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ABSTRACT

Record linkage analysis, which matches records referring to
the same real world entities from different data sets, is an
important task in data integration. Uncertainty often exists
in record linkages due to incompleteness or ambiguity in
data. Fortunately, the state-of-the-art probabilistic record
linkage methods are capable of computing the probability
that two records referring to the same entity.
In this paper, we study the novel aggregate queries on

probabilistic record linkages, such as counting the number
of matched records. We address several fundamental issues.
First, we advocate that the answer to an aggregate query on
probabilistic record linkages is a probability distribution of
possible answers derived from possible worlds. Second, we
identify the category of compatible linkages only on which
the answers to aggregate queries can be determined properly
when the probabilities of individual linkages are available
but the joint distributions of multiple linkages are unavail-
able. Third, we give a quadratic exact algorithm and two
approximation algorithms to answer aggregate queries.

1. INTRODUCTION
Record linkages are the linkages among data entries in

different data sets referring to the same real-world entities.
Building record linkages is an important data integration
task in many applications, such as health-care information
systems and customer information systems.
In real applications, data is often incomplete or ambigu-

ous. Consequently, record linkages are often uncertain.
Probabilistic record linkages are often used to model the
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uncertainty. For two records, a state-of-the-art probabilistic
record linkage method [17] can estimate the probability that
the two records refer to the same real-world entity. Often,
two thresholds δM and δU (0 ≤ δU < δM ≤ 1) are used: the
records are considered not-matched, possibly matched, and
matched, respectively, when the linkage probability is less
than δU , between δU and δM , and over δM .

While many previous studies focus on building probabilis-
tic record linkages effectively and efficiently, can we answer
aggregate queries on probabilistic record linkages?

Example 1 (Aggregate queries). Survival-after-
hospitalization is an important measure used in public
medical service analysis. To obtain the statistics about the
death population after hospitalization, Svartbo et al. [33]
studied survival-after-hospitalization by linking two real
data sets, the hospitalization registers and the national
causes-of-death registers in some counties in Sweden.

To elaborate, consider some synthesized records in the two
data sets as shown in Figure 1. The column linkage probabil-
ity P is calculated by a probability record linkage method.
In order to obtain the survival-after-hospitalization statis-
tics, we need to count the number of linkages between the
hospitalization registers and the causes-of-death registers,
which is the death population after hospitalization.

Suppose δM = 0.75 and δU = 0.45. No records in Table 1
are considered matched, since the linkage probabilities are
all lower than δU . Is the count of linkages simply 0?

Record a1 in the hospitalization register data set is linked
to three records in the causes-of-death register data set,
namely b1, b2 and b3, with linkage probability 0.2, 0.3 and
0.4, respectively. Therefore, the probability that “John H.
Smith” is linked to some records in the causes-of-death reg-
ister data set and thus reported dead is 0.2+0.3+0.4 = 0.9.
Similarly, the probability that “Johnson R. Smith” is re-
ported dead is 0.8. Therefore, there is a high probability
that the count of linkages is at least 1.

Moreover, the count of linkages is 2 if both “Johnson R.
Smith” and “John H. Smith” are reported dead. One may
think that the probability is 0.9× 0.8 = 0.72. However, it is
incorrect since records a1 and a2 cannot be linked to record
b3 at the same time. Due to the linkages involving the same
records in one table, the calculation of probability is far from
trivial, which will be discussed in Section 3.

In general, aggregate queries on linkages can use any ag-
gregate functions. For example, if the hospitalization regis-
ter data set contains the date of discharge for each patient,
and the causes-of-death registers data set contains the date
of death, then one may ask an aggregate query about the
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hospitalization causes-of-death
LId registers registers P

Id Name Id Name

l1 a1 John H. Smith b1 Johnny Smith 0.2
l2 a1 John H. Smith b2 John Smith 0.3
l3 a1 John H. Smith b3 J. Smith 0.4
l4 a2 Johnson R. Smith b3 J. Smith 0.4
l5 a2 Johnson R. Smith b4 J. R. Smith 0.4

(a) A set of linkages.

1b
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l2 (0.3)

l3 (0.4)

l4 (0.4)

l5 (0.4)
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(b) Bipartite graph representation.
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(c) A valid world.

1b

l3 (0.4)
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a1

a2

2b

b3

b4

(d) An invalid world.

Figure 1: Record linkages between the hospitalization registers and the causes-of-death registers.

average survival time of the death population.

Example 1 illustrates two important points. First, aggre-
gate queries on probabilistic record linkages are interesting
and useful in record linkage analysis. Second, answering
such aggregate queries is far from trivial. The dependencies
of linkages can be very complicated.
In this paper, we tackle the problem of aggregate queries

on probabilistic record linkages. We make solid contribu-
tions by addressing the following interesting and fundamen-
tal challenges.
First, what do aggregate queries mean on probabilistic

record linkages? The answer to an aggregate query on a set
of probabilistic record linkages is a probability distribution
summarizing the answers in all scenarios that the records
are linked. We advocate the histogram summary as a way
to summarize the answer distribution due to the simplic-
ity and popularity of histograms in the database and data
analysis community.
Second, as the existing probabilistic linkage methods give

only the linkage probabilities of pairs of tuples but not the
joint distribution of multiple linkages, on what kind of link-
ages can possible world probabilities be defined properly?
Here, a possible world is a possible scenario that the records
are linked. Thus, the probabilities of possible worlds play
a critical role in deriving the answer distribution for an ag-
gregate query on probabilistic linkages. We identify the cat-
egory of compatible linkages only on which the answers to
aggregate queries can be determined properly.
Third, how should we model the dependencies among prob-

abilistic record linkages? We develop a notion of probabilis-
tic mutual exclusion graph (PME-graph for short), which is
a specific type of Markov networks and can be used to derive
the joint distribution of a set of probabilistic linkages.
Fourth, how can we answer aggregate queries efficiently?

A straightforward approach is to enumerate all possible
worlds, calculate the answer to a query in each possible
world, and summarize the results. Obviously, the straight-
forward method can be very costly. In this paper, we give a
quadratic exact algorithm by inference on PME-graphs.
We present an extensive empirical study on both real and

synthetic data sets demonstrating the effectiveness of the
queries and the efficiency of the query answering methods.
The rest of the paper is organized as follows. In Section 2,

we formulate aggregate queries on probabilistic record link-
ages. In Section 3, we develop a notion of probabilistic mu-
tual exclusion graph and discuss the compatibility linkages.
Section 4 reviews related work. An exact method for aggre-
gate count is developed in Section 6. Section 7 reports an
extensive empirical study. Section 8 concludes the paper.
We provide the proofs of mathematical results in the ap-

pendixes.

2. PROBLEM STATEMENT
In this section, we review the preliminaries and formulate

aggregate queries on probabilistic record linkages.

2.1 Probabilistic Record Linkages
Let E be a set of real-world entities. We consider two

tables A and B which describe subsets EA, EB ⊆ E , respec-
tively. In general, EA and EB may not be identical. Tables
A and B may have different schemas as well.

Definition 1 (Linkage function). A probabilistic

record linkage method (or linkage function for short)
is a function L : A×B → [0, 1] such that, for tuples tA ∈ A

and tB ∈ B, L(tA, tB) scores the likelihood that tA and tB
describe the same entity in E. The larger the score, the more
likely the two tuples describe the same entity. A pair of tu-
ples l = (tA, tB) is called a probabilistic record linkage

(or linkage for short) if L(l) > 0.

Any binary classifier can be employed to compute the
score L(tA, tB) by classifying the corresponding feature vec-
tors of tA and tB and treating the classification confidence
as L(tA, tB) [3]. A number of classifiers have been adopted
to compute the linkage function, including Näıve Bayes [35],
decision trees [34], and Support Vector Machines [2].

A tuple tA ∈ A (tB ∈ B) may participate in zero, one
or multiple linkages. The number of linkages that tA (tB)
participates in is called the degree of tA (tB), denoted
by degree(tA) (degree(tB)). (L, A,B) specifies a bipartite
graph, where the tuples in A and those in B are two inde-
pendent sets of nodes, respectively, and the edges are the
linkages between the tuples in the two tables.

In many situations, to perform effective data integra-
tion, duplicates are eliminated from the two tables A and
B prior to computing the linkage function. Therefore, a
one-to-one matching is enforced during the record linkage.
The record linkage with a one-to-one matching constraint is
called the constrained matching problem [10]. In the con-
strained matching problem, the probability that a tuple in a
table is matched by some tuples in the other table is at most
1. That is, for each tuple tA ∈ A,

∑
tB∈B L(tA, tB) ≤ 1 and,

symmetrically, for each tuple tB ∈ B,
∑

tA∈A L(tA, tB) ≤ 1.
The linkage functions for the constrained matching problem
are called the normalized linkage function, which have
been extensively studied [10, 25]. In this paper, we consider
normalized probabilistic linkage functions only.

For a tuple tA ∈ A, let l1 = (tA, tB1), . . . , ldegree(tA) =
(tA, tBdegree(tA)

) be the linkages that tA participates in. For

each tuple tA ∈ A, we can write a mutual exclusion rule
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RtA = l1 ⊕ · · · ⊕ ldegree(tA) which indicates that at most
one linkage can hold based on the assumption that each
entity can be described by at most one tuple in each table.

Pr(tA) =
∑degree(tA)

i=1 Pr(li) is the probability that tA is
matched by some tuples in B. Since the linkage function is
normalized, Pr(tA) ≤ 1. We denote by RA = {RtA |tA ∈ A}
the set of mutual exclusion rules for tuples in A. RtB for
tB ∈ B and RB can be defined symmetrically.

2.2 Possible Worlds of Probabilistic Linkages
The possible worlds model [29] has been extensively used

in modeling multiple probabilistic events. In general, a pos-
sible world is a combination of the probabilistic events in
question. A possible world carries an existence probabil-

ity which is the likelihood that the possible world happens
in reality.
A linkage function can be regarded as the summarization

of a set of possible worlds.

Definition 2 (Possible world). For a linkage func-
tion L and tables A and B, let LA,B be the set of linkages
between tuples in A and B. A possible world of LA,B, de-
noted by W ⊆ LA,B, is a set of tuple pairs (tA, tB) such that
(1) for any mutual exclusive rule RtA , if Pr(tA) = 1, then
there exists one pair (tA, tB) ∈ W . Symmetrically, for any
mutual exclusive rule RtB , if Pr(tB) = 1, then there exists
one pair (tA, tB) ∈ W ; and (2) each tuple tA ∈ A partici-
pates in at most one pair in W , so does each tuple tB ∈ B.
WL,A,B denotes the set of all possible worlds of LA,B.

Figure 1(c) shows a possible world of the linkages in Fig-
ure 1(b). Figure 1(d) illustrates an invalid possible world
where l3 and l4 appear together and thus violate the mutual
exclusive rule Rb3 .
We will discuss the existence probability of a possible

world in Section 3.

2.3 Aggregate Queries
In a possible world, the answer to an aggregate query is

certain. Therefore, the answer to an aggregate query on an
uncertain data set is in general a multiset of the answers in
the possible worlds. Moreover, each possible world is associ-
ated with an existence probability. Incorporating the prob-
abilities, the answer to an aggregate query is a probability
distribution on possible answers.

Definition 3 (Aggregate query on linkages).
Given a set LA,B of linkages between tables A and B, let
QP

F be an aggregate query, where P and F are a predicate
and an aggregate function, respectively, which may involve
attributes in A, B, or both. The answer to QP

F on

linkages is the probability distribution

f(v) = Pr(QP
F (LA,B) = v) =

∑

W∈WL,A,B ,QP
F
(W )=v

Pr(W ),

where W is a possible world, WL,A,B is the set of all possible
worlds of LA,B, Q

P
F (W ) is the answer to QP

F on the linkages
in W , and Pr(W ) is the probability of W .

On a large set of linkages, there may be a huge number
of possible worlds. Computing a probability distribution
exactly is often very costly. Moreover, if there are many
possible answers in the possible worlds, enumerating all of

1b
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l2 (0.2)

l1 (0.2)

a1

a2

b3

l

l3 (0.4)

4 (0.4)

(a) Compatible.

l1 (0.6)

l2 (0.4)
l4 (0.6)

l 3
(0.4)

a1

a2 b2

1b

(b) Compatible.

l1 (0.2)

l2 (0.2)
l4 (0.4)

l 3
(0.4)

a1

a2 b2

1b

(c) Incompatible.

Figure 2: Linkage compatibility.

them may overwhelm a user. Since histograms are popularly
adopted in data analytics and aggregate query answering,
here we advocate answering aggregate queries on linkages
using histograms. We consider both equi-width histograms
and equi-depth histograms.

Definition 4 (Histogram answer). Consider an
aggregate query Q on linkages L, let vmin and vmax,
respectively, are the minimum and the maximum values of
Q on all possible worlds.

Given a bucket width parameter η, and a minimum proba-
bility threshold τ , the equi-width histogram answer to Q

is a set of interval tuples (φi, pi) (1 ≤ i ≤ ⌈ vmax−vmin

η
⌉)

where φj = [vmin + (j − 1)η, vmin + jη) (1 ≤ j <

⌈ vmax−vmin

η
⌉) and φ

⌈
vmax−vmin

η
⌉
= [vmin+(⌈ vmax−vmin

η
⌉−

1)η, vmax] are ⌈ vmax−vmin

η
⌉ equi-width intervals between

vmin and vmax, pi = Pr(Q(L) ∈ φi). An interval pair
(φi, pi) is output only if pi ≥ τ .

Given an integer k > 0, the equi-depth histogram an-

swer to Q is a set of interval tuples (φi, pi) (1 ≤ i ≤ k)
where φj = [vj−1, vj) (1 ≤ j < k, v0 = vmin and vj =
min{x|Pr(Q(L) ≤ x) ≥ j

k
}) and φk = [vk−1, vmax].

In the rest of this paper, we focus on computing histogram
answers to aggregate queries on linkages.

3. LINKAGE COMPATIBILITY
The linkage functions defined in Section 2.1 give only the

probabilities of individual linkages. In order to obtain the
existence probabilities of possible worlds, we need to derive
the joint probability distribution of all linkages given by a
linkage function. Unfortunately, not every linkage function
can lead to a joint distribution which is consistent with the
marginal distributions of individual linkages. In this sec-
tion, we identify the category of compatible linkage func-
tions whose joint distributions can be computed from the
marginal distributions of individual linkages.

3.1 Dependencies among Linkages

Example 2 (Compatible linkages). Consider the
linkages shown in Figure 2(a), where the probabili-
ties of the linkages are labeled. For a linkage l, let
l and ¬l denote the events that l appears and l is
absent, respectively. Since linkages l1 and l2 are mu-
tually exclusive, they cannot both appear in a possible
world. The marginal distribution of (l1l2), denoted by
f(l1l2), is Pr(¬l1¬l2) = 1 − Pr(l1) − Pr(l2) = 0.6,
Pr(¬l1l2) = Pr(l2) = 0.2, Pr(l1¬l2) = Pr(l1) = 0.2, and
Pr(l1l2) = 0. Similarly, the marginal distributions f(l2l4)
and f(l3l4) can be calculated from the linkage probabilities
and the mutual exclusion rules.
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Using Bayes’ theorem, we can compute the joint distribu-
tion on l1, l2, l3 and l4. For example,

Pr(l1¬l2l3¬l4) = Pr(l1¬l2)Pr(l3¬l4|l1¬l2), and

Pr(l3¬l4|l1¬l2) = Pr(¬l4|l1¬l2)Pr(l3|¬l4l1¬l2).

Since l1 and l4 are conditionally independent given l2,
we have Pr(¬l4|l1¬l2) = Pr(¬l4|¬l2). Moreover, l3
and {l1, l2} are conditionally independent given l4, thus
Pr(l3|¬l4l1¬l2) = Pr(l3|¬l4). Therefore,

Pr(l1¬l2l3¬l4) = Pr(l1¬l2)Pr(¬l4|¬l2)Pr(l3|¬l4)
= 0.2× 1−0.2−0.4

1−0.2
× 0.4

1−0.4
= 1

15
.

Figure 2(b) is another example of compatible linkages.
There are only two valid assignments in the joint distri-
bution: l1¬l2¬l3l4 and ¬l1l2l3¬l4. The joint distribution
probability should be consistent with the marginal prob-
abilities of the linkages. Thus, the joint probabilities are
Pr(l1¬l2¬l3l4) = 0.6 and Pr(¬l1l2l3¬l4) = 0.4.
Figure 2(c) is an example of incompatible linkages. On the

one hand, using the marginal probabilities of the linkages
and the mutual exclusion rules l1 ⊕ l2, l2 ⊕ l4 and l3 ⊕ l4,
similar to the case in Figure 2(b), we have Pr(l1¬l2l3¬l4) =
1
15
. On the other hand, due to the mutual exclusion rule

l1 ⊕ l3, Pr(l1l3) = 0. Thus, there is inconsistency.

Example 2 indicates that some linkage functions may lead
to a situation where the existence probability of a possible
world cannot be specified in a consistent way. Formally, we
introduce the notion of compatible linkages.

Definition 5 (Compatible linkages). A set of link-
ages L are compatible if there is a joint distribution on L
that satisfies the marginal distributions specified by L.

3.2 Probabilistic Mutual Exclusion Graphs
We develop a probabilistic graphic model to capture de-

pendencies among linkages.

Definition 6 (PME-graph). For a set of probabilistic
linkages LA,B, the probabilistic mutual exclusion graph

(PME-graph for short) GL,A,B = (V,E) is an undirected
graph such that (1) a vertex vl ∈ V (l ∈ LA,B) is a bi-
nary random variable corresponding to a probabilistic link-
age, Pr(vl = 1) = Pr(l) and Pr(vl = 0) = 1−Pr(l); (2) an
edge e = (vl, vl′) ∈ E (vl, vl′ ∈ V ) if linkages l and l′ share a
common tuple, i.e., they are involved in a mutual exclusion
rule Rt (t ∈ A or t ∈ B).

Figure 3(a) shows a set of linkages. Figure 3(b) shows the
corresponding PME-graph.
For a PME-graph G = (V,E), any two vertices vi and

vj in G have the following properties. First, vi and vj are
independent if vi and vj belong to different connected com-
ponents. Second, vi and vj are mutually exclusive if there
is an edge e = (vi, vj) ∈ E. Third, vi and vj are condition-
ally independent given another vertex v if there is a path
between vi and vj passing v.

Theorem 1. A PME-graph G is a Markov network.

For a tuple t ∈ A or t ∈ B, the edges corresponding to
the linkages in the mutual exclusion rule Rt form a maximal
clique in G. Moreover, any two cliques in G can share at
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l
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(a) A set of linkages L.
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Figure 3: A PME-graph and a clique graph .

most one common vertex. For example, two maximal cliques
C1 = {v1, v2, v3} and C2 = {v3, v4, v5} in Figure 3(b) only
share one common vertex v3.

PME-graphs capture the dependencies among linkages.
Moreover, we can create a maximal clique graph to repre-
sent the dependencies between maximal cliques. Hereafter,
for the sake of simplicity, we refer to maximal cliques as
cliques.

Definition 7 (Clique graph). For a PME-graph
GL,A,B, the corresponding clique graph is a graph
Gclique(V,E), where a vertex vC ∈ V corresponds to a max-
imal clique C in GL,A,B, and an edge eCC′ = (vC , vC′) ∈ E

if cliques C and C′ in the PME-graph share a common
vertex.

Let C be a maximal clique in GL,A,B and VC be the set
of vertices in C. The probability of the corresponding vertex
vC ∈ V in the clique graph is Pr(vC) =

∑
x∈VC

Pr(x).

Figure 3(c) shows the clique graph corresponding to the
PME-graph in Figure 3(b).

Indeed, the clique graph defined in this paper follows the
classic definition of clique graph in graphic models. In addi-
tion, a clique graph derived from the PME-graph also satis-
fies the bipartite graph property.

In [11], it is stated that the joint probability distribution
of a Markov network exists if the corresponding clique graph
is chordal. Since a clique graph derived from a PME-graph
satisfies the bipartite graph property, we further strengthen
the statement in the following theorem.

Theorem 2 (Compatibility). Given a set of linkages
L and the corresponding clique graph GC , the linkages in L
are compatible if and only if, for each connected component
G′ ∈ GC , either (1) G′ is acyclic; or (2) G′ is a cycle such
that each vertex vC in the cycle is connected to two edges
e1 and e2, whose corresponding vertices v1 and v2 in the
PME-graph satisfy Pr(v1) + Pr(v2) = 1.

3.3 Resolving Incompatibility
Let L be a set of incompatible linkages, can we find a

subset L′ ⊂ L such that L′ is compatible and the loss of
information is minimized? An intuitive and theoretically
interesting measure of the information retained in L′ is the
expected number of linkages.

However, finding a subset of linkages maximizing the ex-
pected number of linkages is far from trivial. We have not
obtained any theoretical results on the complexity of the
problem or any approximate algorithms with quality guar-
antee. One feasible approach in practice is as follows. Let
GC be the clique graph of a connected component of G vio-
lating the conditions in Theorem 2. Let the weight of each
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edge ev be the probability of ev. We can find the maximum
spanning tree [14] of GC as an approximation of the linkage
subset with the maximal expected number of linkages.

3.4 Deriving All Possible Worlds
To enumerate all possible worlds of a set of linkages LA,B ,

a näıve approach is to check each subset of the linkages
against Definition 2, which takes O(2|LA,B |) time. However,
the actual number of valid possible worlds may be much
smaller than 2|LA,B |. For example, in Figure 3(a), there are
7 linkages but there are only 11 possible worlds.
We can use PME-graphs to generate all possible worlds in

O(|W|) time, where |W| is the number of possible worlds.
A possible world W of linkages LA,B can be regarded as

an assignment of values 0 and 1 to the vertices in the PME-
graph GL,A,B , where a vertex vl = 1 if the corresponding
linkage l ∈ W , otherwise vl = 0. For a clique C in GL,A,B , if∑

v∈C Pr(v = 1) < 1, then at most one vertex in C can be
assigned to 1; if

∑
v∈C Pr(v = 1) = 1, then there is exactly

one vertex in C taking value 1. The probability of a possible
world W is the joint distribution

Pr(W ) = Pr((∧l∈W vl = 1) ∧ (∧l′ 6∈W vl′ = 0)). (1)

Since vertices in different connected components in
GL,A,B are independent (Section 3.2), if GL,A,B = (V,E)
contains k connected components V = V1∪V2∪· · ·Vk, Equa-
tion 1 can be rewritten as

Pr(W ) =
k∏

i=1

Pr((
∧

l∈W∩Vi

vl = 1)
∧

(
∧

l′ 6∈W,l′∈Vi

vl′ = 0)) (2)

4. RELATED WORK
Our study is mainly related to the existing work on record

linkages, probabilistic data models, probabilistic graphical
models and aggregate queries on uncertain data. There are
three significant differences between our work and the exist-
ing studies.
First, most existing studies in the area of record linkage

focus on how to compute the match probability. To the
best of our knowledge, we are the first to study the case
of incompatible linkages and how to utilize the results from
record linkages.
Second, the PME-graph proposed in this paper is a special

form of Markov network, because the clique graph derived
from the PME-graph proposed in this paper is a bipartite

graph. This bipartite property allows us to conduct in-
ference on the graph without triangulating the graph and
constructing the junction tree [23] from the clique graph.
Third, in this paper, we focus on how to efficiently com-

pute the approximation answers to aggregate queries. The
existing junction tree inference algorithm is expensive and
thus cannot be applied to large-scale data sets, while our
method can approximate the distribution of aggregate query
results efficiently with a quality guarantee.

4.1 Record Linkage
Computing record linkages has been studied extensively.

Koudas et al. [24] presented a nice tutorial. Generally, link-
age methods can be partitioned into two categories. The
deterministic record linkage methods [28] link two records
if their values on certain matching attributes are identical.
Those methods are often ineffective in real-life applications
due to data incompleteness and inconsistency.

Probabilistic record linkage methods [17] estimate the like-
lihood of two records being a match based on some simi-
larity measures in the matching attributes. The similarity
measures used in probabilistic record linkage methods fall
into three classes [24]. First, based on the Fellegi-Sunter
theory [15], one can model the values of the records on the
matching attributes as comparison vectors, and estimate the
probability of two records being matched or unmatched [18].
Second, some“edit-based”measures such as the Levenshtein
distance [26] can be used. Third, “term based” measures
are proposed, where terms can be defined as words on the
matching attributes or Q-grams [16].

In this paper, we focus on how to use probabilistic link-
ages produced by the existing probabilistic record linkage
methods to answer aggregate queries in a meaningful and
efficient way. To the best of our knowledge, all existing
record linkage methods only return linkage probabilities on
a pair of records. There are no previous studies on linkages
compatibility and linkage joint distributions.

4.2 Probabilistic Data Models
Various models for uncertain and probabilistic data have

been developed in literature. One extensively used model is
the probabilistic database model [29]. Another popularly
used model is the uncertain object model [8].

In [31, 12], probabilistic graphical models are used to rep-
resent correlations among probabilistic tuples. Moreover,
Sen et al. [32] studied the problem of compact representa-
tion of correlations in probabilistic databases by exploiting
the shared correlation structures.

Uncertainty in data integration is studied in [13, 30],
where probabilistic schema mapping is modeled as a distri-
bution over a set of possible mappings between two schemas.

Our probabilistic linkage model can be considered as an
extension of the uncertain object model. We can consider
each tuple tA ∈ A as an uncertain object. A tuple tB ∈ B

can be considered as an instance of tA if there is a linkage
l = (tA, tB) ∈ L. Object tA may contain multiple instances.
At the same time, an instance tB may belong to multiple
objects. A mutual exclusion rule RtB = (tA1 , tB) ⊕ · · · ⊕
(tAd

, tB) specifies that tB can only belong to one object in
a possible world.

Our study is very different from [31, 12]. In [31, 12], the
joint distribution of a set of uncertain tuples is known. The
objectives there are to compute the marginal probabilities
of uncertain tuples based on the joint distribution. In our
study, the joint distribution of probabilistic linkages is un-
available. Our goal is to compute the joint distribution and
to answer aggregate queries on probabilistic linkages only
based on the probabilities of individual linkages.

Last, the uncertainty considered in this paper lies in the
matching of records from different data sources. This is the
tuple level uncertainty in data integration, which is different
from the schema level uncertainty studied in [13, 30].

4.3 Probabilistic Graphical Models
Probabilistic graphical models refer to graphs describing

dependencies among random variables. There are two types
of probabilistic graphical models: directed graphical mod-
els [21] and undirected graphical models [23] (also known as
Markov networks).

In this paper, we develop PME-graphs as a specific type of
undirected graphical models. We exploit the special proper-
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ties of PME-graphs beyond the general undirected graphical
models, and study the factorization of the joint probabilities
in PME-graphs. Moreover, we develop efficient methods to
evaluate aggregate queries on linkages using PME-graphs.

4.4 Probabilistic Aggregate Queries
Our study is also related to aggregate queries on imprecise

data and probabilistic join over uncertain data.
Chen et al. [7] studied aggregate queries on data whose

attributes may take “partial values”, where a “partial value”
is a set of possible values with only one being true. Ré et
al. [27] studied the efficient evaluation of aggregate queries
on probabilistic data based on Monte Carlo simulation. Bur-
dick et al. [4, 5, 6] extended the OLAP model on imprecise
data. The answer to an aggregation query is modeled as
an answer random variable with certain probability distribu-
tion over a set of possible values. Jayram et al. [20] proposed
several one pass streaming algorithms to estimate statistical
aggregates of a probabilistic data stream.
Cheng et al. [9] explored the join queries over data sets

with attribute level uncertainty, where the values of a tu-
ple in the join attributes are probability distributions in a
set of value intervals. Agrawal and Widom [1] studied join
queries on data sets with tuple level uncertainty, where each
tuple in a table is associated with a membership probability.
Kimelfeld and Sagiv [22] studied the maximal join queries
on probabilistic data, where only the answers whose proba-
bilities are greater than a threshold and are not contained
by any other output answers are returned.
Our study is different from the existing work on aggre-

gate queries over uncertain data in the following two aspects.
First, the application scenarios and the data models are dif-
ferent. In our study, the uncertainty lies in the linkages
between two data sets, which brings in unique challenges in
representing the dependencies among probabilistic data and
leads to completely different technical solutions. Second, the
summarizations of answers to aggregate queries are differ-
ent. In this paper, the histogram with minimum probability
threshold is used to summarize the answer distribution.
The probabilistic linkages can be considered as the join

of two deterministic tables, where the matching relationship
between tuples is probabilistic. In this paper, we focus on
answering aggregate queries on the joined data, instead of
the join methods.

5. OTHER AGGREGATE QUERIES
In this section, we discuss how to extend the techniques

in Section 6 to answer other aggregate queries.

5.1 Sum and Average Queries
Given a set of linkages L and an attribute A of interest, a

sum query and an average query return the distribution of
the sum and the average values of all linkages in L (satisfying
the query predicate) in A, respectively. In Example 1, “the
average survival time of the death population” is an example
of average queries.
To evaluate sum and average queries, we use the PME-

graph G of L again. Different from processing count queries,
for each vertex v, if v satisfies predicate P , we assign v.F =
v.A, where v.A is the value of v in attribute A. Then, a
sum query can be evaluated by traversing the clique tree in
the similar manner as answering count queries. The overall
complexity of computing the sum probabilities ofG is O(n2),

G1

v8

6v v
v3

v

7v 10

G2 G3

v1 2v 5v

v4

v9

11v

Figure 4: Reusing the intermediate results.

where n is the number of values in the distribution of the
results to the sum query.

An average query QP
average can be evaluated by answer-

ing queries QP
sum and QP

count. During the depth-first tra-
verse of the clique tree, we maintain the distinct pairs of
values (xsum, xcount), where xsum and xcount are values in
the distributions of the results to QP

sum and QP
count, respec-

tively. Then, the average value distribution can be obtained
straightforwardly.

5.2 Min and Max Queries
Given a set of linkages L and an attribute A of interest,

a min query and a max query return the distributions of
the minimum and the maximum values of all linkages in L
(satisfying the query predicate) in A, respectively. Since
evaluating min and max queries are very similar, we only
discuss min queries in this subsection.

A min query QP
min can be transformed into a set of count

queries as follows. For each vertex v in the PME-graph
satisfying P , let x = v.A. We construct a count query
QP∧Px

count , where Px is a predicate such that Px(y) is true if
y < x. Then, the probability that x is the minimum value in
G is Pr(min(G), x) = Pr(v)Pr(G, 0|v), where Pr(G, 0|v) is
the conditional count probability of G with respect to query
QP∧Px

count given v. We can process the vertices in the value
ascending order in A. The algorithms discussed in Section 6
can be applied to answer such a count query.

Two techniques can improve the efficiency. First, we can
reuse the intermediate results for processing each vertex to
reduce the computational cost.

Example 3 (Reusing intermediate results).
Consider the PME-graph G in Figure 4. Suppose the list
of vertices v1, . . . , v11 are sorted in the A value ascending
order. Moreover, xi = vi.A (1 ≤ i ≤ 11).

To obtain Pr(min(G), x8), let Pr(Gi, x) be the probabil-
ity that x vertices appear in Gi whose values inA are smaller
than x8 (1 ≤ i ≤ 3). We have Pr(G1, 0) = Pr(¬v1¬v3¬v7),

Pr(G2, 0|v8) =
Pr(¬v2¬v6v8)

Pr(v8)
, and Pr(G3, 0) = Pr(¬v4¬v5).

To obtain Pr(min(G), x9), let Pr′(Gi, x) be the probabil-
ity that x vertices appear in Gi whose values inA are smaller
than x9 (1 ≤ i ≤ 3). We have Pr′(G1, 0) = Pr(¬v1¬v3¬v7),
Pr′(G2, 0) = Pr(¬v2¬v6¬v8), and Pr′(G3, 0|v9) =
Pr(¬v4¬v5v9)

Pr(v9)
.

Comparing Pr(min(G), x8) and Pr(min(G), x9), we find
Pr′(G1, 0) = Pr(G1, 0) and Pr′(G2, 0) = Pr(¬v2¬v6) −
Pr(G2, 0|v8)Pr(v8). Thus, Pr(G2, 0|v8) can be reused.

Moreover, since Pr′(G3, 0|v9) = Pr(G3,0)Pr(v9|¬v4¬v5)
Pr(v9)

,

Pr(G3, 0) can be reused.

Second, effective pruning techniques can avoid checking all
vertices in G. For two vertices vi and vj where vi.A = xi,
vj .A = xj and xi < xj , there are a set of components in G

that do not contain vi and vj , as discussed in Example 3.
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Let π =
∏

Gk⊆G,vi,vj 6∈Gk
Pr(Gk, 0) be the probability that,

among all components not containing vi and vj , there are
no vertices whose values in A are smaller than xi. Then,
Pr(min(G), xi) ≤ π and Pr(min(G), xj) ≤ π. Thus, if
π ≤ 0, all vertices that have not been processed can be
pruned. Limited by space, we omit the details here.

6. ANSWERING COUNT QUERIES
In this section, we discuss evaluating count queries in de-

tails. Extending the algorithm to answer other aggregate
queries is discussed in Section 5. For the sake of simplicity,
we write a count query QP

count as Q in this section. To eval-
uate an aggregate query Q on L, we use the PME-graph G

of L.

6.1 Preprocessing Predicate
A predicate P selects the vertices in G that satisfy P . To

obtain high performance, can we remove the vertices not
satisfying predicate P?
For a vertex v not satisfying P , two cases arise. First, if

v lies in the path between two vertices satisfying P , then v

cannot be removed, since removing v leads to loss of some
dependency information among the two vertices satisfying
P . Second, if v does not lie in any path between vertices
satisfying P , then v can be removed without affecting the
answers to the query. We assume the second types of vertices
are removed when we process the query.
Therefore, two sets of vertices remain in G: V1 contains

all vertices satisfying predicate P ; V2 contains all vertices
not satisfying P but connecting two vertices in V1. To dis-
tinguish between the vertices in V1 and V2, we associate a
flag attribute F with each vertex v ∈ G. If P (v) = true,
then v.F = 1, otherwise v.F = 0.

6.2 Count Probabilities
Q(G), the answer to a count query Q on linkages G, is

a random variable taking values from 0 to n, where n is
the number of cliques in G, since at most one linkage in a
clique can appear in a possible world. The count proba-

bility Pr(G, x) is the probability that there are x vertices
satisfying predicate P appear in G.
G may contain multiple connected components

G1, . . . , Gm. The vertices in different components are
independent. Therefore, we first focus on computing the
count probabilities of each component Gi. Then, the
overall count probabilities of G can be computed from the
convolution of the count probabilities of all components.
As discussed in Section 3, in this section, we only consider

the connected component Gi whose corresponding clique
graph is acyclic. An acyclic clique graph has the following
property.

Lemma 1 (Graph partition). Given a connected
component Gi in a PME-graph G whose clique graph GC is
a tree, let v be a joint vertex, then v partitions G into two
disconnected subgraphs.

From Lemma 1, we know that the two subgraphs G1 and
G2 partitioned by v are conditionally independent given v.
We define conditional count probabilities as follows.

Definition 8 (Conditional count probability).
Given a PME-graph G and a count query QP

count, the con-

ditional count probability Pr(G, x|v) is the probability

that there are x vertices satisfying predicate P appear in G

given the condition that v appears, that is,

Pr(G, x|v) =

∑
W∈W,|{v′|v′∈W∩G,v′.F=1}|=x,v∈W Pr(W )

∑
W∈W,v∈W Pr(W )

Following with Lemma 1, the subgraph probability of a
connected component Gi can be computed using the follow-
ing theorem.

Theorem 3 (Count probability). Given a con-
nected component Gi of a PME-graph G, let v be a joint
vertex partitioning Gi into two subgraphs G1

i and G2
i , then

Pr(Gi, x) = Pr(¬v)
∑x

b=0 Pr(G1
i , b|¬v)Pr(G2

i , x− b|¬v)

+Pr(v)
∑x−v.F

a=0 Pr(G1
i , a|v)Pr(G2

i , x− v.F − a|v)

Theorem 3 suggests that, in order to compute the count
probability of a connected component Gi, we can decompose
Gi into smaller subgraphs and compute the count probabil-
ities of the subgraphs, which will be pursued in Section 6.3.

6.3 Computing Count Probabilities
For a connected component Gi of a PME-graph G, let GC

be the corresponding acyclic clique graph of Gi. In order
to compute the count probabilities of Gi, we scan GC in
the depth first manner. During the scan, for two adjacent
vertices vi and vj , if vi is scanned before vj , then we say vi
is the parent of vj and vj is a child of vi. A leaf vertex does
not have any child.

We can apply the following vertex compression tech-
nique to reduce the number of vertices without affect-
ing any count probabilities. If a clique C in Gi con-
tains m (m > 1) private vertices vc1 , . . . , vcm , then we
can replace those vertices with a single vertex vp where
Pr(vp) =

∑
1≤i≤m Pr(vci). Moreover, for all other vertices

v ∈ VC − {vc1 , . . . , vcm}, an edge (v, vp) is added to E.

6.3.1 Count Probabilities of Leaf Vertices

Recall that a leaf vertex in the clique tree is corresponding
to a clique that shares a common vertex with at most one
clique. When we scan a leaf node v1 in a clique graph, its
count probability is calculated and sent to its parent vertex
v2. After vertex compression, the corresponding clique of v1
in the PME-graph only contains two vertices: the private
vertex vp and the joint vertex v.

Theorem 4 (Count probability of leaf vertex).
Given an acyclic clique graph GC and its leaf node v1, let v2
be the parent of v1 and ev be the edge connecting v1 and v2.
Denote by C1 and C2 the corresponding cliques of v1 and v2
in the PME-graph, respectively, and by v the corresponding
vertex of ev in the PME-graph. Then the conditional count

probability of C1 given v is Pr(C1, x|v) =

{
1, x = v.F ;
0, otherwise.

The conditional count probability of C1 given ¬v is

Pr(C1, x|¬v) =






1−Pr(vp)−Pr(v)

1−Pr(v)
, x = 0;

Pr(vp)

1−Pr(v)
, x = 1;

0, otherwise.
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Figure 5: An intermediate node vC in the clique tree.

6.3.2 Count Probabilities of Subtrees

Consider an intermediate vertex vC in the clique graph
GC . Denote by vCf

the parent of vC , and by vC1 , . . . , vCk

the children of vC . Let TvC be the subtree whose root is vC .
We compute the count probabilities of TvC by integrating
the count probabilities of TvC1

, . . . , TvCk
, the subtrees whose

roots are children of vC .
In the PME-graph, the corresponding clique C of vC con-

tains k+1 joint vertices: vertex vf also belonging to Cf (the
clique corresponding to vCf

in the clique graph), and ver-
tices v1, . . . , vk also belonging to C1, . . . , Ck (the cliques cor-
responding to vC1 , . . . , vCk

). The clique tree and the PME-
graph are illustrated in Figure 5. We want to compute the
conditional count probabilities of TvC given the conditions
that vf appears and vf does not appear, respectively.
If vf appears, then no other vertices in C appear. Then,

the probability that x vertices appear in TvC is the prob-
ability that x − vf .F vertices appear in TvC1

∪ · · · ∪ TvCk
,

given the condition that no vertices in {vC1 , . . . , vCk
} ap-

pears. That is

Pr(TvC , x|vf ) = Pr(TvC1
∪ · · · ∪ TvCk

, x− vf .F |vf ) (3)

In Equation 3, when vf appears, no vertices in
{vC1 , . . . , vCk

} can appear. The count probabilities of sub-
trees TvCi

(1 ≤ i ≤ k) are conditionally independent.

Pr(TvC1
∪ · · · ∪ TvCk

, x− vf .F |vf ) can be computed by the

convolution of Pr(TvCi
, x|¬vCi) (1 ≤ i ≤ k). That is

Pr(TvC1
∪ · · · ∪ TvCk

, x|vf )

=
∑

x1+···+xk=x

∏k

i=1 Pr(TvCi
, xi|¬vCi)

(4)

If vf does not appear, then the probability that another

vertex v′ ∈ C appears is Pr(v′|¬vf ) =
Pr(v′)

1−Pr(vf )
. The prob-

ability that x vertices appear in TvC is the sum of the prob-
abilities in the following two cases.
Case 1: the private vertex vp of C appears. Then,

no vertex in {vC1 , . . . , vCk
} appears. The probability that

x vertices appear in TvC is the probability that x − vp.F

vertices appear in TvC1
∪ · · · ∪ TvCk

, given the condition

that no vertex in {vC1 , . . . , vCk
} appears.

Case 2: the private vertex vp of C does not appear.

Then x vertices in TvC appears if and only if x vertices
appear in TvC1

∪ · · · ∪ TvCk
.

Summarizing the above two cases, the conditional count
probability of TvC given ¬vf is

Pr(TvC , x|¬vf )
= Pr(vp|¬vf )Pr(TvC1

∪ · · · ∪ TvCk
, x− vp.F |vp)

+Pr(¬vp|¬vf )Pr(TvC1
∪ · · · ∪ TvCk

, x|¬vp¬vf )
(5)

In Equation 5, Pr(TvC1
∪· · ·∪TvCk

, x|vp) = Pr(TvC1
∪· · ·∪

TvCk
, x|vf ), which can be computed using Equation 4. To

compute Pr(TvC1
∪ · · · ∪ TvCk

, x|¬vp¬vf ), there are k + 1

cases, namely, vCi appears (1 ≤ i ≤ k) and no vertices in
{vC1 , . . . , vCk

} appears. In any of the k+1 cases, the count
probabilities of TvCi

are conditionally independent and thus
can be computed using the similar convolution as in Equa-
tion 4.

To analyze the complexity of the complete procedure, we
first analyze the cost of a convolution operation. Given k

subtrees TvC1
, . . . , TvCk

, let n be the total number of ver-
tices in TvC1

∪ · · · ∪ TvCk
. Computing the convolution of

TvC1
, . . . , TvCk

using Equation 4 requires O(n2) time. The
number of count probabilities computed as the intermediate
results is O(n).

Then, we analyze the number of convolution operations
required for each intermediate node. Equation 3 requires
one convolution. Equation 5 requires k + 2 convolutions.
Therefore, for an intermediate node vC with k children, let
TvC be the subtree with root vC and containing n vertices.
The overall complexity of computing the count probability
of TvC is O((k+3)n2) = O(kn2). (k+3)n count probabilities
are computed as the intermediate results.

6.3.3 Optimal Tree Scan Order

Different tree depth first scan order of a tree may lead to
different cost in computing count probabilities.

Given an acyclic clique graph GC , let v1, . . . , vd be the
vertices in GC whose degrees are 1, then we can scan GC in
the depth first order from vi (1 ≤ i ≤ d). Thus, there are d

different tree scan orders.
Once the root vi of the clique graph GC is selected, the

scan order of GC is uniquely determined. We can compute,
for each intermediate vertex v, the size of the subtree with
root v. Therefore, the number of count probabilities com-
puted as the intermediate results in GC with root v is

Cost(v) =
∑

|children(v)|>0

(|children(v)|+ 3)× |Tv|

where |children(v)| is the number of children of v and |Tv|
is the size of the subtree with root v.

Therefore, by scanning GC once from root vi, we can cal-
culate the overall cost of computing the count probability of
GC from v. This takes O(n) time, where n is the number
of vertices in GC . Moreover, in time O(dn) we can decide
which vertex in {v1, . . . , vd} will lead to the minimal com-
putational cost.

6.4 Histogram Answer Approximation
Once the count probabilities of G is calculated, we can

compute the answer to the aggregate histogram query by
partitioning the count probabilities into η equi-width inter-
vals or k equi-depth intervals.

The bottleneck of answering count queries is the m-fold
convolution on the answers in the m components. We in-
troduce two techniques that accelerate the computation for
equi-width histogram answers and equi-depth histogram an-
swers, respectively, by calculating the approximate answers
to convolutions.

6.4.1 Equi-width Histogram Answer Approximation

When computing the count probability of G using m-
fold convolution, intuitively, we can ignore the values whose
probabilities are very small.
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Let x1, . . . , xm be the list of values in the i-fold convolu-
tion ζi−1(x) in the probability ascending order (2 ≤ i ≤ m).
Let xµ = max1≤j≤m{xj |

∑
1≤h≤j ζi−1(xh) < ǫ}. We ap-

proximate the probabilities as

ζ
′
i−1(xi) =

{
0, 1 ≤ i ≤ µ;

ζi−1(xi)∑
µ≤h≤m Pr(xh)

, µ < x ≤ m.
(6)

Then, the convolution of ζ′i−1(x) and Pr(Gi, x) are used to
estimate ζi(x). The quality of the approximation answer is
guaranteed by the following theorem.

Theorem 5 (Approximation quality). Given a
count query Q on linkages with z components, a bucket
width parameter η, and a minimum probability threshold
τ , let (φi, pi) be the equi-width histogram answer to Q,
and (φi, p̂i) be the approximation of (φ, pi) computed using
Equation 6, then |pi − p̂i| < zǫ for 1 ≤ i ≤ ⌈ vmax−vmin

η
⌉.

Under the probability approximation, ζ′i−1(x) > ǫ holds
for every value x with a non-zero probability. Thus, the
number of values with a non-zero probability is at most 1

ǫ
.

The overall complexity of computing the ǫ-approximation of
ζi(x) is O( 1

ǫ2
). The overall complexity is O(m

ǫ2
), where m is

the number of components in G.

6.4.2 Equi-depth Histogram Answer Approximation

To accelerate probability calculation for equi-depth his-
togram answers, we introduce an approximation method
that keeps a constant number of values in the intermediate
results.
If the probability ζi−1(x) after the i-fold convolution

contains values x1, . . . , xni−1 (ni−1 > k) in the value as-
cending order, then we compute the ρ-quantiles x′

i =
argminx{

∑
a≤x ζi−1(a) ≥ i

ρ
} (0 ≤ i ≤ ρ). From the ρ + 1

values, we construct an approximation of ζi−1(x) as:

ζ
′
i−1(x) =

{
1
ρ
, x =

x′
i−1+x′

i

2
(1 ≤ i ≤ ρ);

0, otherwise.
(7)

Then, the convolution of ζ′i−1(x) and Pr(Gi, x) are used
to estimate ζi(x). The approximation quality is guaranteed
by the following theorem.

Theorem 6 (Approximation quality). Given a
count query Q on a PME-graph G with m components,
an integer k > 0, let (φi, pi), where φi = [vi−1, vi)
(1 ≤ i ≤ k), be the equi-depth histogram answer
computed using the ρ-quantile approximation, then
|Pr(Q(G) ≤ vi) − Pr′(Q(G) ≤ vi)| < m

ρ
, where

Pr′(Q(G) ≤ vi) =
∑

a≤vi
ζ′m(a) is the probability computed

using Equation 7.

Using the above approximation method, the overall com-
plexity of computing the approximate k equi-depth his-
togram answer is O(mρ2), where m is the number of con-
nected components.

7. EMPIRICAL EVALUATION
In this section, we report a systematic empirical study.
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Figure 6: Answers to queries on real data sets.

7.1 Experimental Settings
All experiments were conducted on a PC computer with a

3.0 GHz Pentium 4 CPU, 1.0 GB main memory, and a 160
GB hard disk, running the Microsoft Windows XP Profes-
sional Edition operating system, Our algorithms were imple-
mented in C++ compiled by Microsoft Visual Studio 2005.

The real data used in our experiments is the Cancer Reg-
istry data set and the Social Security Death Index pro-
vided in Link Plus 2.0 (http://www.cdc.gov/cancer/npcr/
tools/registryplus/lp.htm).

The Cancer Registry data set contains 50, 000 records and
each record decribes the personal information of a patient,
such as name and SSN. The Social Security Death Index data
set contains 10, 000 records and each record contains the
personal information of an individual, such as name, SSN

and Death Date. Since the information of some records are
incomplete or ambiguous, we cannot find the exact match
for records in the two data sets.

Link Plus is a popularly used tool that computes the prob-
ability that two records referring to the same individual. It
matches the records on the two data sets based on name,
SSN and Date of Birth and returns 4, 658 pairs of records
whose linkage probabilities are greater than 0. The system
suggests that a user should set a matching linkage probabil-
ity threshold. The pairs of records passing the threshold are
considered matching. If we set the threshold as the default
value 0.25 suggested by the system, only 99 pairs of records
are returned.

The synthetic data sets are generated using the follow-
ing settings. A data set contains Nl linkages between tables
A and B containing Nt tuples each. The degree of each
tuple follows the Normal distribution N(µt, σt). A data
set contains Nc connected components. The corresponding
PME-graph contains Nl vertices. The number of vertices in
the clique graph is the number of tuples whose degrees are
greater than 1. We generate the linkages as follows. First,
for each tuple tA ∈ A, a set of linkages are generated asso-
ciating with tA. Then, for each tuple tB ∈ B, we randomly
pair the tuples in A to tB . In order to avoid loops, once
a linkage (tA, tB) is created, all tuple t′A ∈ A that are in
the same connected component with tA cannot be assigned
to tB . The membership probability of each linkage is ran-
domly assigned and normalized so that the probability of
each tuple is between (0, 1].

7.2 Effectiveness on Real Data Sets
First, we apply the aggregate queries on the Cancer Reg-

istry data set and the Social Security Death Index provided
in Link Plus 2.0. Both data sets contain the personal in-
formation of an individual. Since the information of some
records are incomplete or ambiguous, we cannot find the
exact match for records in the two data sets. Link Plus
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Figure 7: Efficiency and scalability of count query evaluation.
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Figure 8: Efficiency and scalability of min query evaluation.

computes the probability that two records referring to the
same individual. It returns 4, 658 pairs of records whose link-
age probabilities are greater than 0. If we set the matching
threshold as the default value 0.25 suggested by the system,
only 99 pairs of records are returned.
To elaborate the effectiveness of aggregate queries on

probabilistic linkages, we ask the following count query on
the data sets. Q1: the number of patients appearing in both
data sets? The answer histogram is shown in Figure 6(a).
As shown, likely the count is much larger than 99, the num-
ber of linked pairs passing the matching threshold 0.25.
To demonstrate aggregate queries other than count, we

try an average query Q2: the average age of the patients
appearing in both data sets. The answer histogram is shown
in Figure 6(b). If only the 99 records of matching probabil-
ities over 0.25 are considered, the average age is 71.7.
Clearly, comparing to the minimum matching probability

threshold methods, our approach provides more informative
answers to aggregate queries over probabilistic linkages using
histograms.

7.3 Performance on Synthetic Data Sets
We further evaluate the efficiency and the approximation

quality of our approaches on synthetic data sets with differ-
ent parameter settings.
By default, a synthetic data set contains 20, 000 link-

ages between tables A and B with 5, 000 tuples each. The
degree of a tuple follows the Normal distribution N(4, 1).
The bucket width η = 1, 000 and the minimum probability
threshold τ = 0.1. The parameter k for equi-depth his-
togram answer is set to 10.
First, we evaluate the efficiency and scalability of the

query answering methods. Figure 7 shows the runtime of
the query answering methods for count queries in various
parameter settings. Exact-count is the exact algorithm de-
scribed in Section 6.3. Equi-width and Equi-depth denote
the approximation algorithms discussed in Section 6.4. By
default, ǫ = 10−4 and ρ = 30. Clearly, the two approxima-
tion algorithms are more efficient than the exact algorithm.
Since answering sum queries is very similar to answering

count queries, we omit the results on sum queries for the
interest of space.
Figure 8 shows the efficiency of the min query evaluation.

Exact-min is the algorithm that transforms the min query
to a set of count queries. Reuse is the algorithm that ex-
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Figure 9: Approximation quality.

plores the sharing of computation among different linkages.
Reuse+Pruning is the algorithm that applies the pruning
technique discussed in Section 5 in addition to the reuse
method. Clearly, the two techniques improve the efficiency
significantly.

Last, we evaluate the quality of the two approximation
algorithms discussed in Section 6.4. The quality of ǫ-
approximate euqi-width histogram answers is computed as

1
|{φ|Pr(φ)>τ}|

∑
Pr(φ)>τ 1−

|P̂ r(φ)−Pr(φ)|
Pr(φ)

, where Pr(φ) is the

probability of interval φ and P̂ r(φ) is the estimated probabil-
ity of x ∈ φ. The quality of the equi-depth histogram answer

approximation is measured by 1
k

∑k

i=1 1−
|P̂ r(vi)−Pr(vi)|

Pr(vi)
,

where vi is the value output as the approximation of the i-th
k-quantile, Pr(vi) is the real probability of vi, and P̂ r(vi) is
probability computed using the approximation method. The
experimental results show that our approximation methods
have good quality.

8. CONCLUSIONS
In this paper, we investigate aggregate query evaluation

on probabilistic linkages. In contrast to the traditional
methods that use simple probability thresholds to obtain a
set of deterministic linkages, we fully utilize the probabilities
produced by the record linkage methods and consider aggre-
gates on linked records as distributions over possible worlds.
By preserving the distribution information, we can provide
more meaningful answers to aggregate queries. Moreover,
we propose efficient exact and approximate query answering
methods.
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APPENDIX
Proof of Theorem 1

In a PME-graph GL,A,B , a vertex v is mutually exclusive with
its adjacent vertices Nv . For any other vertex v′ ∈ V − {v} −
Nv , v and v′ are independent conditional on Nv . The Markov
property [23] is satisfied.

Proof of Theorem 2

(Sufficiency) We consider the two conditions one by one.
Condition 1. If the clique graph GC is acyclic, then the joint

distribution of the linkages can be derived using the methods
discussed in Section 3.4.

Condition 2. If the second condition holds, then the joint dis-
tribution of the linkages involved in G′ can be uniquely deter-
mined. Suppose G′ contains vertices {vC1

, . . . , vCk
} as shown in

Figure 10(a), whose corresponding cliques are {C1, . . . , Ck} in the
PME-graph (k must be an even number since the linkages between
tuple sets A and B form a bipartite graph). In the clique graph,
since each vertex vCi

has degree 2, which means, the correspond-
ing clique in the PME-graph shares 2 vertices with 2 other cliques.
There are k edges ev1 , . . . , evk involved in the cycle, whose corre-
sponding vertices in the PME-graph are v1, . . . , vk. Each vertex
vi belongs to two cliques Ci−1 and Ci (2 ≤ i ≤ k). v1 belongs
to cliques C1 and Ck. Since the probability sum of each two con-
nected edges is 1, we have Pr(v1) = Pr(v2i+1) (1 ≤ i ≤ k

2
− 1)

and 1− Pr(v1) = Pr(v2j) (1 ≤ j ≤ k
2
). Thus, the joint distribu-

tion of all vertices in the PME-graph is given by

Pr((
∧

0≤i≤ k
2
−1

v2i+1)
∧

(
∧

1≤j≤ k
2
¬v2j)) = Pr(v1)

Pr((
∧

0≤i≤ k
2
−1

¬v2i+1)
∧

(
∧

1≤j≤ k
2
v2j)) = 1− Pr(v1).

The joint distribution is consistent with the marginal distribution
specified by each linkage. Thus, the linkages are compatible.

(Necessity). Consider a set of compatible linkages whose clique
graph is GC .

Suppose G′ contains a cycle, then we need to show that G′ can
only form a cycle satisfying condition 2 in the theorem. We prove
this in two cases.

Case 1: The cycle in G′ contains 4 vertices vC1
, vC2

, vC3
, vC4

,
whose corresponding cliques in the PME-graph are
{C1, C2, C3, C4}, as illustrated in Figure 10(b). Let vi be
the vertex contained by Ci−1 and Ci (2 ≤ i ≤ 4) and v1 be
contained by C1 and C4. The joint probability of v1 and v4 can
be expressed as Pr(v1v4) = Pr(¬v2¬v3)Pr(v1|¬v2)Pr(v4|¬v3).
Since v1 and v4 are contained in clique C4, Pr(v1v4) = 0
holds. Moreover, Pr(v1|¬v2) > 0 and Pr(v4|¬v3) > 0. Thus,
Pr(¬v2¬v3) = 0. Since v2 and v3 are contained in the same
clique C2, we have Pr(¬v2¬v3) = 1 − Pr(v2) − Pr(v3). There-
fore, Pr(v2) + Pr(v3) = 1, which means that C2 only contains
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two vertices {v2, v3} and Pr(C2) = 1. Similarly, we can show
that other clique Ci (1 ≤ i ≤ 4) only contains 2 vertices and the
probability sum of the two vertices is 1.

Case 2: The cycle in G′ contains k vertices vC1
, . . . , vCk

(k >
4), as illustrated in Figure 10(c). The corresponding cliques in
the PME-graph are C1, . . . , Ck, respectively. Let vi be the vertex
contained by Ci−1 and Ci (2 ≤ i ≤ k) and v1 be contained by C1

and Ck. We show that, for any clique Ci, Pr(vi)+Pr(vi+1) = 1.
The joint distribution of vi+2 and vi+3 can be expressed as

Pr(vi+2vi+3) = Pr(¬vi+1¬vi+4)Pr(vi+2|¬vi+1)Pr(vi+3|¬vi+4).
Since vi+2 and vi+3 belong to the same clique Ci+2, we have
Pr(vi+2vi+3) = 0. Moreover, Pr(vi+2|¬vi+1) > 0 and
Pr(vi+3|¬vi+4) > 0. Therefore, Pr(¬vi+1¬vi+4) = 0. We can
express Pr(¬vi+1¬vi+4) as

Pr(¬vi+1¬vi+4)
= Pr(¬vi+1¬vi+4vivi+5) + Pr(¬vi+1¬vi+4vi¬vi+5)
+Pr(¬vi+1¬vi+4¬vivi+5) + Pr(¬vi+1¬vi+4¬vi¬vi+5) = 0

(8)
Since all probability values are non-negative, each component in
Equation 8 has to be 0. Therefore, we have

Pr(¬vi+1¬vi+4vivi+5)
= Pr(vivi+5)Pr(¬vi+1|vi)Pr(¬vi+4|vi+5) = 0

(9)

and

Pr(¬vi+1¬vi+4¬vivi+5)
= Pr(¬vivi+5)Pr(¬vi+1|¬vi)Pr(¬vi+4|vi+5) = 0

(10)

In Equation 9, since Pr(¬vi+1|vi) = Pr(¬vi+4|vi+5) = 1, we
have Pr(vivi+5) = 0. Therefore, in Equation 10, Pr(¬vivi+5) =
Pr(vi+5) − Pr(vivi+5) > 0. Thus, Pr(¬vi+1|¬vi) = 0.

Since Pr(¬vi+1|¬vi) =
1−Pr(vi+1)−Pr(vi)

Pr(¬vi)
, we have Pr(vi+1) +

Pr(vi) = 1. Therefore, Ci only has 2 vertices {vi, vi+1} and
Pr(vi+1) + Pr(vi) = 1.

Proof of Lemma 1

Let v belong to two cliques C1 and C2. In the clique graph GC ,
let vC1

and vC2
be the two vertices corresponding to C1 and C2,

respectively, and ev be the edge in GC corresponding to v. Since
GC is a tree, there is only one path between vC1

and vC2
and the

path must contain ev . Therefore, removing ev will lead to two
disconnected subgraphs in GC . Correspondingly, removing v will
produce two disconnected components in Gi.

Proof of Theorem 3

The theorem immediately follows with the conditional indepen-
dency of G1

i and G2
i given v.

Proof of Theorem 4

Since v1 is a leaf node, the corresponding clique C1 only contains
one joint vertex v in the PME-graph. After the vertex compres-
sion, there is only one private vertex vp of C1 satisfying the query
predicate P . The private vertices of C1 not satisfying P are re-
moved in the predicate processing step.

When v appears, if v.F = 1, then there is one vertex in C1

satisfying P , and thus Pr(C1, 1|v) = 1. If v.F = 0, then no
vertex in C1 satisfying P , so Pr(C1, 0|v) = 1.

When v does not appear, then Pr(C1, 0|¬v) is the probability

that vp does not appear, which is
1−Pr(v)−Pr(vp)

1−Pr(v)
. Moreover,

Pr(C1, 1|¬v) =
Pr(v1)
1−Pr(v)

is the probability that vp appears.

Proof of Theorem 5

We will show that an approximation error of ǫ is introduced each
time when integrating one connected component Gt (2 ≤ t ≤ m).
Let x1, . . . , xm be the list of values in ζt−1(x) in the probability
ascending order, v1 = vmin + (i − 1)η and v2 = vmin + iη. Let
pti =

∑

v1≤x≤v2
ζt(x) be the probability of bucket [v1, v2). Since

pti =
∑m

b=1 ζt−1(xb)
∑

v1−xb≤x≤v2−xb
Pr(Gt, x)

where ζt−1(xb) is the exact count distribution in components
{G1, . . . , Gt−1}. Let p̂ti =

∑

v1≤x≤v2
ζ′t(x) be the approximate

probability computed based on the ǫ-approximation ζ′t−1(x), then

p̂ti =
∑m

b=1 ζ
′
t−1(xb)

∑

v1−xb≤x≤v2−xb
Pr(Gt, x)

Let g(v1 − xb, v2 − xb) =
∑

v1−xb≤x≤v2−xb
Pr(Gt, x), we have

pti − p̂ti =
∑µ

d=1 ζt−1(xd)g(v1 − xd, v2 − xd)
+
∑m

b=µ+1

(

ζt−1(xb)− ζ′t−1(xb)
)

· g(v1 − xb, v2 − xb)

(11)
Let A =

∑µ
d=1 ζt−1(xd)g(v1 − xd, v2 − xd), then

m
∑

b=µ+1

ζt−1(xb)g(v1 − xb, v2 − xb) = pti −A.

According to Equation 6, Equation 11 can be rewritten as

pti − p̂ti = A+

(

1−
1

∑

µ≤h≤m ζt−1(xh)

)

(pti −A)

On the one hand, since
∑

µ≤h≤m ζt−1(xh) ≤ 1 and

pti > A, we have pti − p̂ti ≤ A. Moreover, A =
∑µ

d=1 ζt−1(xd)g(v1 − xd, v2 − xd) ≤
∑µ

d=1 ζt−1(xd) ≤ ǫ. Thus,

pti − p̂ti ≤ ǫ.
On the other hand,

∑

µ≤h≤m ζt−1(xh) ≥ 1 − ǫ, and thus 1 −
1∑

µ≤h≤m ζt−1(xh)
≥ −ǫ

1−ǫ
. Moreover, pti −A ≥ pti − ǫ. Therefore,

pti − p̂ti ≥ −ǫ×
pti−ǫ

1−ǫ
≥ −ǫ.

By integrating the m components, we have |pi − p̂i| ≤ ǫ.

Proof of Theorem 6

We only need to show that each time when we integrate one
connected component Gt (2 ≤ t ≤ m), we introduce an approxi-

mation error of 1
ρ
.

Let gt(vi) = Pr(Q(G) ≤ vi) =
∑

x≤vi
ζt(x) and gt−1(xb) =

∑

x≤xb
ζt−1(x). Then,

gt(vi) =

xn
∑

xd=0

Pr(Gt, xd) · gt−1(vi − xd)

where xn is the number of cliques in Gt.
Let g′t−1(xb) = Pr′(Q(G) ≤ vi) =

∑

x≤xb
ζ′t−1(x) where

ζ′t−1(x) is the approximation of ζt−1(x) using Equation 7, then

g′t(vi) =

xn
∑

xd=0

Pr(Gt, xd) · g
′
t−1(vi − xd)

Therefore, |gt(vi)− g′t(vi)| =

|
∑xn

xd=0 Pr(Gt, xd) ·
(

gt−1(vi − xd)− g′t−1(vi − xd)
)

|.

Let x′
c (1 ≤ c ≤ ρ) be the ρ-quantiles of ζt−1(x). Suppose

x′
c−1 ≤ vi − xd ≤ x′

c (1 ≤ c ≤ ρ), there are two cases:

First, if vi − xd ≤
x′
c−1+x′

c

2
, then g′t−1(vi − xd) = c−1

ρ
and

c−1
ρ

≤ gt−1(vi − xd) ≤
c
ρ
. Thus, 0 ≤ gt−1(vi − xd) − g′t−1(vi −

xd) ≤
1
ρ
.

Second, if vi − xd >
x′
c−1+x′

c

2
, then g′t−1(vi − xd) = c

ρ
and

c−1
ρ

≤ gt−1(vi−xd) ≤
c
ρ
. Thus, − 1

ρ
≤ gt−1(vi−xd)−g′t−1(vi−

xd) ≤ 0.

In both cases, |gt−1(vi − xd)− g′t−1(vi − xd)| ≤
1
ρ
. Therefore,

|gt(vi)− g′t(vi)| ≤

xn
∑

xd=0

Pr(Gt, xd) ·
1

ρ
=

1

ρ
.
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