
Towards Principled Design Support for Scalable OLTP
Workloads

Bin Liu Junichi Tatemura Hakan Hacıgümüş
NEC Laboratories America

10080 N. Wolfe Rd. SW3-350, Cupertino, CA 95014 USA
{binliu, tatemua, hakan}@sv.nec-labs.com

ABSTRACT
Supporting online transaction processing (OLTP) workload in a
scalable and elastic fashion is a challenging task. With the advent of
cloud-based systems, supporting entity group based consistency is
a viable, scalable, and cost-effective option. This approach remains
attractive in the presence of systems supporting the highest level of
consistency, due to the relative high cost and performance degrada-
tion of the latter. In this paper, we briefly introduce our on-going
work for assisting application developers to design OLTP work-
load for entity group based systems. The goal is providing a suite
of user-friendly design tools for new-breed databases to achieve
scalability and elasticity.

Categories and Subject Descriptors
H.2 [H.2 DATABASE MANAGEMENT]: Logical Design, Sys-
tems

General Terms
Algorithm, Design, Performance

1. INTRODUCTION
With the rapid emergence of Web 2.0 and mobile applications, tra-
ditional database technologies are increasingly challenged on the
scalability front and the ease of application deployment [5, 9, 3].
Many applications do not require the full ACID guarantees of rela-
tional databases and rather prefer the simplicity of key-value stores
in order to achieve fast time-to-market and low-latency. In the mean
time, cloud has emerged as the synonym of highly scalable and reli-
able systems. A natural marriage between key-value stores and the
cloud has been proven a very attractive solution, where application
developers can easily have the best of both worlds.

The simplicity of key-value stores does come at a price when higher
level consistency is required, which is especially true for OLTP
workloads. Application programers have to spend extra time to
handle corner cases, which can quickly become a laborious and
error-prone task. Supporting some form of transactions in key-
values stores in the cloud is thus very desirable. Megastore [5]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2012, March 26–30, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-0790-1/12/03 ...$10.00

(Google) and Microsharding [9] (NEC Labs) are examples of such
efforts. Both systems use the concept of “entity groups” [8]. In-
tuitive examples of entity groups are individual email accounts or
twitter profiles. Full ACID is guaranteed inside each entity group,
while transactions across entity groups are expensive and should be
limited. Megastore’s success has proved that entity group provides
a good balance of scalability and consistency, although it poses
some extra challenges for application developers who are accus-
tomed to relational databases.

In this summary paper, we briefly introduce our on-going work for
user-friendly scalable OLTP workload design. We focus on the
problem we are solving and outline solution approaches. The un-
derlying consistency model is entity groups. The goal is, given a
relational workload in SQL, to assist application developers design
scalable workload in an easy to use fashion. A typical application
scenario is migrating applications which use the relational model to
cloud-based transactional key-value stores such as Megastore and
Microsharding. The rest of the paper is organized as follows. We
introduce necessary background and problem definition in Sec. 2,
which is followed by the challenges and approach towards the goal
in Sec. 3. We then introduce related work in Sec. 4 and conclude
the paper in Sec. 5.

2. BACKGROUND AND PROBLEM DEFI-
NITION

We now introduce the necessary background and problem defini-
tion.

2.1 Background
For illustration, we use the RUBiS benchmark [2], which imple-
ments core functionalities of an auction site. An excerpt of the
schema of RUBiS is shown in Figure 1. We consider the following
three sample transactions:

Figure 1: Rubis Benchmark Schema

551

• Bidding (T1): Insert a new tuple into bids and update the cor-
responding items as follows: increment the number of bids
and update the maximum bid if the new bid is the current
maximum. This requires joining table items with bids.

• View User Items (T2): Retrieve all items offered by a user
given her name. This requires joining table users with items.

• View User Bids (T3): Retrieve all the active bids (including
items information) done by the user given a user id. This
requires joining table users with bids, and items with bids.

Figure 2: Rubis Benchmark Schema Graph

bids

items users items users

bids

items

T1 T2 T3

Figure 3: Sample Transaction Graphs

We can model the schema as a directed schema graph, where each
node represents a relation, and an edge from node A to node B
means that B has a foreign-key from A. The schema graph for Ru-
bis benchmark is shown in Figure 2. If we consider only equi-joins
based on foreign-key references (which are the vast majority of
joins in OLTP workloads), each query (template) can also be mod-
eled as a query graph, which is a sub-graph of the schema graph:
the relations accessed by the query are nodes, and the joins per-
formed by the query are edges. Since a transaction (template) con-
sists of a set of queries that relate with each other, we can model the
set of data touched by a transaction similarly as for a query. Thus
we can model a transaction as a graph, which we call a transaction
graph. The transaction graphs for the three sample transactions are
shown in Figure 3. The workload is then modeled as a set of trans-
action graphs.

2.2 Transaction Class Design
Transaction Class (TC) was introduced in Microsharding [9] as a
way to declaratively specify entity groups. We re-introduce it here
due to its immediate relevance to the work that follows. TC defines
a logical scope of the data where serializability must be maintained.
For example, transaction T1 (bidding) updates relation bids and
items, and we can create a transaction class as follows:

CREATE TRANSACTION CLASS TC1 AS items BY (id),
bids BY (item_id);

By creating transaction class TC1, we classify the records of items
and bids together into non-overlapping groups by the value of items
id (primary key) and bids item_id (which is a foreign key from
items). Consistency is fully guaranteed for transactions inside each

group. We say transaction T1 is executed under TC1 when we
mean that T1 has the ACID guarantees provided by TC1.

A transaction class design is given as a set of TCs. Our goal is to
provide a principled support for the developer to choose a set of
TCs that gives desirable trade-off between consistency and scala-
bility.

We now introduce four properties of a transaction class and a trans-
action class design. First we discuss properties that are required for
a valid design in order to generate mutually disjoint entity groups.

Valid class: For a TC to be valid, its definition must not contain
two foreign-key references that end at the same relation. For exam-
ple, for transaction T3, we cannot define a TC with relations items,
users, and bids. This is because, in the presence of one-to-many
relationship from users to bids and many-to-one relationship from
bids to items, there is no valid way to partition relation bids in a
non-overlapping fashion together with the other two relations. In
graph terms, we cannot have a TC graph containing two join edges
with the same destination. To avoid invalid TC specification, the
syntax of a TC statement allows only one key for each relation.

Valid design: A valid transaction class design is a set of valid TCs
with exclusivity, which means that a relation can be included in
only one TC at the same time. Otherwise, entity groups will not
be mutually disjoint. For example, both T1 and T2 access relation
items. The best possible TC for T2 would be:

CREATE TRANSACTION CLASS TC2 AS users BY (id),
items BY (seller_id);

TC1 and TC2 cannot be in the same time design due to overlap on
items, and hence we must decide whether TC1 or TC2 gets items.
Suppose TC1 stays intact, TC2 has to be modified to include only
relation users, and transaction T2 will have no coverage over join
(users, items).

The definition of TC can be modeled as a sub-graph of the schema
graph. The graph for TC1 contains node bids and items, and there
is an edge from items to bids, denoting the foreign-key based join.
A valid TC is a tree where the direction of an edge from a parent
to a child is consistent with the foreign-key relationship. A valid
transaction class design can be modeled as a set of trees that is a
subgraph of the schema graph. We call this graph a design graph.

Now we discuss properties that are desirable for a transaction class
design.

Coverage: The above discussion illustrates that there may not be
a valid design that can guarantee the ACID properties for all the
transactions in a workload. We often need to compromise consis-
tency guarantee by excluding relations that appear in a transaction
out of the coverage of a TC. From the viewpoint of the ACID guar-
antees, we want to achieve a maximal coverage of transactions by a
design. The degree of coverage is formally defined as the coverage
for a transaction graph by a design graph. If we assign a weight to
each join in a query, we can quantify the coverage of a design as
the weighted sum of common edges of the design graph and trans-
action graph. If query has a join not covered by the TC, application
developer has to write extra code to incorporate possible inconsis-
tency.

552

In addition, we would like the design to have good system per-
formance (based on profiling with test workloads). Based on user
needs, our goal of workload design is to automatically derive trans-
action class designs that provide maximal coverage (and thus con-
sistency) or performance. While the optimization goals are satis-
fied, the end result consists of: i) a design graph, ii) a potentially
modified set of transactions based on the input workload, iii) the as-
signment of transactions to transaction classes, and iv) a set of com-
promises (non-serializable transactions) that must be taken care by
the developer. It is worthwhile to reiterate that all this needs to be
accomplished in a user-friendly fashion.

3. CHALLENGES AND SOLUTION FRAME-
WORK

We now briefly introduce the challenges and solution approaches.

Challenges. First, for an application developer who is familiar with
relational databases and SQL, it is challenging to design a workload
that fits the entity group model. Megastore provides a procedural
way for doing so, which is much less intuitive and user-friendly
than the declarative manner database developers are accustomed
to. We need to make the system user-friendly and not have a steep
learning curve. Secondly, while guaranteeing ACID properties in
entity groups, we need to optimize the workload to achieve better
performance. Sometimes these two goals conflict with each other.
Thirdly, when compromises need to be made, users should be in-
formed of consequences intuitively. This requires analysis of con-
sistency violations and performance profiling.

Solution Architecture. Figure 4 depicts the workflow of our pro-
posed solution. Input schema and workload are translated into
graph representations, and are then fed to the automatic design
suggestion engine, where much of the analysis and design is per-
formed. Depending on user’s choice, we could optimize based on
coverage or performance. We output different designs in the form
of graphs. The design can be evaluated by profiling performance of
transaction execution and consistency violation analysis, based on
which the user can provide feedback to the design engine in order
to guide the design refinement.

Automatic
Design

Suggestion

Schema

Workload

Designs

Performance
Profile

Consistency
Evaluation

Figure 4: Solution Work Flow

4. RELATED WORK
Ever since the popularization of key-value stores by BigTable [6]
and Dynamo [7], supporting transactions on them has attracted
much attention. Megastore [5] is one of the earliest effort. Both
Megastore and Microsharding [9] provide full ACID inside entity-

groups. While Megastore requires application developers to spec-
ify entity groups in a procedural manner, Microsharding provides a
declarative language similar to SQL. PIQL [3] provides a response-
time guarantee for a subset of the workload (when performance can
be bounded), and provides a command to traverse a subset of the
result when queries are unbounded in performance. The consis-
tency model for PIQL is eventual consistency, a design choice made
partly due to the requirement of scale independence [4]. Recently,
Amazon released DynamoDB [1] to provide higher level consis-
tency (in addition to features such as provisioned throughput and
connectivity to the MapReduce/Hadoop ecosystem). Higher level
consistency access (such as consistent read) can cost double com-
pared to eventually consistent read (because eventually consistent
read can have twice the throughput) [1]. Our work can be useful for
workload planning on DynamoDB to optimize for cost or response
time.

5. CONCLUSIONS
In this paper, we outline the on-going work towards assisted design
of scalable OLTP workload on entity group based system. While
systems such as DynamoDB exist, different cost of resource and
performance for different level of consistency still makes entity-
group based consistency attractive, especially for resource-scarce
applications that prefer quick response time rather than full consis-
tency. Our work is the first effort for seamless migration of appli-
cations from relational system to entity-group based systems, and
can also be used for workload planning for systems with full ACID
guarantees. Our tools strive to minimize user’s effort and learn-
ing curve by automatically deriving the best design based on the
workload and optimization metrics.

6. REFERENCES
[1] Amazon DynamoDB. http://aws.amazon.com/dynamodb/.

[2] C. Amza, A. Chanda, A. Cox, S. Elnikety, R. Gil,
K. Rajamani, W. Zwaenepoel, E. Cecchet, and J. Marguerite.
Specification and implementation of dynamic web site
benchmarks. In IEEE International Workshop on Workload
Characterization, pages 3–13, 2002.

[3] M. Armbrust, K. Curtis, T. Kraska, A. Fox, M. J. Franklin,
and D. A. Patterson. Piql: Success-tolerant query processing
in the cloud. PVLDB, 5(3):181–192, 2011.

[4] M. Armbrust, A. Fox, D. A. Patterson, N. Lanham,
B. Trushkowsky, J. Trutna, and H. Oh. Scads:
Scale-independent storage for social computing applications.
In CIDR, 2009.

[5] J. Baker, C. Bond, J. Corbett, J. J. Furman, A. Khorlin,
J. Larson, J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh.
Megastore: Providing scalable, highly available storage for
interactive services. In CIDR, pages 223–234, 2011.

[6] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. Gruber. Bigtable: A
distributed storage system for structured data. In OSDI, pages
205–218, 2006.

[7] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: amazon’s highly available key-value
store. In SOSP, pages 205–220, 2007.

[8] P. Helland. Life beyond distributed transactions: an apostate’s
opinion. In CIDR, pages 132–141, 2007.

[9] J. Tatemura and H. Hacigumus. A declarative approach to
support elastic OLTP workloads. In LADIS, The 5th Workshop
on LargeScale Distributed Systems and Middleware, 2011.

553

