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ABSTRACT

In this paper, we study how to find maximal k-edge-connected
subgraphs from a large graph. k-edge-connected subgraphs
can be used to capture closely related vertices, and finding
such vertex clusters is interesting in many applications, e.g.,
social network analysis, bioinformatics, web link research.
Compared with other explicit structures for modeling ver-
tex clusters, such as quasi-clique, k-core, which only set
the requirement on vertex degrees, k-edge-connected sub-
graph further requires high connectivity within a subgraph
(a stronger requirement), and hence defines a more closely
related vertex cluster.
To find maximal k-edge-connected subgraphs from a graph,

a basic approach is to repeatedly apply minimum cut al-
gorithm to the connected components of the input graph
until all connected components are k-connected. However,
the basic approach is very expensive if the input graph is
large. To tackle the problem, we propose three major tech-
niques: vertex reduction, edge reduction and cut pruning.
These speed-up techniques are applied on top of the basic
approach. We conduct extensive experiments and show that
the speed-up techniques are very effective.

1. INTRODUCTION
Graphs are used to express the relationships of different

objects for a wide range of applications. In social network
analysis, individuals can be represented by vertices, and
their friendship relations can be represented by edges. In
bioinformatics, graphs can be used to model protein inter-
actions and gene coexpressions. In web data management,
web pages and their links can be considered as vertices and
edges respectively. The common theme of these modelings
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is to represent an entity as a vertex (or node), and the re-
lationship between two entities as an edge. As a result,
many real-life problems can be transformed into mathemat-
ical problems on a graph, and then can be tackled with ele-
gant solutions on the shelf.

In graph theory, connectivity is a fundamental subject.
It has applications in a variety of traditional areas, such
as network reliability analysis [8], VLSI chip design [14],
transportation planning [3]. A k-edge-connected graph is a
connected graph that cannot be disconnected by removing
less than k edges, similarly, a k-vertex-connected graph is a
connected graph that cannot be disconnected by removing
less than k vertices. We only focus on edge connectivity
in this paper, because k-vertex-connectivity can be reduced
to k-edge-connectivity, so k-connected is short for k-edge-
connected from now on.

On new types of data, finding k-connected subgraphs may
be interesting as well. For example, in social network analy-
sis, a k-connected subgraph could approximately model a
community, here, k can be defined by a user to express
how close the relationships are between members within
a community. Different users may be interested in differ-
ent k’s. Efficiently discovering k-connected subgraphs helps
users identify those closely related individuals, and such in-
formation could be useful for social behavior mining [2], viral
marketing [4], etc. In computational biology, a k-connected
subgraph could model a set of genes within the same func-
tional module [26], here vertices represent the genes and
edges represent coexpression relationships between the genes.
A high-connected subgraph from a gene coexpression graph
is likely to capture a functional gene cluster. Finding such
subgraphs may assist biologists to analyze gene microarrays
and develop reasonable conjectures before experiments. For
a web-link graph, a high-connected subgraph may be a col-
lection of web pages talking about a certain topic or dis-
cussing related topics. Such subgraphs may be useful for en-
tity association mining from web pages or building a knowl-
edge database based on web pages.

In a word, a k-connected subgraph captures a vertex clus-
ter, where vertices within the cluster are closely related.
There are some other defined structures playing a similar
role, e.g., clique, quasi-clique (defined on vertices [30] or
edges [1]), k-core [24], k-plex [23], etc. A clique defines a
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structure where every vertex is connected to the other ver-
tices within the structure. Quasi-clique is a relaxed form of
clique, and it asks a vertex to connect with other vertices
no less than a predefined percentage, e.g., in a n-vertex γ-
quasi-clique, each vertex is connected to at least ⌈γ · (n− 1)⌉
other vertices. In a k-core, each vertex is connected to at
least k other vertices. Similarly, in a n-vertex k-plex, each
vertex is connected to at least (n − k) vertices. After all,
in presence of these existing explicit structures, why do we
need to study k-connected subgraphs? We explain it in the
next paragraph.
Firstly, cliques are too strong, because, in many real sce-

narios, it is unlikely that every entity would have a link to
every other entity within the cluster. On the other hand,
quasi-clique, k-core, k-plex are sort of weak in some situ-
ations. For example, in Fig. 1 (a), an 8-vertex graph is
a 3/7-quasi-clique (defined on vertices), because each ver-
tex is connected to at least three of the other vertices in
the graph. Fig. 1 (b) is also a 3/7-quasi-clique. Compar-
ing Fig 1 (a) and Fig 1 (b), they are both 3/7-quasi-cliques,
having the same number of vertices and edges, and the same
degree on each vertex. However, it is more appropriate to
say: Fig. 1 (a) contains one vertex cluster while Fig. 1 (b)
contains two vertex clusters. In Fig. 1 (c), the whole graph
is a 5-core, because each vertex is connected to at least five
other vertices. Its subgraph {A,B,C,D,E,F} (in a dashed
rectangle) is also a 5-core. Comparing Fig. 1 (c) and its
subgraph {A,B,C,D,E,F}, they are both 5-cores, but Fig. 1
(c) should be considered as two vertex clusters. k-plex is
similar to k-core, and has a similar problem.
The above discussion reminds us that connectivity in a

subgraph is not negligible. Unfortunately, most existing
defined structures are based on node degrees, ignoring the
connectivity within the defined subgraph. It is well-known
that checking connectivity is more expensive than check-
ing node degrees. As a result, an efficient approach to dis-
cover k-connected subgraph is highly sought after. In this
paper, we aim to find all maximal k-connected subgraphs,
that is, k-connected subgraphs not contained in other k-
connected subgraphs (a formal definition will be given in
Section 2), otherwise (if not maximal) we can find too many
k-connected subgraphs.
To guarantee the resulting subgraphs are k-connected,

cut-based processing steps are unavoidable. A basic ap-
proach is to repeatedly run a minimum cut algorithm on the
connected components of the input graph, and decompose
the connected components if a less-than-k cut can be found,
until all connected components are k-connected. Such solu-
tion is acceptable on smaller graphs, but is very expensive
on large graphs. To tackle the problem, we design a set of
speed-up methods. On one hand, we try to reduce the size
of graph so that any cut algorithm can run faster on smaller
graphs. This includes vertex reduction and edge reduction.
On the other hand, we introduce some pruning conditions
with which we can tell directly whether a connected compo-
nent is k-connected or not.
We summarize our contributions as follows:

• We show that k-connected subgraphs may be a better
means to model node clusters, compared with some
existing models, such as k-cores and quasi-cliques.

• We propose a basic minimum-cut-based approach to
find maximal k-connected subgraphs. More impor-
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Figure 1: Compare k-connected subgraph with

other structures

tantly, we propose three speed-up methods, node re-
duction, edge reduction and cut pruning that can dra-
matically improve the performance of the basic ap-
proach. The correctness of the speed-up methods are
proved theoretically.

• We conduct extensive experiments to test the algo-
rithm performance when applying node reduction, edge
reduction and cut pruning on top of the basic ap-
proach. The experiment results confirm that the speed-
up methods are very effective.

Here is a roadmap of this paper. In Section 2, we provide a
formal definition of the problem, and introduce some neces-
sary notations. In Section 4, we introduce vertex reduction
and show its correctness. Edge reduction is introduced in
Section 5. In Section 6, we introduce how to avoid cutting
a connected component and how to cut a connected compo-
nent into two halves earlier. Experiment results are shown
in Section 7. Related works and conclusions are in Section 8
and Section 9 respectively.

2. PRELIMINARIES
We model networked data as a simple, unweighted, undi-

rected graph G = (V,E), where V is a set of vertices and E
is a set of edges between vertices. Normally, V represents
entities and E represents the relationships between entities.
In real world, there may be different types of relationships
between two entities, but in this paper, we do not distin-
guish the types of relationships. That means, as long as two
entities are related, no matter how many types of relations
there are, we consider the two entities are connected by a
single edge.

A graph G is k-connected (short for k-edge-connected)
if the removal of any up to k − 1 edges does not make G
disconnected, and there exists an edge set Ecut with |Ecut| =
k whose removal will make G disconnected. The edge set
Ecut is called the cutset of a minimum cut. Note that G
may have more than one minimum cut.
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A graph Gs = (Vs, Es) is called an induced subgraph of a
graph G = (V,E), when Vs ⊆ V , Es ⊆ (Vs × Vs) ∩ E, and
for any two vertecies x, y ∈ Vs, edge (x, y) ∈ Es if and only
if (x, y) ∈ E. Usually, an induced subgraph with vertex set
Vs from G is denoted as G[Vs].
A subgraph Gs = (Vs, Es) is a maximal k-connected sub-

graph of G, if there does not exist another k-connected sub-
graph G′

s = (V ′
s , E

′
s), such that Vs ⊆ V ′

s and E′
s ⊆ Es. Ap-

parently, it implies that a maximal k-connected subgraph is
an induced subgraph.
The problem we will study in this paper is, given a graph

G and a user-specified integer k, how to find all maximal
k-connected subgraphs from G efficiently.

3. BASIC APPROACH
In this section, we give a basic approach to find all maxi-

mal k-connected subgraphs. Important speed-up techniques
will be introduced in Section 4, 5 and 6.
The idea of the basic approach is to repeatedly apply any

minimum cut algorithm to the graph until each connected
component is either a single vertex or a k-connected sub-
graph. Algorithm 1 describes the process. Throughout the
process, R0 stores the intermediate results for the graph de-
composition, i.e. the produced connected components. If a
produced connected component G1 is at least k-connected,
it will be added into the result set R (line 8); otherwise, G1

will be decomposed into two pieces {G2, G3} and added into
R0 for later inspection (line 5-6). Theorem 1 guarantees the
correctness of the algorithm.

Theorem 1. Given a graph G and a connectivity thresh-
old k, Algorithm 1 correctly finds all maximal k-connected
subgraphs from G.

Proof. Obviously, all subgraphs in the result set R are
k-connected. We need to show each of them is maximal
as well. Suppose a graph G0 = (V0, E0) ∈ R is not maxi-
mal, then there must be a maximal k-connected subgraph
Gmax = (Vmax, Emax) such that V0 ⊂ Vmax, and there must
also exist a cut in a certain loop produced by the step 3,
which separates a vertex (or some vertices) in Vmax away
from V0. However, such a cut cannot exist, because G[Vmax]
is supposed to be k-connected. As a result, G0 should be
maximal.
To show Algorithm 1 has found“all”maximal k-connected

subgraphs: let (v1, v2) be an edge in a k-connected subgraph,
since v1 and v2 are k-connected, (v1, v2) cannot be removed
in the first loop (line 3-9) in Algorithm 1. Similarly, (v1, v2)
cannot be removed in later loops. As a result, (v1, v2) will
not be removed by Algorithm 1. This completes the proof
of the “all” part. The theorem thus is correct.

In Algorithm 1, the critical step is Step 3, i.e. perform-
ing a cut-based algorithm on a graph. In fact, it is likely
that the cut-based algorithm cannot be avoided because k-
connectivity needs to be guaranteed on the resulting sub-
graphs. As a result, if we can speed up the cut-step (Step
3), the k-connected subgraph discovery process can be ac-
celerated. It is obvious that a fast minimum cut algorithm
is preferred for Step 3. However, in this paper, most of
the time, we constrain ourselves to a general minimum cut
algorithm, because we aim to design a framework to accom-
modate any minimum cut algorithm, not a particular one.
As such, if a novel minimum cut algorithm would be found,

Algorithm 1 Basic Algorithm

Input: a graph G, connectivity threshold k;
Output: a set of maximal k-connected subgraphs
R;

1: R0 := {G};
2: for each subgraph G1(V1, E1) (|V1| 6= 1) in R0 do

3: find a minimum cut of G1 (with cutset Ecut) using
any minimum cut algorithm;

4: if |Ecut| < k then

5: cut G1 into G2, G3 by removing Ecut;
6: R0 := R0 ∪ {G2, G3} − {G1};
7: else

8: R := R ∪ {G1};
9: end if

10: end for

11: return R;

it could then be plugged into our framework without any
modification. In case, users feel overwhelmed by the num-
ber of minimum cut algorithms to choose from, we suggest
one minimum cut algorithm and explain the reason in Sec-
tion 6. Given a general minimum cut algorithm, we briefly
discuss some ideas to accelerate the cut algorithm on graph
G1, the details will be unfolded in Section 4, 5, 6:

• Reduce the size of G1: The performance of most min-
imum cut algorithms are affected by the size of the
graph, i.e. the number of vertices and the number of
edges. Therefore, it is desirable if we can safely reduce
the size of G1 without affecting its connectivity, or
exactly speaking without affecting the k-connectivity
of those maximal k-connected subgraphs of G1. Con-
sequently, we can run a cut algorithm on a smaller
graph but produce the same result. Vertex reduction
and edge reduction will be introduced in Section 4 and
Section 5 respectively.

• Avoid performing the cut algorithm: Some readers
may have noticed that an unpromising connected com-
ponent (with no k-connected subgraph inside) may be
found earlier, no need to be cut into a few single ver-
tices. For example, if a simple graph G1 = (V1, E1)
has no more than k vertices (|V1| ≤ k), G1 is at most
(k−1)-connected (when G1 is a clique), and cannot be
k-connected. So G1 can be disregarded earlier. Such
speed-up tricks will be elaborated in Section 6.

4. VERTEX REDUCTION
In this section, we aim at reducing the number of vertices

to speed up the basic minimum cut operation so that the
whole discovery process can be accelerated. The idea is that
if a subgraph Gs is k-connected we can safely contract the
subgraph Gs into a new vertex vnew and the size of the
original graph is reduced accordingly.

4.1 Contracting a k-connected subgraph
We will introduce the contraction process first and explain

why this procedure is safe afterwards. Assume we have got a
k-connected subgraph Gs = (Vs, Es), the contraction of Gs

is as follows: (1) all vertices in Vs are replaced with a new
vertex vnew; (2) all edges between vertices belonging to Vs
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(not only those in Es) will disappear, e.g., any edge (v1, v2)
will be disregarded if v1, v2 ∈ Vs; (3) an edge between a
vertex in Vs and a vertex in V \Vs will remain in the re-
sult graph but with one end-vertex modified, e.g., any edge
(v1, v2) will become (vnew, v2) if v1 ∈ Vs and v2 ∈ V \Vs.
Note that the result graph may be a multiple graph, even
though the original graph is simple, e.g., there are two edges
(v1, v3), (v2, v3), let Vs = {v1, v2} and v3 ∈ V \Vs, after the
contraction, there will be two edges between vnew and v3.
The following theorem guarantees that k-connectivity is

consistent in the contracted graph and the original graph.

Theorem 2. Given a graph G = (V,E), let Gs = (Vs, Es)
be a k-connected subgraph of G, let G′ = (V ′, E′) be the
graph produced from G by contracting Gs into a vertex vnew,
for any vertex v ∈ V , we define image(v) ∈ V ′ as: (1)
image(v) = vnew, if v ∈ Vs; (2) image(v) = v, if v ∈
V \Vs (remains the same), then we have: for any vertices
v1, v2 ∈ V , v1, v2 are k-connected in G, if and only if
either image(v1) = image(v2) = vnew or image(v1) and
image(v2) are k-connected in G′.

Proof. proof of “only if”, given v1, v2 are k-connected in
G:
Case (1): v1, v2 ∈ Vs, then obviously we have image(v1) =

image(v2) = vnew.
Case (2): Without loss of generality, let v1 ∈ Vs, v2 ∈

V \Vs, i.e. image(v1) = vnew, image(v2) = v2, since v1, v2
are k-connected in G, there are k distinct paths between
v1 and v2 in G, denoted as {p1, ..., pk}. Given one of these
paths pi, let vlast be the last vertex on pi from v1 to v2
satisfying image(vlast) = vnew and let p′i = pvlast→v2 denote
the segment of pi from vlast to v2 inG, it is not difficult to see
that p′i is also a path from vnew to v2 in G′. Given that p′i is
part of pi, together with that {p1, ..., pk} are distinct paths,
we have {p′1, ..., p′k} are distinct paths from vnew to v2 in G′.
As a result, vnew, v2 (or equally image(v1), image(v2)) are
k-connected in G′.
Case (3): v1, v2 ∈ V \Vs, i.e. image(v1) = v1, image(v2) =

v2. Since v1 and v2 are k-connected in G, again there are
k distinct paths between them in G, denoted as {p1, ..., pk}.
Given one of these paths pi, let vfirst and vlast be the first
and last vertices on pi from v1 to v2 satisfying image(vfirst) =
vnew and image(vlast) = vnew (here, vfirst, vlast may be the
same vertex.), let pv1→vfirst

be a segment of pi from v1 to
vfirst in G, pvlast→v2 be a segment of pi from vlast to v2 in
G, we can obtain p′i = pv1→vfirst

+pvlast→v2 by concatenat-
ing the two segments pv1→vfirst

and pvlast→v2 at vfirst and

vlast. It is not difficult to see that p′i is a path from v1 to
v2 in G′. Similarly, since {p1, ..., pk} are distinct paths, we
have {p′1, ..., p′k} are distinct paths in G′. As a result, v1,
v2 (or equally image(v1), image(v2)) are k-connected in G′.
Note that, for a path pi, vfirst, vlast may not always exist.
If so, let p′i = pi and the other parts of the proof remain the
same.
Proof of “if”, given either image(v1) = image(v2) = vnew

or image(v1) and image(v2) are k-connected in G′:
Case (1): image(v1) = image(v2) = vnew, then obviously

v1, v2 ∈ Vs. As Gs is a k-connected subgraph, v1, v2 is
k-connected in G.
Case (2): Without loss of generality, let v1 ∈ Vs, v2 ∈

V \Vs, i.e. image(v1) = vnew, image(v2) = v2, since vnew

and v2 are k-connected in G′, there are k distinct paths from
vnew to v2 in G′. Recall that vnew in G′ actually represents

multiple vertices in G, as a result, there are k distinct paths
from subgraph Gs to v2. We denote the starting vertices of
these k distinct paths as {v̄1, ..., v̄k}, here {v̄1, ..., v̄k} ⊆ Vs

and image(v̄1) = ... = image(v̄k) = vnew. Note that v̄i, v̄j
(i ∈ [1, k], j ∈ [1, k], i 6= j) may be the same vertex. Now
we will prove v1, v2 is k-connected in G by contradiction.
Suppose there exists a cut Ecut (|Ecut| < k) of G separating
v1 and v2 into two components G1 = (V1, E1), G2 = (V2, E2)
with v1 ∈ V1, v2 ∈ V2, (1) if {v̄1, ..., v̄k} ⊆ V1, then |Ecut <
k| contradicts that there are k distinct paths from {v̄1, ..., v̄k}
to v2; (2) otherwise, let v̄i be a vertex separated into V2 by
Ecut, givenGs is k-connected and v1, v̄i ∈ Vs, we have v1 and
v̄i are k-connected, which also contradicts the existence of
Ecut with |Ecut < k|. Therefore, v1 and v2 are k-connected
in G.

Case (3): v1, v2 ∈ V \Vs, i.e. image(v1) = v1, image(v2) =
v2. Since v1, v2 are k-connected in G′, there are k distinct
paths from v1 to v2 in G′, denoted as {p1, ..., pk}. If all
these paths do not pass vnew, obviously, {p1, ..., pk} are also
distinct paths from v1 to v2 in G and the proof is over.
Otherwise, suppose the first t (t ∈ [1, k]) paths pass vertex
vnew, construct the following graph Gt = (Vt = Vs∪Vp, Et =
Es∪Ep) by combining Gs and paths {p1, ..., pt}, here Vp de-
notes the vertices on paths {p1, ..., pt}, Ep denotes the edges
on paths {p1, ..., pt}. According to case (2), for any vertex
v ∈ Vs, v1, v are t-connected in Gt, similarly v2, v are also
t-connected in Gt. From Lemma 1, we have v1, v2 are t-
connected in Gt, i.e. there are t distinct paths in Gt from v1
to v2. These t distinct paths, together with {pt+1, ..., pk},
form k distinct paths from v1 to v2 in G. Therefore, v1, v2
are k-connected in G.

Lemma 1. Given a graph G = (V,E) and three vertices
{va, vb, vc} ⊆ V , if va, vb are k-connected and vb, vc are
k-connected, then va, vc are k-connected.

Proof. We prove the lemma by contradiction. Suppose
va, vc are not k-connected, there must exist a cut Ecut sepa-
rating G into two components G1 = (V1, E1), G2 = (V2, E2)
with |Ecut| < k. Without lose of generality, assume va ∈ V1

and vc ∈ V2, since V = V1 ∪ V2 and V1, V2 are disjoint,
vb must be in either V1 or V2. If vb ∈ V1, the existence of
Ecut contradicts that vb, vc are k-connected, otherwise the
existence of Ecut contradicts that vb, va are k-connected.

With Theorem 2, we can safely proceed to deal with the
contracted graph, but now the problem is how to discover a
few k-connected subgraphs in advance.

4.2 Finding a few k-connected subgraphs (not
necessarily maximal)

We propose three methods to initially discover a few k-
connected subgraphs. Intuitively, the more and the larger
these discovered k-connected subgraphs are, the better the
reduction effect can be achieved. However, it may take more
time to discover more and larger k-connected subgraphs, and
thus degrade the overall performance. It is unlikely to know
a reasonable trade-off between the two aspects in advance.
In our design, we put method efficiency at the first place,
and the size of the initially discovered subgraphs at second
due to the following reasons:

• It is difficult to find a maximal k-connected subgraph
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by expanding an existing k-connected subgraph1. We
will give an example to show this in section 4.2.3. Con-
sequently, it may not be worth the effort to find as
many and as large k-connected subgraphs as possible,
since finding these temporary subgraphs does not pro-
vide a shortcut to finding maximal k-connected sub-
graphs.

• To find k-connected subgraphs is only a subprocedure
to reduce the number of vertices. It does not need to
be perfect, but needs to be fast. So fast methods with
reasonable quality are sufficient.

4.2.1 Using materialized views

If there are some precomputed maximal k′-connected sub-
graphs, as either materialized views or historical query re-
sults, we may use them as the bases to explore a few k-
connected subgraphs.

• Case 1: If a maximal k′-connected subgraph G′ has
k′ ≥ k, obviously G′ is also k-connected, but may not
be maximal at k. If we have all maximal k′-connected
subgraphs (k′ > k), then we can safely contract these
k′-connected subgraphs into a few supernodes (points)
by Theorem 2. The size of the resulting graph is then
significantly reduced in comparison with the original
graph. To make the contraction more effective, we can
first expand those materialized k′-connected subgraphs
to obtain a set of larger k-connected subgraphs using
the technique in Section 4.2.3, and then contract these
k-connected subgraphs.

• Case 2: If a maximal k′-connected subgraph G′ has
k′ < k, then G′ may contain induced subgraphs which
are k-connected. In such case, if G′ = (V ′, E′) is not
very large (e.g., |V ′| + |E′| ≤ B, where B is a pre-
defined bound), we can find all maximal k-connected
subgraphs from G′ directly; otherwise, further vertex
reduction and edge reduction can be performed on G′.
Note that if we have got all maximal k′-connected
subgraphs (when k′ < k), we can start from these
k′-connected subgraphs without resorting to the orig-
inal graph, because a k-connected subgraph is also k′-
connected and must be subsumed in one of those max-
imal k′-connected subgraphs (Lemma 2).

Lemma 2. For a given graph, its maximal k-connected
subgraphs are disjoint, i.e. If G1 = (V1, E1), G2 = (V2, E2)
are two maximal k-connected subgraphs of the same graph G
and G1 6= G2, we have V1 ∩ V2 = ∅.

Proof. We prove the lemma by contradiction. Suppose
V1 ∩ V2 6= ∅ and let v ∈ V1 ∩ V2, construct a new induced
graph G[V1 ∪ V2], then for any two vertices v1, v2 ∈ V1 ∪ V2,
if v1, v2 ∈ V1 or v1, v2 ∈ V2, obviously v1, v2 are k-connected
in G[V1 ∪ V2] since G1, G2 are k-connected and G1, G2 are
subgraphs of G[V1∪V2]; otherwise, without loss of generality,
let v1 ∈ V1, v2 ∈ V2, from v1, v ∈ V1, we have v1, v are k-
connected in G[V1 ∪ V2], similarly v2, v are also k-connected
in G[V1∪V2]. According to Lemma 1, v1, v2 are k-connected
in G[V1∪V2]. As a result, G[V1∪V2] is k-connected, but this
contradicts that G1, G2 are maximal k-connected subgraphs.
Consequently, we have V1 ∩ V2 = ∅.
1There may be a brilliant method to achieve this, but, at
the current stage, the problem is open.

In summary, as long as there is a precomputed maximal
k′-connected subgraph G′ (no matter k′ is larger or smaller
than k), we can use G′ to help discover maximal k-connected
subgraphs.

4.2.2 Using vertices with high degrees

The second method to find a few k-connected subgraphs
is a heuristic method. It is inspired by the idea of work [7],
which uses H*-graphs (comprised of vertices with higher de-
grees2) of an original graph to initially find some cliques,
and then expands these cliques to find a portion of maximal
cliques from the original graph.

Similarly, we can discover some initial k-connected sub-
graphs using vertices with high degrees. To be specific, we
can load into memory the vertices with degrees above a cer-
tain level, e.g., (1+ f) ·k where f > 0, and find k-connected
subgraphs using these “popular” vertices. The smaller f we
choose, the more likely we can discover some k-connected
subgraphs, but, at the same time, the more time we will
spend on finding these initial k-connected subgraphs, be-
cause more nodes and edges need to be loaded into memory.
In the implementation, given a memory pool to hold the
vertices and edges, we can choose an f as small as possible
on the condition that the memory pool does not overflow if
we load all vertices with degree higher than (1 + f) · k.

In fact, the heuristic method introduced in this section is
reciprocal to the method using materialized views. At the
beginning, a system has no materialized views, so some ini-
tial k-connected subgraphs could be discovered from scratch
using the method in this subsection. As the system runs
on, more and more materialized views will be available, and
the materialized view based method will play a more impor-
tant role since it is usually more efficient than finding initial
k-connected subgraphs from scratch.

4.2.3 Expanding existing k-connected subgraphs

The third method does not discover k-connected subgraphs
from scratch. It takes existing k-connected subgraphs (pos-
sibly produced by the first and second methods) as input,
and quickly expand the existing k-connected subgraphs in
order to find larger ones. The expanding idea is: let a given
k-connected subgraph be a core, let the core absorb neighbor
vertices while keeping itself k-connected, stop the absorbing
process when the core is not growing fast any more. Here,
a neighbor vertex is a vertex not in the core, but is incident
on an edge which has the other end in the core. Algorithm 2
illustrates the expanding process. The algorithm steps are
self-explained. In step 4, the new G′

s is guaranteed to be
k-connected by Lemma 3. In step 5, θ ∈ [0, 1) is a user-
defined threshold. The larger θ is defined, the larger G′

s will
be obtained and accordingly the more time the expanding
process will take.

Lemma 3. Given a simple graph G, let Gs = (Vs, Es)
be a k-connected subgraph of G, let Vn be a set of neighbor
vertices of Gs in G, then induced subgraph G[Vs ∪ Vn] is k-
connected if and only if ∀v ∈ Vn, deg(v) ≥ k in G[Vs ∪ Vn].

Proof. The “only if” part is obvious. We now prove the
“if” part. Firstly, according to Theorem 2, we can safely

2This is a rough idea, interested readers could refer to the
paper for a more accurate definition of H*-graph.
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Algorithm 2 Expanding a k-connected subgraph

Input: a k-connected subgraph Gs = (Vs, Es);
Output: a larger k-connected subgraph G′

s (G′
s may stay

the same as Gs.);

1: G′
s ← Gs;

2: repeat

3: let all neighbor vertices of subgraph G′
s = (V ′

s , E
′
s)

be Vneighbor, generate an induced subgraph G[V ′
s ∪

Vneighbor] from the original graph;
4: repeatedly remove vertices with degree less than k

from G[V ′
s ∪ Vneighbor] and assign the result graph as

the new G′
s (to be used in the next loop), let the ver-

tices removed in this step be ∆Vneighbor;
5: until ∆Vneighbor/Vneighbor > θ
6: return G′

s;

a vertex representing
a k-connected subgraph

Figure 2: Expanding the graph to the end

contract Gs into a vertex vnew and then we can prove that
for any v ∈ Vn, v, vnew are k-connected in the contracted
graph G′[Vs∪Vn] of G[Vs∪Vn], given deg(v) ≥ k, as follows:
Take any k edges incident on v ∈ Vn, assume t (t ≤ k)

edges of these k edges are between v and vnew and the other
k − t edges are incident on {v1, ..., vk−t} ⊆ Vn. Since G is
a simple graph, we have vertices {v1, ..., vk−t} are distinct.
Therefore, there are k − t one-hop disjoint paths from v to
vnew, i.e. {v → v1 → vnew, ..., v → vk−t → vnew}. Together
with t distinct edges between v and vnew, there are k distinct
paths from v to vnew. As a result, v, vnew are k-connected
in G′[Vs ∪ Vn].
Any two vertices v1, v2 ∈ Vn are also k-connected inG′[Vs∪

Vn] (Lemma 1), since v1, vnew are k-connected and v2, vnew

are k-connected, and thus G′[Vs ∪ Vn] is k-connected. Fi-
nally, from the “if” part of Theorem 2, we have G[Vs ∪ Vn]
is k-connected.

The expanding process is heuristic. It looks one step for-
ward and tries to recruit closely related vertices. Basically,
it manages to find a relatively large k-connected subgraph
with affordable time budget. Interestingly, looking several
steps ahead may not be better, because a comparable effi-
cient algorithm is not obvious. Furthermore, it is unlikely to
find a maximal k-connected subgraph by straightforwardly
expanding an existing k-connected subgraph. Fig. 2 shows
an example. Starting from the initial vertex representing
a contracted 2-connected subgraph, it is not until we see
the whole graph that we can find the maximal 2-connected
subgraph.
Note that k-subgraphs discovered using materialized views

according to Case 2 (from k′-connected subgraphs, k′ < k)
do not need to be expanded any more, because they are
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Figure 3: The example of graph reduction

already maximal.

5. EDGE REDUCTION
After contracting k-connected subgraphs into single ver-

tices (in Section 4), the resulting connected components will
usually be very dense. In order to efficiently cut the re-
sulting connected components further, it is desirable to use
a method not degraded by the large number of edges. In
this section, we propose an iterative method based on edge
reduction. We first introduce the idea, and then give theo-
retical foundations and algorithmic solutions for each step.
To make the steps clear, we use a running example through-
out the whole section.

5.1 Reduction Idea
The reduction idea is to remove vertices by inspecting a

sparser subgraph. The reduction includes three steps:

1. Keep the vertex set unchanged and only remove the
edges. A graph G(V,E) will be reduced into G′(V,E′),
where E′ ⊆ E and |E′| ≤ i(|V | − 1) (here i ≤ k). We
can guarantee that, if any two vertices in G are k-
connected, then they are i-connected in G′.

2. With the above property, we know that all vertices in
a k-connected subgraph Gs(Vs, Es) from G are pair-
wise i-connected in G′. Therefore, by discovering i-
connected components from G′, we can obtain a vertex
superset V ′

s of Vs, satisfying any two nodes in V ′
s are

i-connected in G′. We can guarantee that Vs ⊆ V ′
s .

3. Using V ′
s , we can get a smaller induced subgraph G[V ′

s ]
from G. Thereafter, we may either apply Algorithm 1
on G[V ′

s ] directly or repeat the reduction process again
on G[V ′

s ] using another i′ (here i < i′ ≤ k).

Readers are not required to fully understand the three
steps at this stage, just need to know the rough picture. We
will explain each step in detail in the following sections.

5.2 Theoretical Foundation for Step One
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The initiative is to reduce the size of edges in G so that
a minimum cut algorithm can be faster. For instance, in
the extreme case, |E| is in the size of |V |2. After the re-
duction, |E′| is in the size of i|V | (i < k), at a lower or-
der. The complexity of a typical minimum cut algorithm,
due to Stoer and Wagner [27], will be reduced from O(|V |3)
to O(|V |2 log |V |), recall the complexity of the algorithm is
O(|E||V |+ |V |2 log |V |). It is obvious that this reduction is
especially important when input graph G is dense. Now we
come to two questions: (a) Is the edge reduction safe? (b)
How to do the reduction?
For the question (a), Lemma 4 can guarantee that: if any

two vertecies inG are k-connected, then they are i-connected
in G′. For the question (b), G′(V,E′) can be constructed
according to the description of Gi in Lemma 4. The set of
spanning forests can be found in O(|E| + |V |) time, due to
Nagamochi and Ibaraki [15].

Lemma 4. For a graph G = (V,E), simple or multiple,
let F1 = (V,E1) be a spanning forest in G and Fi = (V,Ei)
be a spanning forest in G − E1 ∪ E2 ∪ · · · ∪ Ei−1, for i =
2, 3, · · · , |E|, where possibly Ei = Ei+1 = · · · = E|E| = ∅ for
some i. Then if an induced subgraph G[Vs] (Vs ⊆ V ) of G is
k-connected, then, for any i <= k, any two distinct vertices
x, y ∈ Vs is i-connected in Gi = (V,E1 ∪ E2 ∪ · · · ∪ Ei).

Proof. For any two distinct vertices x, y ∈ Vs, consid-
ering that the local edge-connectivity between x, y in G
is no less than the local edge-connectivity between x, y in
G[Vs], given G[Vs] is k-connected, we have λ(x, y;G) ≥ k.
Here λ(x, y;G) denotes the edge-connectivity between ver-
tices x, y in G. According to lemma 2.1 in [16], λ(x, y;Gi) ≥
min{λ(x, y;G), i}, combining with λ(x, y;G) ≥ k ≥ i, we
have λ(x, y;Gi) ≥ i.

We use an example to illustrate the process. See Fig. 3, Ga

is the original graph, let k = 5, so G[{A,B,C,D,E, F}] is
a maximal 5-connected subgraph. After reduction step one,
Gb is the reduced graph using i = 3. Gb can be denoted
as G3(V,E1 ∪ E2 ∪ E3). Precisely speaking, E1 is the outer
circle except the edge CD, E2 = {FA,FB, FC, FD,AE},
E3 = {AC,AD,BD,BE}. E1 is a spanning tree in Ga,
E2 is a spanning tree in Ga − E1, E3 is a spanning tree
in Ga − E1 ∪ E2, and E1, E2, E3 are all spanning forests.
Since Ga, Ga − E1 and Ga − E1 ∪ E2 are all connected,
the spanning forests happen to be spanning trees. It is not
difficult to verify that any two nodes from {A,B,C,D,E, F}
are 3-connected in Gb.

5.3 The Problem and Algorithmic Solutions
for Step Two

As to the second step, after G′ = (V,E′) is obtained from
the first step, we want to find all i-connected components
in G′. An i-connected component is a set of vertices, and
any two vertices in the set are i-connected in G′. Suppose
Gs = (Vs, Es) is a maximal k-connected subgraph in G,
then all the vertices in Vs fall into a certain i-connected
component in G′, denoted as V ′

s . Obviously, Vs ⊆ V ′
s . The

problem now is to find all these i-connected components
from G′. In other words, i-connectivity on G′ = (V,E′) is an
equivalence relation on V , and we want to all non-singleton
equivalence classes from V with respect to this equivalence
relation.
A straightforward method is to find edge-connectivity for

all vertex pairs in G′, and then divide the vertices into

groups. Lemma 1 guarantees the correctness. Naively, this
process needs

(

n
2

)

minimum s-t cut computation. Gomory
and Hu [9] showed that n− 1 minimum s-t can do the job.
Their algorithm computes a weighted cut-tree T from G′,
known as the Gomory-Hu tree, with the property that the
edge connectivity between any two vertices s and t in G′ ex-
actly equals the weight of the lightest edge in the unique s-t
path in T . Furthermore, the partition of the vertices pro-
duced by removing this edge from T produces a minimum
s-t cut to the graph G′.

Among the candidate algorithms, one algorithm that is
specially suitable to solve the problem is due to Hariha-
ran et al. [11]. Their algorithm uses a graph and a user-
specified k as input. The output of the algorithm is a tree T
whose nodes represent k-connected components. To intro-
duce more, the output is a weighted tree T whose nodes are
vertex sets V1, V2, · · · , Vl, a partition of V , with the prop-
erty that the connectivity in G′ between any two vertices
s ∈ Vi and t ∈ Vj , for i 6= j, is equal to the weight of the
lightest edge on the path between Vi and Vj in T . Also, two
vertices s and t belong to the same Vi for any i if and only if
they are at least k-connected in G′. The complexity of the
algorithm is Õ(|E|+ k3|V |).

Return to the example in Fig. 3, on the reduced graph Gb,
vertices A, B, C, D, E, F are pairwise 3-connected. They
are in the same 3-connected component. Other vertices like
G, H, I are singleton 3-connected components, and can be
safely pruned. As a result, the only 3-connected equivalent
class we can find from Gb is {A,B,C,D,E, F}.

5.4 An Example for Step Three
As to step three, apparently, if Vs ⊆ V ′

s , then G[Vs] is
a subgraph of G[V ′

s ]. We are safe to deal with G[V ′
s ], a

smaller graph compared to G, since G[V ′
s ] have filtered part

of the vertices from the original graph G. In the example in
Fig. 3, the maximal k-connected subgraph has vertex set Vs

is {A,B,C,D,E, F}, and the corresponding superset V ′
s in

Gb is also {A,B,C,D,E, F}. G[V ′
s ] and G[Vs] happen to be

the same. After we get G[V ′
s ], we can either run Algorithm 1

to find the real results or repeat the reduction on G[V ′
s ]. In

this example, G[V ′
s ] will not be further reduced, if we repeat

the reduction with i′ = 4 or 5.

5.5 A Pitfall of Using Graph Reduction
In the second reduction step, suppose we have got Gi (i ≤

k) according to Lemma 4, some readers may ask whether we
can perform Algorithm 1 on Gi to firstly obtain a set of in-
duced i-connected subgraphs, and find induced subgraphs
from G with the vertices in those i-connected subgraphs.
For example, let G′

s = (V ′
s , E

′
s) be an induced i-connected

subgraph in Gi, is it safe to use G[V ′
s ] as the input for fur-

ther computation? In other words, given Gs = (Vs, Es) as
a maximal k-connected subgraph in G, does it mean there
must exist an induced i-connected subgraph G′

s = (V ′
s , E

′
s)

in Gi satisfying Vs ⊆ V ′
s? Unfortunately, the answer is no.

Refer to Gc in Fig. 3, an induced 3-connected subgraph of
G3 is G[{A,B,D,E, F}]. Here, vertex C is cut off from the
graph, because after vertex H is cut off from the graph, C
is no longer 3-connected to vertices {A,B,D,E, F}. Conse-
quently, in reduction step two, finding i-connected compo-
nents cannot be replaced with finding induced i-connected
subgraphs.

486



6. CUT OPTIMIZATION
Given a connected component, there are several cases

when we do not need to run a minimum cut algorithm on the
connected component. We can tell whether the connected
component is k-connected or not by inspecting its vertex
degrees. This can dramatically improve the algorithm per-
formance. We first list the cases and then explain the ratio-
nale afterwards. Let G1(V1, E1) be a connected component,
∆(G1), δ(G1) be the maximum and minimum vertex degree
in G1, v be a vertex in G1.

1. When G1 is simple and |V1| ≤ k, i.e. a connected
component has no more than k vertices, the compo-
nent does not have induced k-connected subgraphs,
and hence can be disregarded.

2. When ∆(G1) < k, i.e. the maximum degree of the
vertices in the connected component G1 is less than k,
it reflects that the component does not have induced
k-connected subgraphs.

3. If a vertex v in G1 has deg(v) < k, vertex v can be
disregarded from the component. G1[V1 − {v}] may
still have induced k-connected subgraphs.

4. If δ(G1) ≥ k, and δ(G1) ≥ ⌊|V1|/2⌋, then the con-
nected component G1 is k-connected. We do not need
to apply the minimum cut algorithm on G1.

We now explain the rationale behind those optimizations.

• For (1), if component G1 is simple, in any induced
subgraph Gs(Vs, Es) from G, separating a node v from
Gs requires to remove at most |Vs| − 1 edges. (Here,
|Vs| − 1 ≤ |V1| − 1 < k, because G1 is simple and
|V1| ≤ k.) In other words, there exists a cut set Ecut

for Gs with |Ecut| < k. As a result, κ(Gs) < k. There
is no induced k-connected subgraph in G1.

• As to (2), in any induced subgraph Gs(Vs, Es), sepa-
rating a node v from Gs requires to remove at most
∆(G1) edges. Since ∆(G1) < k, we have κ(Gs) < k
for a similar reason as (1). Note that (2) also holds
for multiple graphs, if G1 is a simple graph, (1) is a
special case of (2).

• For (3), the rationale is obvious, removing v is a special
light-weighted cut.

• Finally, (4) is supported by Theorem 1 in [5]. We
rephrase the theorem as Lemma 5 for easy reference.
According to Lemma 5 and δ(G1) ≥ k, we know G1 is
k-connected if the conditions in (4) are satisfied.

Lemma 5. Let δ(G) be minimum degree among all ver-
tices in G(V,E), if δ(G) ≥ ⌊|V |/2⌋, then κ(G) = δ(G).

All the above four optimizations are designed to avoid per-
forming the minimum cut algorithm in line 3 in Algorithm 1.
Condition checks (e.g., checking |V1| ≤ k, ∆(G1) < k ) and
variable maintenance (e.g., updating |V1|, ∆(G1), δ(G1),
deg(v)) can be done together in O(|V |+ |E|) time.
A careful reader may have found that it is not a must to

find a minimum cut in line 3 in Algorithm 1. Any cut E′
cut

with |E′
cut| < k can be used to cut G1, and guarantees the

correctness of the algorithm. So what is a desirable min-cut

Algorithm 3 MinimumCut(G)

Description: find a minimum cut for graph G
Input: a graph G(V,E);
Output: a min-cut edge set
Ecut;

1: initialize Ecut = V ;
2: while |V | > 1 do

3: E′
cut= MinimumCutPhase(G);

4: if |Ecut| > |E′
cut| then

5: Ecut = E′
cut;

6: end if

7: end while

8: return Ecut

Algorithm 4 MinimumCutPhase(G)

Description: find an s-t cut and merge two vertices
Input: a graph G(V,E)
Output: the edge set incident on
vlast;

1: randomly choose a vertex v, and let A = {v};
2: while A 6= V do

3: add into A the most tightly connected vertex from V ;
4: end while

5: merging the last two vertices added into A;
6: return the edge set E′

cut between the last added vertex
vlast and the rest vertices V − {vlast};

algorithm for our problem then? We suggest the minimum
cut algorithm due to Stoer and Wagner [27], denoted by the
SW algorithm, which provides an early-stop property, and
is also reasonably efficient and easy to implement.

We give the SW algorithm in Algorithm 3 and 4 and in-
troduce it briefly. Algorithm 3 is the outer loop, runs |V |−1
times, because after each loop, |V | will be decreased by 1,
for the reason that two vertices are merged into one after
each loop (see line 5 in Algorithm 4). In each loop from line
2 to line 8 in Algorithm 3, it finds a new min-cut for the
current graph (line 3), and compares with the current cut.
A smaller cut will be recorded. At the end of this algorithm,
the recorded cut will be the minimum cut. The key steps are
in Algorithm 4. It first selects a seed vertex, and repeatedly
take out other vertices from |V | to join the seed vertex. In
each round, the vertex having the highest connectivity with
the seed set is selected and removed from |V |. In the end,
the cut of the phase is the edge set E′

cut between the last
added vertex vlast and the rest vertices V −{vlast}. The last
two vertices added into the seed set will be merged before
the current procedure return to the main loop.

The SW algorithm solves the minimum cut problem us-
ing |V | − 1 minimum s-t cut computations. A s-t cut is the
minimum cut for graph G, which can separate vertex s, t
into two different connected components. The global min-
imum cut is the lowest value among the |V | − 1 s-t cuts.
Return to our problem, if any Ec among these |V | − 1 cuts
satisfying |Ec| < k, we can stop finding other s-t cuts on G1

and separate G1 into two connected components safely using
Ec. We refer this property as early-stop property. Further-
more, the SW algorithm has good theoretical complexity at
O(|E||V | + |V |2 log |V |). It is not a flow-based algorithm,
and is easy to implement.
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Algorithm 5 Combined Algorithm

Input: a graph G, connectivity threshold k;
Output: a set of maximal k-connected subgraphs
R;

1: if there are maximal k′-connected subgraphs, k′ ∈
{k1, ..., kn} then

2: let k = max
i∈[1,n]

{ki|ki < k} ;
3: set the maximal k-connected subgraphs as R0, the

initial set of connected components;
4: let k = min

i∈[1,n]
{ki|ki > k} ;

5: set the maximal k-connected subgraphs as initially
discovered k-connected subgraphs V0;

6: else

7: use the heuristic method in Section 4.2.2 to find a few
k-connected subgraphs V0;

8: end if

9: expand V0 to find larger k-connected subgraphs accord-
ing to Section 4.2.3;

10: perform vertex reduction to R0 using V0;
11: perform edge reduction to R0;
12: for each component G1(V1, E1) (|V1| 6= 1) in R0 do

13: if G1 can be pruned without evaluating minimum cut
then

14: R0 := R0 − {G1};
15: else

16: if there exists any cut (not necessarily a minimum
cut) with cutset Ecut satisfying |Ecut| < k then

17: cut G1 into G2, G3 by removing Ecut;
18: R0 := R0 ∪ {G2, G3} − {G1};
19: else

20: R := R ∪ {G1};
21: end if

22: end if

23: end for

24: return R;

Finally, we give a combined algorithm in Algorithm 5 to
incorporate all speed-up techniques in an overall framework.
In Algorithm 5, we restrict ourselves to apply each reduc-
tion technique once. The order of the reduction techniques
is carefully organized. However, we need to stress that Algo-
rithm 5 is not the only acceptable solution. Each reduction
technique may be applied multiple times and the order of
some reduction techniques can be exchanged. For exam-
ple, cut pruning check can be applied every time after a
connected component is updated. We can also perform ver-
tex reduction using available k-connected subgraphs first,
and then expanding the resulting contracted vertices. Ap-
parently, it is difficult to give an optimal algorithm that
best organizes the speed-up techniques, because the effect
of speed-up techniques is data-dependent. Nevertheless, Al-
gorithm 5 is still valuable to provide a guideline on how to
combine all the speed-up techniques in one framework.

7. EXPERIMENTS
In this section, we report the performance of the basic al-

gorithm and the performance of applying different speed-up
techniques on top of the basic algorithm. The results show
that the speed-up techniques can improve the performance
significantly. All experiments are done on a desktop with

Table 1: Datasets

vertices edges avg degree

Gnutella P2P network 6301 20777 3.30

Collaboration network 5242 28980 5.53

Epinions network 75879 508837 6.71

Intel(R) Core(TM) 2 Duo CPU E6550 at 2.33GHz and 3GB
RAM. The operating system is Windows XP, and code is
written in Java.

7.1 Datasets
We use three datasets to test the algorithms, Epinions

social network (soc-Epinions1) [20], Arxiv GR-QC collab-
oration network (ca-GrQc) [13], and Gnutella peer-to-peer
network (p2p-Gnutella08) [21]. Epinions social network is a
who-trust-whom online social network of a general consumer
review site (www.Epinions.com). Members of the site decide
whether to trust each other. Arxiv GR-QC (General Rel-
ativity and Quantum Cosmology) collaboration network is
from the e-print arXiv and it covers scientific collaborations
between authors according to papers submitted to General
Relativity and Quantum Cosmology category. Papers are
from January 1993 to April 2003. Gnutella peer-to-peer net-
work data is a snapshot of peer-to-peer file-sharing network
in August 8, 2002. All the above datasets are in Stanford
Large Network Dataset Collection3. We give the details of
each dataset in terms of number of vertices, edges, and av-
erage degrees in Table 1.

7.2 Effect of Cut Pruning
In this section, we report the effect of cut pruning (intro-

duced in Section 6) solely without applying vertex reduction
and edge reduction. Fig. 4 shows the result. We compare
the basic approach (Naive) and the basic approach with cut
pruning (NaiPru) on p2p network data and collaboration
network data. On both datasets, the pure basic algorithm
is rather slow, while after cut pruning, the performance is
improved dramatically. When k becomes larger, the perfor-
mance of NaiPru is improving as well. The reason is that
when k is larger, more connected components can be pruned.
In the following experiments, cut pruning is applied by de-
fault so that the baseline approach is not too slow. Cut
pruning is orthogonal to vertex reduction and edge reduc-
tion.

7.3 Effect of Vertex Reduction
In this section, we report the effect of vertex reduction.

We test the result on two relatively large datasets collab-
oration network and Epinions network. Four variant ap-
proaches using vertex reduction are tested and compared
with the NaiPru approach. Table 2 gives the details of the
approaches. Fig. 5 shows the experiment results. On collab-
oration network data, all four approaches have improved the
performance significantly (note that the y-axis is in logarith-
mic scale, so looks not that impressive). Most of the time,
expanding process can further improve the performance, es-
pecially when k is not large, because it is likely to find larger
k-connected subgraphs using expansion. When k is large,

3http://snap.stanford.edu/data/
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Figure 4: Cut Pruning

Table 2: The Meanings of the Approaches

HeuOly use only the heuristic method in Section 4.2.2

to find a number of k-connected subgraphs,

and then do vertex reduction using

these subgraphs;

HeuExp use the heuristic method in Section 4.2.2

and the expanding method in Section 4.2.3 to

find a number of k-connected subgraphs, and

then do vertex reduction

ViewOly use only the materialized views (Section 4.2.1)

to find a number of k-connected subgraphs,

and then do vertex reduction using

these views;

ViewExp use the the materialized views (Section 4.2.1)

together with the expanding method

in Section 4.2.3

e.g., k = 25, the NaiPru approach is also acceptable, while
the vertex reduction effect is not obvious. The reason is that
the resulting connected components are already of a small
size. On Epinions network data, the expanding process is al-
ways effective. The reason is that edges of Epinions network
are not evenly distributed. There exists a large cluster, and
thus it is very likely to find a larger k-connected subgraph
by expanding a k′-connected subgraph (k′ > k).

7.4 Effect of Edge Reduction
In this section, we test the effectiveness of edge reduc-

tion. As mentioned in Section 5, we can reduce edge itera-
tively. However, the iteration steps should not be too many,
otherwise extra cost will overwhelm the inherent subgraph
discovery cost. We compare three approaches with NaiPru,
denoted as Edge1, Edge2 and Edge3. Edge1 preforms edge
reduction once. Edge2 reduces the graph using a k′ (k′ < k)
firstly, and then k. To generalize the case, we set k′ = k/2.
Similarly, Edge3 reduces the graph in three steps, k/3, 2k/3
and then k. Unlike vertex reduction, we did not test k = 6
for the collaboration network, neither k = 25 for the Epin-
ions network. We want to test the case when k is enough
large so that approach Edge3 makes sense. From Fig. 6, we

find that, on the network data, Edge1 is usually the best
speed-up choice; when k = 20, Edge2 is slightly better than
Edge1. The reason may be that the first step k/3 can effec-
tively reduce the size of the graph. For all k’s, Edge3 is the
worst choice, even worse than ignoring edge reduction. This
confirms that too much edge reduction is even more expen-
sive. On the Epinions data, the result is similar. Edge1 is
always better than the other approaches.
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Figure 6: Edge Reduction

7.5 Effect of All Speed-up Techniques
In this section, we report the effect of all the combined

speed-up techniques. The BasicOpt approach in this section
stands for an approach after applying both vertex reduction
and edge reduction on top of the NaiPru method. As to ver-
tex reduction, if there is no materialized views, HeuExp will
be used to achieve the largest reduction probability; oth-
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Figure 5: Vertex Reduction

erwise ViewExp will be used to use materialized views to
support vertex reduction. Edge reduction is iterated once
in BasicOpt, because most of time, one edge-reduction iter-
ation is the best, though sometimes not as good as twice.
On both collaboration network data and Epinions social net-
work data, the BasicOpt approach is up to 10 times faster
than the NaiPru approach. Further combining with Fig. 4,
BasicOpt is better than the Naive approach in order of mag-
nitudes.
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Figure 7: The Combined Effect

8. RELATED WORK
Graph connectivity is a fundamental subject in graph the-

ory. Graph connectivity is closely related to minimum cut,
since the minimum cut gives the graph connectivity. A large
number of have been done on the design of minimum-cut al-
gorithm [10, 15, 27]. However, these works focus on the

global connectivity, i.e. the connectivity of the whole graph,
while, in this paper, we aim to find a subgraph with con-
nectivity guarantee. The most similar work to ours is [11],
where an algorithm is given to find all pairs of vertices, each
of which has a connectivity no less than k, but again, the
connectivity is defined on the global graph, not constrained
on a local subgraph. In other works, Yan et al. [29] pro-
posed to find frequent connected subgraphs from a large
graph and connectivity is a constraint. Skygraph [18] pro-
posed to find all maximal connected subgraphs from a given
graph. It does not have the k-edge-connected requirement,
and hence algorithms are in a progressive manner and can-
not be adapted to our problem. Karypis and Kumar [12]
developed a coarsening heuristic for a large graph. The aim
is to reduce the input graph scale, similar to our graph reduc-
tion, but the techniques are different. Finally, in presence
of many deterministic min-cut algorithms, Chekuri et al. [6]
showed the algorithms in [10] and [15] are fast in practice,
and may be good candidates to resort to.

On the other hand, works on extracting subgraphs from
a given graph can be divided into two categories: explicit
and implicit. In explicit works, such as, quasi-clique [30,
1], k-core [24], k-plex [23], a structure with certain property
is predefined, and then the rest work is to design efficient
algorithms to discover all the subgraphs with the structure
requirement. In implicit works, some propose objective func-
tions first, such as modulariy [17], normalized cut [25], and
then partition the graph into a number of parts, here a good
partition usually maximizes or minimizes the objective func-
tions; Some works define neighbourhood distance, such as
propinquity [31], structure closeness [28], and then group
nearby nodes within a distance threshold around a given
node to form a group; Some borrow the idea of Markov
Clustering [22, 19] to repeat random walk for a few rounds
until self-organized clusters turn up. Different from the im-
plicit models, the maximal k-connected subgraphs we aim
to find is explicitly defined.

9. CONCLUSIONS AND FUTURE WORK
In this paper, we have discussed how to find maximal k-

edge-connected subgraphs from large graphs. We have pro-
posed a basic cut-based approach and develop several impor-
tant speed-up techniques: vertex reduction, edge reduction
and optimizing the cut algorithm. We have conducted ex-
tensive experiments to test the performance of the speed-up
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techniques. Compared with the basic approach, experimen-
tal results show that using speed-up methods can dramati-
cally improve the performance. Vertex reduction is very ef-
fective when there are suitable materialized views, because
the size of the original graph can be reduced significantly.
The effect of edge reduction is moderate, not remarkable,
because after discovering the k-connected components, we
still need to find maximal k-connected subgraphs from those
k-connected components.The cut pruning is very effective,
and it is also easy to implement. One direction for future
work is to design external memory algorithms to find max-
imal k-connected subgraphs from massive graphs, because
some real graphs are too large to fit into memory.
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