⊆ K ( J
and K � Σ. By construction, there exists a fact R(a) in J\I such
that K is the subset-repair of J\{R(a)}. This implies that K � Σ
andK ( J . Moreover, K contains I , as the algorithm returnedK.

Next, assume that J is not a superset-repair. We have to prove
that the algorithm does not output “J is a repair”. Since J is not a
superset-repair, there exists an instance J0 such that I ⊆ J0 ( J
and J0 � Σ. Take R(a) in J\J0. Let L be the subset-repair of
J\{R(a)}.

Consider the instance L0 := L ∪ J0. By Theorem 4.1, L0 � Σ.
Moreover, L0 ⊆ J\{R(a)} and J ⊕ L0 ⊆ J ⊕ K. Since K
is a subset-repair of J , this can only happen if L0 = K. That
is, J0 ⊆ L. Together with I ⊆ J0, we obtain I ⊆ L. Recall
that L is the subset-repair of J\{R(a)}. This means that, when
the algorithm enters the loop and picks R(a), it stops running and
returns the instance L. In particular, the algorithm does not output
“J is a repair”.

THEOREM 4.6. Let Σ be a set of LAV tgds, and let n ≥ 1.
There is a polynomial time algorithm that, given an instance I ,
computes an n-universal superset-repair of I w.r.t. Σ.

PROOF. We first show how to reduce the problem to the case
where Σ consists of inclusion dependencies. For every LAV tgd

∀xφ(x)→ ∃y
m∧
i=1

ψi(x, y)

in Σ, where each ψi is an atomic formula, we introduce a new
relationR, whose arity is equal to the number of variables in y, and
we replace the LAV tgd by the inclusion dependencies

∀x(φ(x)→ ∃y R(y)) and ∀y(R(y)→ ψi(y)), 1 ≤ i ≤ m.

Let Σ′ be the set of inclusion dependencies obtained by applying
this transformation to each LAV tgd in Σ. It is not hard to see that
every repair of I w.r.t. Σ induces a repair of I w.r.t. Σ′, and vice
versa. Hence, if we prove the desired result for Σ′, then the result
for Σ will follow. In [25], it was shown that in the case of inclu-
sion dependencies, for every instance I and every n ≥ 1, one can
construct an instance J such that J � Σ and for every conjunctive
query q of size ≤ n, the following statements are equivalent:
1. J � q.
2. For everyK such that J ⊆ K andK � Σ, we have thatK � q.

Inspection of the algorithm in [25] shows that it runs in polynomial
time for fixed Σ and n.

By Lemma 4.5, we can compute in polynomial time a superset-
repair J0 of I such that J0 ⊆ J . If q is a conjunctive query, then
J0 � q implies J � q. With the properties of J , this implies that for
every conjunctive query q of size ≤ n, we have that if J0 � q, then
for all K such that K ⊆ J and K � Σ, it is the case that K � q.
Thus, J0 is a n-universal superset-repair of I w.r.t. Σ.

The main result of this section is now an immediate consequence
of Proposition 3.2, Theorem 4.4, and Theorem 4.6.

THEOREM 4.7. For every set Σ of LAV tgds, for every conjunc-
tive query q, and for ? ∈ {⊕, superset, subset}, the ?-consistent
query answering problem w.r.t. Σ is solvable in polynomial time.

The repair-checking problem. We now consider the repair
checking problem for sets of LAV tgds. First, we show how the ⊕-
repair checking problem can be reduced to the subset-repair check-
ing problem and the superset-repair checking problem.

LEMMA 4.8. Let Σ be a set of LAV tgds, and let I and J be two
instances. Then the following statements are equivalent:

1. J is a ⊕-repair of I w.r.t. Σ.

2. J is a superset-repair of I ∩ J w.r.t. Σ and J is a subset-repair
of I ∪ J w.r.t. Σ.

PROOF. Let Σ be a set of LAV tgds, and let I and J be two
instances. For the direction (1)⇒ (2), assume that J is a⊕-repair
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of I . First, we prove that J is a superset-repair of I ∩ J . Let K0

be an instance such that K0 � Σ and I ∩ J ⊆ K0 ⊆ J . We
have to show that K0 = J . As I ∩ J ⊆ K0 ⊆ J , we also have
I ⊕K0 ⊆ I ⊕ J . Since K0 � Σ and J is a ⊕-repair of I , this can
only happen if K0 = J .

Next we prove that J is a subset-repair of I ∪ J . Let K1 be an
instance such that K1 � Σ and J ⊆ K1 ⊆ I ∪J . We have to show
that J = K1. Since J ⊆ K1 ⊆ I ∪ J , we have I ⊕K1 ⊆ I ⊕ J .
Putting this together with the facts thatK1 � Σ and J is a⊕-repair
of I , we obtain K1 = J .

For the direction (2) ⇒ (1), assume that J is a superset-repair
of I ∩ J w.r.t. Σ and that J is a subset-repair of I ∩ J w.r.t. Σ. Let
K be an instance such that K � Σ and I ⊕K ⊆ I ⊕ J . We have
to show that K = J . Since I ⊕K ⊆ I ⊕ J , we have

J ∩ I ⊆ K ∩ I and K\I ⊆ J\I.

As K\I ⊆ J\I , we have K ∪ J ⊆ I ∪ J . Moreover, since
K � Σ and J � Σ, it follows from Theorem 4.1 that K ∪ J � Σ.
Recall that J is a subset-repair of I ∪ J . Since K ∪ J � Σ and
J ⊆ K ∪J ⊆ I ∪J , this implies that J = K ∪J . Hence, K ⊆ J .

Recall that J ∩ I ⊆ K ∩ I . Putting everything together, we have
I ∩ J ⊆ K ⊆ J . Since K � Σ and J is a repair of I ∩ J , this
implies K = J .

THEOREM 4.9. Let Σ be a set of LAV tgds, and let ? ∈
{⊕, superset, subset}. The ?-repair checking problem w.r.t. Σ is
solvable in polynomial time.

PROOF. By Lemma 4.8, it suffices to give polynomial-time al-
gorithms for the superset-repair checking problem and the subset-
repair checking problem. The fact that the subset-repair checking
problem is solvable in polynomial time follows directly from The-
orem 4.4 (since it suffices to check for equality with the universal
subset-repair). Finally, the fact that the superset-repair checking
problem is solvable in polynomial time is a direct consequence of
Lemma 4.5

Adding egds. The tractability results concerning LAV tgds are
optimal, in the sense that if we consider sets of LAV tgds and egds,
then most of them do not remain true. We discuss first the repair-
checking problem for sets of LAV tgds and egds. In [11], it was
shown that there is a set consisting of a cyclic inclusion dependency
and a functional dependency for which the subset-repair checking
problem is CONP-complete. In [2], the intractability of subset-
repair checking (and ⊕-repair checking) was shown to hold for the
union of an acyclic set of inclusion dependencies with a set of egds.
However, the superset-repair checking problem can still be solved
in polynomial time. This follows from the next lemma combined
with Theorem 4.9.

LEMMA 4.10. Let Σ be a set of tgds and egds, and let I and J
be two instances such that I ⊆ J and J � Σ. Then J is a superset-
repair of I w.r.t. Σ if and only if J is a superset-repair of I w.r.t.
the set Σ1 consisting of all tgds in Σ.

PROOF. Assume that Σ = Σ1 ∪ Σ2, where Σ1 is a set of tgds
and Σ2 is a set of egds. Let I and J be two instances such that
I ⊆ J and J � Σ1 ∪ Σ2. It is clear that if J is a superset-repair of
I w.r.t. Σ1, then J is a superset-repair of I w.r.t. Σ1 ∪ Σ2.

For the other direction, assume that J is a superset-repair of I
w.r.t. Σ1 ∪ Σ2. Towards a contradiction, assume that J is not a
superset-repair of I w.r.t. Σ1. Hence, there is an instance J ′ such
that I ⊆ J ′ ( J and J ′ � Σ1.

Since Σ2 is a set of egds, J � Σ2 and J ′ ⊆ J , we also have
that J ′ � Σ2. So, J ′ is a superset of I such that J ′ ⊆ J and
J ′ � Σ1 ∪ Σ2. This contradicts the fact that J is a superset-repair
of I w.r.t. Σ = Σ1 ∪ Σ2.

Next, we comment on the consistent query answering problem
for sets of LAV tgds and egds. Theorem 4.7 in [11] shows that there
is a set Σ of inclusion dependencies and functional dependencies,
and a conjunctive query q such that computing the subset-consistent
answers of q w.r.t. Σ is a Πp

2-complete problem. Furthermore, as
regards the combined complexity of consistent query answering, it
follows from Theorem 5 in [25] that the following problem is unde-
cidable: given a set Σ of LAV tgds and egds, a conjunctive query q
and an instance I , compute the superset-consistent answers of q on
I w.r.t. Σ. We leave it as an open problem whether or not this unde-
cidability result still holds for some fixed conjunctive query q and
some fixed set Σ of LAV tgds and egds. It is also unknown whether
or not the data complexity of ⊕-consistent answers for conjunc-
tive queries is decidable. As mentioned in the Introduction, the
⊕-consistent answering problem for unions of conjunctive queries
was shown to be undecidable in combined complexity [9].

Finally, if we consider LAV tgds together with egds, there might
not always exist a universal (or even 1-universal) subset-repair, ⊕-
repair or superset-repair, as seen in Example 3.5.

5. GAV TGDS
In this section, we investigate the existence and efficient com-

putability of universal repairs for GAV tgds, we review known com-
plexity results for repair checking and consistent query answering
for GAV tgds, and we provide new matching lower bounds. Fur-
thermore, toward the end of the section, we will briefly consider the
addition of egds, and will also discuss semi-LAV sets of tgds; as
mentioned earlier, semi-LAV sets of tgds were introduced in [19].

Recall that in the case of LAV tgds, every instance has a unique
subset-repair, which is also the unique universal ⊕-repair. This is
far from true for for GAV tgds. First of all, Example 3.4 shows that
there is a set Σ of GAV tgds and an instance I such that I has no
1-universal subset repair w.r.t. Σ; therefore, Proposition 3.6 implies
that I also has no 1-universal ⊕-repair w.r.t. Σ. In addition, even if
an instance happens to have a universal subset-repair, this may not
be a universal ⊕-repair, as revealed by the next example.

EXAMPLE 5.1. Consider the set

Σ = {P (x) ∧Q(y)→M(y),M(x)→ P (x)}

and the instance I = {M(a), Q(b)}. The instance J = {Q(b)} is
then the only subset-repair of I , hence it is also a universal subset-
repair of I . However, J is not a universal ⊕-repair of I , as can
be seen by considering the ⊕-repair J ′ = {M(a), P (a)} and the
query Q(x). This also shows that, unlike the case of LAV tgds,
the subset-consistent answers of a conjunctive query w.r.t. a class
of GAV tgds do not always coincide with the⊕-consistent answers
of the same query w.r.t. the same class of GAV tgds.

Unlike the case for subset-repairs and ⊕-repairs, we will show
that, for sets of GAV tgds, every instance has a universal superset-
repair. In fact, every instance has a unique superset-repair; more-
over, the latter property is characteristic for GAV tgds (this will be
analogous to the characterization of LAV tgds given in the previous
section). To state and proof this characterization, we need a defi-
nition and a lemma. We say that a set Σ of dependencies is closed
under intersection if for all instances I1, I2 such that I1 |= Σ and
I2 |= Σ, we have that I1 ∩ I2 |= Σ. Closure under intersection
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will turn out to be equivalent to the existence of a unique superset-
repair, and this characterizes the GAV tgds among all tgds.

LEMMA 5.2. Let Σ be a set of tgds and let I be an instance
that has a unique superset-repair J w.r.t. Σ. If I ′ is an instance
and J ′ is a superset-repair of I ′ w.r.t. Σ, then every homomorphism
h : I → I ′ can be extended to a homomorphism h′ : J → J ′.

PROOF. Here, adom(K) will denote the active domain of an
instance K, while rng(h) will denote the range of the function h.
Let J ′h be the following instance:
• adom(J ′h) = adom(I) ∪ (adom(J ′) \ rng(h)).
• For every fact R(b1, . . . , bn) of J ′, we populate J ′h with all

possible facts that can be obtained by replacing each value bi
by a value ai ∈ dom(I) such that h(ai) = bi, if bi ∈ rng(h),
or leaving bi untouched, otherwise.

Since h(I) ⊆ I ′ ⊆ J ′, we have that I ⊆ J ′h. Let h′ be a function
defined on adom(J ′h) in the following way: if a ∈ dom(I), then
h(a) = h(a); if a 6∈ dom(I) (but a ∈ adom(J ′) \ rng(h)), then
h′(a) = a. From the construction of J ′h and the definition of h′,
it follows that h′ is a homomorphism from J ′h to J ′. To complete
the proof, it suffices to show that J ′h |= Σ. Indeed, once we have
shown this, it will follow that J ⊆ J ′h, because I ⊆ J ′h and J is
the unique superset-repair of I ,; consequently, the restriction of h′

on adom(J) is a homomorphism from J to J ′.
To show that J ′h |= Σ, consider an arbitrary tgd from Σ, say,

φ(x)→ ∃yψ(x, y).

Suppose that J ′h satisfies φ(a) for some tuple of values a. Then,
by the construction of J ′h, we have that J ′ satisfies φ(h′(a)), and
hence, it also satisfies ψ(h′(a), b) for some values b = b1, . . . , bm.
Let a′ = a′1, . . . , a

′
m be a tuple of values such that h′(a′i) = bi, for

1 ≤ i ≤ m. Then, by construction, J ′h satisfies ψ(a, a′).

THEOREM 5.3. Let Σ be a set of tgds. Then the following state-
ments are equivalent:

1. Every instance has a unique (universal) superset-repair
w.r.t. Σ.

2. Σ is closed under intersection.

3. Σ is logically equivalent to a set of GAV tgds.

PROOF. The proof goes round-robin.
[1⇒3] Assume that every instance I has a unique superset-repair

J . It follows that J can only contain values that come from the ac-
tive domain of I (otherwise, by taking an isomorphic copy in which
the values outside of the active domain of I are replaced by fresh
values, we would refute the uniqueness of the repair). Consider a
tgd τ ∈ Σ of the form φ(x) → ∃yψ(x, y), where ψ is a conjunc-
tion of atomic formulas. Let Iφ be the canonical instance of φ(x),
and let Jφ be the unique superset-repair of Iφ. Since Jφ is a repair
of Iφ, it satisfies the tgd τ . It follows that ∃yψ(x, y) is satisfied
in Jφ under the natural assignment. Since Jφ contains only values
that are from the active domain of Iφ, this means that Jφ satisfies
ψ(x, x’) for some tuple of values x′ from the active domain of Iφ.
Let τ̂ be the dependency

φ(x)→ ψ(x, x′),

which can be equivalently written as a finite set of GAV tgds, and
let Σ̂ = {τ̂ | τ ∈ Σ}. We claim that Σ and Σ̂ are logically equiva-
lent. The fact that Σ′ logically implies Σ follows directly from the
construction of Σ′. For the other direction, suppose that I |= Σ and
I |= φ(a) for some tuple of values a. Let Iφ be again the canonical
instance of φ(x). Then the function h : x 7→ a is a homomorphism

from Iφ to I . Since Jφ is the unique superset-repair of Iφ w.r.t. Σ,
Lemma 5.2 implies that h extends to a homomorphism from Jφ to
every superset-repair of I . Since I satisfies Σ, it is its own repair,
which means that I satisfies ψ(a, h(a)). Therefore, I |= τ̂ .

[3⇒ 2] Let Σ be a set of GAV tgds. Let I1 |= Σ and I2 |= Σ,
and suppose that, for some GAV tgd t ∈ Σ of the form

φ(x1, . . . , xn)→ R(xi1 , . . . , xik )

it holds that I1 ∩ I2 |= φ(a1, . . . , an) for some values a1, . . . , an.
Then both I1 and I2 satisfy φ(a1, . . . , an); since I1 and I2 satisfy
Σ, we have that I1 and I2 satisfy R(ai1 , . . . , aik ); thus, the fact
R(ai1 , . . . , aik ) belongs to the intersection of I1 and I2.

[2⇒ 1] Let Σ be a set of tgds that is closed under intersection.
Let I be an instance and let J be the instance consisting of all
possible facts over the active domain of I . Then I ⊆ J and J |= Σ,
hence a superset-repair of I must exist. Suppose that I has two
distinct superset-repairs J1 and J2. By closure under intersection,
J1 ∩ J2 |= Σ, hence the properties of superset-repairs imply that
J1 = J1 ∩ J2 = J2, a contradiction.

The classical chase procedure from dependency theory (see [1])
provides a method for efficiently computing the unique superset-
repair of an instance w.r.t. a set of GAV tgds.

THEOREM 5.4. Let Σ be a set of GAV tgds. There is a polyno-
mial time algorithm that, given an instance I , computes the unique
(universal) superset-repair of I w.r.t. Σ.

We now move to consistent query answering. Let Σ be a set of
GAV tgds and let q be a conjunctive query. The preceding Theorem
5.4 implies immediately that the superset-consistent query answer-
ing problem for q w.r.t. Σ is solvable in polynomial time. Staworko
and Chomicki [26] showed that both the subset-consistent query
answering problem and the ⊕-consistent query answering problem
for q w.r.t. Σ are in CONP. This will also follow from Theorem 6.2
in the next section, which implies that the size of every ⊕-repair of
an instance I w.r.t. a set of GAV tgds is bounded by a polynomial
in the size of I . In [26], it is also shown that there is a conjunc-
tive query q and a set Σ consisting of GAV tgds and egds such that
the ⊕-consistent query answering problem for q w.r.t. Σ is CONP-
complete. Our next result improves on this lower bound by showing
that it can hold even for a set consisting of a single GAV tgd.

THEOREM 5.5. There is a set Σ consisting of a single GAV
tgd and a conjunctive query q such that both the subset-consistent
query answering problem and the ⊕-consistent query answering
problem for q w.r.t. Σ are CONP-complete.

PROOF (HINT). We produce a GAV tgd τ , a conjunctive query
q, and a polynomial-time reduction from the complement of POS-
ITIVE 1-IN-3-SAT to the problem of finding the ⊕-consistent an-
swers of q w.r.t. {τ}. Recall that POSITIVE 1-IN-3-SAT is the fol-
lowing NP-complete problem [17]: given a Boolean formula φ in
conjunctive normal form and such that each clause is a disjunction
of the form (x1 ∨ x2 ∨ x3) of three positive literals, is there a truth
assignment that makes true exactly one variable in every clause?

Let τ be the following GAV tgd:

∀x, u, u′(P (x, u) ∧ P (x, u′)→ E(u, u′))

and let q be the following conjunctive query:

∃x1, x2, x3, u1, u2, u3(R(x1, x2, x3) ∧ P (x1, u1)

∧ P (x2, u2) ∧ P (x3, u3) ∧ S(u1, u2, u3)).

The intuition behind the relation symbols is as follows: P en-
codes truth values for the variables in a given Boolean formula,
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while E is used to simulate equality. The tgd τ expresses that each
variable is assigned at most one truth value.

The relation R encodes every clause (x1 ∨ x2 ∨ x3) occurring
in a formula in conjunctive normal form such that each clause is a
disjunction of three positive literals. The relation S will consist of
the triples in {0, 1}3\{(1, 0, 0), (0, 1, 0), (0, 0, 1)} . The conjunc-
tive query q expresses that there are a clause (x1 ∨ x2 ∨ x3) and
truth values assigned to x1, x2 and x3 such that it is not the case
that exactly one variable is true in the clause (x1 ∨ x2 ∨ x3).

Given a Boolean formula φ in conjunctive normal form such that
each clause is a disjunction of three positive literals, we can con-
struct an instance I such that

⊕-Con(q, I,Σ) = true iff φ /∈ POSITIVE 1-IN-3-SAT.

Extensions: egds and semi-LAV. All complexity upper
bounds described in this section hold for the more general case of
sets of GAV tgds and egds. Note that if Σ is a set of GAV tgds and
egds, then an instance I may not have any superset-repair w.r.t. Σ.
Still, if a superset-repair exists, then it is unique, and it can be com-
puted in polynomial time using the chase procedure. The existence
of a superset-repair can be tested in polynomial time as well.

In [19], the class of semi-LAV sets of dependencies was intro-
duced; it contains properly the class of all sets of GAV tgds, as well
as the class of all weakly acyclic sets of LAV tgds. It was shown
in [19] that the ⊕-repair checking problem for semi-LAV sets of
tgds is still solvable in polynomial time (however, this is no longer
true if egds are allowed [2]). For ?-consistent query answering,
where ? ∈ {subset, superset,⊕}, the complexity for semi-LAV
sets of tgds is the same as the complexity for sets of GAV tgds.
The lower bounds naturally transfer, and the upper bounds follow
from the fact that repair checking is in polynomial time, together
with Theorem 6.1 and Theorem 6.2 in the next section, since every
semi-LAV set of tgds is, by definition, weakly acyclic.

6. WEAKLY ACYCLIC SETS OF TGDS
(AND EGDS)

In this section, we study the consistent query answering prob-
lem for conjunctive queries and weakly acyclic sets of tgds and
egds. We begin by considering universal superset-repairs. Recall
that, according to Proposition 3.6, every instance has at most one
universal superset-repair, up to isomorphism.

THEOREM 6.1. Let Σ be a weakly acyclic set of tgds and egds.
If an instance has a superset-repair w.r.t. Σ, then it has a universal
superset-repair. Moreover, there is a polynomial time algorithm
that, given an instance I , tests whether it has a superset-repair w.r.t.
Σ and if so, computes the (unique up to isomorphism) universal
superset-repair of I .

PROOF. We rely on known results from data exchange. We say
that an instance J is a solution for an instance I w.r.t. Σ if I ⊆ J
and J satisfies Σ. Thus, a superset-repair of I is a solution of I such
that no strict subset is a solution for I . In [18], it was shown that
if Σ is a fixed set of tgds and egds, then there is a polynomial-time
algorithm that, given an instance I , tests whether it has a solution
w.r.t. Σ, and if so, computes a solution J satisfying the following
additional properties:
(i) For each solution J ′ of I , there is a homomorphism h : J → J ′

that is the identity on values from the active domain of I .
(ii) For each solution J ′′ satisfying the above condition (i), we

have that J ⊆ J ′′.

This solution J is is known as the “core universal solution” of I
[14], and is unique up to isomorphism.

Let J be the core universal solution of I w.r.t Σ. Since I ⊆ J
and J satisfies Σ, it remains to show that (a) J is a superset-repair
of I , i.e., there is no J ′ ( J that contains I and satisfies Σ, and
(b) J is a universal superset-repair of I . The first item follows im-
mediately from the above properties (i) and (ii): any such J ′ would
satisfy condition (i), thereby contradicting the fact that J satisfies
condition (ii) above. The second item follows from the fact that
J satisfies condition (i) and from the preservation of conjunctive
queries under homomorphisms.

Recall from Example 3.4 that, in general, an instance might not
have a 1-universal subset-repair (hence, a 1-universal ⊕-repair)
w.r.t. a set of weakly acyclic tgds.

Next, we move to the consistent query answering problem. One
of the key observations for obtaining an upper bound for the com-
plexity of the ⊕-consistent answers is that the size of every ⊕-
repair of an instance I is polynomial in the size of I . The proof
relies on the solution-aware chase, which was introduced in the
context of peer data exchange [26].

THEOREM 6.2. Let Σ be a set of weakly acyclic tgds and egds.
There is a polynomial p(x) such that for all instances I and for
all ⊕-repairs J of I with respect to Σ, the size of J is bounded by
p(|I|), where |I| is the size of I .

PROOF. Let Σ be a set of weakly acyclic tgds and egds. The
proof relies on the algorithm described in the proof of Lemma 3.4
in [15]. Specifically, the proof of that lemma yields a polynomial
p(x) and an algorithm that works as follows. Given instances K
and L such that K ⊆ L and L � Σ, the algorithm computes an
instance f(K,L) such that K ⊆ f(K,L) ⊆ L, f(K,L) � Σ, and
the size of f(K,L) is bounded by p(|K|).

Fix a repair I0 of I . We show that the size of I0 is bounded by
p(|I|). We can use the algorithm described in Lemma 3.4 in [15]
to produce an instance J := f(I ∩ I0, I0) satisfying the following.
The size of J is bounded by p(|I ∩ I0|), I ∩ I0 ⊆ J ⊆ I0 and
J � Σ. In particular, the size of J is bounded by p(|I|).

In order to show that the size of I0 is bounded by p(|I|), it is
sufficient to show that I0 = J . Since I0 is a ⊕-repair of I , this is
equivalent to proving that J |= Σ and I ⊕ J ⊆ I ⊕ I0.

We already know that J |= Σ. It remains to show that I ⊕ J ⊆
I ⊕ I0. Let R(a) be a fact in I ⊕ J . We prove that R(a) belongs
to I ⊕ I0. Suppose first that R(a) belongs to J\I . We know that
J ⊆ I0. Hence, if R(a) belongs to J\I , then R(a) belongs to
I0\I . This implies that R(a) belongs to I ⊕ I0. Next, assume
that R(a) belongs to I\J . We have to show that R(a) ∈ I ⊕ I0.
Since R(a) belongs to I , this means that we have to prove that
R(a /∈ I0. Suppose for contradiction that R(a) belongs to I0.
Then R(a) belongs to I ∩ I0. Recall that I ∩ I0 ⊆ J . Putting this
together with R(a ∈ I ∩ I0, we obtain that R(a) belongs to J ,
which is a contradiction.

Our main result concerning consistent query answering w.r.t. a
weakly acyclic set of tgds is a Πp

2 lower bound both for subset-
repairs and for ⊕-repairs. A Πp

2 lower bound had been obtained
earlier for the problem of finding the ⊕-consistent answers w.r.t. a
set of functional dependencies and universal constraints [26].

THEOREM 6.3. Let Σ be a weakly acyclic set of tgds and egds
and let q be a conjunctive query.

1. The superset-consistent query answering problem for q w.r.t. Σ
is in PTIME.

30



2. The ⊕-consistent (subset-consistent) query answering problem
for q w.r.t. Σ is in Πp

2 .

3. There is a set Σ of weakly acyclic tgds and a conjunctive query
q such that both the ⊕-consistent and the subset-consistent
query answering problems for q w.r.t. Σ are Πp

2-complete.

PROOF (HINT). Part 1 is an an immediate consequence of The-
orem 6.1. It also follows from Proposition 2.7 and results in [13]
concerning the tractability of the certain answers of conjunctive
queries in data exchange w.r.t. weakly acyclic sets of tgds and egds.
Part 2 follows from Theorem 6.2 and the fact that both the⊕-repair
and the subset-repair checking problems with respect to any set of
tgds and egds is in CONP. For Part 3, we give a weakly acyclic
set Σ of tgds and a Boolean conjunctive query q with the follow-
ing properties: for every quantified Boolean formula φ of the form
∀p1 . . .∀pn∃q1 . . .∃qkψ, where ψ is a conjunction of clauses con-
taining 3 literals, we can construct in polynomial time an instance
Iφ so that the following statements are equivalent:
1. φ is true ;
2. subset-Con(q, Iφ,Σ) = >;
3. ⊕-Con(q, Iφ,Σ) = >.

Evaluating such formulas is known to be a Πp
2-complete problem

[24]. We introduce the following tgds:

φ1 = Q(q, v)→ ∃sA(s),

φ2 = A(s) ∧Q′(q)→ ∃vQ(q, v),

φ3 = Q(q, v) ∧Q(q, v′)→ E(v, v′),

φ4 = P (p, v) ∧ P (p, v′)→ E(v, v′),

φa1a2a3(X1, X2, X3) = Ra1a2a3(x1, x2, x3) ∧A(s) ∧
X ′1(x1) ∧X ′2(x2) ∧X ′3(x3)→
∃v1, v2, v3(X1(x1, v1) ∧X2(x2, v2)

∧X3(x3, v3) ∧ Ta1a2a3(v1, v2, v3)),

where ai ∈ {0, 1} and Xi ∈ {P,Q}, for i = 1, 2, 3. We now let

Σ = {φ1, φ2, φ3, φ4} ∪
{φa1a2a3(X1, X2, X3) | ai ∈ {0, 1}, Xi ∈ {P,Q}}.

We also let q be the query ∃sA(s). Note that Σ is a weakly acyclic
set. Indeed, the only special edges are from positions inQ′, P ′ and
R; however, there is no incoming edge to a position inQ′, P ′ orR.

The intuition behind the relation symbols is as follows. The re-
lation P ′ encodes the universally quantified variables p1, . . . , pn
of φ, while Q′ encodes the existentially quantified variables
q1, . . . , qk of φ. Furthermore, P encodes truth values for
p1, . . . , pn, while Q encodes truth values for q1, . . . , qk. We use
the symbolE to simulate equality; it will consist of the tuples (0, 0)
and (1, 1). The tgds φ3 and φ4 express that each variable gets as-
signed at most one truth value.

If x is a variable, we define the inverse sign of x, denoted by
is(x), as 0. If x is the negation of a variable, we define is(x) as 1.
The relation Ra1a2a3 encodes the clauses of the form x1 ∨x2 ∨x3

such that is(xi) = ai. The relation Ta1a2a3 consists of those truth
assignments that make true the clauses of the form x1 ∨ x2 ∨ x3,
where is(xi) = ai.

The symbol A acts as guard. It is activated (that is, becomes
non-empty) as soon as one variable in {q1, . . . , qk} gets assigned
a truth value (see the tgd φ1). Once A has been activated, it makes
sure that each variable in {q1, . . . , qk} is assigned a truth value (as
expressed by the tgd φ2). Hence, either no variable in {q1, . . . , qk}
gets assigned a truth value or all variables in {q1, . . . , qk} get as-
signed a truth value. Moreover, when A is non-empty, the tgds of

the form φa1a2a3(X1, X2, X3) express that the truth assignment is
such that each clause of the form x1 ∨ x2 ∨ x3 occurring in φ is
true under the truth assignment.

7. ARBITRARY TGDS (AND EGDS)
In this section, we obtain results about arbitrary sets of tgds that

contrast sharply with our earlier results about weakly acyclic sets of
tgds. We begin by pointing out that universal repairs are not of help
in the study of arbitrary sets of tgds. First, as seen in Example 3.3,
there is a (non-weakly acyclic) set of LAV tgds Σ and an instance I
such that I has superset-repairs w.r.t. Σ (hence also⊕-repairs w.r.t.
Σ) of arbitrarily large sizes that cannot be bounded by any function
in the size of the original instance. This contrasts with the state
of affairs for weakly acyclic sets of tgds and egds in Theorem 6.2
Furthermore, recall Theorem 4.6, which states that if Σ is any set
of LAV tgds, then every instance has an n-universal superset-repair
w.r.t. Σ, for n ≥ 1 (even though a universal superset-repair may
not exist). We now observe that if Σ consists of arbitrary tgds, then
even a 1-universal superset-repair may not exist.

PROPOSITION 7.1. There is a set of tgds Σ and an instance I ,
such that I has no 1-universal superset-repair with respect to Σ.

PROOF. Consider the following two tgds:

P (x) → ∃y R(x, y) ∧ P (y)
R(x, y) ∧R(y, z) ∧R(z, u) ∧R(u, v) → ∃w R(x,w) ∧R(w, u)

R(x, y) ∧R(y, x) → C2(x)
R(x, y) ∧R(y, z) ∧R(z, x) → C3(x)

Consider the instance I = {P (a)}. By the first tgd, every superset-
repair of I must contain a cycle. By the second tgd, there must be
a cycle of length 1, 2, or 3. Hence, by the final three tgds, each
superset-repair satisfies either ∃x C2(x) or ∃x C3(x). However,
there is a superset-repair that does not satisfy the query ∃x C2(x),
and a superset-repair that does not satisfy the query ∃x C3(x). This
shows that I has no 1-universal superset-repair.

We present now the results concerning the consistent query an-
swering problem. We begin with the subset-consistent answering
and the superset-consistent answering problems.

THEOREM 7.2. The following statements are true.

1. If Σ is a set of tgds and q is a conjunctive query, then the subset-
consistent query answering problem for q w.r.t. Σ is in Πp

2 .

2. There is a set of tgds Σ and a conjunctive query q such that
the subset-consistent query answering problem for q w.r.t. Σ is
Πp

2-complete.

3. There is a set Σ of tgds and a conjunctive query q such that the
superset-consistent query answering problem for q w.r.t. Σ is
undecidable.

PROOF. We already mentioned the Πp
2 upper bound of subset-

consistent query answering in Section 2; the lower bound was
shown in Theorem 6.3, even for a weakly acyclic set of tgds.

As regards superset-repairs, it was shown in [22] that there is
a (non-weakly acyclic) set Σ of tgds and egds such that the fol-
lowing problem is undecidable: given an instance I , is there an
instance J |= Σ such that I ⊆ J? Since every such instance J
contains a superset-repair for I , we have that checking whether a
given instance has a superset-repair with respect to Σ is an unde-
cidable problem as well. By taking q = ∃x P (x), where P is a
fresh relation, it follows that the superset-consistent query answer-
ing problem is also undecidable. The egds of Σ can be eliminated
by a standard construction: we add another binary relation E to

31



the schema and extend Σ with GAV tgds stating that E is a con-
gruence, i.e., an equivalence relation such that every other relation
in the schema is closed under substitution of equals by equals with
respect to the equivalence relation E. Alternatively, a proof of this
undecidability result can be obtained by adapting the proof of The-
orem 7.3 given later on in this section.

We now come to the main result, which asserts that there is a
set Σ of tgds and a conjunctive query q such that computing the
⊕-consistent answers of q w.r.t. Σ is an undecidable problem. As
mentioned in the Introduction, this improves a result in [3] assert-
ing that there is a set of universal first-order sentences and a uni-
versal query (in fact, the negation of a conjunctive query) such that
computing the ⊕-consistent answers is an undecidable problem.

THEOREM 7.3. There is a set Σ of tgds and a conjunctive query
q such that the ⊕-consistent query answering problem for q w.r.t.
Σ is undecidable.

The remainder of this section contains an outline of the proof of
Theorem 7.3. We start with the following lemma. By a Boolean
combination of Boolean conjunctive queries, we mean an expres-
sion built from Boolean conjunctive queries using ¬, ∨ and ∧.

LEMMA 7.4. Let Σ be a set of tgds and q a Boolean combina-
tion of Boolean conjunctive queries over a schema S. There is a set
Σ′ of tgds and a conjunctive query q′ over a schema S ′ ⊇ S such
that for every instance I over S, we can compute in polynomial
time an instance I ′ over S ′ satisfying

⊕-Con(q, I,Σ) = ⊕-Con(q′, I ′,Σ′).

Note that Lemma 7.4 remains true if we consider subset-repairs,
instead of⊕-repairs; however, it does not hold for superset-repairs.

Theorem 7.3 will be proved via a reduction from the halting
problem for two-register machines. In describing two-register ma-
chines, we follow the definition given in [5].

A two-register machine (2RM) is similar to Turing machines, ex-
cept that, instead of a tape, it has two registers r1, r2. Each register
contains a natural number. A 2RM is programmed by a numbered
sequence α0, . . . , αl of instructions. Each instruction αi is either
an addition or a subtraction. An addition has the form +(rg , j),
with rg a register number and j ≤ l an instruction number. Its
semantics is: add one to register rg and move to instruction αj . A
subtraction has the form −(rg , j, k) with rg a register number and
j, k ≤ l instruction numbers. Its semantics is: if content of regis-
ter rg is zero, then move to instruction αj ; otherwise, subtract one
from register rg and move to instruction αk.

An instantaneous description (ID) of a 2RMM is a triple (s, t, i)
with i ≤ l an instruction number and m,n ≥ 0 natural numbers
representing the content of the registers r1 and r2. The unique
successor of an ID (s, t, i) is the ID (s′, t′, i′) such that
• if αi = +(1, j), then s′ = s+ 1, t′ = t, i′ = j;
• if αi = +(2, j), then s′ = s, t′ = t+ 1, i′ = j;
• if αi = −(1, j, k) and s 6= 0, then s′ = s− 1, t′ = t, i′ = j;
• if αi = −(1, j, k) and s = 0, then s′ = s, t′ = t, i′ = k;
• if αi = −(2, j, k) and t 6= 0, then s′ = s, t′ = t− 1,i′ = j;
• if αi = −(2, j, k) and t = 0, then s′ = s, t′ = t, i′ = k.

The ID (0, 0, l) is called final. If M = (α0, . . . , αl) is a 2RM,
then the run of M is the sequence (Di)i≥1 of ID’s such that D0 =
(0, 0, 0) and Di+1 is the successor of Di, for all i ≥ 1. The run is
halting if it contains the ID (0, 0, l). The halting problem for 2RM
is to determine whether the run of a given 2RM is halting.

THEOREM 7.5. [7] The halting problem for two-register ma-
chines is undecidable.

We now proceed with the proof of Theorem 7.3.

PROOF OF THEOREM 7.3 (SKETCH). We shall give a reduc-
tion from the halting problem for 2RMs. For this, we define a set
Σ′ of tgds and a conjunctive query q′ such that for every 2RM M ,
we can compute an instance I ′ such that

the run of M is halting ⇐⇒ ⊕-Con(q′, I ′,Σ′) 6= >. (1)

The idea is that each ⊕-repair of IM encodes the run of a subset
of the instructions in M (due to the symmetric difference seman-
tics, we cannot prevent instructions from being dropped). The run
of M will be halting if and only if some ⊕-repair of IM contains
the final ID of M . Hence, if q is a conjunctive query expressing
that the final ID occurs, then the run of M is halting if and only if
q is true in some ⊕-repair of I . That is, the run of M is halting if
and only if⊕-Con(¬q, IM ,Σ) 6= >. The problem is that ¬q is not
a conjunctive query, and this is where we use Lemma 7.4.

By Lemma 7.4, in order to find Σ′ and q′ satisfying (1), it suffices
to find a set Σ of tgds and a Boolean combination q of Boolean
conjunctive queries such that for all 2RM M , we can compute an
instance I satisfying

the run of M is halting ⇐⇒ ⊕-Con(q, I,Σ) 6= >. (2)

Let Σ be the set of the following tgds:

φ+
1 = S(s, t, i) ∧R1,+(i, j)→ ∃s′Succ(s, s′)

ψ+
1 = S(s, t, i) ∧R1,+(i, j) ∧ Succ(s, s′)→ S(s′, t, j)

φ+
2 = S(s, t, i) ∧R2,+(i, j)→ ∃t′Succ(t, t′)

ψ+
2 = S(s, t, i) ∧R2,+(i, j) ∧ Succ(t, t′)→ S(s, t′, j)

φ−1 = S(s, t, i) ∧R1,−(i, j, k) ∧ Succ(s′, s)→ S(s′, t, j)

φ=
1 = S(s, t, i) ∧R1,−(i, j, k) ∧ Zero(s)→ S(s, t, k)

φ−2 = S(s, t, i) ∧R2,−(i, j, k) ∧ Succ(t′, t)→ S(s, t′, j)

φ=
2 = S(s, t, i) ∧R2,−(i, j, k) ∧ Zero(t)→ S(s, t, k)

φAnc
1 = Anc(u, s) ∧ Succ(s, s′)→ Anc(u, s′)

φAnc
2 = Succ(s, s′)→ Anc(s, s′)

φf = Final(j) ∧ S(s, t, j) ∧ Zero(s) ∧ Zero(t)→ ∃sF (s)

Let q be the query ∃sAnc(s, s)∨¬(∃sF (s)). The intuition behind
the relation symbols is as follows. We use S to encode IDs: the fact
S(s, t, i) corresponds to the ID where s is the content of the first
register, t is the content of the second register and i is an instruction
number. We use the relation Succ to encode the successor relation
on an initial segment of the natural numbers, while Anc encodes
the strict natural ordering on that initial segment. The relation Anc
is the transitive closure of Succ, as expressed by the tgds φAnc

1

and φAnc
2 . We simulate the initial and the final instructions of the

machine with the relations Zero and Final . The relation Zero will
consist of the singleton 0, while Final will consist of the singleton
l (where l + 1 is the number of instructions of the machine).

The relations R1,+, R1,−, R2,+ and R2,− encode the instruc-
tions of the machines. A fact Rn,+(i, j) expresses that the instruc-
tion αi is equal to +(n, j). Similarly, a factRn,−(i, j, k) expresses
that the instruction αi is the subtraction −(n, j, k).

The tgd φ+
1 expresses that if the ID is (s, t, i) and instruction

αi needs to add one to the first register, then the initial segment
of the natural numbers that we consider should at least contain the
successor of s. The tgd ψ+

1 expresses that if the ID is (s, t, i), the
instruction αi is +(1, j), and s′ is equal to s+ 1, then we move to
the ID (s′, t, j). The tgds φ+

2 and ψ+
2 have similar meanings.
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The tgd φ−1 expresses that if the ID is (s, t, i), the instruction αi
is −(1, j, k), and s′ is equal to s − 1 (in particular, s 6= 0), then
we move to the ID (s′, t, j). The tgd φ=

1 expresses that if the ID is
(s, t, i), the instruction αi is +(1, j) and s is equal to 0, then we
move to the ID (s, t, k).

Finally, F acts as a guard. It becomes non-empty, when the in-
stance contains an ID of the form (0, 0, l). This is expressed by the
tgd φf . The query q is false in an instance if and only if the guard
F is non-empty and the ancestor relation does not contain any tuple
of the form (s, s). Intuitively, this means that the instance contains
an ID of the form (0, 0, l) and that the successor relation does not
contain any cycle.

8. CONCLUDING REMARKS
In this paper, we carried out a fairly comprehensive investigation

of the data complexity of the consistent query answering problem
for conjunctive queries with respect to classes of constraints that
have played a major role in data exchange and data integration. In
the process, we brought into front stage and used extensively the
notions of universal repairs and n-universal repairs, n ≥ 1.

One problem left open by our investigation is the data complex-
ity of the superset-consistent answers and of the ⊕-consistent an-
swers for conjunctive queries w.r.t. sets of inclusion dependencies
and equality-generating dependencies. As mentioned earlier, this
problem has been shown to be undecidable in combined complex-
ity [25]. It would also be interesting to investigate algorithmic as-
pects concerning the existence of universal repairs. Specifically,
what can one say about the complexity of the following decision
problem: given a set Σ of dependencies and an instance I , does I
have a ?-universal repair w.r.t. Σ, where ? ∈ {⊕, subset, superset}?
And similarly for n-universal repairs, n ≥ 1. Note that results
in [21, 20] already imply that there is a set Σ of tgds for which
the problem of checking whether a given instance has a universal
superset-repair is undecidable.

Finally, the results presented give rise to challenging complete
classification problems that, if resolved, may take the form of a
dichotomy or a trichotomy theorems. For example, is it true that
for every set Σ of GAV tgds and every conjunctive query q, the ⊕-
consistent answers of q are either in PTIME or CONP-complete?
Even for just key constraints only partial results towards such a
dichotomy theorem have been obtained so far [16, 23, 28, 29].
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