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ABSTRACT
Increased availability of large repositories of chemical compounds
has created new challenges and opportunities for the application
of data-mining and indexing techniques to problems in chemical
informatics. The primary goal in analysis of molecular databases
is to identify structural patterns that can predict biological activ-
ity. Two of the most popular approaches to representing molecular
topologies are graphs and 3D geometries. As a result, the prob-
lem of indexing and mining structural patterns map to indexing and
mining patterns from graph and 3D geometric databases.

In this tutorial, we will first introduce the problem of drug dis-
covery and how computer science plays a critical role in that pro-
cess. We will then proceed by introducing the problem of per-
forming subgraph and similarity searches on large graph databases.
Due to the NP-hardness of the problems, a number of heuristics
have been designed in recent years and the tutorial will present an
overview of those techniques. Next, we will introduce the problem
of mining frequent subgraph patterns along with some of their limi-
tations that ignited the interest in the problem of mining statistically
significant subgraph patterns. After presenting an in-depth survey
of the techniques on mining significant subgraph patterns, the tu-
torial will proceed towards the problem of analyzing 3D geometric
structures of molecules. Finally, we will conclude by presenting
two open computer science problems that can have a significant
impact in the field of drug discovery.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search Process; I.2.8
[Problem Solving, Control Methods, and Search]: Graph and
tree search strategies

General Terms
Graph Indexing, Graph Mining, Algorithms

Keywords
top-k queries, graph databases, frequent subgraphs, significant sub-
graphs, significant geometric patterns

1. INTRODUCTION
With the recent advent of high-throughput technologies for both

compound synthesis and biological screening, there is no shortage
of publicly or commercially available data sets that can be used for
computational drug discovery applications. Recent estimates of the
number of known small molecules, encountered so far in nature, or
synthesized by man, is on the order of 107. Furthermore, the size
of the virtual space of molecules that could be created is reported
to be more than 1060. The goal in drug discovery is to analyze this
huge chemical space and identify molecules that show a certain
desired activity. However, given the magnitude of the chemical
space, an exhaustive exploration is not feasible. As a result, the key
challenge for computational methods is therefore not to explore the
entire chemical space, but rather to be able to identify and analyze
interesting regions within this space.

In this tutorial, we will present a survey of the computer sci-
ence techniques that allow us to better understand the chemical
space. Typical querying and mining tasks involve clustering of
large molecular libraries, developing index structures for fast an-
swering of top-k queries, mining structural patterns, and predicting
biological activity of molecules. Among the various approaches to
represent molecular topology in the virtual space, two of the most
prominent approaches are graphs and 3D geometry of molecules.
In this tutorial, we will survey the state of the art in querying and
mining techniques that are based on analyzing graph and geometry
based representations of molecules.

The tutorial will first introduce the challenges in the drug dis-
covery process and how computer science plays a critical role in
that pipeline. Next, the tutorial will outline the graph and geometry
based approaches to represent molecules in the virtual space. Af-
ter establishing the basic groundwork, the tutorial will present the
graph based indexing techniques on performing subgraph contain-
ment [2,4,8,18,19,21,24,28–30] and subgraph similarity searches
[4, 17, 25–27]. Next, the tutorial will proceed towards the prob-
lem of mining subgraph patterns and their applications in molecu-
lar classification. Two graph mining techniques will be presented:
frequent subgraph mining [1,6,7,10,11,20,23] and significant sub-
graph mining [3, 5, 9, 14, 15, 22]. The tutorial will highlight one
key weakness in frequent subgraph patterns that resulted in much
enthusiasm towards solving the problem of mining statistically sig-
nificant subgraph patterns. After presenting an in-depth survey on
significant subgraph mining with special focus on the techniques
Leap [22] and GraphSig [14], the tutorial will demonstrate the ap-
plication of significant subgraph patterns on molecular classifica-
tion. The tutorial will conclude the graph section of the tutorial by
introducing the problem of mining probabilistically labeled graph
databases [13]. Next, the tutorial will proceed towards presenting
the problem of mining geometric patterns. The tutorial will first
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Figure 1: Graph representation of benzene

illustrate the unique challenges faced while dealing with geomet-
ric structures and then present two recent techniques on mining
frequent [12] and statistically significant geometric patterns [16].
Finally, the tutorial will conclude by discussing two open problems
that lie at the intersection of computer science and drug-discovery.

The remainder of the tutorial proposal is organized as follows.
Section 2 discusses the material to be covered in the tutorial to pro-
vide a sense of both its scope and the depth to which the material
will be covered. In Section 3, we discuss logistical issues such as
length of the tutorial, difference to previous editions of the tutorial,
and intended audience. Finally, we conclude by providing a brief
biography of the authors in Section 4.

2. TUTORIAL MATERIAL
In this section, we discuss the material to be covered in the tuto-

rial. The tutorial can be divided primarily into three topics: graph
indexing, graph mining, and geometry mining. The following sub-
sections elaborate on each of these individual topics.

2.1 Graph Indexing
A common approach to model 2D structural properties of molecules

is in the form of graphs. In the graph representation of chemi-
cal compounds, the nodes represent atoms and the edges represent
covalent bonds between them. An example is shown in Fig. 1.
As a result, top-k queries on molecular substructure containment
and molecular similarity map to the problems of subgraph queries,
and graph similarity queries. Both problems are known to be NP-
hard [4]. As a result, efficient heuristics are required to compute
the answer set in a scalable manner.

2.1.1 Subgraph Queries
Substructure queries are one of the most popular and simplest

techniques to predict biological activity of molecules. Often, chemists
have prior knowledge about the biological activity of certain sub-
structures. For example, the activities of functional groups are well
documented. Given this knowledge, chemists are often interested
in finding molecules containing a substructure demonstrating a de-
sired activity. Under the graph-based representation of molecules,
the problem translates to subgraph containment queries. Due to
the NP-hardness of the problem, over the past years, a number
of techniques have been developed to efficiently process subgraph
containment queries. Interestingly, majority of the techniques fall
under the general framework of fragment-based indexing [2, 8, 18,
19, 24, 28, 29]. In this tutorial, we will present two approaches:
fragment-based indexing and graph summarization based indexing.

Taking gIndex [24] as the representative example, we will illus-
trate the fragment-based indexing approach. The major compo-
nents of this approach are identifying a set of discriminative frag-
ments, constructing an inverted index on the fragments, and a fil-
tering step to construct a candidate set on which subgraph isomor-
phisms are performed. Existing algorithms under the fragment-
based indexing scheme have mostly focused on refining the quality
of the discriminative fragments. Thus, the tutorial will empha-
size the importance of mining discriminative fragments by ana-

lyzing the dependence of the computation cost of subgraph con-
tainment with the quality of the discriminative fragments. Finally,
the tutorial will illustrate gIndex’s method of quantifying the dis-
criminative potential of a fragment to complete the presentation on
fragment-based indexing.

Ctree [4] introduced the graph summarization based approach
for subgraph indexing which is significantly different from the fragment-
based indexing technique. Inspired from the bounding box ap-
proach in R-tree, Ctree recursively constructs summarizations of
the graph database, called closures, in a bottom-up manner and
constructs a closure-tree. The closures ensure the property that if a
query subgraph is not contained in a closure, then the set of graphs
under the closure are guaranteed to not contain the query as well.
As a result, the number of subgraph containment verifications can
be significantly reduced by starting the search operation from the
root of the closure-tree, and discarding all children of a closure that
do not contain the query subgraph.

2.1.2 Similarity Queries
Similarity queries, as in various other domains, find ubiquitous

application in molecular databases. In drug discovery, it is common
to assume that molecules with similar structures have similar bio-
logical activity. Based on this assumption, chemists are often inter-
ested in screening a molecular database to find those molecules that
are structurally similar to a known biologically active molecule. In
the graph setting, this translates to the problem of graph similarity
searches. A number of indexing techniques exist for graph sim-
ilarity queries [4, 17, 25–27]. However, not all of them use the
same distance measure. In this tutorial, we will present the clas-
sical graph edit distance, and explain how the Ctree index can be
utilized for indexing similarity queries as well.

2.2 Graph Mining
Mining substructural patterns from molecular databases is key

to understanding the biological activity of molecules. Typically,
given a database of molecules where each molecule is tagged as ei-
ther ‘active’ or ‘inactive’, the goal is to mine substructures that can
predict the molecular tags. Towards that goal, based on the graph-
based representation, the problem of frequent subgraph mining was
formulated. Later, the problem of mining statistically significant
subgraphs was formulated which allows embedding of more infor-
mation in the mining process and consequently increase the quality
of the mined subgraphs.

2.2.1 Mining Frequent Subgraphs
Given a database of active molecules, the goal behind mining

frequent subgraphs is to identify the frequently occurring substruc-
tures under the assumption that such substructures are likely to cor-
relate with biological activity. A number of techniques have been
designed over the past few years on frequent subgraph mining. In-
terestingly, the techniques can be grouped into two major design
frameworks: the pattern-growth approach [1, 11, 23], and the join-
based approach [6, 7, 10, 20]. Taking gSpan [23] and FSG [10] as
the representative examples of the two approaches, we will illus-
trate their design principles.

2.2.2 Mining Statistically Significant Subgraphs
While frequent subgraphs are effective in identifying substruc-

tural properties, they may not provide the best characterization of
the datasets. More specifically, the frequent subgraph mining frame-
work only considers the information embedded in the active molecules
and completely ignores the inactive set. Consequently, a frequent
substructure in the active molecules could also be frequent in the in-
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active molecules. Such substructures do not show any correlation
with biological activity. A better formulation to mine substruc-
ture patterns would therefore be to identify only those substruc-
tures whose frequencies are significantly higher in the active set of
molecules than in the inactive set. Recently, four techniques have
been developed to tackle this problem by mining statistically sig-
nificant subgraphs. In this tutorial, we will illustrate two of them:
Leap [22], and GraphSig [14].

For efficient pruning of the search space, Leap introduced three
heuristics: vertical pruning, horizontal pruning, and frequency de-
scending mining. GraphSig, on the other hand, employs the strat-
egy of converting graphs into feature vectors as a result of which
the problem of mining significant subgraphs translates to mining
significant feature vectors. After mining significant feature vectors
using a technique originally developed in GraphRank [5], Graph-
Sig develops a technique to map the significant feature vectors back
into the graph space to compute the final answer set of significant
subgraphs.

In this tutorial, we will also highlight the application of mining
statistically significant subgraphs in molecular classification [15].
Molecular classification is an important problem in drug devel-
opment where libraries of chemical compounds are screened and
molecules with the highest probability of success against a given
target are selected. For this purpose, molecules can be charac-
terized using feature vectors that indicate the presence or absence
of statistically significant substructures. Once converted to feature
vectors, molecules can be classified using any of the existing clas-
sifiers.

Finally, the section on graph mining will be concluded by pre-
senting the problem of mining significant subgraphs from proba-
bilistically labeled graph databases. The problem is important since
deterministic labeling of molecular activity is expensive, both mon-
etarily and temporally. At the cost of accuracy, molecular activity
can be estimated more scalably using any of the existing classifiers.
Consequently, an important question arises: In the absence of suf-
ficient amount of high-quality data, can our knowledge base be ex-
panded by analyzing high-volume, but noisier, datasets? A recent
work [13] investigating this issue reveals that incorporating nois-
ier data, when managed appropriately within a probabilistic frame-
work, enhances the quality of the answer sets.

2.3 Mining Geometric Patterns
Since graphs represent 2D structures of molecules, information

on the third dimension is lost in this representation form. The en-
tire information can be retained if molecules are characterized by
the 3D geometry of their structures. In this tutorial, we also present
techniques that focus on analyzing the geometry of molecules in
the 3D space. The underlying geometry of the pharmacophores is
responsible for binding between compounds and targets as well as
properties of compounds such as blood brain barrier permeability.
As a result, the questions asked in the graph setting can be asked
in the 3D setting as well. More specifically, we will look at the
problems of mining frequent geometric patterns, and mining sta-
tistically significant geometric patterns.

The problem of mining frequent geometric patterns was first for-
mulated by Podolyan et al. [12]. In their approach, the authors
model the geometry of molecules as cliques. As a result, the prob-
lem of mining frequent geometries translates to the problem of
mining frequent cliques and the existing frequent subgraph min-
ing techniques can be employed to identify the frequent geomet-
ric patterns. To solve the problem of mining statistically signifi-
cant geometric patterns, Ranu et al. [16] employed a triangle based
characterization of molecules. In their approach, all triangles from

a molecular database are first extracted and then clustered. Next,
based on a background model derived from the active and inactive
molecules in the given database, each of the clusters are analyzed
to identify the statistically significant ones. Finally, the centers of
the significant clusters are presented as the answer set containing
statistically significant geometric patterns.

2.4 Open Problems
After discussing the graph and geometry-based indexing and min-

ing techniques, the tutorial will present two open problems in com-
puter science that can also make a significant impact in the field of
drug-discovery.

2.4.1 Diversity-aware top-k queries on graph databases
In molecular databases, it is common to tag molecules with fea-

ture vectors representing their inhibition values against various tar-
gets as well properties such as toxicity, blood brain barrier perme-
ability etc. Given this setting, chemists are often interested in iden-
tifying molecules that maximize a scoring function where the func-
tion quantifies a certain desirable property. Therefore, the problem
can be formulated as a standard top-k query. However, the standard
formulation ignores an important aspect of the answer set: diver-
sity.

In traditional scoring functions, the score of a data object is in-
dependent of the data objects that have already been included in
the answer set. Such a formulation risks increasing the informa-
tion redundancy in the answer sets. More specifically, if multiple
molecules in the answer set are structurally similar to each other,
then the information content embedded in the answer set is highly
diminished. It is therefore desirable to compute an answer set that is
both high scoring and structurally diverse. While techniques have
been developed for diversity-aware top-k queries, most of them are
applicable to text documents. More importantly, no technique ex-
ists for diverse-aware top-k queries on graph databases.

2.4.2 Scaffold Hopping
The problem of scaffold hopping assumes the same database set-

ting as described in diversity-aware top-k queries. However, in-
stead of the query being a function, in this problem, the query is
a molecule and its corresponding feature vector. The goal is to
identify molecules which are as similar as possible in their inhibi-
tion values and structurally as dissimilar as possible to the query.
Among various applications, the primary utility of scaffold hop-
ping lies in identifying a diverse set of molecules that can be used
as seeds to synthesize more molecules with the desired activity.

3. LOGISTICAL DETAILS
In this section, we discuss the logistical aspects of the tutorial.

3.1 Length
The tutorial is not expected to exceed a time duration of one hour

and thirty minutes.

3.2 Earlier Presentations
A tutorial covering similar material was presented at the ACM

Conference on Bioinformatics, Computational Biology and Biomedicine
(BCB), 2011. The audience of ACM BCB was familiar to the
problem of drug discovery. Thus, less time was spent motivating
the problem. Furthermore, due to the relative unfamiliarity of the
ACM BCB audience with the problems of graph mining and in-
dexing, the tutorial only presented high-level details of the mate-
rial. The current version of the tutorial will spend more time il-
lustrating why computer science is an important part of the drug-
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discovery pipeline. Once the motivation behind computation analy-
sis of molecular databases is well established, the tutorial will cover
the technical content at an higher depth than in ACM BCB since the
EDBT audience is likely to be more exposed to graph mining and
indexing techniques. Finally, the tutorial will have added mate-
rial on two open problems: diversity-aware top-k queries on graph
databases and scaffold hopping.

3.3 Intended Audience and Prerequisite Knowl-
edge

The tutorial makes the assumption that the audience is famil-
iar with basic computer science concepts such as graphs, subgraph
queries, similarity searches and tree traversal techniques such as
breadth-first and depth-first searches. The tutorial does not make
any assumption on prior knowledge of bioinformatics, chemoin-
formatics, or drug discovery. To summarize, the intended audience
for the tutorial are computer scientists who have an interest in graph
indexing, graph mining, and mining geometric patterns.

The tutorial is of interest to the EDBT audience since it presents
recent computer science techniques from top publication venues
and highlights how they play an important role in the field of drug
discovery. The interdisciplinary nature of the tutorial will help the
audience in defining problems with an higher impact on the disci-
plines of both computer science and chemistry.

4. AUTHOR BIOGRAPHY
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• Sayan Ranu: Sayan Ranu is a Ph.D. student at the computer
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