
Realtime Healthcare Services Via Nested Complex Event
Processing Technology∗

Mo Liu, Medhabi Ray, Dazhi Zhang, Elke A. Rundensteiner, Daniel J. Dougherty
Worcester Polytechnic Institute, Worcester, MA 01609, USA

(liumo|medhabi|jasonzhang|rundenst|dd)@cs.wpi.edu
Chetan Gupta, Song Wang, Ismail Ari‡

USA Hewlett-Packard Labs, USA
‡Ozyegin University, Turkey

(chetan.gupta|songw)@hp.com ‡Ismail.Ari@ozyegin.edu.tr

ABSTRACT
Complex Event Processing (CEP) over event streams has become
increasingly important for real-time applications ranging from health-
care to supply chain management. In such applications, arbitrarily
complex sequence patterns as well as non existence of such com-
plex situations must be detected in real time. To assure real-time
responsiveness for detection of such complex pattern over high vol-
ume high-speed streams, efficient processing techniques must be
designed. Unfortunately the efficient processing of complex se-
quence queries with negations remains a largely open problem to
date. To tackle this shortcoming, we designed optimized strate-
gies for handling nested CEP query. In this demonstration, we pro-
pose to showcase these techniques for processing and optimizing
nested pattern queries on streams. In particular our demonstra-
tion showcases a platform for specifying complex nested queries,
and selecting one of the alternative optimized techniques including
sub-expression sharing and intermediate result caching to process
them. We demonstrate the efficiency of our optimized strategies
by graphically comparing the execution time of the optimized so-
lution against that of the default processing strategy of nested CEP
queries. We also demonstrate the usage of the proposed technology
in several healthcare services.

1. BACKGROUND AND MOTIVATION
Complex Event Processing (CEP) has become increasingly impor-
tant in modern applications, ranging from supply chain manage-
ment with RFID tracking to real-time intrusion detection [1, 2,
3]. CEP must be able to support sophisticated pattern matching on
real-time event streams including the arbitrary nesting of sequence
(SEQ), AND, OR operators and the flexible use of negation (!) in
such nested patterns. In our work we focus in particular on deliv-
ering healthcare services. For example, consider the scenario of
a healthcare hygiene control system which is equipped with sen-
sors and hygiene control is monitored and regulated throughout
the hospital facilities by running pattern queries on continuous sen-
sor data. The services range from reporting contaminated medical

∗This work is supported by HP Labs Innovation Program and NSF
grants 1018443 and 0917017.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2012, March 26–30, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-0790-1/12/03 ...$10.00

equipments in a hospital [4] to tracking hygiene violations made
by healthcare workers [5]. In a real scenario running such a sys-
tem, every healthcare worker wears an RFID badge. Surgical and
non-surgical equipment are tagged. Sensors are located in every
patient’s room, Intensive Care Units, Emergency Rooms, Opera-
tion Theaters and near Sanitizing equipments. All these sensors
continuously sense the environment and send collected events to a
centralized system. Not only can the total number of events occur-
ring in a second be very large, but the complexity of the patterns
can also be very high and very urgent actions might be necessary
in certain cases. Thus running pattern queries over such high input
rate systems in real time is a challenge and we need an efficient
underlying system to do so. Let us assume that the tools for med-
ical operations are RFID-tagged. The system monitors the histo-
ries of the equipment (such as, records of surgical usage, washing,
sharpening and disinfection). When a healthcare worker puts a box
of surgical tools into a surgical table equipped with RFID readers,
the computer would display warnings such as “The tool with id =
“5" must be disposed". Query Q1 (Figure 1) expresses this critical
condition that after being recycled and washed, a surgery tool is
being put back into use without first being sharpened, disinfected
and then checked for quality assurance. Query Q2 (Figure 2) re-
ports hygiene violations caused by a healthcare worker who did
not perform necessary sanitizing actions at the right time in proper
sequences based on severity of threat to spread infection. This is a
query written in NEEL language which was our prior work [6].

SEQ(Recycle r, Washing w,

!AND(Sharpening s, Disinfecting d, Checking c)

Operating o)

GROUP BY INSTRUMENT_ID

OR(

SEQ(Recycle r, Washing w,!Sharpening s,Operating o)

GROUP BY INSTRUMENT_ID

SEQ(Recycle r, Washing w,!Disinfecting d,Operating o)

GROUP BY INSTRUMENT_ID

SEQ(Recycle r, Washing w,!Checking c,Operating o)

GROUP BY INSTRUMENT_ID)

Figure 1: Example Query Q1

One important feature of any query language, as learned from the
community’s experience with SQL, is the flexible nesting of query
expressions. Nested CEP queries provide users with an intuitive
way of expressing their requirements. Without this capability, users
are severely restricted in forming complex patterns in a convenient
and succinct manner [7]. In fact some nested queries cannot be

622

SEQ(Enter_Patient_Room en, Touch_Patient tp,

Exit_Patient_Room ex,

!OR(Sanitize s, Patient_Critical pc)

Enter_Patient_Room en1)

GROUP BY EMPLOYEE_ID

WITHIN 5 MINS

Figure 2: Example Query Q2

expressed as flat queries or might result in an exponential number
of flat queries. However, the state-of-art CEP systems including
SASE [1], ZStream [3] and Cayuga [2] do not support nested CEP
queries with negation.

Traditionally, an iterative execution strategy is adopted for process-
ing nested queries [8]. Namely, first all component events match-
ing the outer query would be identified. Thereafter, for each outer
match such as SEQ(Recycle, Washing, Operating) in Q1, the re-
sults for the nested inner subsequences would be iteratively com-
puted, in this case, AND(Sharpening, Disinfection, Checking). Fi-
nally, each outer candidate sequence result would be constrained by
the non-existence of the inner subsequence match between event
pairs of Washing and Operating readings. As our prior experi-
ments in [9] confirm, this classic process of first constructing the
outer sequences and then iteratively the inner sequences can be pro-
hibitively inefficient, missing critical opportunities for optimization
as illustrated below.

Problem 1: In traditional iterative processing of nested CEP, a
top-down ordering is forced upon the execution of the CEP sub-
expressions thus missing out on huge gains potentially achievable
by decorrelating them and processing them simultaneously.

Problem 2: In traditional CEP processing, candidate sequence re-
sults generated may later simply be discarded – thus wasting pre-
cious resources. For example, in the above query Q1, the genera-
tion of the sequence results for the outer subexpression SEQ(Recycle
r, Washing w, Operating o) would be wasted, since during medical
procedures inner sequences of type AND(Sharpening s, Disinfec-
tion d, Checking c) may not exist. This unnecessary outer event
generation to be later discarded wastes precious memory and CPU
processing resources.

Problem 3: On the other hand while the traditional processing
strategy [8] produces full results satisfying the nested negated subex-
pression are processed completely, the full computation of negated
sub-expression might not be needed because the existence of only
one result should be able to filter an outer sub-expressions results.

Problem 4: Iterative execution strategy, with the sub-expression
execution being triggered by an outer sub-expression result often
leads to re-computations of the same result, thus causing an unde-
sirable wastage of CPU resources.

To address these problems we set out to develop technology for the
specification and execution of a wide range of nested CEP queries
with negation appearing at any level of nesting. We will demon-
strate a system which flattens nested CEP queries and executes
these rewritten queries in an efficient manner [9]. In addition we
also propose an effective caching technique to avoid re-computation
of already computed pattern results. Caching is in particular an ef-
fective technologies for complex queries, for which no rewriting is
possible. This nested CEP technology work is orthogonal to our
parallel efforts of providing OLAP capabilities on streaming multi-
dimensional data [10] and of adding "active rules and concurrency"
into CEP engines [5].

In particular, we will demonstrate the following:

• Allow audience to enter queries in the nested CEP language
NEEL1, designed for specifying nested CEP queries.

• Demonstrate the caching based optimized processing of Nested
CEP queries.

• Illustrate the step-wise application of rewriting technology to
unnest NEEL queries whenever possible, resulting in a new
rewritten query plan.

• Audience can then choose between bit-encoded shared exe-
cution processing strategy or continuous caching techniques
for the optimized processing of NEEL query plan.

• Showcase a case-study in healthcare for infection prevention
using our NEEL processing technology.

2. THE NESTED CEP TECHNOLOGY
2.1 E-Analytics System Architecture

Figure 3: E-Analytics Event Processing System Architecture

The architecture of our NEEL query processing system is depicted
in Figure 3. It can be seen broadly as comprised of two units
namely, the Executor and the Optimizer. The Optimizer consists of
the Logical and the Physical Optimizer. The query is first registered
and goes into Logical Query Optimizer which applies the Rewrit-
ing Rules to a given nested CEP query to reduce the nesting of
the NEEL query plan. The Physical Optimizer makes a cost based
decision for grouping multiple rewritten sub-queries obtained from
the Logical Optimizer based on input statistics. Lastly the Executor
which is driven by the Optimizer has two components. The Query
Executor uses a novel bit-marking technique [9] for shared expres-
sion execution and continuous caching for leveraging previously
computed sub-expression.

2.2 NEEL Sub-expression Caching Strategies
Many NEEL queries cannot be completely flattened even after ap-
plication of the rewriting rules. Thus for such queries we have to
execute them iteratively. However as mentioned in Problem 4 of
Section 1, the iterative execution of Nested CEP queries results in
the re-computation of the results for inner sub-queries every time
an outer triggering event arrives. Thus to avoid re-computations of
1NEEL stands for Nested Complex Event Query Language.

623

intermediate results, we cache them. The cache is continuous and
needs to be updated and maintained as the window moves on. For
this we selectively associate a cache with each nested query subex-
pression. Each cache is attached with semantic descriptors which
act as indicators to foretell what content have already been loaded
in the cache. Given an outer query result triggered by an event
en, we calculate the constraint window for each sub-query given
by the timestamps of the events in the outer query bounding the
sub query. For a given constrained window if a matching semantic
descriptor is found in the cache, the results are directly retrieved
from the cache. If however an exact match is not found, the cache
is updated. We design a novel technique to avoid storing duplicate
results for overlapping windows. The newly added content is now
updated into the cache and attached with the appropriate Seman-
tic Descriptor. Several enhancements of this basic caching will be
demonstrated including maintaining flags for negated sub-queries
and partitioning the cache for handling predicates.

2.3 NEEL Logical Query Optimization
This module handles the problem of reducing the nesting levels of
a nested NEEL query when it is possible to do so. We have a set
of rules to unnest nested NEEL queries with Sequence and Nega-
tion operators to produce equivalent queries without nesting under
certain preconditions. We also have a procedure of applying these
rules to a given NEEL query. Our proposed rewriting rules fall
into three categories: flattening rules, distributive rules and nega-
tion push down rules. We briefly discuss this technique [9] based
on the example shown below in figure 4.

We will now walk through a complete example for unnesting a
NEEL query. Given a query Q3 as shown in Figure 4(a) we first
apply the Negation Push Down Rule resulting in the intermediate
rewritten query shown in Figure 4(b). We then apply the Distribu-
tive Rule on Figure 4(b) resulting in the rewritten query shown in
Figure 4(c). This corresponds to the final flat query in this case.

2.4 NEEL Physical Query Optimization
A rewritten NEEL query may consist of multiple expressions which
may share common sub-expressions. One of the challenges for
efficient computation is to avoid recomputation of common sub-
expressions. This module handles the critical task of deciding shared
sub-expressions processing. The decision is based on a cost model
described in detail in [9] which uses statistics supplied by the Ex-
ecutor engine. This problem of optimally grouping sub-expressions
has an exponential search space. We provide strategies for travers-
ing the search space to find high-quality solutions efficiently. Q2 in
its rewritten form shown in Figure 4(c) consists of three conjuncts
that share the same positive patterns SEQ(Recycle, Washing, Op-
erating), except with different negative interleaved events. The first
two share the common prefix SEQ(Recycle, Washing, ! Sharp-
ening) while the last two share the common prefix SEQ(Recycle,
Washing, ! Sharpening, Sharpening, ! Disinfection). Our optimizer
finds a logical grouping of the sub-expressions with the minimum
overall execution cost.

2.5 NEEL Shared Query Executor
We introduce a shared expression physical operators assisted by
a dynamic bit-marking scheme that achieves early termination of
evaluating negated sub-expressions to tackle problem 3 listed in
Section 1. Unlike existing systems [1, 2, 3], we share event ex-
pressions when subpatterns contain the same positive event types
while their negative event types may differ in their types as well as
their position within the respective sequence. We observe that event
expressions with common positive event types return the same re-
sults yet apply different filters about the required non-existence of
certain events. The main idea of our strategy is to record the con-

straints of non-occurrence for each expression at compile time us-
ing an efficient bit-encoding based methodology. At run time, as
we construct each sequence result, we keep track of which of the
given constraints are satisfied. We stop the evaluation early for un-
satisfied event expressions.

3. DEMONSTRATION
Our demonstration will introduce the audience to two distinct views,
namely an internal and an external view. The first demonstration
showcases the Nested CEP core technology focussing in particular
on the alternate optimization and processing innovations we have
developed. The second demonstration will showcase a real life sce-
nario using our Nested CEP processing engine - The E-Analytics
Engine.

3.1 The E-Analytic Engine

Entering a query and selecting Processing Technique. Figure 5
shows the console where the user can enter NEEL queries and sub-
mit them to generate a Query Plan. Following this a user may
choose from among the alternate methods of executing the query.
He can choose to execute the query without rewriting it, i.e using
the caching based iterative technique or choose to rewrite it first
and then optionally apply the shared sub-expressions based opti-
mization to execute the rewritten query. The system can also use
the two techniques in conjunction for partially rewritten queries.

Rewriting and Viewing Query Plan. The Rewriter traverses the
parse tree and applies the rewriting rules based on our rewriting
procedure until no more rule can be applied. The audience can
visualize all intermediate stages of rewriting. Figure 6 shows the

Figure 5: E-Analytic Query Entry Console

order of rule application for query Q2. The audience can see for
instance what rules are applied in what order. Here first the Nega-
tion Push Down rule has been applied followed by the Distributive
Rule. Figure 7 shows the rewritten query plan.

Visualizing Performance Comparisons. The audience can choose
to see how the different optimization techniques performed com-
pared to each other and also against the default iterative processing
technique. Once a query has been run using each of the strategies,
a chart comparing the execution time for each of the techniques is
generated and can be viewed.

3.2 The Healthcare Hygiene Monitoring Sys-
tem

624

PATTERN SEQ(Recycle r, Wash w,

! SEQ(Sharpen s, Disinfect d, Check c)

Operate o)

WITHIN 1 hour

(a) Nested Query Q3

Applying Negation Push Down Rule:
SEQ(Recycle r, Wash w, !Sharpen s V

∃SEQ(!Sharpen s1, Sharpen s2, !Disinfect d) V

∃SEQ(!Sharpen s3, Sharpen s4, !Disinfect d1,

Disinfect d2, !Check c), Operate o)

(b) Applying Negation Push Down Rule to
4(a)

Applying Distributive Rule:
SEQ(Recycle r, Wash w, !Sharpen s, Operate o) OR

SEQ(Recycle r1, Wash w1,∃SEQ(!Sharpen s1, Sharpen

s2, !Disinfect d), Operate o1) OR

SEQ(Recycle r2, Wash w�, 	 ∃SEQ(!Sharpen s3, Sharpen

s4, !Disinfect d1, Disinfect d2, !Check c), Operate o2))

(c) Applying Distributive Rule to 4(b)

Figure 4: Rewriting a Nested Query into its Rewritten forms

Figure 6: E-Analytic Rule Application Console

Figure 7: E-Analytic Console Showing Rewritten Query Plan

Demonstration Scenario: We will also demonstrate our technol-
ogy in the context of several health care applications. Tools that do
not follow a set pattern of cleansing processes should be considered
unfit for reuse. This is a real challenge in hospitals where infections
are often spread by reuse of unsterilized instruments.

Our system issues warnings and shows hygiene status of all the in-
struments and doctors in the inventory. Different colors indicate the
status of the instruments. The system administrator can select from
a dropdown any instrument and observe its history for some spec-
ified time. A snapshot of the application tracking instruments can
be seen in Figure 8. The system also gives warnings to health care
workers via portable devices such as PDAs or cell phones about
particular instrument. Thus if the status of a scalpel turned danger-
ous the clean up crew should be issued a warning saying: “Warn-
ing: Remove instrument scalpel023"

4. CONCLUSION
In this paper we showcase our work on Nested CEP processing
including two alternative strategies for executing NEEL queries,

Figure 8: Equipment Status Monitoring Application

namely expression sharing and expression caching in the continu-
ous event sequence context. We also illustrated a critical healthcare
application for infection prevention using our technology. In our
future work, we will explore the question of how to bring the ad-
vances in expressive convenience of this proposed NEEL technol-
ogy back into the other strands of CEP in particular ECUBE [10]
and Hyreminder [5].

5. REFERENCES
[1] E. Wu, Y. Diao, and S. Rizvi, “High-performance complex event processing

over streams.” in SIGMOD Conference, 2006, pp. 407–418.
[2] A. J. Demers, J. Gehrke, and et. al., “Cayuga: A general purpose event

monitoring system.” in CIDR, 2007, pp. 412–422.
[3] Y. Mei and S. Madden, “Zstream: a cost-based query processor for adaptively

detecting composite events,” in SIGMOD, 2009, pp. 193–206.
[4] J. M. Boyce and D. Pittet, “Guideline for hand hygiene in healthcare settings,”

MMWR Recomm Rep., vol. 51, pp. 1–45, 2002.
[5] D. Wang, H. Wang, and E. A. Rundensteiner, “Active complex event processing:

Applications in real-time health care,” in VLDB (demo), 2010, pp. 1545–1548.
[6] M. Liu, E. A. Rundensteiner, D. Dougherty, C. Gupta, S. Wang, I. Ari, and

A. Mehta, “NEEL: The nested complex event language for real-time event
analytics,” pp. 116–132, BIRTE, 2010.

[7] P. Seshadri, H. Pirahesh, and T. Y. C. Leung, “Complex query decorrelation,” in
ICDE, 1996, pp. 450–458.

[8] M. Liu, M. Ray, E. A. Rundensteiner, C. Gupta, S. Wang, I. Ari, and A. Mehta,
“Processing strategies for nested complex sequence pattern queries over event
streams,” in DMSN, 2010, pp. 14–19.

[9] M. Liu, E. A. Rundensteiner, D. Dougherty, C. Gupta, S. Wang, A. Mehta, and
I. Ari, “High-performance nested CEP query processing over event streams,” in
ICDE, 2011, pp. 122–134.

[10] M. Liu, E. Rundensteiner, K. Greenfield, C. Gupta, and et. al., “E-Cube:
Multi-dimensional event sequence analysis using hierarchical pattern query
sharing,” in SIGMOD conference, 2011, pp. 889–900.

625

