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ABSTRACT

The volume of time series data grows rapidly in various applica-
tions such as network traffic management, telecommunications, fi-
nance and sensor network. To reduce the cost of storage, transmis-
sion and processing of time series data, the need for more compact
representations of time series data is compelling. Segmentation is
one of the most commonly used methods to meet this requirement.
Both PLA and PPA are common segmentation methods which di-
vide a time series into segments and use a linear function or a poly-
nomial function to approximate each segment, respectively. How-
ever, while most of the current PLA and PPA methods aim to min-
imize the holistic error between the approximation and the original
time series, few works try to represent time series as compact as
possible with an error bound guarantee on each data point. Fur-
thermore, in many real world situations, the patterns of the time
series do not follow a constant rule such that using only one type
of functions may not yield the best compaction.

Motivated by these observations, we propose an online segmen-
tation algorithm which approximates time series by a set of differ-
ent types of candidate functions (polynomials of different orders,
exponential functions, etc.) and adaptively chooses the most com-
pact one as the pattern of the time series changes. A challenge
in this approach is to determine the approximation function on the
fly ("online"). Thereby, we further propose a novel method to ef-
ficiently generate the compact approximation of a time series in
an online fashion for several types of candidate functions. This
method incrementally narrows the feasible coefficient spaces of
candidate functions in coefficient coordinate systems such that it
can make each segment as long as possible given an error bound on
each data point. Extensive experimental results show that our al-
gorithm generates more compact approximations of the time series
with lower average errors than the state-of-the-art algorithm.

Categories and Subject Descriptors
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1 Introduction

A time series is a sequence of data points where each data point
is associated with a timestamp. There are rapidly increasing re-
search interests in the management of time series data due to its
importance in a variety of applications such as network traffic man-
agement [13, 33], telecommunications [4], finance [37] and sensor
network [6]. These applications need to record the change of cer-
tain values (counts of network packets, stock price, temperature,
etc.) over time and the recorded values form time series that grow
with high speed and continuously. For example:

• In telecommunication, AT&T’s call-detail time series con-
tains roughly 300 million calls per day generating approxi-
mately 7GBs data each day [7].

• In financial markets, the data vectors like Reuters transmit
more than 275,000 prices per day for foreign exchange spot
rates alone [5].

Due to the rapid and continuous growth of data in the above ap-
plications, we usually cannot afford to store the entire time series
due to the huge volume [2]. This poses a new challenge in data
storage, transmission, and processing. Therefore, the need for more
compact representations of time series data is compelling. Another
important characteristic of the above applications is that the data
points in the time series may arrive (or be generated) continually.
These applications require continuously monitoring the data and
analyzing them in almost real time. Therefore, we need to process
the data points and provide answers on the fly, i.e., the algorithms
need to be “online”.

A common approach to address the problem of the large data vol-
ume is segmentation which provides more compact representations
of time series data through dividing time series data into segments
and using a high level representation to approximate each segment.
The highly compact segmentation can reduce both the space and
the computational cost of storing and transmitting such data, and
also reduce the workload of data processing (e.g., more efficient in
mining the sequence ) [32]. Therefore, in this paper, we try to find
a highly compact segmentation scheme that each segment can be
approximated by a high level representation given an error bound
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Figure 1: FSW vs FCS

on each data point and the amount of information (i.e., the num-
ber of parameters) used to represent the time series is minimized.
Furthermore, we require online algorithms in order to accommo-
date the continuous nature of the data generated in the applications
described earlier.

Piecewise Linear Approximation (PLA) [16, 24, 28] has been
one of the most widely used segmentation methods for many prac-
tical applications [12, 19, 29, 36] because of its simplicity. PLA
divides a time series into segments and uses a linear function to
approximate each segment. Nonetheless, linear functions may not
always be the best choice to approximate a time series due to the
different kinds of patterns of the time series. Therefore, Piecewise

Polynomial Approximation (PPA) [9, 21] is introduced to approxi-
mate the time series with polynomial patterns more properly. PPA
uses polynomial functions instead of linear functions to approxi-
mate segments.

However, the goal of most current PLA and PPA methods [16,
28, 21, 9] is to minimize the holistic approximation error (e.g.,
the Euclidean distance between the approximation and the origi-
nal time series) given a certain amount of information (e.g., the
number of segments [28] or the maximum error in a segment [16]),
where the best approximation result is the one with the lowest holis-
tic error. This goal is different from that of our work: minimizing
the amount of information used to represent the time series given
a certain error bound on each data point, where the best approxi-
mation result should be the one using the smallest amount of infor-
mation. Therefore, these methods do not satisfy the requirement of
our problem and can not be used to solve our problem.

The most recent work that has the same problem setting as ours
is the Feasible Space Window (FSW) method [24] which introduces
the concept of feasible space to find the farthest segmenting point
of each segment. Feasible space is a space in which any straight line
can approximate all the data points read so far with a given error
bound on each data point. As the example in Figure 1(a) shows, the
area between the boundaries u1 and l1 is the feasible space for the
approximation of p0 and p1. The feasible space is incrementally
narrowed when new data points arrive continuously and eventually
turns into an empty set at a certain data point so that the previous
data point will be the farthest data point that can be approximated
by a straight line. Thereby, the FSW can make each approximation
line as long as possible and minimize the amount of information
used. Since FSW is the state of the art for the problem addressed
in this paper, we use FSW as the baseline in the experimental study
and describe it in detail in subsection 3.2.

FSW approximates time series by linear functions only. How-
ever, in many real world situations, the patterns of the time series
do not follow a constant rule. Using only one type of functions
may not yield the best compaction. Taking the stock price time
series as an example, a typical stock price pattern called Cup and

Handle [26] has two parts: a "cup" and a "handle" as shown in
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Figure 2: Cup and handle in stock price time series

Figure 2. The cup is a round bottom and it is followed by the han-
dle part which is a straight line. Figure 2(a) shows how this time
series is approximated using only linear functions and Figure 2(b)
shows how this time series is approximated using quadratic and lin-
ear functions. Based on an equation used to calculate the number of
parameters (i.e., Equation 2 in Subsection 3.1), the segmentation in
Figure 2(a) uses nine parameters to represent the time series while
the segmentation in Figure 2(b) only uses six parameters. There-
fore, using multiple types of functions may yield more compact
approximation.

Motivated by these observations, we propose an online time se-
ries segmentation algorithm which approximates time series by a
set of different types of functions (such as polynomials of differ-
ent orders, exponential functions, etc.) and adaptively chooses the
most compact one as the pattern of the time series changes. We
call this algorithm the Adaptive Approximation (AA) algorithm and
refer to the functions used to approximate the time series as the
candidate functions. To achieve our algorithm, we need to solve
the following two subproblems: (i) for a candidate function, how
to determine the values of its coefficients so that it can approximate
as many data points as possible given an error bound on each data
point; (ii) from a set of candidate functions, how to determine the
one that generates the most compact approximation of a certain part
of a time series (a subsequence).

Although feasible space is an intriguing idea for determining the
compact approximation of time series data, it is difficult to apply
the FSW algorithm to non-linear functions. The idea of FSW is to
use a starting point and a next data point to determine the bound-
aries of the feasible space of the approximation on the fly. Nonethe-
less, most non-linear functions have more than two coefficients and
their approximation boundaries can not be determined by only two
data points. As shown in Figure 1(a), two data points p0 and p1
can not uniquely determine the upper and lower boundaries of the
feasible space for the quadratic function.

We propose a novel method to address this challenge: instead of
finding the boundaries of feasible space as FSW does, we find the
boundaries of the feasible values for the functions’ coefficients –
using two data points, we can uniquely identify such boundaries in
the coefficient coordinate system. With these boundaries, we can
determine a space in which each point is a feasible set of values for
the coefficients of the candidate function. In order to distinguish
our feasible space from the Feasible Space (FS) in FSW, the feasi-
ble space generated in our method is called the Feasible Coefficient

Space (FCS) and the algorithm used to generate FCS is called the
FCS algorithm. Taking the quadratic function y = ax2 + bx + c

as an example, a FCS (gray region in Figure 1(b)) in a coefficient
space using coefficients a and b as axes is determined through
uniquely obtaining the upper boundary u by p0 and p⊤1 and the
lower boundary l by p0 and p⊥1 .
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Besides the FCS algorithm, we further propose an adaptive mech-
anism to determine the most compact candidate function for each
part of a time series (a subsequence). Specifically, given a start-
ing point, we continuously use the corresponding FCS algorithm
of each candidate function to segment and approximate the time se-
ries until the data point where each candidate function has obtained
at least one segment. Then we calculate the numbers of parame-
ters used by the candidate functions to represent the subsequence
ending at this data point (denoted as np) and choose the candidate
function with the smallest np as the approximation function of this
subsequence.

In summary, we make the following contributions in this paper.

• We propose an online time series segmentation algorithm
called the Adaptive Approximation (AA) algorithm which ap-
proximates time series by a set of candidate functions (e.g.,
polynomials of different orders, exponential functions, etc.)
and adaptively chooses the most compact one as the pattern
of the time series changes.

• We propose a novel method called the Feasible Coefficient
Space (FCS) algorithm which can efficiently find the far-
thest segmenting data point for non-linear candidate func-
tions with more than two coefficients (e.g., mth-order poly-
nomials where m is larger than 1). It addresses the drawback
of the FSW algorithm, which can only find the farthest seg-
menting data point for the functions with two coefficients.
We also analyze the complexities of the FCS algorithms for
various candidate functions.

• We perform an extensive experimental study using both syn-
thetic and real datasets. The results validate the effectiveness
of our AA algorithm. It outperforms the state-of-the-art al-
gorithm, FSW, in terms of the number of approximated data
points per parameter. At the same time, the AA algorithm
usually results in much lower actual errors than those caused
by the FSW algorithm given the same error bound.

The rest of this paper is organized as follows. We first review
related work in Section 2. Then we provide some preliminaries
and a formal problem definition in Section 3. Section 4 presents
the FCS algorithms for various candidate functions and Section 5
explains the AA algorithm in detail. Section 6 reports the results of
our experimental study. We conclude the paper and discuss future
work in Section 7.

2 Related Work

General lossless data compression techniques such as Huffman cod-
ing, Lempel-Ziv Codes, etc. [20] can yield data reduction, but they
do not exploit the property that two consecutive values of a time se-
ries are close. Therefore, they cannot achieve a compaction rate as
high as segmentation methods, which are customized to the nature
of time series. Nonetheless, lossless data compression techniques
can still be applied to the data independently after segmentation
methods are applied.

Many lossy data reduction methods exist such as Discrete Fourier

Transform (DFT) [30], Discrete Wavelet Transform (DWT) [17],
Piecewise Aggregate Approximation (PAA) [15], Singular Value

Decomposition (SVD) [31], Symbolization [23, 25], Histograms

[2], data cube [22] and wave-pattern [34]. These reduction tech-
niques focus on the global patterns of time series instead of individ-
ual data point so errors on individual data points vary widely (with-
out bound) and unpredictably. Some recent studies have been pro-
posed to provide probabilistic or even deterministic error bounds on

individual data points [10, 11], but these algorithms have to know
the whole length of the time series and work on the data offline.

Linear segmentation is another widely used lossy data reduc-
tion method for many practical applications [24, 12, 19, 29, 36]
due to its simplicity. Linear segmentation methods approximate
time series through Piecewise Linear Approximation (PLA) [16],
which divides a time series into segments and uses a linear function
to approximate each segment. Linear segmentation based meth-
ods can be categorized into two classes: offline segmentation and
online segmentation. Offline segmentation methods, such as Top-
down/Bottom-up algorithm [16] and evolutionary computation [8],
need to obtain the whole time series before processing it. Online
segmentation methods process the data point on the fly as each one
is read. Since online segmentation methods need to process data in
almost real time and continuously, they have strong requirement on
the efficiency of the algorithm.

An optimal solution for the linear segmentation is proposed by
Bellman [3]: given a certain number of segment k and a time series
whose length is n, an optimal PLA result that minimizes the holis-
tic approximation error (i.e., the Euclidean distance between the
approximation and the original time series) is found by dynamic
programming with a cost of O(kn2). To obtain this optimal result
on the fly, we need continually rerun the dynamic programming al-
gorithm when a new data point arrives, which is too expensive for
the applications whose data volume is large. Consequently, greedy
methods [1, 16, 28] are used in these applications.

The Sliding Window (SW) algorithm [1] is a classic online seg-
mentation algorithm. It uses the first data point of a time series as
the starting data point of a segment and tries to put the next data
point into this segment. The straight line that connects the current
data point and the starting data point is used to approximate the
current segment. Every time when a new data point is read, the ap-
proximation error needs to be calculated again based on the vertical
deviation between all data points and the approximation line. Once
the approximation error of the current segment exceeds a given er-
ror bound, we know that the previous data point is the endpoint of
the current segment. Then we take the previous data point as the
new starting data point of the next segment. The above process is
repeated until the end of the time series is reached. Subsequent
studies have proposed some improvements to reduce the complex-
ity of SW [18, 35]. Keogh et al. [16] present a method called SWAB
which combines the SW algorithm with a Bottom-Up mechanism.
Palpanas et al. [28] report a technique to reduce the complexity of
SWAB and SW to linear time.

However, the goal of the above-mentioned works [1, 3, 16, 28]
is to minimize the holistic approximation error (e.g., the Euclidean
distance between the approximation and the original time series)
given a certain amount of information (e.g., the number of seg-
ments), where the best approximation result is the one with the
lowest holistic error. This goal is different from that of our work:
minimizing the amount of information used to represent the time
series given an error bound on each data point (i.e., the number of
parameters used to represent the time series), where the best ap-
proximation result should be the one with the lowest amount of
information used. Therefore, these methods do not satisfy the re-
quirement of our problem and can not be used to solve our problem.

The most recent work with the same problem setting as ours is an
online PLA segmentation method named Feasible Space Window

(FSW), proposed by Liu et al. [24], which introduces the concept
of Feasible space (FS). The feasible space is an area in the time
series data value space so that any straight line in this area can
approximate each data point within a given error bound. FSW aims
to find the farthest segmenting point to make each segment as long
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as possible given an error bound on each data point. The FSW
algorithm is the state of the art for the problem addressed in this
paper. Therefore, we use the FSW algorithm as the baseline in the
experimental study and describe it in detail in subsection 3.2.

Lemire [21] and Fuchs et al. [9] introduce two Piecewise Poly-
nomial Approximation (PPA) methods to approximate time series
data by polynomial functions. The goal of the above two papers is
to minimize the total approximation error given a certain number of
information (specifically, the information of [21] is a given model
complexity and the information of [9] is a given set of polynomials
of orders: 0, 1, 2, ..., k). In contrast, the goal of our method is to
minimize the amount of information given a certain error bound on
each data point. Moreover, our method is more generic in terms
of candidate functions, i.e, besides polynomial functions, we can
also use other kinds of functions (e.g., exponential functions, etc.)
as the candidate functions while the above two methods use only
polynomial functions.

Joseph [27] proposes an algorithm to fit straight lines between
data ranges through transferring the problem into the coefficient
space. There are two differences between this work and our FCS
algorithm: First, this early work only solves the problem in the
case of straight lines, which is the same as what the FSW does.
Fitting non-linear curves (especially, curves of high-order polyno-
mials) into a sequence of data ranges is the major challenge ad-
dressed by our FCS algorithm. Second, the method of this work
is also different from ours. Specifically, this work directly con-
structs the coefficient space and obtains the boundaries based on
the given approximation function without any preprocessing such
that its resulted coefficient space is always one dimension higher
than ours and hence the computation is more complicated and the
cost is higher.

3 Preliminaries

In this section, we first provide a formal definition of our problem in
subsection 3.1 and then explain the most recent algorithm for solv-
ing this problem, the Feasible Space Window algorithm (FSW), in
subsection 3.2. The symbols frequently used in the following sec-
tions are summarized in Table 1.

Symbol Meaning

δ A given error bound on each data point

P A time series

F A set of candidate functions

pi The ith data point in time series

pstart The starting point

pnext The next coming data point

pte The data point at which the FCS becomes empty

np The number of parameters used to represent a subsequence

ntp The number of parameters used to represent a time series

ns The number of segments

nc The number of coefficients of a function

fj(x) The jth approximation function

u An upper boundary line

l A lower boundary line

hp A hyperplane

hf A hyperface

hpm An m-dimensional hyperplane

hfm An m-dimensional hyperface

hpu An upper boundary hyperplane

hpl A lower boundary hyperplane

Table 1: Frequently used symbols

3.1 Problem Statement

Given a time series P = (p1, p2, . . . , pn), an error bound δ and
a set of candidate functions F , our problem is to divide P into k

continuous segments S1, S2, . . . , Sk:

S1 = (p1, p2, . . . , pc1),

S2 = (pc1 , pc1+1, . . . , pc2),

· · ·

Sk = (pck−1
, pck−1+1, . . . , pck ),

such that
(i) each segment Sj is approximated by a candidate function fj(x)
in F with the error bound δ on each data point, more formally,

p̃i =















f1(i) i = 1, . . . , c1,
f2(i) i = c1, . . . , c2,

· · ·
fk(i) i = ck−1, . . . , ck,

(1)

satisfying

distance(p̃i − pi) ≤ δ;

and
(ii) the total number of parameters used to represent P (denoted as
ntp) is minimized.

Intuitively, in order to represent the approximation result of a
time series, not only the values of coefficients of the approximation
functions but also some other parameters, such as, the value of the
starting point and the timestamp of each segmenting point, should
be recorded as the approximation parameters of a time series. In
this paper, in order to achieve smooth approximation, which is an
important property desired in subsequent mining phases of the time
series, we require the endpoint of the approximation function for
the current segment to be the starting point of the approximation
function for the next segment.

Thereby, the number of parameters needed to represent the first
segment, which is approximated by an approximation function with
nc coefficients, is nc+1 (i.e, nc−1 coefficient values, a value of the
starting point and a time timestamp of the first segmenting point)
while that of each following segment is nc (do not need the value
of the starting point any more). Formally,

ntp =
∑

i

(nci ∗ nsi) + 1, (2)

where nci is the number of coefficients of the ith candidate func-
tion and nsi is the number of segments approximated by the ith

candidate function.

3.2 Feasible Space Window

Liu et al. [24] propose a method to achieve the compact segmenta-
tion by PLA, which is named Feasible Space Window (FSW). The
FSW algorithm can find the farthest segmenting point of each seg-
ment with the error bound guarantee on each data point through
a concept called Feasible Space (FS). The FS is an area in the
data value space of a time series such that any straight line in this
area can approximate each data point of the corresponding segment
within a given error bound.

Figure 3(a) shows an example of the FS. Suppose the error bound
is δ, and p0 is the starting data point of a time series which is also
required to be the starting point of the approximation line (i.e., the
line that approximates the data points). When we read the second
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Figure 3: Example of FSW algorithm

data point p1(x1, y1), we know that the y-coordinate of the ap-
proximation line at timestamp x1 must be between the points p⊤1
and p⊥1 which are the upper and lower boundary points of p1 and

|p⊤1 , p1| = |p1, p⊥1 | = δ. Therefore, any line between the upper
line u1 and the lower line l1 satisfies the error bound requirement
for p1, and the region (the light gray region in the figure) between
these two lines is the FS after reading the data point p1.

The FS is incrementally updated when new data points are read.
For example in Figure 3(a), we read the next data point p2 and
similarly obtain two boundary lines u2 and l2. The area between
u2 and l2 is the FS for p2. We intersect this FS with the previous FS
and the resultant region (the dark gray region in the figure) becomes
the current FS, which is the region for any approximation line that
can satisfy the error bound requirement for both p1 and p2.

This FS update process is repeated until the FS becomes empty at
te. When the FS becomes empty, it means we can not approximate
any more following data points (including the current data point)
by a straight line within the error bound. Hence the previous data
point pte−1 will be the endpoint of the current segment and also
the new starting data point of the next segment.

Figure 3(b) shows the process of determining the whole segment
by the FSW algorithm. After p2, we read the next two data points
p3 and p4 one by one and update the new FS to [u3, l2]. After we
read p5, the new FS becomes empty because the lowest upper line
u5 is below the highest lower line l2. Therefore, the previous data
point p4 is the segmenting point and the line connecting p0 and p4
is the approximation result of data points between p0 and p4. We
use p4 as the starting data point of the next segment and repeat this
FS update process until the end of the time series is reached. As
we can see, the FSW algorithm provides the linear approximation
as each data point is read, so it is an online algorithm.

4 Feasible Coefficient Space

Feasible space is an intriguing idea for determining the compact
approximation of time series. However, it is difficult to apply the
FSW algorithm to non-linear functions. The idea of FSW is to use
a starting data point and a next data point to determine the bound-
aries of the feasible space of the approximation. Nonetheless, most
non-linear functions have more than two coefficients and their ap-
proximation boundaries can not be determined by only two data
points.

A method called the FCS algorithm is proposed to address this
challenge: instead of finding the boundaries of feasible space as
FSW does, we find the boundaries of the feasible values for the
functions’ coefficients – using two data points, we can uniquely
identify such boundaries in the coefficient coordinate system. With

these boundaries, we can determine a space called the Feasible Co-

efficient Space (FCS) in which each point is a feasible set of values
for the coefficients of the candidate function.

Given a time series P , a certain error bound δ and a candidate
function fj(x), the overview of the FCS algorithm is as follows.
When the next data point pnext arrives, we derive two inequali-
ties based on pstart (the starting data point), pnext and δ to deter-
mine two boundaries for the FCS of this function. Then we read
the next data point to form two new boundaries and intersect them
with the existent FCS to obtain a new FCS. The FCS is incremen-
tally narrowed while the data points arrive continuously and finally
becomes empty at a certain data point pte , which means we can-
not approximate any more following data points (including pte ) by
the given candidate function with a given error bound on each data
point. Therefore, we take the previous data point pte−1 as the seg-
menting point of the current segment and the starting data point
of the next segment. The above process is repeated until the time
series is finished.

In this paper, we focus on the FCS algorithm for a few types
of commonly used functions (polynomial functions of different or-
ders, exponential functions), although our presented method can be
extended to other types of functions (e.g., logarithmic functions)
straightforwardly.

4.1 Second-order Polynomials

In this subsection, we present the FCS algorithm for the second-
order polynomial function (or called quadratic function). A second-
order polynomial function is in the form of Equation (3) where a, b
and c are coefficients of this function:

y = ax
2 + bx+ c. (3)

As the problem defines, the first data point p0(x0, y0) of the time
series must be on the approximation curve. Hence we have

y0 = ax
2
0 + bx0 + c. (4)

When a second data point p1(x1, y1) is encountered, if we approx-
imate this data point by the quadratic function, the approximation
value of y1 on the curve is

ỹ1 = ax
2
1 + bx1 + c. (5)

Combining Equations (4) and (5), we have

ỹ1 = y0 + a(x2
1 − x

2
0) + b(x1 − x0). (6)

Since we require the approximation error of each data point cannot
exceed the user-specified error bound δ, ỹ1 must fall in the interval
[y1 − δ, y1 + δ]. Therefore, we have the following inequalities:

y0 + a(x2
1 − x

2
0) + b(x1 − x0) ≤ y1 + δ; (7)

y0 + a(x2
1 − x

2
0) + b(x1 − x0) ≥ y1 − δ. (8)

Using the above inequalities, we can construct a 2-dimensional
FCS in the coefficient coordinate system of the quadratic function
with axes a and b (c is omitted when we combine Equations (4)
and (5) and can be obtained by c = y0 − ax2

0 − bx0 given the
values of a and b.).

As shown in Figure 4, Inequalities (7) and (8) describe two par-
allel lines l1 and u1 indicating the lower and upper boundaries, be-
tween which is the current FCS, where each point is a feasible set
of the coefficients’ values of the quadratic function. When we read
a new data point p2(x2, y2), we try to incorporate it in the current
segment through similarly obtaining two other parallel lines l2 and
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Figure 4: Feasible coefficient space for quadratic functions

u2, between which is the FCS satisfying the error bound require-
ment for p0 and p2. If l2 and u2 are not parallel to the previous
lines l1 and u1, the intersection of the previous FCS (area between
l1 and u1) and the current FCS (area between l2 and u2) is the new
FCS (the shaded polygon area in Figure 4).

If this new FCS is not empty, we continue to obtain the bound-
aries l3 and u3 for p3(x3, y3) and narrow the FCS (a polygon) by
these two lines. This process is repeated until the FCS becomes
empty at te when we can not incorporate the following data points
(including pte ) in the current segment and approximate this seg-
ment by a quadratic function with a certain error bound on each
data point. Therefore, we use the previous data point pte−1 as the
endpoint of the current segment and also the new starting data point
of the next segment and then continue the above process

Algorithm: The FCS algorithm for quadratic functions is named
FCSP2 and the pseudo-code is shown in Figure 5 where the current
FCS (a convex polygon), the starting data point, the next data point
and the error bound are denoted as g, pstart, pnext, and δ, respec-
tively. When pnext arrives, Inequalities (7) and (8) define two lines:
u and l which are the upper and lower boundaries of the FCS for
pnext. In order to obtain the intersection of this FCS and g, for
each edge of g, we calculate the intersecting points with l. Since g

is convex, at most two edges of g intersect with l and g is divided
into two parts by l. We remove the lower part of g and the other part
is new g (how to define a part is lower or upper will be presented in

Subsection 4.2). Similarly, we use u to divide the new calculated g

and cuts the upper part. Note that g is still convex after it is cut by u

and l, and the resultant polygon g′ is the new FCS after processing
the data point pnext.

Complexity Analysis: In the algorithm FCSP2, the most fre-
quently executed operation is the calculation of intersecting points
between two generated boundary lines (l and u) and the current
FCS, which takes constant time. Suppose we have obtained n + 1
data points before we get pnext, which means we have already gen-
erated n pairs of lines, in the worst case, these lines could make up
a polygon with 2n edges. The number of times of computing inter-
section is 2n for either l or u and 4n them together. Therefore, the
worst case computational cost of the FCSP2 for one particular data
point is

C2 = 4n ∈ O(n).

Furthermore, based on the proof in [27], the amortized complexity
of the FCSP2 per data point is only O(1).

4.2 M th-order Polynomials

In this subsection, we present the FCS algorithm of mth-order
polynomials with m ≥ 3. Firstly, we consider the case of m = 3.

Algorithm FCSP2

Input: g : the current current polygon; pstart : the starting data point;
pnext : the next data point; δ : the max_error bound.

Output: g′ : the remained polygon.

Construct two lines l and u by pstart and pnext

according to Inequalities (7) and (8);
If g is empty

g′ ← the space between l and u;
Else

For each edge ei of g
calculate the intersection points between ei and l;

based on the intersection information,
cut off the part lower than l from g;

For each edge ej of the current g
calculate the intersection points between ej and u;

based on the intersection information,
cut off the part upper than u from g;

g′ ← the remained part of g;
Return g′

End FCSP2

Figure 5: Algorithm FCSP2

The 3rd-order polynomial function is also called the cubic func-
tion which is in the form of Equation (9) where a, b, c and d are
coefficients of the function.

y = ax
3 + bx

2 + cx+ d, (9)

Similar to the case of quadratic functions, we use the starting data
point p0(x0, y0) and the approximate value of the following data
point p1(x1, y1) to obtain a pair of equations as follows:

y0 = ax
3
0 + bx

2
0 + cx0 + d, (10)

ỹ1 = ax
3
1 + bx

2
1 + cx1 + d. (11)

Combining Equations (10) and (11), we have

ỹ1 = y0 + a(x3
1 − x

3
0) + b(x2

1 − x
2
0) + c(x1 − x0). (12)

As the problem defines, the approximate value ỹ1 should fall into
the interval [y1 − δ, y1 + δ] so that we have

y0 + a(x3
1 − x

3
0) + b(x2

1 − x
2
0) + c(x1 − x0) ≤ y1 + δ, (13)

y0 + a(x3
1 − x

3
0) + b(x2

1 − x
2
0) + c(x1 − x0) ≥ y1 − δ. (14)

In the 3rd-order coefficient coordinate system with axes a, b
and c, Inequalities (13) and (14) describe two bounding planes
and the space between these bounding planes is a 3-dimensional
FCS. Moreover, we obtain the next data point p2(x2, y2) to derive
a new pair of bounding planes and use these planes to cut the FCS
and generate a new FCS. In this case, the generated FCS is a 3-
dimensional polyhedron. This process is repeated for the following
data points to incrementally update the FCS until te when the FCS
becomes empty. We segment the time series at the previous data
point pte−1, take pte−1 as the new starting point and start a new
round of approximation since pte .

It is easy to generalize the quadratic and cubic polynomials to the
case of mth-order polynomials, which are in the following form:

y = amx
m + am−1x

m−1 + ...+ a1x+ a0. (15)

Given the starting data point and the coming data point, we can con-
struct two (m − 1)-dimensional hyperplanes in the mth-order co-
efficient coordinate system as the boundaries of the m-dimensional
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Algorithm FCSPm

Input: h : the current current (m-dimensional) hyperhedron,
pstart : the starting data point, pnext : the next data data point,
δ : the max_error bound

Output: h′ : the remained m-dimensional hyperhedron

Construct two (m− 1)-dimensional hyperplanes hpl and hpu
by pstart and pnext according to Inequalities (16) and (17);
If h is empty

h′ ← the space between hpl and hpu;
Else

For each (m− 1)-dimensional hyperface of h
calculate the intersected (m− 2)-dimensional hyperface

with hpl;
based on the intersection information,

cut off the part lower than hpl from h;
For each (m− 1)-dimensional hyperface of h

calculate the intersected (m− 2)-dimensional hyperface
with hpu;

based on the intersection information,
cut off the part upper than hpu from h;

h′ ← the remained part of h;
Return h′

End FCSPm

Figure 6: Algorithm FCSPm

FCS through the following inequalities:

ỹ1 = y0 + am(xm
1 − x

m
0 ) + am−1(x

m−1

1 − x
m−1

0 ) (16)

+...+ a1(x1 − x0) ≥ y1 − δ,

ỹ1 = y0 + am(xm
1 − x

m
0 ) + am−1(x

m−1

1 − x
m−1

0 ) (17)

+...+ a1(x1 − x0) ≤ y1 + δ.

The hyperhedron between these two boundaries is a m-dimensional
FCS. When a new data point is read, we generate a new pair of
(m − 1)-dimensional hyperplanes and use them to cut the current
m-dimensional hyperhedron (the current FCS) and obtain the in-
tersecting hyperhedron as the new FCS.

Algorithm: When m > 3, the FCS of mth-order polynomi-
als will become a high-dimensional hyperhedron. We present an
algorithm to generate this high-dimensional FCS (denoted as FC-

SPm) in Figure 6. In this algorithm, we use h, h′, hyperfaces and
hyperplanes to denote the current FCS, the new FCS, the faces
of hyperhedron and high-dimensional planes generated by inequal-
ities, respectively. The starting data point, the next data point and
the error bound are defined and denoted similarly to their counter-
parts in Figure 5. When the new data point arrives, Inequalities (16)
and (17) determine two hyperplanes denoted as hpl and hpu which
are used to update the current FCS. The update process is similar
to that of the FCSP2 algorithm.

To cut a m-dimensional FCS, we need determine a part of (m−
1)-dimensional hyperface is the lower or upper part regarding to
a (m − 1)-dimensional hyperplane. For example, in the case of
quadratic functions (m = 2), we need to determine the relative
lower and upper parts of an edge (1-dimensional hyperface) regard-
ing a line (1-dimensional hyperplane). Given a (m−1)-dimensional
hyperplane in a m-dimensional coefficient coordinate system cut-
ting the whole space into two parts, we define that a part of a
(m−1)-dimensional hyperface is a lower (or upper) part regarding
to this (m − 1)-dimensional hyperplane if this part of the hyper-
face is contained in the lower (or upper) part of the space regarding
the same (m − 1)-dimensional hyperplane. The lower and upper
part of the space is defined according to a selected coefficient axis

called pilot axis: if am is the pilot axis, we define the upper part
of the space to be the part containing +∞ along the am axis, and
the other part of this space is the lower part of space. For example,
in Figure 4, choosing axis b as the pilot axis, the edge Q1Q4 is the
upper part regarding the line l2 because this edge is contained in
the upper part of the space.

Complexity Analysis: For the case of mth-order polynomials,
suppose we have obtained n + 1 data points before we get pnext

and constructed n pairs of (m − 1)-dimensional hyperplanes. In
the worst case, these (m − 1)-dimensional hyperplanes result in a
m-dimensional hyperhedron with 2n (m − 1)-dimensional hyper-
faces. Each (m−1)-dimensional hyperface is described by 2(n−1)
(m − 2)-dimensional hyperfaces and, similarly, each (m − 2)-
dimensional hyperfaces can be described by 2(n − 2) (m − 3)-
dimensional hyperfaces if m > 3. This process keeps on going
until it reaches the 1-dimensional hyperfaces (i.e., lines).

Calculating the intersection of two (m − 1)-dimensional hyper-
planes is denoted as Costm−1, which takes constant time. In FC-
SPm, the processes of using the lower (m− 1)-dimensional hyper-
plane (hplm−1

) to cut one of the (m − 1)-dimensional hyperfaces
(hfm−1) of h is as follows: Firstly, we calculate the intersection
of hplm−1

and hfm−1 resulting a (m−2)-dimensional hyperplane
denoted by hpm−2 and the cost is suppose to be constant denoted as
Costm−1. Then, for each (m − 2)-dimensional hyperface hfm−2

describing the previous (m − 1)-dimensional hyperface hfm−1,
we calculate the intersection of it and hpm−2, which is a (m− 3)-
dimensional hyperplane. We further use this (m − 3)-dimensional
hyperplane to cut (m − 3)-dimensional hyperfaces describing the
hfm−2 and get a (m − 4)-dimensional hyperfaces. This process
is executed iteratively until it reaches the calculation of the inter-
section of two lines and we have the total cost (denoted as Cm) as
follows:

Cm = 2nCostm−1 + 2n ∗ 2(n− 1)Costm−2+
· · ·
+2n ∗ 2(n− 1) ∗ ... ∗ 2(n− (m− 2))Cost1,

where Cost1, Cost2, ... and Costm−1 are different constant val-
ues. When n >> m, Cm is dominated by the last term, which has
the worst case complexity of O(nm−1). Although the complexity
is polynomial, when m is large, the computation and implemen-
tation cost will also become very large. Therefore, we do not use
polynomials with orders higher than two if it is not essential.

4.3 Exponential Functions

In this subsection, we will present the FCS algorithm of exponential
functions which are in the following form in general:

y = be
ax
.

It can be transformed into the linear approximation function using
logarithmic rules. When b > 0, we take the natural logarithms of
both sides of the equation and get

ln(y) = ln(b) + ax. (18)

Similarly, the starting data point p0(x0, y0) should be on the curve
such that

y0 = be
ax0 , (19)

namely,

ln(y0) = ln(b) + ax0 (y > 0, b > 0). (20)

When we get another data point p1(x1, y1), for the approximate
value of y1, we have

ln(ỹ1) = ln(b) + ax1 (ỹ1 > 0, b > 0). (21)
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Combining Equations (20) and (21), we obtain

ln(ỹ1) = ln(y0) + a(x1 − x0). (22)

We know that ỹ1 is within the error bound, thus ỹ1 ∈ [y1−δ, y1+δ].
Here we assume y1 − δ > 0 (if not, we iteratively multiply δ with
0.5 until it stands). Note that the natural logarithmic function is
a monotonic increasing function with (0,+∞) as the definitional
domain, we combine the previous two inequalities and obtain

ln(y0) + a(x1 − x0) ≤ ln(y1 + δ) (y0, y1 > 0), (23)

ln(y0) + a(x1 − x0) ≥ ln(y1 − δ) (y0, y1 − δ > 0). (24)

Then we have

ln(y1 − δ)− ln(y0)

x1 − x0

≤ a ≤
ln(y1 + δ)− ln(y0)

x1 − x0

. (25)

This inequality defines a pair of boundary points for the coeffi-
cient a. Every time when a new data point comes, we obtain a new
pair of such boundary points and incrementally update the feasi-
ble value range (here is 1-dimensional FCS) for coefficient a until
the FCS becomes empty. Actually, this is just the linear segment-
ing problem. The difference is that in the linear segmenting case,
Inequality (25) becomes

y1 − y0 − δ

x1 − x0

≤ a ≤
y1 − y0 + δ

x1 − x0

. (26)

Therefore, the FCS algorithm used for the exponential function is
the same as the linear function. Furthermore, the aforementioned
FCS algorithm FCSPm is applicable for both the linear function
and the exponential function because the linear function is the 1st-
order polynomial whose high-dimensional coefficients are zero.

Complexity Analysis: In the complexity aspect, the exponential
function is also similar to the linear function. No matter how many
data points have been processed, we only need to maintain two
points to indicate the current feasible value range of coefficient a
(1-dimensional FCS). Therefore, when the next data point arrives,
we only need to compare the values of two pairs of boundary points
to obtain the new FCS such that the computation complexity of
exponential function is Ce = C1 = O(1)

5 Adaptive Approximation Algorithm

The objective of our method is to minimize the number of parame-
ters used to represent the time series given an error bound on each
data point. Suppose there is a given starting data point pstart and
an appropriate FCS algorithm for each candidate function. The
overview of the AA algorithm is as follows: we read the data points
one by one and approximate these points through the respective
FCS algorithms of the candidate functions. For each candidate
function, the corresponding FCS is incrementally narrowed while
the data points arrive continuously and turns into empty at te, so we
take pte−1 as the segmenting point of the current segment and the
new starting data point of the next segment, and then we continue
to read and approximate the following data points. This process is
repeated by all the candidate functions until encountering the data
point at which each candidate function has encountered at least one
segmenting point. At this point, for each candidate function, we
calculate the number of parameters used to represent this subse-
quence (denoted as np), then compare and choose the function with
the smallest np as the approximation function of the subsequence.
We repeat the above process until the time series is finished.

Similar with Equation 2, the number of parameters used to rep-
resent a subsequence approximated by a candidate function fj(x)

can be obtained by np = ncj ∗ nsj , where ncj is the number of
coefficients of fj(x) and nsj is the number of segments generated
and approximated by fj(x). However, when we calculate np at
the data point pt where each candidate function has encountered at
least one segmenting point, we know pt−1 must be the segmenting
point for some candidate functions but it may not be the segment-
ing point for other candidate functions such that these functions can
approximate more data points without increasing np. To keep fair
comparison, we heuristically tune the calculation of np for these
functions to be np = nc ∗ (ns − 1) + nc ∗ k where k ranges from
0 to 1.

In this paper, we define the segments obtained by each candidate
function as the local segments of the corresponding function and
the segments obtained by the final chosen approximation function
as the global segments of the corresponding subsequence. Thereby,
for each data point, it belongs to many different local segments
(generated by different candidate functions) but only one global
segment (generated by the chosen approximation function). For
each candidate function, if it’s chosen as the approximation func-
tion of a subsequence, the segments generated by this function will
be the global segments of this subsequence. Otherwise they are just
local segments.

The algorithm complexity of our method basically depends on
the candidate function with the highest complexity. For example, if
we choose the quadratic function, the linear function and the expo-
nential function as the candidate functions, the complexity is domi-
nated by the quadratic function such that the worst case complexity
and the amortized complexity of the AA algorithm will be O(n)
and O(1), respectively. We provide the pseudo-code of the AA al-
gorithm in Figure 7 and present the AA algorithm specifically in
the following subsections.

5.1 Initialization

In our algorithm, we use the lists to store the parameters used
to represent the time series: the approximation parameters of the
global segments of the time series and those of the local segments
generated by candidate functions are stored in the lists lg and llj ,
respectively, where j indicates this list is used to store the approxi-
mation parameters of the local segments generated by the jth can-
didate function. At the beginning of the AA algorithm, we initialize
the AA algorithm through using the first data point p0 of the time
series P to be the first data point of the first global segment of
P (denoted as pfirst) and also the starting data point of the first
local segment of each candidate function (denoted as pstartj ). Fur-
thermore, we set all lists and the feasible coefficient spaces of all
candidate functions (denoted as FCSj) to be empty and also set
two flags Frv and Fcf to be false. Here, Fcf indicates whether or
not there has been a candidate function chosen as the approxima-
tion function and Frv indicates whether the chosen approximation
function is not longer feasible for further approximation.

5.2 Finding Segmenting Point

When the next data point pnext comes, we firstly need to check the
value of flag Fcf . If Fcf is false, it means there is not a chosen
approximation function so we iteratively update the FCS of each
candidate function to choose an approximation function. Other-
wise, we simply use the chosen function to approximate the com-
ing data point and only update its FCS. Therefore, the process of
finding segmenting data point can be divided into two cases as the
followings:

Case One: If Fcf is false, for each candidate function fj(x) in
F , we firstly update its feasible coefficient space FCSj through the
corresponding FCS algorithm FCSAj . Then we check whether
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the AA algorithm

Input: P = (p0, p1, ...pn, ...), δ : max_error bound.
F = {f1(x),f2(x),. . .fj(x),. . .fm(x)}

Output: lg : list of global segmenting points
Initial: pfirst = pstart1 = pstart2 =. . .= pstartm = p0

lg = ll1 = ll2 =. . .= llm = ∅
FCS1 = FCS2 =. . .= FCSm = ∅
Frv = Fcf = false

While P not finished
fetch the next data point pnext from P ;
If Fcf = false // have not chosen approximation function

For each candidate function fj(x) in F
FCSAj (fj(x), FCSj , pstartj , pnext);
If FCSj = ∅

append new local segment to llj ;

pstartj ← pnext−1;

FCSAj (fj(x), FCSj , pstartj , pnext);
If all llj 6= ∅

For each fj(x) in lf
calculate np for points between pfirst and pnext−1;

choose function with the smallest np as fa(x);
If pstarta 6= pnext−1

Fcf ← true;
Else

Frv ← true;
append lla to lg ;

Else //have chosen approximation function
FCSAa (fa(x), FCSa, pstarta , pnext);
If FCSa = ∅

append new local segment to lla ;
append lla to lg ;
Fcf ← false;
Frv ← true;

If Frv = true //re-initialization
pfirst ← pnext−1;
For j from 1 to m

llj ← ∅;
pstartj ← pnext−1;

FCSAj (fj(x), FCSj , pstartj , pnext);
Frv ← false;

Return lg ;
End the AA algorithm

Figure 7: The AA algorithm

the FCS becomes empty after update. If the FCS is empty, it means
the previous data point pnext−1 is the segmenting point of the can-
didate function fj(x). Therefore, for this candidate function, we
save the approximation parameters of this generated local segment
into the local segment list llj , change the starting data point of this
function pstartj to be the previous data point pnext−1 and then re-
construct the FCS for pnext based on the new starting data point
through re-invoking the corresponding FCS algorithm FCSAj .

When we finish the FCS update of each candidate function, we
further check whether or not all local segment lists are non-empty.
If so, it means each candidate function meets at least one segment-
ing point and we need to choose an approximation function for
the subsequence ranging from pfirst to pnext−1. we calculate the
number of parameters used by each candidate function to represent
the subsequence (denoted as np) and choose the function with the
smallest np as the approximation function.

After that, we check whether the previous data point pnext−1 is
the segmenting point of fa(x). If not, we will use this function
to approximate more subsequent data points until its FCS becomes
empty so we change the value of Fcf to be true. Otherwise, we
directly append the approximation parameters in its local segment
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Figure 8: Running example of the AA algorithm

list lla to the global segment list lg and change Frv to be true to do
re-initialization.

Case Two: If Fcf is true, instead of the executing processes
in case one, we only update the FCS of the chosen approximation
function for the coming data point pnext and check whether its FCS
becomes empty after update. If not, we finish the process of this
data point and continue to process the next data point. Otherwise,
it indicates this approximation function arrives a new segmenting
point pnext−1. Therefore, we add the approximation parameters of
this new generated segment to the local segment list of this function
(denoted as lla ) and append the information in this list to the global
segment list lg . Finally, we set Fcf to be false and Frv to be true,
respectively.

5.3 Re-initialization

If the value of Frv becomes true after the processes in subsec-
tion 5.2, it means the re-initialization step needs to be invoked. The
processes of re-initialization is as follows: (i) we firstly use the pre-
vious data point pnext−1 to be the first data point of the following
global segment pfirst and also the starting data point of the fol-
lowing local segment for each candidate function; (ii) for each can-
didate function, we set the corresponding local segment list to be
empty and re-construct the FCS for pnext based on the new starting
data point.

We repeat the previous processes in Subsections 5.2 and 5.3 un-
til the time series is finished. Given the same approximate error
bound, the AA algorithm can achieve better extent of compactness
through always finding the most compact candidate function, which
owns the the smallest np, as the approximation function. As we can
see, the approximation process of the AA algorithm only relies on
the coming data point. Therefore, it is an online segmentation al-
gorithm.

5.4 A Running Example

In this subsection, we use a running example to illustrate the AA al-
gorithm. Figure 8 depicts the cases of approximating a time series
by two candidate functions: the quadratic function and the linear
function. Starting from the data point p0, both two functions in-
crementally read and approximate the coming data points one by
one through their FCS algorithms. When p4 comes, the FCS of the
linear function becomes empty so p3 is the segmenting point of the
linear function. However, because the FCS of the quadratic func-
tion is not empty at p4, for the linear function, we save p3 in its lo-
cal segment list, change its starting data point to be p3, re-construct
its FCS for p4 based on new starting data point and continue to
approximate the next data point p5. The approximation process
is repeated by both two functions until p11 where the FCS of the
quadratic function becomes empty such that both two functions en-
counter at least one segmenting point. Therefore, we calculate the
np (the number of parameters used to represent the subsequence)
of both functions and obtain np = 3 for the quadratic function and
np = 6 for the linear function. The quadratic function is chosen
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as the approximation function for the subsequence between p0 and
p10 because of the smaller value in np. For both candidate func-
tions, we take p10 as the new starting data point and continue the
same process to approximate the subsequent data points.

6 Experimental Study

In this section, we evaluate the performance of our AA algorithm,
comparing with the state-of-the-art algorithm FSW [24]. We use
the linear function, the quadratic function and the exponential func-
tion as the candidate functions in our implementation.

Our goal is to obtain a more compact approximation with an
user-specified error bound on each data point. Therefore, we mea-
sure the performance by the Number of Approximated Points per

Parameter (NAPP), which indicates the compactness of the ap-
proximation, NAPP is defined as the number of parameters used
to represent a time series (generated by Equation 2) divided by the
number of data points of this time series. Even though the approx-
imation errors are bounded by a given threshold, we also measure
the actual average approximation error, which indicates how ac-
curate the approximation actually are. The average approximation
error is defined as the sum of individual approximation errors on
all the data points divided by the number of the data points.

The error bounds are expressed as relative values in comparison
to the maximum value of the data points of the time series.

6.1 Synthetic Datasets

In this subsection, we evaluate the algorithms using four synthetic
time series datasets: a linear time series dataset, a quadratic time
series dataset, a exponential time series dataset and a mixed time
series dataset. Each dataset is composed of 1000 data points which
are obtained by sampling 40 data points from each of 25 randomly
valued functions. For the linear, quadratic and exponential time
series datasets, the functions are linear, quadratic and exponential
synthetic functions, respectively. For the mix time series dataset,
each function is randomly choose among the aforementioned three
kinds of synthetic functions. The definitions of these synthetic
functions are as follow:

(1) Linear Function
f(x) = ax+ b+ ǫ,

where the values of coefficients a and b are randomly chosen
from the ranges of [−1, 1] and [−10, 10], respectively.

(2) Quadratic Function

f(x) = ax2 + bx+ c+ ǫ,

where a is randomly chosen from −1 or +1, b and c are ran-
domly chosen from the ranges of [−10, 10] and [−20, 20], re-
spectively.

(3) Exponential Function

f(x) = beax + ǫ,

where a is randomly chosen from the range: [0.05, 0.1], and b

is randomly chosen from the ranges of [−1,−2] and [1, 2].

ǫ in these functions is a random value used as a random noise.
In order to evaluate the effect of the error bound on the NAPP

and the average approximation error for a given time series, we
choose five different values to be the relative error bound: 0.001,
0.002, 0.003, 0.004 and 0.005 and obtain the NAPP and the average
approximation error of both the AA algorithm and the FSW algo-
rithms for each error bound. The experimental results are shown in
Figures 9, 10, 11 and 12, respectively.
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Figure 9: Quadratic time series
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Figure 10: Exponential time series

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  0.001  0.002  0.003  0.004  0.005  0.006

N
A

P
P

Error Bound

AA
FSW

(a) NAPP

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  0.001  0.002  0.003  0.004  0.005  0.006

A
v
e

ra
g

e
 A

p
p

ro
x
im

a
ti
o

n
 E

rr
o

r

Error Bound

AA
FSW

(b) Average approximation error

Figure 11: Linear time series

Quadratic Time Series: Figure 9 shows the experimental result
of the quadratic time series dataset. We observe that the AA algo-
rithm outperforms the FSW algorithm in terms of both the NAPP
and the average approximation error for all error bound cases. In
terms of NAPP, the improvement factor of the AA algorithm over
the FSW algorithm is up to 2 times when the error bound is 0.001,
while the approximation error produced by the AA algorithm is
only 10% of that produced by the FSW algorithm. The reason
is that, for the dataset with quadratic patterns, the AA algorithm
can accommodate these patterns and approximate the time series
through adaptively choosing quadratic functions while the FSW al-
gorithm can only approximate the time series by linear functions.
Furthermore, when the error bound becomes larger, the average ap-
proximation error of the FSW algorithm increase dramatically with
a relatively slow rise in the NAPP. In comparison, the AA algorithm
keeps steady in the aspects of both NAPP and the approximation er-
ror because it has already accommodated to the patterns of the time
series very well since the small error bound. This shows the ro-
bust performance of the AA algorithm in comparison to the FSW
algorithm.

Exponential Time Series: Figure 10 shows the experimental re-
sult of the exponential time series dataset. The comparative NAPP
performance of the AA algorithm and the FSW algorithm is similar
to that of the quadratic time series datasets. The NAPP values of
the AA algorithm are much larger than those of the FSW algorithm
for all error bounds with similar average approximation errors.

Linear Time Series: The time series with linear patterns is the
best case for the FSW algorithm. From Figure 11, we observe that
the AA algorithm is as good as the FSW algorithm in terms of both
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Figure 12: Mixed time series
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Figure 13: Scalability, mix time series
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Figure 14: Speech time series

the NAPP and the average approximation error for all error bounds.
That is because the AA algorithm adapts to linear functions to ap-
proximate the linear time series such that its approximation results
are the same as those of the FSW algorithm.

Mixed Time Series: In many real world situations, the patterns
of time series data do not follow a constant rule. Hence, we use
the mixed time series dataset to simulate this case and evaluate
the adaptive mechanism of the AA algorithm in this situation. As
shown in Figure 12, we observe that the NAPP values of the AA al-
gorithm are 50% larger than those of FSW algorithm in most cases
while the average approximation errors are much smaller than those
of FSW algorithm. The result shows that the AA algorithm can
adopt to the change of patterns better than the FSW does through
adaptively choosing an appropriate approximation function.

Scalability: We vary the lengths of the time series from 500 to
2500 data points and set the relative error bound to 0.002. The
experimental result of the mix time series is shown in Figure 13.
We find that, for both the AA algorithm and the FSW algorithm,
the two evaluation measures change little when the length of the
time series increases. This shows that the AA algorithm scales well
with the length of the time series. Results of other synthetic time
series datasets show similar behavior and hence are omitted.

6.2 Real Datasets

In this subsection, we evaluate the algorithms using two real world
time series datasets: the Memory dataset and the Speech dataset,
which have irregular patterns (e.g., neither polynomial nor expo-
nential patterns), from UCR Time Series Data Mining Archive [14].

In order to evaluate the effect of the error bound on both the
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Figure 15: Memory time series
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Figure 16: Scalability, speech time series
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Figure 17: Scalability, memory time series

NAPP and the average approximation error, we set the length of
the time series to be 500 data points and vary the error bounds from
0.005 to 0.025. Then we plot the experimental results of the Speech
and Memory time series datasets in Figures 14 and 15, respectively.

Speech and Memory Time Series: From these two figures, we
can observe that, for both the speech and the memory datasets, the
AA algorithm obtains higher NAPP values than those of the FSW
algorithm with similar average approximation errors. Again, this
is because the AA algorithm can adapt to different patterns using
different candidate functions. This finding asserts that the AA al-
gorithm can achieve more compact approximation than the FSW
algorithm in practical workloads, even if the time series do not suit
the candidate functions perfectly. The approximation error of the
AA algorithm is close to that of FSW, because the patterns of these
real datasets are irregular and no candidate function in the AA al-
gorithm can perfectly accommodate these patterns.

Scalability: Because of the limited sizes of real datasets, we
vary the lengths of the time series from 200 to 1000 data points and
set the relative error bound to 0.02. The experimental results are
plotted in Figure 16 and 17. An inspection of these figures reveals:
Firstly, for both the AA algorithm and the FSW algorithm, when
the length of the time series is relatively small (ranges from 200
to 600 data points), an increase of the length yields a rise of the
NAPP, and when the length of the time series is relatively large
(ranges from 600 to 1000 data points), the variations of the NAPP
are small with an increase of the time series length. Second, the
changes of the average approximation errors of both two methods
are always marginal when the length of the time series increases.
Overall, for real datasets, the AA algorithm also scales well with
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the length of the the time series.

6.3 Summary

Experiments in this section validate that the AA algorithm achieves
more compact representation of time series than the FSW algorithm
does for almost all the time series datasets except the linear case.
When the time series follows linear patterns, the performance of the
AA algorithm is the same as the FSW algorithm. At the same time,
the actual average error produced by the AA algorithm is smaller
than that produced by the FSW algorithm in some cases.

7 Conclusions

We proposed an online segmentation algorithm which approximates
time series by a set of candidate functions (polynomials of differ-
ent orders, exponential functions, etc.) and adaptively chooses the
most compact one as the pattern of the time series changes. We
further proposed a novel method to efficiently generate the com-
pact approximation of a time series in an online fashion for several
types of candidate functions. This method incrementally narrows
the feasible coefficient space of candidate functions in the coeffi-
cient coordinate system and find the farthest data point a segment
can approximate given an error bound on each data point. Exten-
sive experimental results show that our algorithm outperforms the
state-of-the-art algorithm: FSW, in terms of the NAPP. Moreover,
in some cases, our algorithm results in much lower actual errors
than those caused by the FSW algorithm for the same error bound.

In future research, we will investigate how to derive the feasible
coefficient space for more types of candidate functions, such as
trigonometric functions and logarithmic functions, to meet more
approximation needs.
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