
The Mainframe Strikes Back:
Elastic Multi-Tenancy Using Main Memory Database

Systems On A Many-Core Server

Henrik Mühe
TU München

Boltzmannstr. 3
85748 Garching, Germany

muehe@in.tum.de

Alfons Kemper
TU München

Boltzmannstr. 3
85748 Garching, Germany

kemper@in.tum.de

Thomas Neumann
TU München

Boltzmannstr. 3
85748 Garching, Germany
neumann@in.tum.de

ABSTRACT
Contrary to recent trends in database systems research fo-
cussing on scaling out workloads on a cluster of commodity
computers, this demo will break grounds for scale-up. We
show that an elastic multi-tenancy solution can be achieved
by combining a many-core server with a low footprint main
memory database system. Total transactional throughput
for TPC-C like order-entry transactions reaches up to 2 mil-
lion transactions per second on a 32 core server while the
number of tenants sharing a single server can be varied from
a few to hundreds of separate tenants without diminishing
total throughput. Contrary to common belief, a scale-up
solution provides high flexibility for tenants with growing
throughput needs and allows for simple sharing of common
resources between different tenants while minimizing hard-
ware and computing overhead. We show that our approach
can handle changes in tenant requirements with minimal im-
pact on other tenants on the server. Additionally, we prove
that our architecture provides sufficient per-tenant through-
put to handle big tenants and scales well with database size.

1. INTRODUCTION
Over the last years – perhaps fueled by observing the

scale-out strategy of Google and other web service providers
– the database community has largely focused on scale out
using large numbers of low-cost commodity computers. An
example of a provider offering this kind of hardware infras-
tructure is Amazon’s cloud offering called EC2, which al-
lows customers to obtain resources in the form of predefined
machine specifications – just as if they rented a commod-
ity computer hosted inside Amazon’s data center1. In the
area of database systems, cloud services typically offer two
types of data stores: On the one hand, a key-value store
implementation for data with low consistency requirements,

1http://aws.amazon.com/ec2/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2012, March 26–30, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-0790-1/12/03 ...$10.00

XXL

L
M

M
M

SSSSS

SSSSS

SSSSS

SSSSS

SSSSS

SSSSS

SSSSS

H
undreds of

sm
all tenants

side by side

Tenants of
different sizes

on one m
achine

Extrem
e case of

one large tenant on
a single m

achine

Figure 1: A range of usage scenarios – no explicit re-
configuration is required to adapt the cloud database
server.

like for instance click logs for a company’s website. On the
other hand, a regular relational database system hosted in-
side one of the predefined machines which can be rented
by their customers. Unfortunately, the latter implementa-
tion of a relational database in the cloud is in stark contrast
to the widespread idea of cloud computing. According to
wikipedia, cloud computing provides a service – in this case
a relational data store – instead of a server hosting a DBMS.
The latter idea of a database in the cloud leads to multiple
drawbacks:

Scalability: Since computing resources specified by a
fixed machine profile are rented and used as a database
server, no additional flexibility is offered over an actual com-
puter hosted in a data center. If migration to a different,
more powerful machine profile is at all possible, the process
is not seamless and requires substantial user involvement
which can lead to user error2.

Sharing of resources: With many applications, data

2An example of a user error when managing cloud resources
in this context is described in http://bit.ly/nZcX84

578

Figure 2: A commodity server (relevant equipment
details are listed in Appendix A) capable of a com-
bined TPC-C like transaction throughput of up to
2 million transactions per second. Notice the key-
board on top of the machine for scale.

can be shared between multiple tenants [1]. Using virtualiza-
tion to share hardware between multiple tenants effectively
prohibits this kind of resource sharing.

Overhead: Virtualization as well as the high footprint
of traditional database systems incur substantial overhead.
Without this additional layer between data and hardware,
existing resources can be used more efficiently.

In this paper, we advocate combining multi-core server
hardware with a low-footprint main memory database sys-
tem to create an elastic and low-cost multi-tenancy setup.
Commodity servers with 32 cores and main memory sizes
of up to 1 Terabyte are widely available today for less than
$35,000 (c.f. Figure 2). Combined with a state of the art
transactional main memory database system like VoltDB
[7] or our prototype database system HyPer [5], an overall
throughput in the order of millions of transactions per sec-
ond for TPC-C like order-entry transactions can be achieved.

Instead of designing complex mechanisms to separate dif-
ferent tenants in one database system, our approach relies on
the operating system to map different tenants’ databases to
specific cores to achieve maximum throughput. This keeps
the overhead of the database system to a minimum and al-
lows for features like different scheduling strategies and pri-
oritization implemented in the OS to be used without cost.

2. TECHNICAL REALIZATION
We have developed the HyPer database system proto-

type [5] which reduces the memory footprint of traditional
database systems to a minimum. Our prototype consumes
less than 100kb of memory for an empty database with the
TPC-C schema and an additional 10MB of memory for the
statically linked executable. Despite the low memory over-
head and small executable size, HyPer is capable of running
OLTP transactions comparable to those found in the TPC-C
at a rate of 100,000 transactions per seconds per thread. Ad-
ditionally, HyPer is capable of executing long-running OLAP
queries on an arbitrarily recent snapshot without severely

#Tenants Average TPS Overall TPS
1 80,729 81k
2 80,767 162k
4 81,060 324k
8 67,018 536k
16 58,605 938k
32 54,087 1731k
64 34,319 2197k
128 16,812 2152k
256 7,927 2029k
512 3,746 1919k

Table 1: Example configurations with a varying
number of homogeneous tenants.

impacting transaction throughput as we showed in [5] and
demonstrated in [3].

The high transaction throughput is achieved by reengi-
neering a main memory database system from scratch, re-
moving superfluous components formerly required in disk-
based database systems and by using compilation over in-
terpretation. Therefore, HyPer makes extensive use of the
operating system’s virtual memory management, removing
the need for a buffer manager and executes transactions se-
rially as pioneered by H-Store [4], thus eliminating the need
for a lock manager. To further increase performance, HyPer
compiles pre-canned transactions as well as OLAP queries
to machine code using the LLVM compiler infrastructure as
illustrated in [6]. All schema specific parts – like reading an
attribute from a tuple or finding a tuple using an index –
are generated as relation specific machine code, whereas gen-
eral fragments like for instance a join operator are written
in C++ and invoked from the generated code. Moreover,
HyPer is fully ACID compliant, as atomicity and isolation
directly follow from employing single threaded execution for
transactions.

To support multiple tenants, multiple HyPer instances are
launched, one for each tenant. Because of the compact foot-
print of the DBMS, even several hundred instances run on
the server displayed in Figure 2 cause only a minimal mem-
ory overhead of less than 0.1%. When an instance does not
execute any transactions or queries, no background tasks or
batch processes are run, effectively reducing the CPU cycles
required to run an idle instance to zero. Allocating tenants
to a specific processor or migrating them to another one
in case of a situation with unbalanced load is done by the
operating system using the integrated scheduler. Resource
sharing between different instances is achieved using shared
memory segments mapped into the virtual memory of multi-
ple instances. That way, read-only data can be shared with
minimal implementation overhead. For data that needs to
be updated infrequently, regular mutual exclusions as pro-
vided by the operating system ensure consistency in shared
segments.

Since resource distribution is dynamically controlled by
the operating system, a tenant with growing throughput or
memory demands will receive more resources without any
explicit intervention. Table 1 shows average throughput and
overall throughput for the same benchmark with a varying
number of homogeneous clients. First, it can be observed
that the overall throughput reaches a peak at 64 tenants
which is the number of available hardware threads. Second,

579

the sustained total throughput does not significantly dimin-
ish in an overload situation which is the case for 128, 256
and 512 tenants. Average throughput halves with each dou-
bling of the number of tenants, but total throughput stays
the same meaning that sharing a hardware context between
multiple tenants does not incur unacceptable overhead.

The peak performance for a single instance caused by
single- threaded serialized transaction execution as employed
by current main memory database systems is not a limiting
factor here. A single threaded instance for a tenant can ex-
ecute about 80,000 transactions per second (c.f. Table s1)
even when OLAP queries run simultaneously on a snapshot.
A back-of-the-envelope calculation shows, that even big re-
tailers like Amazon – on average – have orders of magnitude
less orders than can be processed in 80,000 TPC-C trans-
actions: Amazon has a yearly revenue of about 15 billion
Euros [5]. Assuming that an individual order line is valued
at 15 Euros and each order contains an average of 5 items,
the average number of orders is less than 7 per second –
significantly less than the 80,000 order related transactions
achievable in a single thread.

The transaction throughput can be sustained over time
and does not degrade for customers with a high amount of
data. Figure 3 shows a single instance run at peak perfor-
mance until the database reached a size of about 900 gi-
gabytes of data. Note that this amount of data can cover
orders totaling about 10 billion items which were processed
in less than 8 hours.

When the resource requirements of all tenants on a server
outgrow the available resources, tenants can be moved easily
by leveraging the snapshot mechanism integrated in HyPer,
which can be applied to any main memory database system.
A consistent snapshot of the DBMS can be created with
minimal overhead as described in [5], transferred to the tar-
get server and be updated using the redo log. That way,
migrating a tenant requires only one visible interruption in
the order of milliseconds for snapshot creation before clients
can start running transactions against the target server.

3. DEMO
Our demo showing the implementation of multi-tenancy

on a many core server uses our HyPer main memory database
system. HyPer was originally engineered to show the fea-

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 2e+08 4e+08 6e+08 8e+08 1e+09 1.2e+09 1.4e+09 1.6e+09 1.8e+09 2e+09
 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 550000

 600000

 650000

 700000

 750000

 800000

 850000

 900000

 950000

T
ra

n
s
a
c
ti
o
n
s
 p

e
r

s
e
c
o
n
d

M
e
m

o
ry

 i
n
 m

b

Time in ms

HyPer - TPCC 5w 1TB data

tx per s
memory in mb

Figure 3: HyPer main memory database system
growing form 500MB to 950GB of data with almost
constant throughput.

sibility of executing both OLTP and OLAP on the same
database state by using a virtual memory snapshot (forked
process) for the OLAP queries [5]. Because HyPer has been
built from scratch to specifically work in main memory, its
computational as well as memory footprint is small, making
it an ideal candidate for the evaluation of a low overhead
multi-tenancy approach.

In order to show different multi-tenancy scenarios, we
built a management component which can automatically de-
ploy groups of clients with different usage patterns in terms
of throughput, memory usage and change in resource con-
sumption over time. We show different predefined scenar-
ios and allow visitors to add and change tenants and work-
load characteristics. The system status as well as graphs
for throughput over time and memory consumption will be
shown live during the demo so that visitors can see the influ-
ence their adjustments make on the system performance in
real time. In Figure 4, the graphical interface of the manage-
ment component is shown. The scenario displayed is a server
initially hosting 50 tenants with comparable throughput re-
quirements. The fact that one tenants steadily increasing
throughput demands have no visible influence on other ten-
ants on the same machine can be observed, proving the high
elasticity provided by our setup.

We will demonstrate the full spectrum of flexibility that
a TB server provides: Sharing of the resources by hun-
dreds of small tenants, dedicating the entire server to a large
Amazon-style tenant as well as several scenarios in between.

The CH-benCHmark [2], a combination of the TPC-C
transactional workload and the queries specified in the TPC-
H, will be used to simulate each tenants workload. The
workload can be parameterized to exhibit different charac-
teristics, both in initial throughput and memory consump-
tion as well as their variance over time. This allows for
simulating both, OLTP transactions as well OLAP queries
executed using HyPer’s snapshotting mechanism, therefore
simulating the full repertoire of client needs.

For the demonstration, it is possible to ship our 32 core,
1TB memory server from Munich to Berlin so that the hard-
ware can be observed live while the demonstration is run-
ning. All we need is a 1000W power supply. Therefore, visi-
tors can directly interact with the server actually executing
the workload they specified and can monitor its hardware
parameters.

4. SUMMARY
Our demo will show that there are elastic scaling solutions

beyond massive deployment of cheap low-end machines. The
approach introduced in this paper allows high transaction
throughput by collocating many tenants on a multi-core
server, allowing cost to be split among tenants and com-
mon resources to shared. Our setup behaves predictable
even when workloads change drastically and allows a high
degree of elasticity for many small tenants with growing data
management needs as well as big tenants having to process
ten-thousands of transactions.

The advantages of our approach are achieved by combin-
ing a multitude of factors:

• Our state of the art, small footprint main memory
database system, HyPer. By combining recent research
results like serial execution without a a lock- or buffer-
manager, transaction and query compilation in a

580

Figure 4: Screenshot displaying the management component of our approach. The diagram in the top-right
shows a live view of the transaction throughput of each tenant. Note that the constantly rising transaction
rate of the blue tenant does not influence the other 50 instances pictured in red.

database system specifically designed for use in main
memory, we constructed a low footprint high perfor-
mance DBMS that can be individually deployed for
each tenant.

• By allowing the operating system to schedule each ten-
ant separately, system resources are used efficiently
without explicitly managing all DBMS instances. Fur-
thermore, the architecture automatically benefits from
improvements in the operating system, for instance ad-
justments due to changing hardware properties like -
for instance - non uniform memory access.

• Simplified resource sharing like – for example – read-
only database content or memory temporarily used for
query execution by relinquishing strict separation in
contrast to virtualized environments.

All in all, our demo shows how main memory will not only
change the database systems landscape in terms of process-
ing speed but additionally in how solutions for well known
problems – like multi-tenancy – can be crafted.

APPENDIX
A. SERVER SPECIFICATION

All benchmarks were performed on a Dell PowerEdge R910
server, currently being sold for roughly 40,000e equipped
with:

• 4x 8 cores (16 hardware threads) Intel Xeon X7560
processor @ 2.26GHz, 24MB cache,

• 1TB memory, 64x16GB RDIMMs @ 1066MHz

• 16x 300GB SAS 6Gbit/s 10k 2.5” HDDs (not used in
benchmarks).

B. REFERENCES
[1] S. Aulbach, M. Seibold, D. Jacobs, and A. Kemper.

Extensibility and data sharing in evolving multi-tenant
databases. In ICDE, pages 99–110, 2011.

[2] R. Cole, F. Funke, L. Giakoumakis, W. Guy,
A. Kemper, S. Krompaß, H. Kuno, R. Nambiar,
T. Neumann, M. Poess, K.-U. Sattler, M. Seibold,
E. Simon, and F. Waas. The mixed workload
ch-benchmark. In DBTest, 2011.

[3] F. Funke, A. Kemper, and T. Neumann. HyPer-sonic
Combined Transaction AND Query Processing. In
PVLDB, 2011.

[4] R. Kallman, H. Kimura, J. Natkins, A. Pavlo,
A. Rasin, S. B. Zdonik, E. P. C. Jones, S. Madden,
M. Stonebraker, Y. Zhang, J. Hugg, and D. J. Abadi.
H-store: a high-performance, distributed main memory
transaction processing system. PVLDB,
1(2):1496–1499, 2008.

[5] A. Kemper and T. Neumann. HyPer: A Hybrid
OLTP&OLAP Main Memory Database System Based
on Virtual Memory Snapshots. In ICDE, 2011.

[6] T. Neumann. Efficiently compiling efficient query plans
for modern hardware. In VLDB, 2011.

[7] VoltDB LLC. VoltDB Technical Overview.
http://voltdb.com/_pdf/

VoltDBTechnicalOverviewWhitePaper.pdf, 2010.

581

