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ABSTRACT
Networks of relational transducers can serve as a formal
model for declarative networking, focusing on distributed
database querying applications. In declarative networking,
a crucial property is eventual consistency, meaning that the
final output does not depend on the message delays and re-
orderings caused by the network. Here, we show that even-
tual consistency is decidable when the transducers satisfy
some syntactic restrictions, some of which have also been
considered in earlier work on automated verification of re-
lational transducers. This simple class of transducer net-
works computes exactly all distributed queries expressible
by unions of conjunctive queries with negation.

Categories and Subject Descriptors
H.2 [Database Management]: Languages; H.2 [Database
Management]: Systems—Distributed databases; F.1 [Com-
putation by Abstract Devices]: Models of Computation

General Terms
languages, theory

Keywords
distributed database, relational transducer, consistency, de-
cidability, expressive power, cloud programming

1. INTRODUCTION
Declarative networking [15] is an approach by which dis-

tributed computations and networking protocols, as occur-
ring in cloud computing, are modeled and programmed us-
ing formalisms based on Datalog. Recently, declarative net-
working formalisms are enjoying attention from the database
theory community, so that now a number of models and lan-
guages are available with a formally defined semantics and
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initial investigations on their expressive power [5, 16, 12, 1,
6].

A major hurdle in using declarative methods for cloud
computing is the nondeterminism inherent to such systems.
This nondeterminism is typically due to the asynchronous
communication between the compute nodes in a cluster or
network. Accordingly, one of the challenges is to design dis-
tributed programs so that the same outputs can eventually
be produced on the same inputs, no matter how messages
between nodes have been delayed or received in different
orders. When a program has this property we say it is even-
tually consistent [19, 13, 14, 4]. Of course, eventual con-
sistency is undecidable in general, and there is much recent
interest in finding ways to guarantee it [4, 1].

In the present paper, we view eventual consistency as a
confluence notion. On any fixed input, let J be the union
of all outputs that can be produced during any possible ex-
ecution of the distributed program. Then in our definition
of eventual consistency, we require that for any two differ-
ent outputs J1 ⊆ J and J2 ⊆ J resulting from two (partial)
executions on the same input, the same output J can be
produced in an extension of either partial execution. So,
intuitively, the prior execution of the program will not pre-
vent outputs from being produced if those outputs can be
produced with another execution (on the same input).

In this paper, we consider clusters of compute nodes mod-
eled as relational transducers, an established formal model
for data-centric agents [3, 18, 10, 9, 11]. In particular, we
consider relational transducers where the rules used by the
nodes to send messages, to update their state relations, and
to produce output, are unions of conjunctive queries with
negation. This setting yields a clear model of declarative
networking, given the affinity between conjunctive queries
and Datalog. We thus believe our results also apply to other
declarative networking formalisms, although in this paper
we have not yet worked out these applications.

Our first main result is the identification of a number of
syntactic restrictions on the rules used in the transducers,
not so that eventual consistency always holds, but so that
checking it becomes decidable. Informally, the restrictions
comprise the following.

1. The cluster must be recursion-free: the different rules
among all local programs cannot be mutually recur-
sive through positive subgoals. Recursive dependen-
cies through negative subgoals are still allowed.

2. The local programs must be inflationary: deletions
from state relations are forbidden.
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3. The rules are message-positive: negation on message
relations is forbidden.

4. The state-update rules must satisfy a known restric-
tion which we call “message-boundedness”. This re-
striction is already established in the verification of
relational transducers: it was first identified under the
name “input-boundedness” by Spielmann [18] and was
investigated further by Deutsch et al. [10, 11].

5. Finally, the message-sending rules must be “static” in
the sense that they cannot depend on state relations;
they can still depend on input relations and on received
messages.

The last two restrictions are the most fundamental; in fact,
even if just the last restriction is dropped and all the others
are kept in place, the problem is already back to undecidable.
The first three restrictions can probably be slightly relaxed
without losing decidability, and indeed we just see our work
as a step in the right direction. Consistency is not an easy
problem to analyze.

The second result of our paper is an analysis of the ex-
pressive power of clusters of relational transducers satisfying
our above five restrictions; let us call such clusters “sim-
ple”. Specifically, we show that simple clusters can com-
pute exactly all distributed queries expressible by unions of
conjunctive queries with negation, or equivalently, the ex-
istential fragment of first-order logic, without any further
restrictions. So, this result shows that simple clusters form
indeed a rather weak computational model, but not as weak
as to be totally useless.

Related work.
The work most closely related to ours is that by Deutsch

et al. on verification of communicating data-driven Web ser-
vices [11]. The main differences between our works are the
following. (i) In their setting, message buffers are ordered
queues; in our setting, message buffers are unordered multi-
sets. Unordered buffers model the asynchronous communi-
cation typical in cloud computing [14] where messages can
be delivered out of order. (ii) In their setting, to obtain
decidability, message buffers are bounded and lossy; in our
setting, they are unbounded and not lossy. But actually,
a crucial step in our proof of decidability will be to show
that, under the restrictions we impose, even if buffers are
not a priori bounded and are not lossy, they can be assumed
to be bounded and lossy without loss (sic!) of generality.
(iii) In their setting, transducers are less severely restricted
than in our setting. (iv) In their setting, clusters of trans-
ducers are verified for properties expressed in (first-order)
linear temporal logic;1 in our setting, we are really focusing
on the property of eventual consistency. It is actually not
obvious whether eventual consistency (in the way we define
it formally) is a linear-time temporal property, and if it is,
whether it is expressible in first-order linear temporal logic.

Also, this paper is a follow-up on our previous paper
[6]. In our previous paper, we did not consider the prob-
lem of deciding eventual consistency; we simply assumed
eventual consistency and were focusing on expressiveness
issues. Moreover, while the distributed computing model

1Deutsch et al. can also verify branching-time temporal
properties, but only when transducer states are proposi-
tional.

used in our previous paper is also based on relational trans-
ducers, there are differences in the models. In the previous
model, we were focusing on standard queries to databases,
computed in a distributed fashion by distributing the data-
base in an arbitrary way over the nodes of the network. In
the present model, we directly consider distributed queries,
i.e., the input to the query is a distributed database, and
different distributions of the same dataset may yield dif-
ferent answers to the query. Furthermore, in the previous
model, transducer programs are considered to be network-
independent, and nodes communicate in an epidemic man-
ner by spreading messages to their neighbors, who read them
one at a time; in the present model, the network is given,
different nodes can run different programs, and nodes can
directly address their messages to specified nodes. The per-
spective taken in our previous paper is equally interesting
but different; we have simply chosen here to focus on the
present perspective because it is the one mostly assumed by
other authors in the area of declarative networking.

Organization.
In Section 2 we give some preliminaries. Next, in Section 3

we state our results about decidability and expressivity of
the simple transducer networks. In Sections 4 and 5 we
give the proof techniques used to obtain these results. We
conclude in Section 6.

2. PRELIMINARIES

2.1 Overview and Design Choices
We start with preliminaries on database theory in Section

2.2. As stated in the introduction, we model computation by
means of (relational) transducers, which are defined in Sec-
tion 2.3. These transducers are given database facts as input
and they can derive new facts by applying database queries
to previously obtained facts. In Section 2.4 we introduce
the notion of distributed query, which serves as an imple-
mentation independent specification for what a distributed
program computes. Section 2.5 formalizes multisets.

The computation of a distributed program will be mod-
eled using networks of transducers, and this is formalized in
Section 2.6. We will next only consider transducers whose
queries are implemented with unions of conjunctive queries
with negation, see Section 2.7. This results in a rule-based
formalism to express distributed computation, following the
idea behind declarative networking [15]. For our decidability
result we impose restrictions, which are given in Section 2.8.
The restrictions result in so-called “simple” transducers.

2.2 Database Schema, Facts and Queries
We recall some basic notions from database theory [2],

although the specific definitions below are slightly tailored
to our technical use. A database schema is a finite set D of
pairs (R, k) where R is a relation name and k ∈ N is the
associated arity of R. A relation name occurs at most once
in every database schema. We define names(D) = {R | ∃k :

(R, k) ∈ D}. We often write a pair (R, k) ∈ D as R(k).
We assume some infinite universe dom of atomic data

values. A fact f is a pair (R, t̄), often denoted as R(t̄),
where R is a relation name and t̄ is a tuple of values over
dom. A database instance I of (or over) a database schema
D is a set of facts such that for R(a1, . . . , ak) ∈ I we have
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R(k) ∈ D. A database instance over an empty database
schema can only be the empty set. For a database instance
I over D and for a relation name R in D we define the set
I(R) = {t̄ | R(t̄) ∈ I}, i.e, to extract the set of tuples from
the facts.

We define some additional notation and terminology con-
cerning facts. Let f = R(t̄) be a fact. Here, R is called
the predicate and the number of components in t̄ is called
the arity of the fact. The former is denoted as pred(f).
If f has arity 0 we call f nullary. The active domain of
a fact f , denoted adom(f), is the set of values occurring
in its tuple. For a fact f = R(a1, . . . , ak), a set A with
adom(f) ⊆ A and a function h : A → dom, we define
h(f) = R(h(a1), . . . , h(ak)). Let I be a set of facts. We de-
fine adom(I) =

⋃
f∈I adom(f). For a function h : adom(I)→

dom we define h(I) = {h(f) | f ∈ I}. If h is injective, we
say that h(I) and I are isomorphic.

Let C ⊆ dom. We call a fact f a C-fact if adom(f) ⊆ C.
For a set I of facts, we define IC to be the subset of all
C-facts in I (including nullary facts).

A query Q over input database schema D and output data-
base schema D′ is a partial function mapping database in-
stances of D to database instances of D′. A query Q is
called generic if for all input instances I it holds that (i)
adom(Q(I)) ⊆ adom(I), (ii) Q is also defined on the iso-
morphic instance h(I), for each permutation h of dom, and
Q(h(I)) = h(Q(I)). It is well known that query languages
like first-order logic (FO) can be used to express queries [2].
The most common kind of query are those where the output
database schema contains just one relation name.

2.3 Transducers
We now formalize the computation on a single node of

a network by means of relational transducers [3, 6, 9, 10,
11, 18]. A transducer schema Υ is a tuple (Din ,Dout ,Dmsg ,
Dmem ,Dsys) of database schemas, called “input”, “output”,
“message”, “memory” and “system” respectively. A relation
name can occur in at most one database schema of Υ. We
fix Dsys to always contain two unary relations Id and All .
Let D ⊆ Din ∪ Dout ∪ Dmsg ∪ Dmem ∪ Dsys . For a database
instance I over D and e ⊆ {in, out ,msg ,mem, sys} we write
I|e to denote the restriction of I to the facts whose predicate
is a relation name in

⋃
f∈eDf .

Let Υ = (Din ,Dout ,Dmsg ,Dmem ,Dsys) be a transducer
schema. A transducer state for Υ is a database instance
over Din ∪ Dout ∪ Dmem ∪ Dsys. A relational transducer Π
(or just transducer for short) over Υ is a collection of queries

{QRout | R(k) ∈ Dout} ∪ {QRsnd | R(k) ∈ Dmsg}

∪ {QRins | R(k) ∈ Dmem} ∪ {QRdel | R(k) ∈ Dmem}

that are all over the input database schema Din ∪ Dout ∪
Dmsg ∪Dmem ∪Dsys and for R(k) ∈ Dout the output schema
of QRout consists of relation R with arity k, the same for
R(k) ∈ Dmem and the queries QRins and QRdel , and finally for
R(k) ∈ Dmsg the output schema of query QRsnd consist of re-
lation R with arity k + 1. The reason for the incremented
arity of QRsnd is that the extra component will be used to in-
dicate the addressee of messages. Importantly, at this point
we have not said anything about how the queries of a trans-
ducer are actually implemented. The idea is that the above
transducer model is parameterized by the query language
used. If a query language L is used to express the queries of

a transducer Π then we say that Π is an L-transducer.
Let Υ and Π be as above. A message instance is a data-

base instance over Dmsg . A local transition is a 4-tuple
(I, Ircv , J, Jsnd), also denoted as I, Ircv ⇒ J, Jsnd , where I
and J are transducer states, Ircv and Jsnd are message in-
stances such that (denoting I ′ = I ∪ Ircv ):

J |in,sys = I|in,sys
J |out = I|out ∪

⋃
R(k)∈Dout

QRout(I ′)

J |mem =
⋃

R(k)∈Dmem

update(R, I, I ′)

Jsnd =
⋃

R(k)∈Dmsg

QRsnd(I ′)

with

update(R, I, I ′) =
(
QRins(I ′) \ QRdel(I ′)

)
∪
(
QRins(I ′) ∩QRdel(I ′) ∩ I

)
∪
(
I \ (QRins(I ′) ∪QRdel(I ′))

)
.

Intuitively, on the receipt of message facts Ircv , a local
state transition updates the old transducer state I to new
transducer state J and sends the facts in Jsnd . The new
transducer state J has unmodified input and system facts
compared to I, has potentially produced more output facts,
and for each memory relation R the update semantics ba-
sically adds all facts produced by the additive query QRins ,
removes all facts produced by the subtractive query QRdel
and in case the same fact is both added and removed at
the same time there is no-op semantics [6, 18]. Note that
local transitions are deterministic in the following sense: if
I, Ircv ⇒ J, Jsnd and I, Ircv ⇒ J ′, J ′snd then J = J ′ and
Jsnd = J ′snd .

2.4 Distributed Databases and Queries
We now formalize how input data is distributed across a

network and define a notion of queries over this data. A
distributed database schema is a pair (N , η) with N ⊆ dom
a finite set of values called nodes and η a function that maps
every node x ∈ N to a database schema η(x) that does not
contain the relation names Id and All . A distributed data-
base instance I over a distributed database schema (N , η) is
a function mapping every node x ∈ N to a (normal) data-
base instance over schema η(x).

We can view a distributed database schema (N , η) as a
normal database schema

norm(N , η) = {(Rx, k) | x ∈ N , (R, k) ∈ η(x)},

thus by writing the node in the relation name. Intuitively,
every node is a namespace in which relation names occur.
Now, we can view a distributed database instance I over
(N , η) unambiguously as a normal database instance I ′ over
schema norm(N , η) as follows

I ′ =
⋃
x∈N

⋃
R(k)∈η(x)

{Rx(t̄) | R(t̄) ∈ I(x)}.

In the other direction, a database instance J over schema
norm(N , η) can be unambiguously viewed as a distributed
database instance over schema (N , η).
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For a distributed database schema (N , η) we define

norm+(N , η) = norm(N , η)∪{(Idx, 1) | x ∈ N}∪{(All∗, 1)}.

Here relation name All∗ has the superscript ∗ to differenti-
ate it from the regular relation name All used in Dsys (Sec-
tion 2.3). For a database instance I over norm+(N , η) we
say that I has context N if for x ∈ N we have I(Idx) = {x}
and I(All∗) = N . Like above, a distributed database in-
stance I over schema (N , η) can be naturally viewed as a
normal database instance I ′ over schema norm+(N , η) as
follows:

I ′ =
⋃
x∈N

⋃
R(k)∈η(x)

{Rx(t̄) | R(t̄) ∈ I(x)}

∪
⋃
x∈N

{Idx(x),All∗(x)}.

A distributed query Q for a nodeset N over distributed
input database schema (N , ηin) and distributed output data-
base schema (N , ηout) is a (normal) query over input schema
norm+(N , ηin) and output schema norm(N , ηout) that is de-
fined for the input instances with context N .

Intuitively, in a distributed query we are not only inter-
ested in the set of output facts, but also on which node an
output fact is produced.

The reason for including the relations Idx with x ∈ N and
All∗ in the input of a distributed query is that the values N
can in principle occur as values in the input facts and that
query-results could meaningfully depend on this interaction.
See for instance Example 1 in Section 2.8.

2.5 Multisets
The concept of multiset plays an important role in our

modeling of message transmission in a network. Let U be a
universe of elements. A multiset over U is a total function
m : U → N. Intuitively, for each element of the universe
the multiset m says how many times that element “occurs”
in the multiset. We define set(m) = {v ∈ U | m(v) ≥ 1};
these are the unique elements in m, without their precise
counts. For v ∈ U we will also often write cnt(v,m) to
mean m(v). This notation will be more readable when the
multiset is not given by one symbol but by an expression.
The size of a multiset m over U , denoted |m|, is defined as
|m| =

∑
v∈U m(v). This sum can be infinite, in which case

we say that the multiset is infinite, otherwise it is called
finite. We write |m| = 0 also as m = ∅.

A set m can be viewed as a special kind of multiset, where
img(m) = {0, 1}. Likewise, a multiset m with img(m) =
{0, 1} can be viewed as a set.

Let m1 and m2 be two multisets over a universe U . We
say that m1 is contained in m2, denoted m1 v m2, if for
all v ∈ U it holds m1(v) ≤ m2(v). Multiset union (∪),
intersection (∩) and difference (\) are respectively defined as
follows: m3 = m1 ∪m2 if ∀v ∈ U : m3(v) = m1(v) +m2(v),
m3 = m1 ∩ m2 if ∀v ∈ U : m3(v) = min{m1(v),m2(v)},
m3 = m1 \m2 if ∀v ∈ U : m3(v) = max{0,m1(v)−m2(v)}.
When at least one of the operands of the operators ∪, ∩ or
\ is a multiset (with the other operand a set or a multiset)
then the multiset semantics just given can be applied.

Let D be a database schema. Let m be a multiset of facts.
We say that m is of (or over) D if set(m) is a database
instance of D.

2.6 Transducer Networks
We now formalize a network of compute nodes. A transdu-

cer network is a pair (N , θ) where N ⊆ dom is a nonempty
finite set of values called nodes and θ is a function that maps
every node x ∈ N to a pair (Υx,Πx) with Υx a transducer
schema and Πx a transducer over Υx. (N , θ). Denote Υx =
(Dxin ,Dxout ,Dxmsg ,Dxmem,Dxsys). We consider only transducer
networks such that for x, y ∈ N it holds Dxmsg = Dymsg , i.e.,
the transducers all share the same message relations. This is
not really a restriction because a transducer on a node does
not have to read all these message relations in its queries and
for some message relations its sending query might always
return the empty set of facts. For x, y ∈ N it automati-
cally also holds that Dxsys = Dysys because we fixed the Dsys -

component in every transducer schema to consist of Id (1)

and All (1). Except for the sharing of the message database
schema and Dsys we make no further assumptions about
how relation names for input, output and memory might be
shared by several nodes. For e ∈ {in, out} define the dis-
tributed database schema (N , ηe) as follows: for x ∈ N we
have ηe(x) = Dxe . Denote inSchema(N , θ) = (N , ηin) and
outSchema(N , θ) = (N , ηout). Intuitively, these distributed
schemas are the joint input and output schema of the trans-
ducer network respectively.

For a query language L we say that a transducer net-
work is an L-transducer network if all its transducers are
L-transducers.

The network transition system describes how a transducer
network performs computations. The input of a transducer
network (N , θ) is a distributed input database instance I
over schema inSchema(N , θ). A configuration of (N , θ) on
input I is a pair ρ = (sρ, bρ) of functions where

• sρ maps each x ∈ N to a transducer state J = sρ(x)
for (Υx,Πx) such that J |in = I(x), J(Id) = {x} and
J(All) = N ,

• bρ maps each x ∈ N to a finite multiset of facts over
the shared message database schema.

We call sρ the “state function” and bρ the “buffer function”.
Intuitively, for x ∈ N the system relations Id and All in Dsys

provide the local transducer Πx the identity of the node x it
is running on and the identities of the other nodes. Also, the
buffer function maps x ∈ N to the multiset of messages that
have been sent to x but that have not yet been delivered to
x.

The start configuration of (N , θ) on a distributed input
database instance I, denoted start(N , θ, I), is the configu-
ration ρ of (N , θ) on input I defined by:

• for x ∈ N we have sρ(x)|out,mem = ∅,

• for x ∈ N we have bρ(x) = ∅.

A (global) transition of (N , θ) on input I is a 4-tuple (ρ1, x,

m, ρ2), also denoted as ρ1
x,m
==⇒ ρ2, where x ∈ N and ρ1 and

ρ2 are configurations of (N , θ) on input I such that

• for y ∈ N \ {x} we have sρ1(y) = sρ2(y),

• m v bρ1(x) and there exists a message instance Jsnd
such that sρ1(x), set(m)⇒ sρ2(x), Jsnd is a local tran-
sition of transducer Πx,
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• for y ∈ N \{x} we have bρ2(y) = bρ1(y)∪Jysnd (multiset
union) and for x we have bρ2(x) =

(
bρ1(x) \m

)
∪ Jxsnd

(multiset union and difference) where Jzsnd = {R(ā) |
R(z, ā) ∈ Jsnd} for z ∈ N .

If m = ∅ we call this global transition a heartbeat transition
and otherwise we call it a delivery transition. Intuitively,
during a global transition we select a random node x ∈ N
and a random submultiset m of its message buffer. The mes-
sages in m are then delivered at node x (as a set, i.e., without
duplicates) and x performs a local transition. We refer to x
as the recipient. Consider how the message sending by node
x is modeled. The first component z of a fact R(z, ā) ∈ Jsnd
above is regarded as the addressee of that fact. The pro-
jected fact R(ā) is then transferred to the message buffer of
the addressee z. Values for the addressee component out-
side N will result in the loss of the corresponding message
fact. A heartbeat transition can be likened to the real life
situation in which a node does a computation step when a
local timer goes off and when no messages are received from
the network.

A run R of a transducer network (N , θ) on a distributed
input database instance I is a finite sequence of global tran-
sitions (ρ1,a, x1,m1, ρ1,b), . . . , (ρi,a, xi,mi, ρi,b), . . . , (ρn,a,
xn,mn, ρn,b) such that ρ1,a = start(N , θ, I) and for i ∈
{2, . . . , n} we have ρi,a = ρi−1,b. In other words, for i ≥ 2
the ith transition works on the resulting configuration of
the previous transition. Note that R represents a sequence
of configurations ρ1, . . . , ρn+1 such that ρ1 = ρ1,a and for
i ∈ {2, . . . , n+1} we have that ρi = ρi−1,b. We write last(R)
to denote ρn+1. We write length(R) to denote the number
of transitions in R. We say that a run R′ is an extension of
runR ifR is a prefix ofR′, i.e., R′ is obtained by appending
zero or more transitions after those of R.

2.7 Conjunctive Queries and Literals
In this paper we will work with transducers whose queries

are expressed as unions of conjunctive queries with (safe)
negation (equivalently, the existential fragment of first-order
logic). It will be convenient to use a slightly unconventional
formalization of conjunctive queries.

A conjunctive query with negation and inequality, or con-
junctive query for short, is a 4-tuple ϕ = (h, p, n, q) where
h is a fact, p and n are finite sets of a facts such that
adom(h) ∪ adom(n) ⊆ adom(p) (safety condition) and q is
a set of inequalities of the form (x 6= y) with x, y ∈ adom(p)
and x 6= y. We call h, p and n respectively the “head”
fact, the set of “positive” facts and the set of “negative”
facts. We denote head(ϕ) = h, pos(ϕ) = p, neg(ϕ) = n,
ineq(ϕ) = q, var(ϕ) = adom(pos(ϕ)), free(ϕ) = adom(h)
and bound(ϕ) = var(ϕ) \ free(ϕ). The elements in var(ϕ),
free(ϕ) and bound(ϕ) respectively are called the “variables”,
“free variables” and “bound variables”. Indeed, bound vari-
ables can be seen as being existentially quantified. For an
arbitrary ordering f1, . . . ,fk of pos(ϕ), g1, . . . , gl of neg(ϕ)
and q1, . . . , qm of q one can syntactically write ϕ in the con-
ventional form

h← f1, . . . ,fk,¬g1, . . . ,¬gl, q1, . . . , qm.

The set {f1, . . . ,fk,¬g1, . . . ,¬gl, q1, . . . , qm} is called the
body of ϕ and is denoted body(ϕ). In the notation above, the
ordering of the elements of the body does not matter. The
elements f1, . . . , fk, . . . , ¬g1, . . . , ¬gl are called literals. A

literal is negative if it is a fact with an uneven number of ¬-
symbols prepended, otherwise it is called positive. Literals
will be denoted in boldface, just like facts. If we want to
denote the fact contained in a literal g we write +g.

Let ϕ be a conjunctive query. A valuation for ϕ is a func-
tion Val with var(ϕ) ⊆ dom(Val) and img(Val) ⊆ dom .
Let I be a set of facts. We say that a valuation Val for ϕ is
satisfying on I if Val(pos(ϕ)) ⊆ I, Val(neg(ϕ)) ∩ I = ∅ and
for each (x 6= y) ∈ ineq(ϕ) it holds Val(x) 6= Val(y). We say
that Val(pos(ϕ)) are the facts whose presence is needed by
Val . The (query) result of ϕ when applied to an input set
of facts I, denoted ϕ(I), is the set of facts

{Val(head(ϕ)) | Val is a satisfying valuation for ϕ on I}.

We also say that ϕ “produces” these facts when applied to
I. The conjunctive queries as defined here can only express
generic queries. Let CQ¬ denote the resulting language.

Note that conjunctive queries ϕ with an empty body have
free(ϕ) = ∅. These queries produce the (nullary) head fact
on every input. For technical reasons, we assume that there
is some relation name false that cannot be used as a predi-
cate name in the sets of input facts for a conjunctive query.
Conjunctive queries with an empty body can be simulated
with this relation: give the query no positive facts and one
negative fact false( ). This special relation name can also be
used to write conjunctive queries that cannot produce any
fact on any database. Indeed, it suffices to include the fact
false( ) in the positive facts. This allows us to assume that
all conjunctive queries ϕ in this text have either pos(ϕ) 6= ∅
or neg(ϕ) 6= ∅.

A union of conjunctive queries with negation (and inequal-
ity) is a finite nonempty set of queries in CQ¬ that have the
same predicate and arity for their head facts. The result-
ing language is denoted UCQ¬. Let ψ = {ϕ1, . . . , ϕn} be
a UCQ¬ query, where each ϕi is a CQ¬ query. The query
result of ψ when applied to a set of facts I is the set of facts⋃n
i=1 ϕi(I).
We use the query language UCQ¬ for implementing the

queries of a transducer. We will often speak of all the CQ¬

queries that appear in an UCQ¬-transducer Π as the rules
of Π (so not the UCQ¬ queries themselves). If a rule appears
in the UCQ¬ query for a relation name R of a transducer
schema we call it a “rule for R”. If R is a message rela-
tion name then we also call the rule a “send rule”. Similarly
for the other relation types in a transducer schema. This
rule-based formalism can be used to write distributed appli-
cations in a relatively high-level manner, which characterizes
declarative networking [1, 5, 14].

2.8 Transducer Restrictions
Let Π be an UCQ¬-transducer over transducer schema

Υ = (Din ,Dout ,Dmsg ,Dmem ,Dsys). We can impose syntactic
restrictions on Π.

Let ϕ be a CQ¬ rule used in Π.

• We say that ϕ is message-positive if there are no mes-
sage facts in neg(ϕ).

• We say that ϕ is static if pos(ϕ)∪neg(ϕ) contains only
facts over Din ∪Dmsg ∪Dsys , i.e., no output or memory
relations are used.2

2The restrictions considered by Deutsch et al. [10] for“input-
rules”, which are closely related to our send rules, are a bit
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• DenoteA = adom(pos(ϕ)|msg) andB = adom
(
(pos(ϕ)

∪neg(ϕ))|out,mem

)
. We say that ϕ is message-bounded

if bound(ϕ) ⊆ A and bound(ϕ) ∩ B = ∅. In words:
every bounded variable of ϕ must occur in a positive
message fact and may not occur in output or memory
literals (positive or negative). This is the application
of the more general definition of “input-boundedness”
[10, 11, 18] to CQ¬ queries.3

Let Π and Υ be as above. The positive dependency graph of
Π is the graph in which the vertices are the relation names in
Dout ∪Dmsg ∪Dmem and there is an edge from relation name
R to relation name S if S is the predicate of a positive fact
in a rule for relation R in Π. We say that Π is recursion-free
if there are no cycles in the positive dependency graph of Π.

We say that Π is inflationary if for R(k) ∈ Dmem the
subtractive query QRdel is empty (or formally, QRdel has in
each of its CQ¬ queries a positive fact with the predicate
false from Section 2.7). In that case Π can not delete facts
from the memory relations.

To summarize, we call Π simple (for lack of a better name)
if

• Π is recursion-free and inflationary,

• for R(k) ∈ Dmsg all the rules in QRsnd are message-
positive and static,

• for R(k) ∈ Dout and S(l) ∈ Dmem respectively all the
rules inQRout andQSins are message-positive and message-
bounded.

We would like to stress again that when Π is inflationary
this transducer will not be able to delete any memory facts
once they are produced. This makes memory and output
relations basically behave in the same way. However, we
still preserve the difference between these two kinds of rela-
tions to retain the connection to the unrestricted transducer
model and because memory relations are useful as a sep-
arate construct, namely, as relations that can be used for
computation but that don’t belong to the final result.

As for notation, when we give an example of simple trans-
ducers we may give a set of rules and it will be clear by
looking at their heads for what relation name of the trans-
ducer schema they are meant. We will also omit all rules for
the subtractive queries because they are assumed never to
produce any facts.

Let (N , θ) be a transducer network. The positive message
dependency graph of (N , θ) is the graph in which the vertices
are the message relation names used in (N , θ) and there is
an edge from relation name R to relation name S if S is the
predicate of a positive fact in a rule for relation R in some
transducer of (N , θ).

We now call (N , θ) simple if for each x ∈ N with θ(x) =
(Υx,Πx) we have that Πx is simple, and the positive mes-
sage dependency graph contains no cycles. Note that this
is a “global” recursion-freeness requirement, across the net-
work. Note also that, because all the send rules of the trans-
ducers are static, at every node the send rules must always

less restrictive. Roughly speaking, they still allow the use
of nullary memory facts. It seems plausible that our results
can be similarly extended.
3We have replaced the word “input” by “message” because
the former has a different meaning in our text, namely, as
the input that a transducer is locally initialized with.

produce the same facts on receipt of the same messages,
independently of what output or memory facts might have
been derived.

Consider the following example of a simple transducer net-
work.

Example 1. LetN = {x, y} be a set of two different nodes.
We define a simple transducer network (N , θ). Define mes-

sage database schema Dmsg = {A(1)
msg , B

(2)
msg}. Define Dxin =

{A(1)}, Dxout = {T (1)}, Dxmem = ∅, Dyin = {B(2)}, Dyout =

{T (1)} and Dymem = ∅. For transducer Πx we have the fol-
lowing rules:

Amsg(n, v) ← A(v),All(n),¬Id(n).

T (v) ← Bmsg(u, v), Id(u).

For transducer Πy we have the rules

Bmsg(n, u, v) ← B(u, v),All(n),¬Id(n).

T (v) ← Amsg(v).

On any distributed input database instance I for (N , θ)
the node x sends its local A-facts as Amsg -facts to y and
y sends its local B-facts as Bmsg -facts to x. Node x out-
puts for all received Bmsg -facts the second component in
its output relation T if the first component is its own node
identifier. Node y simply outputs all received Amsg -facts
as T -facts. This example illustrates that the occurrence of
node-identifiers in the input database facts can be used to
produce output.

3. CONSISTENCY AND EXPRESSIVITY
Let (N , θ) be a transducer network. Let I be a distributed

input database instance for (N , θ). Recall that output facts
on a node can never be deleted at that node once they are
derived. We call (N , θ) consistent on I if for any two runs
R1 and R2 of (N , θ) on input I, for every node x ∈ N , for

every fact f ∈ slast(R1)(x)|out there exists an extensionR′2 of

R2 such that f ∈ slast(R
′
2)(x)|out . Thus, on input I, if dur-

ing one run on some node an output fact can be produced,
then for any run there exists an extension in which that fact
can be produced on that node too. We call (N , θ) consis-
tent if (N , θ) is consistent for all distributed input database
instances for (N , θ). Naturally, we will sometimes use the
term “inconsistent” to mean “not consistent”. Our definition
of consistency is a formalization of the notion of “eventual
consistency” [4, 14], but see also Section 6.

The transducer network given in Example 1 is consistent.
Indeed, say, node x outputs a fact T (a) during a run. This
means that earlier in the run node y has sent the input fact
B(x, a) as Bmsg(x, a) to node x and x has received this mes-
sage fact (possibly together with other message facts). Now
consider any run on the same distributed input database in-
stance where x has not yet output T (a). We can extend
the run as follows. If y has not yet performed any local
transition we first do a global transition with recipient node
y which makes that all input B-facts of y are sent to x as
Bmsg -facts. Then in a following global transition we deliver
Bmsg(x, a) to x and x outputs T (a). In a similar way we
can argue that if the node y outputs a T -fact in one run,
then any other run on the same distributed input database
can be extended to output this fact as well. Therefore the
transducer network is consistent.
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In contrast, consider the following example of a simple
transducer network that is not consistent.

Example 2. LetN = {x, y} be a set of two different nodes.
We define a simple transducer network (N , θ) as follows. De-

fine database schema Dmsg = {A(1)
msg , B

(1)
msg}. Define Dxin =

{A(1), B(1)}, Dxout = ∅, Dxmem = ∅, Dyin = ∅, Dyout = {T (1)}
and Dymem = {B(1)}. In particular, node x does not output
anything. For transducer Πx we have the following rules:

Amsg(n, v) ← A(v),All(n),¬Id(n).

Bmsg(n, v) ← B(v),All(n),¬Id(n).

For transducer Πy we have the rules

B(v) ← Bmsg(v).

T (v) ← Amsg(v),¬B(v).

Let I be the distributed input database instance over schema
inSchema(N , θ) such that I(x) = {A(1), B(1)} and I(y) =
∅. There are two quite different runs possible, that we de-
scribe next. Suppose that in the first transition of both runs
node x is the recipient. This causes x to send both Amsg(1)
and Bmsg(1) to y. In the second transition of the first run
we deliver only Amsg(1) to y, which causes y to output T (1).
In the second transition of the second run, we deliver only
Bmsg(1) to y, which causes y to create only the memory fact
B(1). Now, in no extension of the second run can the output
fact T (1) be created because every time we deliver Amsg(1)
to y the presence of memory fact B(1) makes the valuation
v 7→ 1 unsatisfying for the rule of T . These two different
runs clearly show inconsistent behavior of (N , θ).

It is interesting to investigate whether the property of
consistency can be automatically checked for any UCQ¬-
transducer network. We have the following consistency de-
cision problem: given a transducer network (N ,Π), decide
if (N ,Π) is consistent. Consistency for UCQ¬-transducer
networks is undecidable, even under several restrictions:

Proposition 1.
(i) Consistency is undecidable for UCQ¬-transducer net-

works that are simple except that send rules don’t have to be
static.

(ii) Consistency is undecidable for UCQ¬-transducer net-
works that are simple except that in the positive dependency
graph of each transducer the message relations may partici-
pate in cycles.

Proof. The proofs for (i) and (ii) are an adaptation of
the techniques used by Deutsch et al. to prove their Theo-
rems 3.9 and 3.7 respectively [11, 8].

One of the difficulties of the problem is that we need to
verify a property of an infinite state system. Intuitively, the
transducer network must be consistent on infinitely many
distributed input database instances and even for a fixed
input instance there are infinitely many configurations be-
cause there is no bound on the sizes of the message buffers.
By imposing more restrictions we obtain decidability:

Theorem 2. Consistency for simple transducer networks
is decidable.

A problem related to the above consistency problem is
as follows. Let S be a multiset of pairs of the form (Υ,Π)

where Π is a simple transducer over transducer schema Υ.
Intuitively the transducers of S represent an abstract trans-
ducer network, except that no particular node set has been
chosen yet. We can transform S into a transducer network
(N , θ) such that |N | = |S| and for each (Υ,Π) we have
cnt((Υ,Π), S) = |{x ∈ N | θ(x) = (Υ,Π)}|. In words: we
make nodes for the pairs in S and the number of nodes as-
sociated to some unique pair is the multiplicity of that pair
in S. The related consistency problem is now to decide if
the abstract transducer network represented by S is consis-
tent for all node sets N chosen like this. Decidability for
this problem follows from the previously given theorem and
the fact that all UCQ¬ queries are generic, so the particu-
lar node set N does not matter as long as the cardinality is
right.

A natural question to ask is what computations can be
“expressed” with simple transducer networks. Let (N , θ) be
a consistent UCQ¬-transducer network. For a distributed
input database instance I over schema inSchema(N , θ) we
can uniquely define a distributed output database instance
out(N , θ, I) = J over schema outSchema(N , θ) as follows.
The instance J is the function that maps every node x ∈ N
to a database instance J(x) over Dxout that consists of all
output facts that can be derived at node x on input I (dur-
ing any run). From this viewpoint, the consistent transducer
network (N , θ) computes a distributed query QN ,θ for node-
setN over distributed input database schema inSchema(N , θ)
and distributed output database schema outSchema(N , θ).
The set of all consistent UCQ¬-transducer networks can
thus be viewed as a distributed query language. We have
the following result:

Theorem 3. The query language of consistent simple
transducer networks captures the class of distributed queries
expressible in UCQ¬.

4. ON THE PROOF OF THEOREM 2

4.1 Single-node Transducer Networks
A transducer network (N , θ) is called single-node if |N | =

1. In this case the transducer on the single node x can only
send messages to x. For a single-node transducer network
it is more natural to consider a configuration to be a pair
(s, b) with s a single set of input, output, memory and system
facts and with b a single multiset of message facts. Here, s
represents the state of the node and b its message buffer. Let
Υ = (Din ,Dout ,Dmsg ,Dmem ,Dsys) be the single transducer
schema of (N , θ). The input of (N , θ) will be considered to
be a normal (nondistributed) database instance overDin and
for a database instance I over Din the output out(N , θ, I)
will be considered to be a normal database instance over
Dout .

4.2 Fibers
The concept of fibers allows us to represent database in-

stances over a given database schema where a specific part
has already been filled in.4 Let D be a database schema.
A fiber-base for D is a pair T = (S, J) with S a subset of
the relation names in D and J a database instance over
D that consists of facts with a predicate in S. Denote
adom(T ) = adom(J). Let I be an instance over D. We

4The name “fiber” comes from algebraic geometry.
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say that I has or belongs to fiber-base T = (S, J) if for
R ∈ S we have I(R) = J(R). Define the set

fiber(D,T ) = { instance I over D | I has fiber-base T }.

We call fiber(D,T ) the fiber of D for fiber-base T . We use
the symbol ∅ for the “empty” fiber-base (∅, ∅). Now, the set
fiber(D, ∅) contains all database instances over D. Note that
for two different fiber-bases T 1 and T 2 for D it is possible
that fiber(D,T 1) ∩ fiber(D,T 2) 6= ∅.

4.3 Outline
In this section we give an overview of the techniques used

to show that consistency is decidable for simple transducer
networks (Theorem 2).

Let (N , θ) be a simple transducer network for which we
want to decide consistency.

1. In Section 4.4 it is shown how to “simulate” the behav-
ior of (N , θ) on a simple single-node network (N ′, θ′),
such that (N , θ) is consistent iff (N ′, θ′) is consistent
on a fiber. Although we focus on simple transducer
networks, this simulation could also be applied to more
general UCQ¬ transducer networks.

2. Next, the results from Section 4.5 are used to estab-
lish a small model property for (N ′, θ′): if (N ′, θ′) is
inconsistent on an input database instance of the fiber
then it is inconsistent on an input database instance
of the fiber whose active domain size is limited by the
syntactic properties of (N ′, θ′). For this result we use
all of our syntactic restrictions.

3. Finally, in addition to the small model property we
have to impose a bound on the message buffers. In-
deed, without this bound there are still an infinite
number of configurations of (N ′, θ′) on the same in-
put database instance. In Section 4.6 we construct a
finite transition system that is “consistent” iff (N ′, θ′)
is consistent on the fiber. For this result we also use
all of our syntactic restrictions.

We obtain that consistency can be decided for the single-
node network (N ′, θ′) that simulates (N , θ). This implies
that consistency for (N , θ) is decidable.

4.4 Simulation by Single-Node Network
In this section we reduce the consistency problem of a

simple transducer network (N , θ) to the consistency prob-
lem of a simple single-node transducer network (N ′, θ′) that
“simulates” the original transducer network in a way we will
make more precise below. The single transducer of (N ′, θ′)
is called the simulator and (N ′, θ′) will also be called the
simulator transducer network.

Let (N , θ) be a simple transducer network with shared
message database schemaM. Like before, for x ∈ N we de-
note θ(x) = (Υx,Πx) and Υx = (Dxin ,Dxout ,Dxmsg ,Dxmem,Dxsys).
We start by defining a new transducer schema Υ = (Din ,
Dout ,Dmsg ,Dmem ,Dsys) for the simulator as follows:

• Din = norm+(inSchema(N , θ)),

• Dout = norm(outSchema(N , θ)),

• Dmsg =
⋃
x∈NM

x with

Mx = {(Rx, k + 1) | (R, k) ∈M} ∪ {(heartbeatx, 0)},

• Dmem =
⋃
x∈N {(R

x, k) | (R, k) ∈ Dxmem}.

The heartbeatx relations with x ∈ N will also be referred
to as the “heartbeat” relations. For a relation name Rx in
Dmsg we call the x in the superscript the “addressee”.

For Din we define fiber-base T = (S, J) with S = {All∗}∪
{Idx | x ∈ N} and J = {All∗(x), Idx(x) | x ∈ N}. Let
I be a distributed input database instance over schema
inSchema(N , θ). Like in Section 2.4 the instance I can
be naturally and unambiguously transformed into an in-
put database instance sim(I) ∈ fiber(Din ,T ), where “sim”
stands for “simulated”.

Let (N , θ) and Υ be as above. We next formalize what
properties the simulator has to satisfy with respect to how it
represents the simulated node states and message buffers of
the original transducer network (N , θ). The property for the
message buffers is more involved and this is detailed next.
Let x ∈ N and R(k) ∈ M. Let f = Rx(a0, a1, . . . ak) be a
fact, where (Rx, k + 1) ∈ Dmsg . We write f↓ to denote the
fact R(a1, . . . , ak). Intuitively, this corresponds to project-
ing f to a fact that could be found in the message buffer of
node x in the original transducer network (N , θ).

Now, let m be a multiset of facts over Dmsg . Let g be a
fact with predicate R and arity k. Thus, m contains message
facts of the new simulator transducer schema and g is an
original message fact of (N , θ). We define the following set

ω(R, x, g,m) = {f ∈ set(m) | pred(f) = Rx,f↓ = g}.

Intuitively, we find in m all facts whose projection is g.
Let m be as previously defined and let m2 be a multiset of

facts over the original message schema M. Let x ∈ N . We
say that m represents m2 for addressee x if for R(k) ∈ M
and for facts g with predicate R and arity k it holds that

cnt(g,m2) =
∑

f∈ω(R,x,g,m)

cnt(f ,m).

Note that the special heartbeat messages are ignored.
Let (N ′, θ′) be a simple single-node transducer network

such that the single transducer, denoted Πsim , is over the
schema Υ from above. Let I be a distributed input data-
base instance over schema inSchema(N , θ). Let ρ and σ
respectively be a configuration of (N , θ) on input I and a
configuration of the network (N ′, θ′) on input sim(I). We
say that ρ is simulated by σ if

• for each x ∈ N and for each relation name R in Dxin ∪
Dxout ∪ Dxmem we have sρ(x)(R) = sσ(Rx),

• for each x ∈ N it holds that bσ represents bρ(x) for
addressee x.

We say that (N ′, θ′) simulates (N , θ) if for any distributed
input database instance I over schema inSchema(N , θ) the
following holds:

• For any run R of (N , θ) on input I there is a run S of
(N ′, θ′) on input sim(I) such that last(R) is simulated
by last(S).

• For any run S of (N ′, θ′) on input sim(I) there is a run
R of (N , θ) on input I such that last(R) is simulated
by last(S).

• For any run R of (N , θ) on input I, any run S of
(N ′, θ′) on input sim(I) with last(R) being simulated
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by last(S), for any extension R2 of R there is an ex-
tension S2 of S such that last(R2) is simulated by
last(S2).

• For any run S of (N ′, θ′) on input sim(I), any run R
of (N , θ) on input I with last(R) being simulated by
last(S), for any extension S2 of S there is an extension
R2 of R such that last(R2) is simulated by last(S2).

It is possible to construct (N ′, θ′) such that it simulates
(N , θ) according to the definition just given. We omit the
technical details but the essential idea is that the UCQ¬

queries of the single transducer Πsim of (N ′, θ′) are unions of
the original UCQ¬ queries of all transducers of (N , θ) where
the UCQ¬ query of an original transducer Πx with x ∈
N is modified to only read and modify output or memory
relations with superscript x. Similarly, by taking unions of
modified original queries, the sending rules in Πsim for a
message relation Ry in Dmsg model the sending behavior for
all the original transducers of (N , θ) specifically for message
relation R in M and the addressee y. Because the original
transducers are simple it is possible to construct Πsim to be
simple.

Let (N , θ), T and (N ′, θ′) be as above. We say that
(N ′, θ′) is consistent on fiber(Din ,T ) if (N ′, θ′) is consis-
tent on all input database instances I ∈ fiber(Din ,T ). We
have the following result:

Proposition 4. For every simple transducer network (N ,
θ) there exists a simple single-node transducer network (N ′,
θ′) that simulates it; in particular, (N , θ) is consistent iff
(N ′, θ′) is consistent on fiber(Din ,T ).

Since the input schema of the transducer Πsim above is
norm+(inSchema(N , θ)) and its output schema is norm(
outSchema(N , θ)), the simulator network (N ′, θ′) can be
seen as computing the same distributed query QN ,θ as com-
puted by (N , θ).

4.5 Small Model Property
Let (N , θ) be a simple single-node transducer network

with transducer Π over transducer schema Υ = (Din ,Dout ,
Dmsg ,Dmem ,Dsys). Let T be a fiber-base for Din . We have
the following syntactically defined quantities:

• the length l of the longest path in the positive depen-
dency graph of Π (measured in the number of edges),

• the largest number b of positive facts in any CQ¬ query
of Π,

• the total number c of different output and memory
facts of Υ that can be made with as many domain
values as the maximal arity of an output relation,

• the maximal arity k of any relation in Υ,

• t = |adom(T )|.

Define the expression sizeDom(Π,T ) = 2kcb(l+1) + t. We
have the following small model property for consistency:

Proposition 5. If there is an instance I ∈ fiber(Din ,T )
on which (N , θ) is not consistent then there exists
J ∈ fiber(Din ,T ) such that (N , θ) is not consistent on J
and |adom(J)| ≤ sizeDom(Π,T ).

Proof. We sketch the proof. Let R1 and R2 be two runs
of (N , θ) on input I that show that (N , θ) is not consistent
on I: there is an output fact f in last(R1) that is not present
in last(R2) and this fact can not be created in any extension
of R2 either. Denote C = adom(f). Below, we transform
R1 andR2 to new runs S1 and S2 respectively that run on an
input instance J ⊆ I such that for i ∈ {1, 2} configurations
last(Si) and last(Ri) contain the same output and memory
C-facts.5

Let i ∈ {1, 2}. The first step involves collecting some in-
put and message facts“used” inRi. Let n = length(Ri). We
start with the nth transition ofRi. Define Cn to be the set of
all output and memory C-facts that are created during the
nth transition. Let g ∈ Cn be a fact. Denote R = pred(g).
Let ψR be the query for R in Π. By definition of Cn there
must be a CQ¬ query ϕ ∈ ψR that produces g during the
nth transition under a satisfying valuation Val . We look at
just one such pair (ϕ,Val). We then remember (or “mark”)
all positive input and message facts that are needed by Val ,
more formally the set Val(pos(ϕ))|in,msg . This is done for all
facts of Cn. Next, we proceed to transition n− 1 of Ri and
we repeat the same process for all output/memory C-facts
created during this transition. Moreover, suppose that one
of the message facts h that we previously marked during
transition n is created during transition n− 1. Let S be its
predicate and let ψS be the query for S in Π. Now similarly,
we choose just one pair (ϕ,Val) such that ϕ ∈ ψS produces
the fact h during transition n− 1 under satisfying valuation
Val . We again mark all positive input and message facts
needed by Val . We are thus recursively marking messages
needed for the creation of other messages. Such marking of
messages is originally only initiated when we notice that dur-
ing a transition an output/memory C-fact is created. This
process of marking needed facts recursively needed for the
creation of other facts is repeated for all transitions of Ri,
from transition n to 1. Since Π is inflationary every output
and memory C-fact is derived only once. Now also using
that Π is recursion-free it can be shown that the number
of input facts that we mark is upper bounded by cb(l+1).
Let Ki ⊆ I denote the union of all marked input facts.
After both R1 and R2 have been processed as described
above we have obtained two sets K1 and K2. Now denote
µ = adom(K1) ∪ adom(K2) ∪ adom(T ). Define J = Iµ.

Observe that |adom(J)| ≤ 2kcb(l+1) + t.
Let i ∈ {1, 2}. It is possible to construct a projected run Si

for Ri that receives input J such that last(Si) and last(Ri)
contain the same output and memory C-facts. The intuition
is that in run Si we deliver the marked message facts from
above, in the same order as in Ri. Because all rules are
message-positive, when we deliver just these marked mes-
sages there are no side-effects: no other output or memory
C-facts are created. In this proof we also rely on message-
boundedness and static send rules.

Next, one can similarly show that for any extension S ′i of
Si (still on input J) there exists an extension R′i of Ri such
that last(S ′i) and last(R′i) again contain the same output
and memory C-facts. To obtain extension R′i it is sufficient
to deliver the same messages at the end of Ri as during
every corresponding transition in the extension S ′i. Note
that since f is an output C-fact we have that f is present

5The technique is inspired by pseudoruns from [10], al-
though it was adapted to deal with the consistency problem
and to deal with message buffers (multisets).
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in last(S1) and not present in last(S2). If there exists an
extension S ′2 of S2 such that f is present in last(S ′2) this
would imply that there is an extension R′2 of R2 such that
f is present in last(R′2), a contradiction with our assumption
about R2. We conclude that S1 and S2 show that (N , θ) is
not consistent on input J .

4.6 Bounded Buffer Property
Let (N , θ) be a simple single-node transducer network,

with transducer Π over schema Υ. Denote Υ = (Din ,Dout ,
Dmsg ,Dmem ,Dsys). Let T be a fiber-base for Din . We show
how to construct a finite transition system that reflects the
original runs of (N , θ) and that is “consistent” iff (N , θ) is
consistent on input I. This will be made more precise below.
The crucial step here is imposing a bound on the message
buffers. First, in Section 4.6.1 we show how to construct a
finite transition system for an arbitrary bound on the mes-
sage buffers. In Section 4.6.2 some additional definitions are
given. In Section 4.6.3 the result is proven.

4.6.1 Finite Transition System
Let (N , θ), Π and Υ be as above. Let I ∈ fiber(Din ,T )

and let B ∈ N. We describe the construction of a finite tran-
sition system FI,B for I that represents the runs of (N , θ) on
input I in which the message buffer can contain at most B
messages. The configurations of FI,B are the configurations
τ of (N , θ) on input I where |bτ | ≤ B. The unique start
configuration is denoted start(FI,B). We redefine global
transitions to respect the buffer bound B by using lossy
message buffers. Because we are specifically working with
a single-node network (Section 4.1), a global transition of
FI,B is a 3-tuple (τ1,m, τ2) with τ1 and τ2 configurations
and m v bτ1 such that there is a message instance Jsnd for
which (i) sτ1 , set(m) ⇒ sτ2 , Jsnd is a local transition of Π
(state condition) and (ii) bτ2 v (bτ1 \m)∪Jsnd (buffer condi-
tion). We do not require that bτ2 = (bτ1 \m)∪ Jsnd because
we allow the dropping of messages, in order to satisfy the
buffer bound B. Messages that are dropped in the finite
transition system FI,B express the indefinite delay of the
corresponding message in the original transducer network.
Intuitively, we don’t really“lose”messages because the send-
rules are static, which implies that if a message can be sent
it can be sent forever.

For a path T in FI,B we write last(T ) to denote the last
configuration in T . Naturally, we call FI,B consistent if for
all paths T1 and T2 in FI,B starting from start(FI,B), for
all output facts f in last(T1) there is an extended path T ′2
of T2 such that f is present in last(T ′2 ). Deciding if FI,B is
consistent can be done in time polynomial in function of the
size of FI,B .

4.6.2 Derivation Trees
Let (N , θ), Π, Υ and T be as above. We now present

definitions that help us reason about which rules of Π are
used to create an output or memory fact during a run of
(N , θ). Let f be a fact with predicate in Dout ∪ Dmem . A
full derivation tree T in Π for f is a tuple (N,E,ϕ, l, V )
such that:

• N and E ⊆ N ×N form the nodes and parent-to-child
edges of an unordered tree. We write rT to denote
the root of T . We write int(T ) to denote the set of
internal nodes of T (nodes with children). For x ∈
int(T ) we define childT (x) = {y ∈ N | (x, y) ∈ E}.

We abbreviate child(T ) = N \ {rT }, the nodes that
are a child of another node.

• ϕ is a function that maps every x ∈ int(T ) to a CQ¬

query ϕ(x) used in Π.

• l is a function that labels every node x ∈ child(T )
with parent y with a literal in the body of ϕ(y). We
require that for every literal in the body of ϕ(y) there
is precisely one child of y labelled with that literal.

• Let x ∈ child(T ). If l(x) has its predicate in Din

or l(x) is negative then x must be a leaf. For x ∈
int(T ) ∩ child(T ) it must be that head(ϕ(x)) has the
same predicate (and arity) as l(x).

• V is a function that maps x ∈ int(T ) to a valuation
V (x) for rule ϕ(x) such that the inequalities ineq(ϕ(x))
are satisfied under V (x).

• For x ∈ int(T ), denote fT (x) = V (x)(head(ϕ(x)).
For a leaf node x with parent y we denote fT (x) =
V (y)(+l(x)). Thus for all x ∈ N we have that fT (x)
is a fact. For x ∈ child(T ) ∩ int(T ) with parent y we
require that fT (x) = V (y)(l(x)). Lastly, we require
that fT (rT ) = f .

For a derivation tree T = (N,E,ϕ, l, V ) we write eT = e for
e ∈ {N,E,ϕ, l, V }. We define

α(T ) = {x ∈ int(T ) | pred(fT (x)) ∈ names(Dout ∪ Dmem)}.

Let f be an output or memory fact. Intuitively, a full
derivation tree T for f represents one possible way in which
the fact f can be derived using the rules of Π. Intuitively,
according to T the facts {fT (x) | x ∈ int(T )} must be pro-
duced. Let R = pred(f). We also say that T is a derivation
tree for relation R.

Let T1 and T2 be two full derivation trees. We say that
trees T1 and T2 are structurally equivalent if they are iso-
morphic when ignoring the valuations VT1 and VT2 .

Let T be a full derivation tree in Π for a fact f . A function
κ : int(T )→ N\{0} is called a scheduling of T if for any two
nodes x, y ∈ int(T ) if y is an ancestor of x then κ(x) < κ(y).
Intuitively, for x ∈ int(T ) the number κ(x) represents the
transition in which the fact fT (x) must be produced. For
x ∈ int(T ) we write height(x, T ) to denote the height of
the subtree of T rooted at node x. For x ∈ int(T ) \ α(T )
define anc(x) to be the closest ancestor of x in α(T ) and
define edgeCnt(x) to be the number of edges on the simple
path from x to anc(x). We define a canonical scheduling
κT of T as follows. For every x ∈ α(T ) we define κT (x) =
height(x, T ) and for x ∈ int(T ) \ α(T ) we define κT (x) =
height(anc(x), T )−edgeCnt(x). Note that max(img(κT )) ≤
height(T ).

4.6.3 Buffer Bound
Let (N , θ), Π, Υ and T be as above. We specify a number

B(Π,Υ) that will be used as the message buffer bound for
the finite transition system. Referring to the proof sketch of
Proposition 5, it can be shown that the number of messages
that have to be present in the message buffers of a projected
run Si is bound by some natural number B1 that only de-
pends on the syntactic properties of Π and Υ. Now, let F be
a maximal set of full derivation trees for all output relations
in Dout such that no two trees are structurally equivalent.
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Because Π is recursion-free we know that the size of F and
the size of each tree in F are dependent only on the syntac-
tic properties of Π. For a tree T ∈ F define msgWidth(T )
as follows:

msgWidth(T ) = max

height(T )⋃
i=1

{ ∑
x ∈ int(T ),
κT (x) = i

|pos(ϕ(x))|msg |
}
.

Intuitively, msgWidth(T ) is the maximum number of mes-
sages in T that have to be delivered during the same tran-
sition (as specified by κT ). Let B2 = max{msgWidth(T ) |
T ∈ F} and define B(Π,Υ) = max{B1, B2}. Overall, note
that B(Π,Υ) is defined only in terms of the syntactical prop-
erties of Π and Υ. We have the following result:

Proposition 6. Let I ∈ fiber(Din ,T ). The finite tran-
sition system FI,B(Π,Υ) is consistent iff (N , θ) is consistent
on input I.

Proof. We sketch the proof. Abbreviate B = B(Π,Υ).
First, we show that if (N , θ) is not consistent on input I

then FI,B is not consistent. Because (N , θ) is not consis-
tent on input I there are two runs R1 and R2 that show
the inconsistency: without loss of generality we may assume
that there is an output fact f in last(R1) such that f is not
present in last(R2) and there is no extended run of R2 in
which that fact can be output. Denote C = adom(f). Using
the same techniques mentioned in the proof of Proposition
5, we can project runs R1 and R2 to runs S1 and S2 respec-
tively such that for i ∈ {1, 2} the configurations last(Ri)
and last(Si) contain the same set of output and memory C-
facts. Let i ∈ {1, 2}. It can be shown that the choice of the
bound B allows us to trace Si in FI,B as path Ti starting
from start(FI,B) such that last(Ti) and last(Si) (or last(Ri))
contain the same set of output and memory C-facts. We use
message-boundedness, message-positiveness and static send
rules for this proof. Next using similar techniques, we can
show that if T2 can be extended in FI,B to a path T ′2 such
that f is present in last(T ′2 ) then R2 can be extended to a
run R′2 in which f can be output, a contradiction. We find
that paths T1 and T2 together are proof that FI,B is not
consistent.

Next, we show that if (N , θ) is consistent on input I then
FI,B is consistent. Let T1 and T2 be paths in FI,B start-
ing from start(FI,B). Let f be an output fact in last(T1)
that is not present in last(T2). We show that T2 can be
extended to T ′2 such that f is present in last(T ′2 ). De-
note C = adom(f). Using message-boundedness, message-
positiveness and static send rules, we can show that there
are runs R1 and R2 of (N , θ) on input I such that for
i ∈ {1, 2} the configurations last(Ri) and last(Ti) contain
the same output and memory C-facts. This implies that f
is in last(R1) and not in last(R2). Now, since f can be out-
put by (N , θ) on input I, we can consider a maximal set G
of concrete derivation trees for f that can be extracted from
all possible runs of (N , θ) on input I such that no two trees
in G are structurally equivalent. Because Π is recursion-
free we know that G is finite and the size of each tree in G
is dependent only on some syntactic properties of Π. We
fix some random order on G: T1, . . . , Tp. Let Ti ∈ G and
hi = height(Ti). For j ∈ {1, . . . , hi} define the following set

of message facts (using canonical scheduling κTi):

M i
j =

⋃
x ∈ int(Ti),
κTi(x) = j

VTi(x)
(
pos(ϕTi(x))|msg

)
.

Using inflationarity, message-boundedness, message-positive-
ness and static send rules we can show that R2 can be ex-
tended to a run R′2 such that f is present in last(R′2), by
delivering the following message sets in order: M1

1 , . . . , M1
h1

,
. . . , Mp

1 , . . . , Mp
hp

. Next, we can show that by definition of

message buffer bound B it is possible to extend path T2 to
path T ′2 by delivering the same message sets in order such
that configurations last(T ′2 ) and last(R′2) have the same out-
put and memory C-facts. This implies that f is present in
last(T ′2 ).

4.7 Decision Procedure

Corollary 7. The consistency problem for simple trans-
ducer networks is in EXPSPACE.

Proof. (Sketch.) We actually show membership in
EXPSPACE of the inconsistency problem. By Proposi-
tion 4, we first translate to a single-node network. The re-
sulting simulating transducer is of polynomial size and the
translation can be done in polynomial time. By Proposi-
tion 5, a single-node simple transducer network is inconsis-
tent iff it is inconsistent on some instance I of at most ex-
ponential size. Since non-deterministic EXPSPACE equals
EXPSPACE, we may guess such an instance I and check
inconsistency on I. By Proposition 6, inconsistency on I is
equivalent to inconsistency of a finite transition system F .
Since I is of at most exponential size, for each configura-
tion ρ of F , the database instance part sρ of ρ is of at most
exponential size as well. Moreover, by the buffer bound pro-
vided on F , the buffer part bρ may be restricted to be of at
most exponential size as well. We now check inconsistency
of F by guessing two reachable configurations ρ1 and ρ2 and
an output fact f in ρ1. Using the standard nondeterminis-
tic algorithm for reachability, these elements can be guessed
in exponential space. We then proceed to check that there
does not exist a configuration ρ3 reachable from ρ2 that con-
tains the output fact f . Using the Immerman-Szelepscényi
algorithm [17], this is again possible in nondeterministic ex-
ponential space. Whenever the reachability algorithm needs
to check if there is an edge in F between two given configura-
tion, this check can be performed by guessing a valuation for
each produced message, memory, and output fact, so that an
appropriate rule can fire. This is again possible in nondeter-
ministic time polynomial in the size of the transducer and
the sizes of the configurations, hence again in exponential
space.

5. ON THE PROOF OF THEOREM 3
Let N be a nodeset. Let Q be a distributed query for
N over distributed input database schema (N , ηin) and dis-
tributed output database schema (N , ηout) that is express-
ible in UCQ¬, namely, as a set Ψ of UCQ¬ queries: one
UCQ¬ query for each output relation in norm(N , ηout) and
all having the same input database schema norm+(N , ηin).
We can show in general that there is a simple and consistent
transducer network (N , θ) that computes Q. We illustrate
this with an example:
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Example 3. Consider the nodeset N = {x, y}. The dis-
tributed input database schema (N , ηin) and distributed
output database schema (N , ηout) are defined as: ηin(x) =

{A(1)}, ηin(y) = {C(1)}, ηout(x) = {S(1)}, ηout(y) = {T (1)}.
The distributed queryQ forN over distributed input schema
(N , ηin) and distributed output database schema (N , ηout)
is specified in UCQ¬ as follows:

{Sx(v)← Ax(v),¬Cy(v)},

{T y(v)← Ax(v), Cy(v)}.

We now specify the simple transducer network (N , θ) that
computes Q, with the following shared message database
schema Dmsg :

Dmsg = {(Axmsg , 1), (Cy,?msg , 1), (Cy,¬msg , 1)}.

The transducer Πx has the following UCQ¬ queries

{S(v) ← A(v), Cy,¬msg(v)},
{Axmsg(n, v) ← A(v),All(n)},
{Cy,?msg(n, v) ← A(v),All(n)}.

The transducer Πy has the following UCQ¬ queries

{T (v) ← Axmsg(v), C(v)},
{Cy,¬msg(n, v) ← Cy,?msg(v),¬C(v),All(n)}.

Intuitively, node x broadcasts the contents of its local in-
put relation A using the message relation Axmsg . Node y
simply uses these messages to compute the intersection of
relation A on x and its own relation C. Next, node x wants
to ensure the absence of C-facts at y. In order to that, node
x broadcasts the probe message Cy,?msg . For instance, when y

receives Cy,?msg(a) from x and indeed the fact C(a) is not spec-
ified at node y, then y broadcasts Cy,¬msg(a). When node x
then receives Cy,¬msg(a) it knows that y does not have the fact
C(a). Broadcasting is used because a node does not know
the value used to identify the other node. In general, nega-
tion on the input (or system) relations of another node can
be implemented in the manner shown by this example.

The converse direction of Theorem 3, that the query QN ,θ
computed by a consistent simple transducer network (N , θ)
is always expressible in UCQ¬, is quite intricate to prove.
We only provide a rough sketch omitting the details. The
crucial insight is that all output facts can already be pro-
duced in a canonical run of fixed length. This canonical
run is formed by the set of all possible derivation trees for
output facts, which is finite up to isomorphism by recursion-
freeness. Messages are delivered according to the canonical
schedulings (Section 4.6.2). Indeed, consider a fact f output
by QN ,θ. By consistency, we know that f can be produced
in an extension of the canonical run. The concrete deriva-
tion tree T that produces f also occurs in the canonical
run. The negative literals in T succeed, which means that
certain memory facts are absent in the extended run. Since
the transducer is inflationary, these memory facts are also
absent in the canonical run; hence, f will already be output
there. The second step of the proof then consists of obser-
ving that runs of fixed length can be expressed by existential
first-order formulas (and then, equivalently, in UCQ¬).

6. CONCLUSION AND DISCUSSION
We have shown that under five restrictions: recursion-

freeness, inflationarity; message-positivity; static message
sending; and message-boundedness, one obtains decidability
in EXPSPACE of eventual consistency for networks of rela-
tional transducers with unions of conjunctive queries with
negation. As already mentioned in the Introduction, a topic
for further work is to investigate whether decidability can be
retained while lifting or relaxing the restrictions of recursion-
freeness, inflationarity, and message-positivity. We also do
not yet know if the problem is EXPSPACE-complete.

There seem to be several reasonable ways to formalize the
intuitive notion of eventual consistency. In contrast to our
current formalization, a stronger view of eventual consis-
tency [1, 6] is to require that on every input, all infinite fair
runs produce the same set of output facts. Again, a number
of reasonable fairness conditions could be considered here; a
rather standard one would be to require that every node per-
forms a transition infinitely often, and that every message
fact that is sent is eventually delivered. When a transdu-
cer network is consistent in this stronger sense, it is also in
the confluence sense, but the other implication is not obvi-
ous. Since eventual consistency is indeed meant to be a very
weak guarantee [19], it deserves further research to better
understand different consistency and fairness requirements.
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