
VAST-Tree: A Vector-Advanced and Compressed Structure
for Massive Data Tree Traversal

Takeshi Yamamuro, Makoto Onizuka,Toshio Hitaka, and Masashi Yamamuro
NTT Cyber Space Laboratories, NTT corporation

{yamamuro.takeshi, onizuka.makoto, hitaka.toshio,
yamamuro.masashi}@lab.ntt.co.jp

ABSTRACT

We propose a compact and e�cient index structure for mas-
sive data sets. Several indexing techniques are widely-used
and well-known such as binary trees and B+trees. Unfortu-
nately, we �nd that these techniques su�er major two short-
comings when applied to massive sets; �rst, their indices
are so large they could over�ow regular main memory, and,
second, they su�er from a variety of penalties (e.g., condi-
tional branches, low cache hits, and TLB misses), which re-
stricts the number of instructions executed per processor cy-
cle. Our state-of-the-art index structure, called VAST-Tree,
classi�es branch nodes into multiple layers. It applies exist-
ing techniques such as cache-conscious, aligned, and branch-
free structures to the top layers of branch nodes in trees.
Next, it applies the adaptive compression technique to save
space and harness data parallelism with SIMD instructions
to the middle and bottom layers of branch nodes. Moreover,
a processor-friendly compression technique is applied to leaf
nodes. The end result is that trees are much more compact
and traversal e�ciency is high. We implement a prototype
and show its resulting index size and performance as com-
pared to binary trees, and the hardware-conscious technique
called FAST which currently o�ers the highest performance.
Compared to current alternatives, VAST-Tree compacts the
branch nodes by more than 95%, and the overall index size
by 47-84% given that there are 230 keys. With 228 keys, it
has roughly 6.0-times and 1.24-times throughput and saves
the memory consumption by more than 94.7% and 40.5% as
compared to binary trees and FAST, respectively.

Categories and Subject Descriptors

C.1.2 [Processor Architectures]: Multiple Data Stream Ar-
chitectures (Multiprocessors)Array and vector processors;
E.1 [Data Structures]: Trees

General Terms

Algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2012, March 26–30, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-0790-1/12/03 ...$10.00

Keywords

Massive Data, Tree Traversal, SIMD, Compression

1. INTRODUCTION
Many recent studies tackle data analysis on massive data

sets since the database community is urgently demanding
data analysis techniques with high performance. The cur-
rent data sets being targeted include time series data such as
workload information of servers, purchasing logs of shopping
sites, and user generated logs (e.g., Twitter and Facebook);
they are inclined to be larger than they used to be. With
the goal of the high-speed analysis of a particular data set
that lies within a massive data set, an e�cient approach is
to �lter the original data and subject the results to query
processing. A data structure that can realize this kind of ex-
ploration is the tree-shaped index created by the techniques
of binary trees and B+trees. Although they o�er exact and
range scans to support queries on massive data sets, they
su�er from two shortcomings: large index sizes and execu-
tion ine�ciency. Table 1 shows the sizes of these indices for
228 to 232 keys (about billion entries)1. The sizes of these
indices approach 100GiB with 232 keys, and thus they could
over�ow the regular memory of recent commodity hardware.
Because large indices could degrade performance, index size
is an important metric.

log2(# of keys) 28 30 32

binary trees 5.5 (2.5) 22.0 (10.0) 88.0 (40.0)
B+trees 5.6 23.5 89.7

Table 1: Total sizes (GiB) of binary trees and B+trees. The
number of keys is described as log2(# of keys). The values
in parentheses show only the sizes of branch nodes.

The traditional techniques are notorious for being ine�-
cient when executed on modern processors. Figure 1 shows
the ratios of execution and the counts of instructions on
a Xeon X5260 processor with the exact-match scans of bi-
nary trees given 222 to 228 keys. It indicates that the stall
time and the conditional branch penalties occupy up 60%
to 80% of the total. As a result, their instructions per cy-
cle (IPC), which represents e�ciency, are held to low values
(less than 0.3 or so). A previous study [11] identi�ed the

1We assume that each entry is around 0.1 to 100KiB, and
the total number of entries constituting 100TiB of data is
about 228 to 232.

396

causes of ine�ciency as conditional branch penalties, low
cache hits, and Translation Look-aside Bu�er (TLB) misses.
TLB represents a cache mechanism that is expected to hold
an often-used translation table that links physical and log-
ical addresses in memory. These translations are executed
per page; a page is a physically-consecutive byte sequence
in memory. We assume that the cache refers to a L2 one
in the same manner as other papers [11], because authors
in [1] suggested that the optimization of L2 caches could be
better than that of L1 ones empirically.

Figure 1: Ratios of execution time and counts of instructions
for exact-match scans on a Xeon X5260 processor. The val-
ues in parenthesis indicate IPC in the processor.

Many techniques have been proposed to break these bot-
tlenecks on machines with multi-cores and shared memory
[3]. One solution, the tree-shaped data structure for indices,
called FAST [14], was proposed to solve these problems and
to o�er improved performance on modern processors. FAST
not only holds down cache misses, TLB misses, and condi-
tional branch penalties, but also improves comparison pro-
cessing on branch nodes with SIMD instructions, which has
the ability to subject multiple data streams to the same
processes in a single clock cycle. The authors assume that
FAST is designed for in-memory structures and read-only
workloads, and therefore FAST does not support incremen-
tal updates. However, there are three technical issues below;

• Aligning the structure of cache lines and pages for ef-
�ciency makes index size much larger, because there
are many padding areas inside branch nodes.

• The simultaneous key comparison with SIMD instruc-
tions is limited to three, because FAST uses a 32bit
space for keys with padding areas and SIMD instruc-
tions process 128bit data.

• FAST does not consider the compression of leaf nodes,
i.e. uncompressed keys. Therefore, when data set size
is large, leaf node size become something of a problem.

Our goal is to design a compact and processor-friendly
data structure for massive data sets with the same assump-
tion of FAST: in-memory and read-optimized structures.
Our proposed technique, VAST-tree, adaptively applies lossy
compression to the keys in branch nodes in order to dra-
matically reduce the size of branch nodes; VAST-tree clas-
si�es branch nodes into multiple layers and applies stronger
the lossy compression to the branch nodes as their layer
gets deeper in the tree. This adaptive lossy compression
approach achieves a good balance of the additional decod-
ing costs during tree traversal and the size of the index.
And also, this lossy compression increases the number of

the simultaneous key comparisons that can be supported by
SIMD operations. Although there are many bene�ts to the
adaptive lossy compression, it causes incorrect key compar-
isons during tree traversal, so VAST-tree needs to correct
the errors by scanning at leaf nodes sequentially after the
tree traversal. For con�rmation, we model these errors, and
evaluate the resulting model with actual errors. Moreover,
a processor-friendly compression technique is applied to leaf
nodes to be compact. As a result of these optimizations, as-
suming the target of 230 keys, VAST-Tree compacts branch
nodes by more than 95%, and overall index size by 47-84%
compared to current alternatives. For 228 keys, its through-
put are roughly 6.0-times and 1.24-times those of binary
trees and FAST, respectively.
Given the popularity of multi-cores/many-cores, the mem-

ory consumption of algorithms used is one of key factors de-
termining scalability [5][14][15], that is, the upper limit of
memory bandwidth could restrict the throughput directly
when increasing increasing the number of cores. Our com-
pression technique signi�cantly reduces memory consump-
tion; an experiment shows that our technique saves the
memory consumption with 228 keys by more than 94.7% and
40.5% as compared to binary trees and FAST, respectively.
Our paper makes the following contributions;

• We propose a state-of-the-art index structure called
VAST-Tree; it realizes a compact and e�cient data
structure for indices when applied to massive data sets.

• We implement a prototype and verify its e�ciency and
e�ectiveness by experiments on synthetic and realistic
data sets. Public Timeline data in Twitter were col-
lected via the Twitter API from May, 2010 to Apr.,
2011, and used as realistic data.

• A error caused by the lossy compression in VAST-Tree
is modeled, and we evaluate its accuracy as compared
to the actual penalties.

• A e�cient technique is proposed to handle the worst
errors by using the error model, and it saves the pro-
cessing time by 7.1-18.5%.

This paper is organized as follows; Section 2 describes
the handling of comparisons on branch nodes with SIMD
instructions, and proposes a state-of-the-art compact and
processor-friendly structure called VAST-Tree (Section 3)
for massive data sets. In Section 4, we prototype VAST-
Tree, and evaluate its size and performance as a comparison
to other techniques. Finally, we model the errors caused by
the use of adaptive compression, and analyze the consump-
tion of memory bandwidth during tree traversal. Section 6
discusses related works and Section 7 concludes our �ndings.

2. TREE TRAVERSAL WITH SIMD
Our approach employs SIMD instructions to compare mul-

tiple keys on branch nodes so as to exclude conditional
branches ('if-then' paths) and thus suppress their penalties
along with FAST. This section starts with Figure 2 to ex-
plain the usage of SIMD instructions on tree traversal. First,
binary trees are segmented into sub-trees (depicted by tri-
angles). The sub-trees are called SIMD blocks, and a single
SIMD instruction can compare all keys in a SIMD block in
a single clock cycle. FAST assumes that the sizes of SIMD

397

registers and comparison keys are 128bits and 32bits, respec-
tively, and recent mainstream processors incorporate 128bit
SIMD registers (SSE on Intel's processors, and 3DNOW! on
AMD's processors). Instead of 'if-then' paths, addition and
multiplication instructions are used to traverse trees based
on the results of SIMD instructions to exclude branch penal-
ties. We explain how this traversal works in detail given
the layout of comparison keys in memory. SIMD blocks
(multiple values in a parenthesis represent a SIMD block) in
Figure 2 are arranged in breadth �rst order on physically-
consecutive memory as shown below.

[34, 78, 91], [2, 11, 23], [35, 39, 49], [80, 87, 88], . . .

The underlined values above are the traversal traces (bold
triangles in Figure 2), and 79 is the search key in this exam-
ple. First, the leftmost values (34, 78, and 91) are loaded
into an SIMD register (34, 78, 91, x), compared to the search
key in a other SIMD register (79, 79, 79, x) as shown in the
top-left part in the example of Figure 2, which yields the
output of returned values (1, 1, 0). This SIMD instruc-
tion returns 1 if its search key is greater than or equal to
the comparison keys, otherwise 0. It determines the next
SIMD block to be compared based on this returned value
using a lookup table. The lookup table (the top-right table
in Figure 2) holds the relationship between returned val-
ues and o�sets to next SIMD blocks, and is prede�ned for
tree traversal. Therefore, the o�set block obtained from the
lookup table corresponds to the third SIMD block (80, 87,
and 88) from the left on the second level under the root as
the next position for comparison. Because the size of each
SIMD block is 12B (three 32bit keys), the o�set byte to the
next position is 36 (12B multiplied by 3).
As explained above, FAST is limited by three key compar-

isons in a single SIMD instruction. Our approach is that a
compression technique applied to branch nodes makes each
key size small, and enables the more number of keys to be
loaded into a SIMD register. As a result, it increases the
number of simultaneous comparisons.

Figure 2: An example of tree traversal with SIMD instruc-
tions. This instance shows that 128bit SIMD registers can
load four 32bit integers, and three keys can be compared
simultaneously.

3. PROPOSAL: VAST-TREE

3.1 Designing Data Structure
We present a tree-like data structure for indices, called

VAST-Tree, which is compact and processor-friendly. VAST-
Tree compresses comparison keys inside branch nodes and
keys on leaf nodes; lossy compression is applied to the com-
parison keys to strongly reduce the bit number, while keys
on leaf nodes undergo lossless compression. The comparison
keys need to be integers of certain size such as 32bits and
64bits, and each block consists of multiple comparison keys.
In what follows, we assume that the size of comparison keys
is 32bits. Figure 3 shows an architectural overview of VAST-
Tree. The labels in Figure 3 such as H, SH, CLH, PH, and
CH, mean the heights of each layer or each block. For ex-
ample, SH represents the height of the SIMD blocks. These
are noted as the height of binary trees, and for example, the
height of the SIMD blocks in Figure 2 is 2.

Figure 3: An overview of VAST-Tree. The top layer (P32)
of VAST-Tree uses FAST techniques, and VAST-Tree com-
presses the middle and the bottom layers (P16 and P8) of
the trees. The heights of these layers are H32, H16 and H8,
respectively. Moreover, keys in leaf nodes (key1, key2, . . . ,
keyN) are compressed by using lossless compression.

3.1.1 Branch Nodes

First, we overview the design of branch nodes in VAST-
Tree. VAST-Tree compares multiple keys in branch nodes
by using SIMD instructions. Moreover, our proposed lossy
compression technique in the bottom of trees enables more
keys to be compared simultaneously, which improves data-
level parallelism. In particular, the branch nodes in VAST-
Tree consist of three layers as follows2;

• P32, it applies FAST without any change, and com-
pares (2SH32 -1) keys simultaneously.

• P16, it compresses 32bits to 16bits and (2SH16−1) keys
are compared simultaneously.

• P8, it compresses 32bits to 8bits and (2SH8 − 1) keys
are compared simultaneously.

Lossy compression is applied to each compression block,
and block heights (CH16 and CH8) depend on the size of
cache lines and pages in a way similar to FAST. However,
this lossy technique in branch nodes could cause incorrect

2If we assume that key size is 64bits, there would be four
layers: P64, P32, P16, and P8.

398

comparison through branch nodes, and �nally the incorrect
retrieval of keys at the end of tree traversal. These errors are
corrected by using the keys in leaf nodes after traversal in
branch nodes. As a result, VAST-Tree is a parametric tech-
nique with three variables: H32, H16, and H8. These values
must be assigned according to the size and the performance
of VAST-Tree. Section 3.2.1 shows how to compress the
keys in P16 and P8, and the following section details tree
traversal in these compression blocks. We then show error
correction after tree traversal in Section 3.2.3.

Block Alignment

Aligning blocks in memory is important in improving perfor-
mance [14][25]. Layer (P32) of FAST is aligned recursively
with two blocks: cache line blocks and page blocks (heights
are CLH32 and PH32). Of course, these alignment tech-
niques need many padding areas inside the cache lines and
the pages. Therefore, alignment in the middle and the bot-
tom layers of trees, which includes a lot of branch nodes,
increases the total index size. Due to this trade-o� between
performance and index size, our technique aligns cache lines
and pages only for the top indices, and in P16 and P8, these
elements such as compression blocks and SIMD blocks are
SIMD-length aligned (SIMD register length is assumed to
be 128bit). Figure 4 overviews this alignment, which can
minimize total index size for a small drop in performance.

Figure 4: Alignment of compression blocks and SIMD
blocks. Each compression block and its internal elements
are SIMD-length aligned in memory. A compression block
header will be described in Section 3.2.

3.1.2 Keys on Leaf Nodes

A lossless compression algorithm is applied to keys on leaf
nodes. The keys (key1, key2, . . . , keyN) on leaf nodes are
held as an ascending-order array with physically-consecutive
addresses in memory, that is, the array of keys, and the
sequence of RIDs shares the same arrangement. VAST-
Tree applies a processor-friendly compression method called
P4Delta [28] to the sequence of keys. This technique has
the ability to pack more keys into a single cache line, while
reducing the cost of error correction to hold down the num-
ber of required cache lines. Section 3.3 will explain how the
keys are compressed using P4Delta in detail.

3.2 Optimization of Branch Nodes

3.2.1 Lossy Compression

As described before, compression blocks use lossy com-
pression in a manner similar to early, well-known, techniques
called �pre�x truncation� and �su�x truncation� in B-trees
[2][9], which skip common bits from pre�xes and remove bits

from su�xes, respectively. Let V = [V1, V2, . . . ,Vn] be the
keys that are to be assigned to a compression block and V
is sorted in ascending order. V is compressed as follows:

1. W = [0, V2 − V1, V3 − V1, . . . , Vn − V1] is obtained by
subtracting the minimum value, Vmin, from each key
in V .

2. K-bits are extracted from each value in W , starting
from the �rst bit B where 1 occurs in the bit expression
of the maximum value in W . K is equal to 16 in P16,
and 8 in P8.

Vmin and (B −K), Vshift, are recorded in the header of
the compression block. The compressed keys are recorded
in the body part of the compression block. Figure 5 shows
an example of the lossy compression of eight values in P8.

Figure 5: An example of the lossy compression on the eight
values (W1, W2, ..., W8) of P8. The 8bit sequences with gray
background are used as comparison keys in VAST-Tree.

Note that this compression method is lossy to obtain higher
compression rates. During the search phase, the VAST-Tree
algorithm must detect traversal errors caused by the use of
the lossy compression. We will describe how to �x the errors
in key compression in leaf nodes in Section 3.2.4.

3.2.2 Tree Traversal on Compression Blocks

The VAST-Tree algorithm traverses a tree block by block,
and then �nally checks and corrects keys if needed. This sec-
tion describes tree traversal in compression blocks, and the
following section will explain how to �x key errors. Tree
traversal in compression blocks is done via the headers and
comparison keys inside block bodies. Because these com-
parison keys are compressed, search keys are transformed
in a similar rule to permit comparison. Search key skey is
transformed as follows:

1. VAST-Tree extracts Vmin and Vshift from the com-
pression block header.

2. It subtracts Vmin from skey, and shifts skey to the
right by Vshift-bits.

This transformation reduces search key bit-length to K-
bits. Speci�cally, Section 3.2.7 will show the pseudo code
for tree traversal in P8.

3.2.3 Correction of Traversal Errors: ∆w

The lossy compression causes incorrect traversal in trees,
which means that incorrect key o�sets could be returned at
the end of tree traversal. We assume that the 8bit pre�x of
comparison key �3220 (1100 1001 0100 in binary digit)� is

399

treated as compressed key �201�. If the search key is �3219
(1100 1001 0011 in binary digit)�, a traversal error occurs
due to the lossy compression. The o�set of correct keys from
the top is de�ned as w. And a traversal error is de�ned as
∆w; the o�set from the correct key to the incorrect key. For
example, the correct search key is key[w], so the incorrect
key is key[w + ∆w] right after tree traversal. The error is
detected by the di�erence between the search key and the
keys in leaf nodes. If they are di�erent, VAST-Tree scans
the leaf nodes sequentially until ∆w becomes 0. Section
3.3.3 shows the pseudo code for error correction.

3.2.4 Compression by Using Error Correction

This above error correction allows VAST-Tree to be more
compact; Its technique for optimization is to remove bottom
compression blocks whose comparison key height is under
SH8. This optimization could cause additional errors, that
is, SH8 at most. However, our various experiments showed
that this had virtually little impact on performance. As a
result, this optimization is applied to all patterns of VAST-
Tree in the evaluation of Section 4.

3.2.5 A Pseudo Code for Building VAST-Tree

A pseudo code for building VAST-Tree is shown in Algo-
rithm 1. First, the top layer of VAST-Tree is constructed
according to FAST (line 9) [14]. Next, the compressed lay-
ers (P16 and P8) of VAST-Tree are made up of three loop
structures; the outer loop is repeated in the number of com-
pressed layers rnum (line 11-22), the middle loop is to con-
struct compression blocks (line 12-21), and the inner loop is
to extract sub-trees of compression blocks according to bi-
nary trees and store these blocks on disk (line 13-19). As for
extracting the sub-trees of compression blocks explained in
Section 3.1, it gets (2CHn -1) keys by using extract_keys()
(line 14), and then permutes them (line 14). SIMD blocks
in compression blocks are arranged in breadth �rst order on
physically-consecutive memory as explained in Section 2. Fi-
nally, it extracts the minimum value, Vmin, and the amount
of shift, Vshift, and stores the header (Vmin and Vshift) and
compressed keys (line 17-18) as described in Section 3.2.

3.2.6 Pseudo Code for Tree Traversal

A pseudo code for tree traversal of P8 is shown in Algo-
rithm 2. First of all, the minimum value, Vmin, and the
amount of right shift of search keys, Vshift, are extracted
from the header of a compression block at current posi-
tion, cpos, and search key skey is transformed into the com-
pressed key, skey′, so that it can be compared with the
keys of the compression block (line 10-12). Next, VAST-
Tree traverses the compression block using SIMD operations
(line 14-18). The output gained upon completion of the
current block indicates the next position of SIMD blocks
or compression blocks (line 16-17, and line 19-20). Here,
sblk_sz(SH, i) returns the total size from the root to i of
SIMD blocks whose height is SH, and cblk_sz(i) returns
the total size of root to i of VAST-Tree. Finally, o�set kpos
from the head of keys is returned after tree traversal as de-
scribed in Section 3.2.4 (line 22). This o�set is expected to
include an error, w + ∆w, which must be detected as shown
in Section 3.2.4.

3.3 Optimization of Leaf Nodes
In this section, we detail the structures of keys on leaf

Algorithm 1 Pseudo code for building VAST-Tree

1: /*
2: key[]: Array of keys
3: rnum: Number of compressed layers: P16 and P8

4: Hn: Height of a n-th compressed layer
5: CHn: Height of a n-th compression block
6: SHn: Height of a SIMD blocks in CHn

7: */
8: height = 0;
9: build_FAST(key, H32);
10: height = height + H32;
11: for i← 1 to rnum do
12: for j ← 1 to Hi/CHi do
13: for k ← 1 to 2height do
14: s[] = extract_keys(key, H32, CHi, SHi, j, k);
15: Vmin = extract_Vmin(s[]);
16: Vshift = extract_Vshift(s[]);
17: lossy_compress_keys(i, s[]);
18: store_VAST(Vmin, Vshit, s[]);
19: end for
20: height = height + CHi;
21: end for
22: end for

nodes. The processor-friendly and lossless compression tech-
nique known as �P4Delta� is applied to these keys. Later, we
show the pseudo code that can correct the inherent errors
of VAST-Tree.

3.3.1 P4Delta

We apply the processor-friendly compression algorithm
called P4Delta [28] to a d-gap sequence of keys (ascend-
ing order) on leaf nodes. Given a sorted list of keys key, a
list of d-gaps d is de�ned as follows: d[1] = key[1], d[i] =
key[i]− key[i− 1], i > 1. These d-gaps like time series data
sets are inclined to be much smaller than that of original
data. P4Delta is known to be suitable for these small in-
tegers, and is able to achieve a good balance between the
compression ratio and the decompression speed. This tech-
nique classi�es integers in a sequence into two groups: coded
or exceptions. Most integers are small and are regarded as
coded. It �nds the smallest b so that most integers are not
greater than 2b; these integers are then stored as b-bit en-
tries. Speci�cally, if k consecutive integers are compressed
with P4Delta, these integers are packed within a list of ⌈kb⌉
bits. On the other hand, bigger integers (exception values)
are left uncompressed, and lie on the tail of the list. Details,
omitted due to paper limit, can be found in [28].
Figure 6 overviews the compression of keys on leaf nodes.

It is necessary to randomly access the o�set of keys on com-
pressed leaf nodes, as the o�set is returned after tree traver-
sal in branch nodes. Therefore, k consecutive keys are com-
pressed into a single chunk, and each chunk consists of the
minimum quantity of these k keys, coded values of d-gaps,
and exception values. The minimum value is located at the
head of each chunk so as to quickly decompress a part of a
key list for error correction. The chunk size needs to be set
to a multiple of the size of cache lines; each chunk is aligned
with cache lines so as to minimize cache misses. Moreover,
k is a compression parameter on keys on leaf nodes, and
needs to be determined to make the total leaf size small.
We present a new way to choose optimal parameter k in the

400

Algorithm 2 Pseudo code for tree traversal in P8

1: /*
2: spos: SIMD block o�set inside a SIMD block
3: cpos: Compression block o�set in a binary tree
4: kpos: Key o�set after tree traversal
5: chead: Head position of a current compression block
6: ssz: Single SIMD block size
7: csz: Single compression block size
8: */
9: for i← 1 to H8/CH8 do
10: Vmin = extract_Vmin(cpos);
11: Vbit = extract_Vbit(cpos);
12: skey′ = lossy_compress_skey8(skey, Vmin, Vbit);
13: spos = 0, chead = cpos;
14: for j ← 1 to CH8/SH8 do
15: res = compare_SIMD8(skey′, cpos);
16: spos = spos × 2SH8 + lookup(res);
17: cpos = chead + spos × ssz + sblk_sz(SH8, j);
18: end for
19: cpos = cpos × 2CH8 + spos;
20: cpos = cpos × csz + cblk_sz(H32 + H16 + i);
21: end for
22: kpos = coffset;
23: return kpos;

following section.

Figure 6: Compression of keys in leaf nodes. Upper array is
a uncompressed list of keys, and lower array is a compressed
one. VAST-Tree compresses k consecutive keys into a single
chunk.

3.3.2 Parameter Decision

We explain here the key di�erence from the naive P4Delta
algorithm. As explained before, we need to choose param-
eter k so as to minimize its compression ratio. VAST-Tree
uses a bisection method to �nd parameter k. Let chunk size
be CS bits, and key size be KS bits. The details are as
follows;

1. lk is set to ⌈CS/KS⌉, and rk is set to CS.

2. VAST-Tree checks whether all ⌈(lk + rk)/2⌉ consecu-
tive keys could be compressed in a single chunk.

3. If not, rk is set to ⌈(lk+ rk)/2⌉, otherwise lk is set to
it, then return to 2. Repeat until lk is equal to rk.

4. lk (or rk) is employed as the value of parameter k.

3.3.3 Pseudo Code for Error Correction

A pseudo code for error correction is shown in Algorithm
3. A initial byte position, cpos, on compressed leaf nodes is
calculated by the return value, kpos, of tree traversal (line
9). kpos is expected to be w, however, it may be w +
∆w; ∆w is caused by the traversal errors as explained Sec-
tion 3.2.3. It detects whether the current position is correct
using the minimum values inside chunks (line 10), and if
incorrect, it corrects the position using the loop structure
(line 10-13) until the minimum value exceeds skey. After
error correction, it decompresses a chunk and returns the
corresponding RID (line 14-15).

Algorithm 3 Pseudo codes for error correction

1: /*
2: skey: Search key
3: RID[]: Array of RIDs
4: CS: Size of chunks as bytes
5: k: Number of keys in a single chunk
6: kpos: Key o�set after tree traversal
7: cpos: Byte position on compressed leaf nodes
8: */
9: cpos = ⌈kpos/k⌉ * CS;
10: while val > skey do
11: val = get_minimum(cpos);
12: cpos = cpos - CS;
13: end while
14: kpos = decompress_P4Delta(skey, cpos);
15: return RID[kpos];

4. EVALUATION
In our experiments, we used synthetic and realistic test

data sets to cover di�erent key distributions. First, a se-
quence of keys that follow a Poisson distribution is employed
as a synthetic data set because VAST-Tree is assumed to
be suitable for time series data, and these are typically ex-
pressed by this distribution. The parameter is noted in 1/λ,
and it is set to 16 unless stated. In addition, Public Time-
line data in Twitter were collected via the Twitter API from
May, 2010 to Apr., 2011, and employed as realistic data. Ids
and T imestamps of the posts in Public Timeline data were
extracted from these logs. The number of these entries was
36,068,948 (nearly equal to 225). Figure 7 shows the distri-
bution of the �rst 10 smallest d-gaps in these data sets, and
it is clear that most parts of the keys are duplicated.
Table 2 shows the parameters of VAST-Tree used through-

out our experiments. These were decided based on the fol-
lowing properties of the processors we used; cache line size
was 64B, page size was 4KiB (CentOS v5.5 with kernel-
2.6.18-194), and SIMD register width was 128bits. The per-
formance evaluation was done on servers with Xeon X5670
processors (6 cores with Intel Hyper Threading and 31.8GiB/s
maximummemory bandwidth), and 16GiB of memory. Opro-
�le was used for processor pro�le analysis. Opro�le is a pro-
cessor pro�ling tool for Linux kernels, and has the ability
to observe counters for performance monitoring inside pro-
cessors. The current version of opro�le is 0.9.6. Because
this opro�le version does not support Xeon X5670 proces-
sors, pro�ling actions such as the analysis of execution ratio
were executed only on Xeon X5260 processors (2 cores and
the 21.2GiB/s maximum memory bandwidth). These codes

401

(binary trees, FAST, and VAST-Tree) in our experiments
were written in C and complied by GNU Compiler Collec-
tion v4.1.2 with an option �-O3�.

Figure 7: Distributions of the �rst 10 d-gaps for realistic
data used in our experiments. These data were collected
from May, 2010 to Apr., 2011 from the Public Timeline of
Twitter.

Variables Height Variables Height

SH32 2 SH16 3
CLH32 4 CH16 7
PH32 8 SH8 4

CH8 8

Table 2: Parameters for VAST-Tree in our experiments.
These parameters are based on the sizes of cache lines and
pages, and the width of SIMD registers.

4.1 Performance Evaluation of VAST-Tree

4.1.1 Compression Ratios

Table 3 and Table 4 show the compression performance
of VAST-Tree as compared to the previous techniques such
as binary trees and FAST. Table 3 shows that the total size
of branch nodes with various VAST-Tree parameters: H32,
H16, and H8. Note that H8 is calculated by �log2(# of
keys) - (H32 + H16)�, and only synthetic data were used
because these sizes do not depend on the key distribution.
This table indicates that VAST-Tree has high compression
ratios in branch nodes; at the key number of 230, the branch
size of VAST-Tree is less than 5.0% compared to these al-
ternatives3. These parameters (H32, H16, and H8) need
to be determined to minimize the probability of errors in
tree traversal as explained in Section 3.2.3. On the other
hand, the values of H16 and H8 need to be made large from
the viewpoint of space complexity. Therefore, subsequent
experiments used the parameters which had the smallest er-
rors we found in the experiments. Speci�cally, with 224 keys
these parameters are H32=8 and H16=6, otherwise these are
H32=8 and H16=12 in following experiments.
Table 4 shows the compression ratios of leaf nodes and

the numbers of keys packed in a single chunk, CK, for var-
ious leaf sizes. Note that, if the sizes of keys and chunks

3Although the rounded sizes of the �rst and third entry from
the top seem to be the same in Table 3, the actual sizes are
slightly di�erent. Because the layer of H32 is small, these
sizes hardly change between H32=0 and H32=6.

log2(# of keys) 24 26 28 30

VAST-Tree (0, 6) 0.00449 0.00449 0.130 0.130
VAST-Tree (8, 0) 0.00225 0.0186 0.0186 0.519
VAST-Tree (8, 6) 0.00449 0.00449 0.130 0.130
VAST-Tree (8, 12) 0.00248 0.00337 0.00337 0.251

FAST 0.252 1.25 1.25 64.3
binary trees 0.156 0.625 2.50 10.0

Table 3: Total branch node sizes (GiB) of VAST-Tree, bi-
nary trees, and FAST. The values in parentheses show H32

and H16. The branch nodes of VAST-Tree are obviously
highly compressed by using the lossy compression.

are 32bit and 64B, respectively, CK becomes 16 in uncom-
pressed keys. Because, in turn, these compression ratios de-
pend on the distribution of keys, we show the results taken
from a variety of test data sets. These results mostly follow
a previous work [28], which indicated that decreasing the
o�sets raises the compression ratio. Moreover, increasing
the chunk size improves the compression ratios. As a result
of that, VAST-Tree compacts the overall index size (branch
and leaf nodes) by 47-84% given that there are 230 keys.
However, raising the compression essentially leads to more
decoding P4Delta penalties (and thus processing penalties)
in leaf nodes as explained in Section 3.3.1. Therefore, there
is trade-o� between VAST-Tree performance and compres-
sion ratios on keys. In the experiments in Section 4.1.2, we
used the chunk size of 64B because this yielded the high-
est VAST-Tree throughput. We compare the results gained
from binary trees, FAST, and VAST-Tree; the ratios of exe-
cution time, throughput, and the distribution of error. Be-
cause VAST-Tree obviously depends on the distribution of
keys, we show their results by using the realistic data sets.

Chunk Size 64B 128B 256B

1/λ = 16 .142(113) .133(240) .129(497)
1/λ = 64 .225(71) .219(151) .206(311)

Ids .219(71) .211(151) .199(321)
T imestamps .500(32) .320(100) .285(311)

Table 4: Compression ratios of leaf nodes (VAST-Tree). The
values in parenthesis indicate the number of keys, CK, in a
single chunk.

4.1.2 Performance Evaluation of VAST-Tree

Figure 8 shows that the ratios of execution and the counts
of instructions with exact-match scans of the three tech-
niques: binary trees, FAST, and VAST-Tree. With regard to
VAST-Tree, we tested the two settings; uncompressed keys
and compressed keys in leaf nodes (noted as �w/o P4Delta�
and �w P4Delta�, respectively). In all cases of VAST-Tree,
the total of stall time and branch penalties caused by bi-
nary trees decreased by 72.8% to around 50%, and, as a re-
sult, IPC of VAST-Tree is better than that of binary trees.
Moreover, the most IPC of VAST-Tree is superior to that of
FAST. And also, we found that the distribution of keys and
the leaf compression make an impact on IPC and the total
of instructions in VAST-Tree, and it tends to make both
factors high as compared to �VAST-Tree w/o P4Delta�.

402

VAST-Tree tends to need many instruction counts for tree
traversal, because it incurs additional cost when traversing
branch blocks, error correction, and decompressing keys in
leaf nodes. In particular, the last decompression increases
the count as shown in Figure 8. Basically, if memory band-
width is not restricted by an upper limit, it is better to
keep IPC high while suppressing the count of instructions.
Hence, the throughput performance is expected to re�ect
these observations for tree traversal as shown in Figure 9
and Table 5. Although the size of �VAST-Tree w P4Delta�
is de�nitely compact, its throughput performance is slightly
inferior to FAST with 224 and 228 keys. �VAST-Tree w/o
P4Delta� overcomes FAST with all conditions due to its
compact branch representation and no penalty of decoding
in leaf nodes. And also, throughput with realistic data sets
follow the observation in Figure 8, and the throughput of
Ids is higher than that of T imestamps because of its dense
distribution as shown in Figure 7.
Finally, the distribution of the errors∆w are shown in Fig-

ure 10 and Figure 11. These �gures are for the evaluation
conducted with di�erent key distributions and the various
numbers of keys, respectively, and the values in parentheses
show the averaged and worst error amounts. These errors
cause high penalties with regard to the counts of instruction
and memory bandwidth, so it is critical to minimize these
errors as much as possible. Although the compression in leaf
nodes requires the more counts of instructions as explained
before, it is expected to minimize the required number of
cache lines. For example, if the error correction can be com-
pleted in a single chunk, it causes no additional penalty for
memory bandwidth. Because the decoding cost is basically
lower than the penalty of cache misses in modern infrastruc-
tures, the compression in leaf nodes �ts VAST-Tree well.
In practice, in the setting used for this experiment, as the
most errors, ∆w, lay within a single chunk, there was no
additional cost for their memory bandwidth. As a result,
the averaged error amount was kept low compared to CS.
On the other hand, the worst errors of these realistic data
sets indicate that our lossy compression in branch nodes in-
frequently makes their error amounts enormously large (ex.
6981 if Twitter− Ids, and 4534 if Twitter− T imestamps).
Section 5.1 provides an analysis of these errors, and then
Section 5.2 presents a way to minimize the penalty of the
worst errors.

Figure 9: Throughput with exact-match scans as deter-
mined from synthetic data sets. �VAST-Tree w/o P4Delta�
has the highest throughput. On the other hand, �VAST-Tree
w P4Delta� has the higher throughput than FAST only for
large key sizes (226 and 228).

4.1.3 Memory Bandwidth Consumption

Data Sets Ids T imestamps

binary trees 9.05 same as left
FAST 34.3 same as left

VAST-Tree w P4Delta 67.7 31.4
VAST-Tree w/o P4Delta 78.9 41.1

Table 5: Throughput (×106) with exact-match scans by us-
ing realistic data sets. The skew of real data sets has little
impact on their performance.

Figure 10: Distributions of the errors caused by the use of
our lossy compression. The evaluation used synthetic data
with 228 keys. The left values in parenthesis indicate the
averaged amounts of errors, and the right values show the
worst errors in each condition.

Early studies [14][18][22] report that memory bandwidth
is a important factor determining scaling performance as the
number of cores increases. Figure 12 shows the averaged
amount of memory bandwidth consumed by a single tree
search. Many speculative reads in conditional branches in
binary trees are believed to increase the memory bandwidth.
On the other hand, both versions of VAST-Tree are more
e�cient than those of binary trees because of the structure
without conditional branches. And also, our compression
technique leads to the reduction of its consumption as com-
pared to FAST. As a result of that, although VAST-Tree
tends to increases instruction count through key searches,
it does reduce the memory bandwidth consumed, and more
speci�cally the �gure shows that our technique saves the
memory consumption by more than 94.7% and 40.5% as
compared to binary trees and FAST, respectively, given that

Figure 11: Distributions of the errors for the various num-
bers of keys in leaf nodes (synthetic data). The error
amounts get bigger as the number of keys increases, because
the maximum error amounts widen due to the increase of
H8. The values in parentheses are similar to Figure 10.

403

Figure 8: Ratios of execution time and counts of instructions with the exact-match scans of three techniques: binary trees,
FAST, and VAST-Tree. The total number of keys is 225, and the values in parenthesis indicate IPC in each technique.

there are 228 keys.

Figure 12: Comparison of averaged memory bandwidth (B)
for a single tree search consumed by all the techniques.
VAST-Tree achieves the saving of memory bandwidth con-
sumption as compared to binary trees and FAST because of
the conditional branch-free and compressed structure.

5. DISCUSSION
VAST-Tree is obviously in�uenced by the distribution of

keys as shown by Figure 10. Section 5.1 details an analysis
of the errors caused by the key distribution, and Section 5.2
then presents a optimized technique to reduce the penalty
of the worst errors in tree traversal by using a error model
detailed in Section 5.1.

5.1 Error Model of Tree Traversal
First, we analyze how many errors occur during tree traver-

sal in VAST-Tree. Figure 13 shows key ordering under a
certain SIMD block (SB) which includes comparison keys:
nk and nk+1 (nk<nk+1). There are two sub-trees, STA and
STB ; STA includes keys from keyA to keyA+2h and STB in-
cludes keys from keyB to keyB+2h , respectively.We assume
that search key skey follows nk<skey<nk+1.If an error hap-
pens in SB, that is, skey is erroneous as nk+1<skey<nk+2,
skey is compared with keys in STB , not STA. Finally, skey
must be located in keyB because all the keys under STB

are bigger than skey (skey<keyB)
4. That is why at most a

single error happens during tree traversal.
Next, based on the analysis above, we use a geometric

distribution to approximate the amount of the errors (∆w).

4Because the lossy compression is not applied to the leftmost
keys (minimum values) in the headers of compression blocks,
these keys are compared correctly.

Figure 13: An analysis of the errors on the ordering of keys
under a certain SIMD block (SB). The number of keys
under these sub-trees (STA and STB) is assumed to be 2h.

Speci�cally, because the only one error happens through tree
traversal from the root to the bottom, the �rst error af-
ter consecutive and successful comparisons from the root is
modeled based on the well-known coin-toss model. Let the
error probability (the random variable determined by the
distribution of keys) of level h be ph, the amount of errors
(∆w) be dwh and the height of trees be H. The random
variable of the total error, W , can be written as:

W =
1

H

(

H
∑

h=1

dwh × ph

h
∑

k=1

(1− pk−1)
k−1

)

(1)

In practice, the error happens in P16 and P8 of VAST-
Tree. Figure 14 shows each assigned variable of P16 and P8

used in the following equations. According to these vari-
ables, Equation (1) is transformed into the equation below:

W =
1

H16 +H8

H16

CH16
+

H8

CH8
∑

k=1

wk (2)

wk means the amounts of the errors in each compression
block and is de�ned as:

wk =

CH16

SH16
+

CH8

SH8
∑

l=1

dwl × p′k

l
∑

n=1

(

1− p′n−1

)n−1
(3)

404

Figure 14: De�ning each variable in P16 and P8.

dwl represents the amounts of the errors caused by com-
parison using SIMD operations. It is quanti�ed as follows:

dwl =

{

2H16+H8−l×SH16 (l ≤ H16

CH16
)

2
H8−(l−

H16

CH16
)×SH8 (otherwise)

(4)

p′k represents the probability of the errors in the k-th com-
pression block from the top as shown in Figure 14. The
probability in a compression block is assumed to be same
because the bits of the comparison keys in the block are
cut by the same number of bits. Therefore, p′k is de�ned as
follows:

p′k =
ck × rk

qr
, (5)

where qr is the input range of scans, ck is the total number
of comparison keys at the same level of the k-th SIMD block
from the top, and rk is the error range caused by the lossy
compression of comparison keys. For example, if seven bits
are cut from each key, the error range is 128 (=27) for each
comparison key. Thus ck is represented as:

ck =

{

2H32+(k−1)×CH16 (k ≤ H16

CH16
)

2
H32+H16+(k−

H16

CH16
−1)×CH8 (otherwise)

(6)

The number of cut bits obviously depends on the key dis-
tribution in leaf nodes, so rk is also determined by this dis-
tribution. Let the random variable of d-gaps on keys be X.
Assuming that the compression block of CH16 is located at
the height of h (similar to SB in Figure 13), 2h+CH16 keys
must be packed in leaf nodes under this block. If the total of
these d-gaps exceeds the range of 216, the error range starts
to widen. If Yk is the random variable of the summation
under the k-th compression block, rk is de�ned as:

rk =

2log2Yk−16 (k ≤ H16

CH16
and log2Yk > 16)

0 (k ≤ H16

CH16
and log2Yk ≤ 16)

2log2Yk−8 (k > H16

CH16
and log2Yk > 8)

0 (k > H16

CH16
and log2Yk ≤ 8),

(7)

where Yk can be calculated by X as shown below:

Yk =

∑H16+H8+(1−k)×CH16

n=1 Xn (k ≤ H16

CH16
)

∑
H8+(1−k−

H16

CH16
)×CH8

n=1 Xn (otherwise)
(8)

Figure 15 compares these actual and estimated errors out-
put by our error model explained above. Although our es-
timation model deviates slightly at the small and large 1/λ
values, it roughly replicates the actual amount of the er-
rors incurred by VAST-Tree due to the distribution of keys.
Moreover, these errors are inclined to increase with the in-
crease of d-gaps in keys. Therefore, the parameters (H32,
H16, and H8) of VAST-Tree must be determined carefully
from the distribution of d-gaps.

Figure 15: Estimation of the errors incurred by VAST-Tree.
This evaluation was conducted by using 230 keys, and syn-
thetic data sets with varying 1/λ.

5.2 Minor Error Optimization

Figure 16: An overview of our proposed optimization tech-
nique for binary searches so as to minimize the penalty of
the worst errors. skey′ is initial position after tree traversal
on the branch nodes of VAST-Tree, and skey is the search
key. skey needs to be in the range of RBS.

In this section, we present a technique so as to minimize
the penalty of the worst errors as described in Section 4.1.2.
Speci�cally, we apply binary searches to tree traversal with
the worst errors instead of scanning sequentially for the error
correction. Let the search key be skey, and the result of
tree traversal with the error be skey′. Figure 16 overviews
the optimization based on binary search. Note that skey
needs to be in the range of RBS with high frequency so
as to strengthen the use of binary searches. Based on our
analysis of the errors, RBS is de�ned as follows:

RBS = t×
√

V (W), (9)

where t and V (W) represent a certain constant value and
the variance of W , respectively. The relationship between
V (W) and the rate follows Chebyshev's inequality regarding
to t, and is represented by the following inequality:

405

P
(

|W − E(W)| ≥ t×
√

V (W)
)

≤
1

t2
(10)

Therefore, t is decided so as to insure that skey is in the
range of RBS. The remaining question is when to exploit
the above optimized technique. In the optimized VAST-
Tree, if the inequality below is satis�ed, the binary search
is applied so as to minimize the number of cache lines that
must be read for the error correction.

|k − k′|

CK × E(X)
> log2(t×

√

V (W)) (11)

The left term represents the estimated amount of read
cache lines for the original error correction, and the right
term represents the amount of read cache lines by using the
optimized error correction with binary searches.
Table 6 shows the timestamp counts of a single search

with the worst error. These counts are obtained by a rdtsc
instruction, which has ability to extract the value of times-
tamp counters inside Intel processors. The original VAST-
Tree algorithm is noted as SEQ, and the optimized one
is noted as BS, respectively. As a result, the optimized
one saves the worst processing time with the data sets of
Twitter − Ids and Twitter − T imestamps by 7.1% and
18.5%, respectively.

Type of Correction SEQ BS %

Ids 557285 523514 93.9
T imestamps 551297 449340 81.5

Table 6: Hardware-based timestamp counts of a single tree
search with the worst error. The right-most column repre-
sents the reduction ratios of the worst cases (BS

SEQ
).

6. RELATED WORK
Recently, a lot of techniques have been proposed for mod-

ern computing infrastructures to improve the performance
of database kernel operations such as sorts, joins, scans,
compression, and indices [22][5][21][7][12][8]. In particular,
since the early study [3] reported that the bottlenecks be-
tween processors and memory degraded the performance of
database kernels as explained in the Introduction, many
techniques using hardware-conscious approaches have been
raised. A recent report provides a comprehensive survey of
these kinds of advances [17]. This section provides a brief
overview about related works in the �elds of indexing and
index compression techniques.

6.1 Indexing on Modern Hardware
T-trees was initially proposed as a replacement of disk-

based indices [16]. Later, a lot of cache-conscious B+trees
[19][20][10][11][4] were proposed to decrease cache misses in
tree traversal. In implementing memory-based B+trees, one
technical consideration is how large the branch nodes are.
Two previous studies [11][4] concluded that the performance
of B+trees is improved by using node sizes larger than cache
line size, because small node size is inclined to increase tree
height, which yields more TLB misses than larger node size
does. Moreover, there are other cache-conscious techniques

that use query bu�ering so as to save memory bandwidth
[27]. This approach holds a bunch of queries that access the
same branch node, and processes these queries simultane-
ously so as to minimize the total number of node accesses.
As a result, it decreases the number of cache lines, and the
consumption of memory bandwidth. The technique is useful
for processors that have many cores, though the situation of
multi-threads is not considered.
Although these cache-conscious techniques are successful,

they ignore the branch-free and alignment techniques used
by recent studies [28][25]. These days, index techniques have
been accelerated by using SIMD instructions [23][14]. In
particular, FAST successfully incorporates cache-conscious,
aligned, and branch-free techniques, and is now the fastest
of the known technique for in-memory usage and read-only
workloads. However, the alignment technique used to de-
crease the total cache lines and TLB creates a lot of padding
areas, which greatly increases the total index size of FAST
as the number of keys increases. As FAST does not support
incremental updates, the same authors proposed a updat-
able and multi-core e�cient index structure, called PALM
[24]. To the best of our knowledge, this is the �rst study
to address the trade-o� between optimization techniques of
modern processors and the total index size; we apply SIMD
instructions and processor-friendly compression to indices
of large data sets, and show that it runs well on modern
processors.
Recently, the application of many-core architectures such

as GPUs and other devices has become a popular topic,
and there is an index technique for GPU implementation
[13]. FAST was prototyped and evaluated on GPUs [14],
too. However, the data on host memory must be trans-
ferred to GPU memory, and this transfer time is reported
to make up 15% to 90% of the total [6]. This problem is ex-
pected to be solved by subsequent processors that are inte-
grated at the die level with GPUs such the next generation
Intel processors called �Ivy Bridge�, or future graphic de-
vices. On the other hand, Intel developed an advanced x86-
based many-core architecture, called Intel R⃝MIC (Many
Integrated Core), and some index techniques [24][15] were
evaluated on this platform. Therefore, the techniques to
harness these hardware are of considerable importance in
the database community.

6.2 Compression Techniques for Indices
Many compression techniques for indices such as �pre-

�x/su�x truncation� and �NULL suppression� [2][9] were
proposed by early database researchers, but they targeted
compaction of indices rather than processing e�ciency. Our
approach applies truncation to branch nodes so as to harness
SIMD instructions, and then realizes compact and e�cient
data structure for branch nodes.
Leaf nodes can be regarded as a sequence of keys in as-

cending order, and there are some kind of processor-friendly
compression techniques that can be applied to such data.
We show here two recent techniques: P4Delta [28] and VSEn-
coding [25]. P4Delta, explained in the previous section, is
a heuristic and parametric approach. P4Delta is popular
as the compression technique applied to the inverted lists
of search engines [26]. On the other hand, VSEncoding is
a parametric approach, and �nds the optimal parameters
by using dynamic programming. Our compression of keys
on leaf nodes is based on P4Delta rather than VSEncoding

406

because VSEncoding has no ability to access compressed el-
ements randomly. That is, it is di�cult to reference the
o�set of integer arrays as explained in Section 3.3.1. As the
amount of information dynamically grows in the future, the
application of compression is of signi�cance for the analysis
of massive data sets.

7. CONCLUSIONS
We have introduced VAST-Tree, a state-of-the-art tech-

nique that can e�ciently and compactly process the indices
of massive data sets. There are two key advances in VAST-
Tree; the lossy compression of middle and bottom branch
nodes, and the lossless compression of the keys in leaf nodes.
The lossy compression achieves higher compression ratios,
and although the compaction yielded by the lossless com-
pression is not so high, its technique �ts VAST-Tree well
since it reduces the number of cache lines that must be
read for error correction. It is the �rst study to address
the trade-o� between the optimization techniques of mod-
ern processors and total index size. Finally, we modeled the
errors of VAST-Tree, and presented an optimized technique
to minimize the penalty of worst errors in tree traversal.

8. REFERENCES
[1] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A.

Wood. DBMSs on a Modern Processor: Where Does
Time Go? Proceedings of the VLDB Endowment,
pages 266�277, 1999.

[2] R. Bayer and K. Unterauer. Pre�x B-trees. ACM
Transactions on Database Systems, 2:11�26, 1977.

[3] P. A. Boncz, S. Manegold, and M. L. Kersten.
Database Architecture Optimized for the New
Bottleneck: Memory Access. In Proceedings of
VLDB'99, pages 54�65, 1999.

[4] S. Chen, P. B. Gibbons, and T. C. Mowry. Improving
index performance through prefetching. SIGMOD
Record, 30(2):235�246, 2001.

[5] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy,
M. Hagog, Y.-K. Chen, A. Baransi, S. Kumar, and
P. Dubey. E�cient implementation of sorting on
multi-core SIMD CPU architecture. Proceedings of
VLDB'08, 1:1313�1324, 2008.

[6] W. Fang, B. He, and Q. Luo. Database compression
on graphics processors. Proceedings of VLDB'10,
3:670�680, 2010.

[7] N. K. Govindaraju, J. Gray, R. Kumar, and
D. Manocha. GPUTeraSort: High Performance
Graphics Coprocessor Sorting for Large Database
Management. In Proceedings of SIGMOD'06, pages
325�336, 2006.

[8] N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and
D. Manocha. Fast computation of database operations
using graphics processors. In Proceedings of
SIGMOD'04, pages 215�226, 2004.

[9] G. Graefe. Modern B-tree Techniques. Foundations
and Trends in Databases, 3(4):203�402, 2011.

[10] G. Graefe and P.-A. Larson. B-Tree Indexes and CPU
Caches. In Proceedings of ICDE'01, pages 349�361,
2001.

[11] R. A. Hankins and J. M. Patel. E�ect of node size on
the performance of cache-conscious B+-trees.
Proceedings of SIGMETRICS'03, 31, 2003.

[12] B. He and J. X. Yu. High-throughput transaction
executions on graphics processors. Proceedings of the
VLDB Endowment, 4:314�325, 2011.

[13] T. Kaldewey, J. Hagen, A. Di Blas, and E. Sedlar.
Parallel search on video cards. In Proceedings of
HotPar'09, pages 9�9, 2009.

[14] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D.
Nguyen, T. Kaldewey, V. W. Lee, S. A. Brandt, and
P. Dubey. FAST: fast architecture sensitive tree search
on modern CPUs and GPUs. In Proceedings of
SIGMOD'10, pages 339�350, 2010.

[15] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D.
Nguyen, T. Kaldewey, V. W. Lee, S. A. Brandt, and
P. Dubey. Designing Fast Architecture Sensitive Tree
Search on Modern Multi-Core/Many-Core Processors.
ACM Transactions on Database Systems, 9(4), 2011.

[16] T. J. Lehman and M. J. Carey. A Study of Index
Structures for Main Memory Database Management
Systems. In Proceedings of VLDB'86, pages 294�303,
1986.

[17] S. Manegold, M. L. Kersten, and P. Boncz. Database
architecture evolution: mammals �ourished long
before dinosaurs became extinct. Proceedings of the
VLDB Endowment, 2:1648�1653, 2009.

[18] R. Matthew. When Multicore Isn't Enough: Trends
and the Future for Multi-Multicore Systems. In In
HPEC, 2008.

[19] J. Rao and K. A. Ross. Cache Conscious Indexing for
Decision-Support in Main Memory. In Proceedings of
VLDB'99, pages 78�89, 1999.

[20] J. Rao and K. A. Ross. Making B+-trees cache
conscious in main memory. In Proceedings of
SIGMOD'00, pages 475�486, 2000.

[21] N. Satish, M. Harris, and M. Garland. Designing
e�cient sorting algorithms for manycore GPUs. In
Proceedings of IPDPS'09, pages 1�10, 2009.

[22] N. Satish, C. Kim, J. Chhugani, A. D. Nguyen, V. W.
Lee, D. Kim, and P. Dubey. Fast sort on CPUs and
GPUs: a case for bandwidth oblivious SIMD sort. In
Proceedings of SIGMOD'10, pages 351�362, 2010.

[23] B. Schlegel, R. Gemulla, and W. Lehner. k-ary search
on modern processors. In Proceedings of DaMoN'09,
pages 52�60, 2009.

[24] J. Sewall, J. Chhugani, C. Kim, and P. Satish,
Nadthur Dubey. PALM: Parallel Architecture-Friendly
Latch-Free Modi�cation to B+Trees on Many-Core
Processors. In Proceedings of VLDB'11, 2011.

[25] F. Silvestri and R. Venturini. VSEncoding: e�cient
coding and fast decoding of integer lists via dynamic
programming. In Proceedings of CIKM'10, pages
1219�1228, 2010.

[26] H. Yan, S. Ding, and T. Suel. Compressing term
positions in web indexes. In Proceedings of SIGIR'09,
pages 147�154, 2009.

[27] J. Zhou and K. A. Ross. Bu�ering accesses to
memory-resident index structures. In Proceedings of
VLDB'03, VLDB '2003, pages 405�416, 2003.

[28] M. Zukowski, S. Heman, N. Nes, and P. Boncz.
Super-Scalar RAM-CPU Cache Compression. In
Proceedings of ICDE'06, pages 59�71, 2006.

407

