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ABSTRACT 
In order to fulfill its monetary policy function, the Swiss National 
Bank (SNB) collects statistical data on the economy. The SNB 
stores results of the regularly held surveys in a specialized 
database (primary), ordered by surveys and survey forms. After 
validation the data has to be transferred in another specialized 
database (secondary) where it can be accessed by economists. The 
secondary database keeps the data in time series that are 
hierarchically arranged by statistical taxonomies. The data transfer 
from the primary to the secondary database feeds 1.5 million time 
series. Mapping and transformation logic was hard-coded in 
legacy programs. They were cumbersome to manage and 
intransparent to the economists in charge. In this paper we 
describe a novel approach called MapLan, a Java-based data 
mapping system featuring a domain specific language. The 
MapLan system not only performs the data transformation and 
mapping, it also produces complete data lineage information. This 
paper shows in practice that domain specific languages are an 
efficient tool to solve two pressing data mapping and 
transformation problems of statistical databases. One problem is 
that of mapping the large and heterogeneous schemas of statistical 
databases in an efficient and manageable way. The other problem 
is the business need for complete data lineage of the target time 
series. 

1. INTRODUCTION 
The Swiss National Bank conducts 30 statistical surveys on a 
regular basis (monthly, quarterly, and yearly). Each survey 
consists of one or more forms. All in all SNB surveys use roughly 
150 forms [1]. The layout of a form is usually a table. Each form 
holds up to several thousand positions. More than 300 banks, 
2000 companies, and 300 collective capital investment companies 
deliver millions of positions (usually numbers) per year. Incoming 
survey data is stored in a specialized primary database that stores 
it in the survey structure. A typical data locator in the primary 
database thus consists of the ID of the sender (aka subject), the 
date of the survey, the form name, the row number, and the 
column number. 
The secondary database is a separate system. This makes sense 
because it has to meet different requirements. The economists and 
data analysts that work with the statistical data expect validated 
figures ordered into categories of economic domain (taxonomy). 
They work with time series so that they can identify trends and 
calculate prognosis. Moreover, the Swiss National Bank produces 

publications that also show the statistical data in the form of time 
series (See for example [3]). In order to anonymize the data, only 
aggregated time series are published. E.g. the sum of the assets of 
all Swiss regional banks or cantonal banks is published but not the 
assets of a given single bank. So to meet all these requirements by 
the economists and the publication process, the SNB uses a 
specialized time series database (secondary database). In order to 
transfer the data from the primary to the secondary database on a 
regular basis, each survey needs a transfer program. The program 
fetches the data (ordered by form, row, and column), aggregates 
it, maps it to the taxonomy of the time series database, and 
performs further survey specific transformations (currency 
conversion, calculation of totals and residuals, net calculation, 
etc.). 
Section 2 of this paper delves into the problems of the lecacy 
mapping programs: they were hard to maintain, and they hard-
coded the mapping and transformation without any support for 
handling data lineage information. Section 3 describes the transfer 
system MapLan, a novel approach that alleviates these problems. 
Throughout the paper the SNB’s securities holdings survey is 
cited as a real world example. Section 4 briefly presents related 
work. Finally, section 5 discusses the resulting benefits of the 
novel approach. 

2. PROBLEMS WITH THE LEGACY 
MAPPING PROGRAMS 

Since the transfer from primary to secondary database is 
carried out on a regular basis and since it moves big chunks of 
data it needs to be automated by programs. Yet, the mapping 
(including aggregations and transformations) holds information 
that is necessary to interpret, to back-track, and to reproduce the 
time series that economist work with and that are published. In 
other words, there is a need for data provenance and lineage 
information [7]. This information was hard-coded in the legacy 
transfer programs. The transfer programs were mingled with data 
fetch, data preparation, and data output code. This problem was 
aggravated by the fact that the two databases use very different 
data ordering metaphors (object-oriented and form based DB vs. 
hierarchical time series DB). The transfer programs were 
procedural. The algorithmic steps (e.g. nested loops) obfuscated 
the sometimes simple mapping logic that stems from the statistical 
systematic of the survey. Moreover, the procedural structure of a 
transfer program reflected the programming style of the individual 
programmer. A typical business case is that a reader of a statistical 
publication (e.g. a journalist) asks for further information about a 
figure published by the SNB. The figure can easily be found in the 
secondary database, but then the back tracing became very 
cumbersome because of the missing data lineage information that 
would lead to the appropriate entries in the primary database. 
With the legacy system, the case often ended up with the 
programmer studying his/her code and retracing the mappings and 
transformations behind it. Obviously, this was a tedious, time-
consuming, and error-prone process. Another business case 
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concerned upcoming changes in surveys. The data owners wanted 
to inform the data consumers about the time series affected by a 
given change. But when you consider that 1.5 million time series 
are fed by transfer programs, it was impractical to provide that 
information. To solve these cases we needed to solve the data 
lineage problem. 

There were also operational requirements. Changes in the transfer 
programs occur frequently either because the survey is adapted to 
new requirements or because the time series database is reordered 
(e.g. based on new requirements by the economists or 
publications). These changes were a significant maintenance 
burden to the IT staff. So the new system was supposed to 
alleviate standard mapping changes. Further requirements to our 
new data mapping system were: 
• Replacement of the outdated and costly programming 

language (license fees). 

• High expressive power, so that all current and future 
mapping needs can be addressed. 

• High performance, so that the large quantity of data can be 
processed in a timely fashion. 

2.1 Example: Securities holdings survey 
The “securities holdings in bank custody accounts” survey [2] 
consists of seven forms (WB51 to WB63) which are identical in 
structure. Each form surveys a different investment currency. The 
rows of the forms represent a breakdown by origin of the issuer 
(resident or non-resident) and by category of securities (in 
particular money market paper, medium-term bank-issued notes, 
bonds, shares, structured products etc.). The columns of the forms 
show a breakdown by custody of account holders and by 
economic sector (e.g. financial, public). 326 bank offices have to 
turn in the securities holdings forms (roughly 4000 form 
positions) on an annual basis. A subset of about 70 large banks 
has to turn in the forms monthly. The input data has to be mapped 
to about 63’000 time series representing the securities holdings 
survey in the secondary database. We use this survey as example 
because it is fairly typical in size and features relatively simple 
mappings and transformations. 

The hierarchical structure of the keys of the survey’s time series is 
illustrated by the following key example: 
SNB3A.NA2.SNB.A.B.T.A.D.CHF.M. This is an address of a 
time series. The key parts, separated by dots, reflect the hierarchy 
in the time series database. In the GUI of the database, you would 
follow the key from left to right to navigate to the series data, just 
as you would navigate through directories of a file system. The 
following table shows the names and the business meaning of the 
hierarchical levels and the key codes and its business meaning of 
the given example key. 

Hierachy 
level name 

Level 
meaning 

Key code Code meaning 

DB 
Statistics 
family 

SNB3A 
Banking 
statistics 

Area Survey NA2 
Securities 
holdings 

Segment 
Aggregate / 

subject 
SNB 

Swiss national 
bank 

Item 
Domicile of 
the custody 

A Residents 

S1 (Suffix 
1) 

Sector B 
Financial 

institutions 

S2 Sub-sector T Total 

S3 
Origin of 

issuer 
A Resident 

S4 
Category of 
securities 

D Shares 

S5 Currency CHF Swiss francs 

S6 Frequency M Monthly 

The first four key parts are mandatory. The further key parts are 
called suffices. They vary in numbers. The hierarchy of the key 
reflects the statistical breakdown of the data.  

We picked this key as example, because it has a particularly 
simple mapping: the time series is fed by only one survey form 
position, namely by form WB51 (securities in Swiss francs), row 
6 (Shares issued by residents), column 3 (resident financial 
institutions). This example features no aggregation because the 
data of the SNB itself1 is not made anonymous. 

Note, that the aggregated figures of the securities holdings survey 
are published in the Statistical monthly bulletin [3], tables D5. 

3. SOLUTION: A DSL EMBEDDED IN A 
JAVA MAPPING FRAMEWORK  
Our solution rests on two main pillars: (1) a mapping framework 
and (2) a domain specific language (DSL) [5]. 

1) The MapLan Java framework builds and processes generic 
mapping lists of explicit formulae at runtime. Each formula 
describes in terms of generic database addresses how the data 
stored in the target database has to be calculated by data in the 
source database. Since a list holds explicitly instantiated runtime 
objects, it can be stored as data lineage metadata in a mapping 
database in order to make the mapping transparent and reusable to 
end-users and other applications. 2) We embedded a declarative 
domain specific language (DSL) [5] into the framework. The DSL 
acts as a formula factory. In case of strongly systematic mappings, 
few and simple statements of the language suffice to set up a 
mapping for a large number of database addresses. Pure Java 
formula factories and interfaces ensure that even very complicated 
and fragmented mappings can be implemented. 

3.1 Mapping lists with explicit formulae: the 
basic structure 
In order to set up the mapping between different kinds of 
databases and data metaphors, we came up with the following 
generic formalism: (1) Mapping describes how an address in a 
target namespace can be filled by a calculation of data addresses 
in a source namespace. (2) Namespaces (addresses in databases) 
consist of an arbitrary number of dimension names (strings). An 
address in a namespace consists of an assignment of an identifier 
(a string) to each dimension name. Thus, namespaces can be seen 
as n-dimensional hypercubes, where dimensions have names. 
Addresses are points in the hypercube. (3) A mapping is a list of 
entries of type y=F(x1, .., xn). Each formula F expresses how data 
to be found under addresses (points) x1, .., xn of the source 
namespace X has to be computed in order to produce the data 
under a given address (point) y in the target namespace Y. Silently 
we assume there is a function class WN( a) that delivers the data 
value under address a in the namespace N. Remember that our 
namespaces represent databases, so the function W simply 
represents the retrieval of a data element given its address in the 

                                                                 
1 The SNB has to deliver the survey as well. It turns it in to itself. 
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database. So more precisely an entry in the mapping list 
represents the assignment WY(y) := F(WX(x1), .. , WX (xn)). Yet, it 
is more practical to represent F() as a pure address calculus: y = 
F(x1, .., xn) in order to store it as data lineage information. WN() is 
only necessary to evaluate the formula at the end and store the 
calculated result under the address y. Our implementation 
supports only functions F() consisting of the basic operations 
(addition, subtraction, multiplication, division) and nested 
combinations thereof. This turned out to be sufficient to model all 
the necessary survey mappings, but it could easily be extended. 

Section 2.1 showed the mapping of one time series of the 
securities holdings survey. Let us now represent this example as 
MapLan mapping entry. The source namespace is the address 
namespace of the primary database; the target namespace is the 
one of the time series database. So a given formula operand can 
be seen as an address in the namespace of the primary database. 
The namespace holds 4 named dimensions: Subj (the subject that 
delivers the data), Form (the form identifier), R (the form row), 
and C (the form column). So the form entry we mentioned in the 
example can be written as {Subj:SNB, Form:WB51, R:6, C:3}. 
The time series namespace in the example holds ten dimensions 
(see table 1). The names of the dimensions are given by 
convention and reflect the hierarchical nature of the database: 
(DB, Area, Seg(ment), Item, S1, S2, S3, S4, S5, S6). When we put 
this together, we can formulate our first, exemplary mapping list 
entry. It consists of one entry in the target namespace (left side), 
and its (trivial) formula consisting of one address in the source 
namespace without any calculation: {DB: SNB3A, Area:NA2, 
Seg:SNB, Item:A, S1:B, S2:T, S3:A, S4:D, S5:CHF, S6:M} := 
{Subj: SNB, Form: WB51, R:6, C:3}. 

Here is an example of a mapping entry featuring a formula: {DB: 
SNB3A, Area:NA2, Seg:AV3, Item:A, S1:B, S2:T, S3:A, S4:D, 
S5:CHF, S6:M} := {Subj: UBS, Form: WB51, R:6, C:3} + { Subj: 
CS, Form: WB51, R:6, C:3} 

This is an example of an aggregate, namely the big banks. There 
are only two banks in this aggregate, so the data behind the same 
form position of two banks (see Subj dimension in namespace) is 
added together. The key to be fed differs from the previous 
example in the assignment of the Segment dimension (now AV3 – 
“Big banks”) Note that the most complex formula in a single 
mapping entry currently consists of over 8000 operands. 

We said that the base of our mapping system works with a list of 
entries of the type y = F(x1, .. , xn), where F consists of the basic 
arithmetic operations. Formula, operators, operands, and result are 
runtime objects. Then there is an evaluation mechanism (resolver) 
that visits the formula, resolves the addresses of xi, performs the 
calculations of that data, and stores the result under address y. The 
complete data transfer for a survey is performed by repeating this 
process for the whole mapping list. 

3.2 Building the Mapping List with the 
MapLan System 

Each entry in the mapping list describes how a target 
database key has to be fed with source data. Note that it also 
represents the complete data lineage. But to build the huge 
mapping lists necessary to transfer the data of a survey in an 
efficient way, we needed more tools. We came up with the 
MapLan DSL, a declarative mapping language that generates the 
list at runtime and uses the systematic inherent in the statistical 
survey. We use the fact that mapping in statistical databases is not 
arbitrary. It is highly systematic because there is an underlying 

economic domain and both representations of the survey (forms 
and time series store) embody the structure of that domain to 
some extent. 

MapLan allows the programmer to split the mapping into partial 
mappings that only reflect the mapping of a subset of dimensions. 
Subsets should be chosen, so that they are orthogonal to each 
other. Consider the securities holdings example. The survey 
features a breakdown by currency. In the primary database, this is 
reflected by the dimension “Form”. In the time series database 
this is reflected by the dimension “S5” (suffix 5 – see table 1). If 
you want to know how a given time series (of securities holdings) 
has to be filled, and you now that suffix 5 of that time series is 
“CHF” then you know that you need the data from the survey 
form corresponding to the currency “CHF” (which is WB51). So 
suffix 5 determines the survey form no matter how suffix 1 or 
Area etc. are assigned. This dependency is therefore orthogonal to 
the other dimensions. Partial mapping is the MapLan construct to 
describe such dependencies between subsets of target and source 
dimensions. Other dimensions of the mapping example are 
orthogonal as well. Consider the breakdown by category of 
securities. In the forms, this is mapped to row numbers. In the 
time series database, it is reflected in suffix 4 (S4). Yet, in the 
forms the breakdown by origin of the issuer is also mapped to the 
rows. First come all the categories of securities issued by residents 
then all the categories issued by non-residents. The time series 
namespace reflects the origin of the issuer in dimension S3 (see 
table 1). Given S3:A (“Resident”) and S4:D (“Shares”), you can 
conclude (independently of the assignments of other dimensions) 
that you need to get the data from row 6 in the forms. Partial 
mappings help the programmer to describe such dependencies 
between subsets of the dimensions. MapLan represents partial 
mappings as lists of partial mapping entries. Such a list entry 
looks the same as a complete mapping entry: y = F(x1, .., xn), but 
y can be an incomplete address (for example, as just seen, only the 
dimensions S3 and S4 are assigned) and the xi can also be 
incomplete (for example only the row dimension is assigned). 

Composition of Mappings by Means of Partial Mappings. The 
programmer builds a MapLan mapping by defining a set of 
orthogonal partial mappings that covers all dimensions of the 
source and target namespace. The MapLan resolution engine will 
then generate the mapping list by combining all entries of the 
partial mappings with each other. So each entry of every partial 
mapping list is combined with all the entries of the other lists. 
Every combination results in a mapping entry that is complete (all 
dimensions are assigned). It is easy to see that, due to the many 
combinations, relatively small partial mapping lists cover a large 
mapping range. Therefore, mappings that can be split into several 
partial mappings can be defined very efficiently. If a mapping is 
split into n partial mappings, with a list size of pln, then its 
definition consists of ∑ ௡݈݌

௜ୀଵ ௜ partial formulae, but it will cover a 
mapping list with ∏ ௜݈݌

௡
௜ୀଵ  complete formulae. On the other hand, 

splitting is not always possible. Key to the success of designing 
efficient partial mappings is whether there is orthogonality in the 
mapping that stems from the business domain (the statistical 
survey – in our example the different orthogonal break downs of 
the data). Yet, the expressive power of MapLan is not limited by 
this challenge. In extreme cases a mapping can be defined with 
one single partial mapping. This is always possible. It is equal to 
declaring the complete mapping list explicitly. We never had to 
resort to this approach when implementing the SNB surveys. 
Nevertheless, the statistical domain data was often fragmented, 
consisting not only of one hypercube but of several sub-cubes. 
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Therefore, we introduced further composition mechanisms to 
MapLan: mappings can be linked. Linked mappings produce 
intermediary results. A survey can also be transferred using 
several independent mappings bundled as one. To a given 
intermediary namespace several mappings can be linked. 

3.3 MapLan DSL definition of the securities 
holdings survey 
Here we show a code snippet of the domain specific language 
(DSL) of MapLan. It shall demonstrate the expressive power of 
MapLan and give a flavor of the syntax. We will model the partial 
mappings of the securities holdings survey described earlier. Note 
that this example covers the mapping of over 63’000 time series, 
including the two mapping entries we used as examples in section 
3.1. 

PM_Currency_Anchor:  
 Form -> {DB,    Area, S5,  S6}: 
 WB51 -> {SNB3A, NA2,  CHF, M},# Currency  
                  # in S5 maps to form 
 WB52 -> {SNB3A, NA2,  USD, M}, 
                  # Rest of dims constant 
 .. 
 WB63 -> {SNB3A, NA2,  Z,   M}; 
 
 
PM_DomicileCustody_Sector_SubSector: 
 C -> {Item, S1, S2}: 
 1 -> {A, A, Z}, # Resident, non- 
                  # financial inst., tot. 
 3 -> {A, B, T}, # Resident, 
                  # financial inst., tot. 
 5 -> {A, B, A1},# Resident, 
                  # financial inst.,  
      # Collective investm. institutions  
 .. 
 18-> {B, T, Z}, 
 19-> {B, T, F}; # Non-resident, tot., 
                  # of which lent 
 
 
PM_OriginIssuer_Category: 
 R  -> {S3, S4}:  
 1  -> {A, A},   # Resident, money market 
                  # instruments 
 2  -> {A, B},    
 3  -> {A, C},   # Resident, bonds  
 4  -> {A, C1},   
 5  -> {A, C1A}, 
 6  -> {A, D},   # Resident, shares 
 .. 
 38 -> {B, F2}, 
 39 -> {B, F3}, 
 40 -> {B, F4}, 
 41 -> {B, FZ};  # Non-resident, residual 
                  # structured products 
 

PM_Intitute:  
 Subj     -> Segment: 
 SNB      -> SNB, 
 .. 
 [CS+UBS] -> AV3;# Aggregate of two 
                  # big banks 

The example features a mapping consisting of four partial 
mappings. Each partial mapping begins with a name (for listing 
purpose) followed by the declaration of the subsets of dimensions 
that it covers. Note, that when combining all subsets of the four 
partial mappings (as the resolver does), we get all four dimensions 
of a primary database address and all 10 dimensions of a time 
series address. After the declaration part, partial mapping entries 
are defined. When indicated by “..” we shortened the lists 
somewhat for readability reasons. The complete example would 
use as little as 75 lines. An entry consists of a formula of partial 
points in the source namespace (form position) on the left side (of 
the -> sign) and a partial point in the target namespace (time series 
key) on the right side. Note that the assignments refer to the 
dimension(s) of the declaration. So in the third partial mapping 
named PM_OriginIssuer_Category we find an entry that says row 
6 of the form corresponds to {S3:A, S4:D}. This is exactly the 
example showed in section 3.1. Note that when an entry assigns 
only one dimension then the MapLan syntax allows one to omit 
the curly brackets. Note also, that in most of the cases the left side 
is not a formula, but a single (partial) point. This is of course 
allowed. The last declaration in the last partial mapping shows an 
example of a formula (left side). It is the aggregation of the data 
of two banks into one banking group (AV3) we also saw earlier. 
For clarity, we omitted the aggregation into larger banking 
groups. In principle, these formulae are sums with as many 
summands as there are banks in the group. In practice, since the 
aggregation into banking groups is a standard operation for 
MapLan applications, there is a factory to generate these formulas 
on the fly and in a transparent way. 

When executing this example, the MapLan resolution mechanism 
generates all combinations of right side of the entries. This gets us 
the huge list of time series keys to update. It then resolves the left 
side (and their formulas) for each entry into a formula with 
complete primary database keys and evaluates it. The resulting 
figure is written to the time series hence it is transferred. 

3.4 Advanced MapLan Features 
This section addresses three further MapLan features without 
going into detail: handling of reporting dates, changes over time, 
and reuse of mapping definitions. 

Handling reporting dates and changes. Survey data has a 
reporting date that is used to interpret the data. Obviously, this is 
also the date to be used for the entry of the target time series we 
want to update. So mapping the date is straight forward. 
Therefore, this is hard-wired into our data transfer solution. Yet, 
MapLan is open to handle time as just another namespace 
dimension, offering full flexibility. 

We said earlier that due to changes in the statistical domain the 
mapping may change over time. Usually this happens at a given 
reporting date. For surveys performed for earlier reporting dates 
we still need to be able to perform data transfers with the old 
mapping definitions (e.g. when reporting banks send in 
corrections). We solved this problem with the directory structure 
for MapLan DSL mapping files. The directory names indicate the 
first reporting date for which the file is valid. Newer valid entries 
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override older ones. When loading the MapLan DSL mapping 
files, the system dynamically resolves the appropriate mapping 
files to use. 

Reuse of mapping definitions. Often, several mappings share 
some partial mappings. Furthermore, most of the time when a 
mapping changes only some partial mappings change while others 
stay the same. E.g. when a form gets a new row, it does not 
necessarily get a new column as well. To simplify the 
maintenance of mapping declarations, we introduced load 
commands in the DSL that allow the author of mapping 
definitions to load partial mappings from separate files instead of 
listing them in one file (as seen in the example of section 3.3). 
Partial mappings that were factored out in separate files can then 
be shared by several mapping definitions. Furthermore, these 
partial mappings can also profit from the date-relative load 
mechanism described above. This minimizes declaration 
duplication due to changes in mappings. Note, that not only partial 
mapping declarations can be loaded with the DSL but also partial 
mapping factories (by their java class name). That way, you can 
access the full expressive power of Java via the DSL. 

4. RELATED WORK 
We did not find any research result or product that could solve the 
described problem off the shelf. To our knowledge the MapLan 
approach (using a declarative DSL to exploit inherent mapping 
logic and run-time formulae of generic database addresses that 
serve as complete data lineage) is novel. Yet, our work is related 
to research in the following areas: data mapping and integration, 
data provenance and lineage, and domain specific languages. 

Data mapping is usually seen as a step of data integration which 
has been covered by a large body of research. For a survey see 
[9]. Data mapping research often focuses on mapping data 
schemas to each other with the ultimate goal to query across 
multiple heterogeneous data sources. The data is managed by 
different autonomous authorities. Data mapping occurs between 
XML schemas or between relational database schemas. Our work 
differs from other research because we deal with the special issues 
of statistical databases. The problem is not semantic uncertainty in 
how to map and transform our data but the very large and non-
relational schemas that have to be mapped. Such large schemas 
(the securities holdings survey alone consists of 63’000 schema 
fields) are typical for statistical databases. Traditional schema 
mapping approaches will most certainly lead to maintenance 
problems. Often, the establishment of views is proposed to 
integrate data sources. A statically established view, including the 
transformation operations, would probably not perform 
reasonably, since it would consume far more memory than the 
data itself. Instead, we developed a domain specific language to 
describe mappings. The DSL exploits the inherent systematic of 
statistical schemas (multi-dimensional hypercubes) and 
instantiates mapping formulas on the fly. 

In the context of data warehouses data provenance can be seen as 
metadata about the processing history and data lineage. In [7] the 
authors describe the data lineage problem, namely how to trace 
warehouse data items back to the original source items from 
which they were derived. In [8] the authors describe a formal and 
efficient approach to trace lineage for general database 
transformations. The formalism introduces transformation classes 
(dispatchers, aggregators and black-boxes) that can be composed 
to acyclic transformation graphs. Based on properties of the 
transformation class, the authors show how and what data lineage 
can be traced. In the introduction of this paper we showed our 

business case for data lineage. We wanted to be able to reproduce 
any given figure of the secondary database, regardless of the 
mapping, transformation, or aggregation it underwent during its 
transfer from the primary database. So we need complete lineage 
information. The approach in [8] is very generic so it deals with 
the unknown properties of some transformations (black-box). In 
such an environment, the lineage information becomes sparser. 
Instead of using a generic lineage tracking algorithm, MapLan 
uses the fact that at transfer time it builds perfect lineage 
information (the reified mapping formula). MapLan allows the 
programmer to build mappings by composition which also leads 
to acyclic graphs of transformations. Yet, MapLan resolves these 
graphs into one transformation that is perfectly traceable. The fact 
that only a limited set of arithmetic operations is used makes this 
possible. 

With MapLan we wanted to exploit the opportunities of DSLs as 
described by Deursen et al. [5]: The DSL embodies domain 
knowledge and thus enables the reuse of this knowledge. 
Mappings can be expressed at the level of abstraction of the 
problem domain (statistical data taxonomies). The partial mapping 
lists focus on the relation between survey forms and time series 
keys. This is very similar to how an end-user would write down 
the mapping relation. So the DSL is self documenting. DSLs have 
the potential to enhance productivity, reliability, maintainability, 
and portability. These were exactly the requirements we wanted to 
meet. MapLan allows the user to formulate mapping statements 
that leverage the inherent systematic typical to statistical data. We 
also needed to keep an eye on the potential disadvantages of DSLs 
mentioned in [5]. The domain of the DSL needs to be mature. 
Since we supported the mapping for years we could assure that. 
The cost of identifying the scope and developing a DSL needs to 
be justified. MapLan was cost-effective because it replaced an 
expensive legacy programming language. When the mapping is 
done in a DSL it may run into performance problems compared to 
hard-coded, individually forged mapping programs. This was 
indeed a challenge but we could overcome it by using well 
established techniques such as caching and efficient data 
structures such as Java maps. 

5. RESULTS 
Within four years, all 30 surveys of the SNB were migrated to the 
MapLan transfer system. By replacing the legacy system, we save 
a 6 digit CHF amount in licensing fees every year. However, the 
true benefits of MapLan lie elsewhere, namely: availability of the 
mapping information (data lineage) and efficiency of the 
declarative language MapLan in describing the mappings thus 
reducing the maintenance burden. 

5.1 Efficiency of the declarative language 
MapLan maps the large schemas of statistical databases very 
efficiently. Mapping over 1.5 million schema items manually 
would be infeasible. MapLan offers a way to exploit the intrinsic 
business logic of the statistical surveys. Logically independent 
mapping dimensions can be factored out in partial mappings with 
few statements. In this paper we presented a running example that 
maps 63’000 schema elements using only 75 lines of DSL code. 

Declaring partial mappings allows the programmer to work with 
simple and intuitive statements (“this form row goes to that key 
part of the time series”). Fewer statements that are more intuitive 
simplify the maintenance of the mapping when it changes through 
time. 

The expressive power of the system is guaranteed by composition 
methods: mappings can be constructed by linking several 
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mappings or by bundling them. If all else fails mappings can be 
constructed from one large partial mapping. Partial mappings can 
be generated with factories in a controlled and transparent way, 
allowing the programmer to use the full expressive power of Java. 

5.2 Making use of the data lineage 
Internally, MapLan produces mapping lists. A list entry describes 
how an address in the target namespace has to be fed by addresses 
in the source namespace. The description is a formula consisting 
of basic arithmetic operations. 

The mapping list is built at run-time with the main purpose to 
update the target database by evaluating the formulas. Note 
however, that the mapping list represents complete data lineage 
for the data in the secondary database. In order to benefit from the 
lineage information, the MapLan transfer system stores the 
mapping list in compact form into a meta-database. Now the data 
lineage can be used to provide new value-added services. Here are 
some examples. 

Enabling the user to trace back data. Providing access to 
complete data lineage is a key achievement of MapLan, as 
compared to the legacy system or as far as we know to any 
mapping system of statistical databases. No longer is the mapping 
logic hidden in procedural programs. We leverage the mapping 
metadata by building different web-based queries for that 
metadatabase. The queries allow our users (economists) to find 
out what survey (positions) go into what time series, how a given 
time series is calculated, and even do a drill-down, starting at the 
time series and getting all involved data from the primary 
database, plus the mapping formulae. Note that these web-queries 
solve the business cases mentioned in the introduction. 

Automatic anonymity check. The mapping formulae can be 
visited by other modules before the data transfer is executed. We 
use this fact to implement the confidentiality options that some 
surveys need. The confidentiality module analyses the formula 
(and the underlying data) using the visitor pattern [4]. It marks 
those figures as confidential where the input of a single bank 
dominates the resulting figure. We can therefore assure that the 
aggregates make the data sufficiently anonymous. The module 
implements a strategy pattern [4] so it is easily adoptable. 

Automatic drill down of outliers in aggregates. The aggregated 
data of some surveys is delivered to international organizations. 
For example, the Bank of International Settlements (BIS) receives 
the consolidated banking statistics. In order to ensure the data 
quality, the BIS performs outlier tests on the data. We accelerated 
the delivery process by incorporating the test into the data 
transfer. We find the same outliers in the aggregates at a much 
earlier stage. Since with MapLan we know the exact data lineage 
of each aggregate, the system is able to rank the contribution of 
each bank to the outlier and identify the contributing form 
positions. Therefore, very early in the process, outliers in the 
aggregate can be precisely explained or corrected. 

Generic mapping approach. MapLan has proven to be 
applicable in further domains. This is due to the fact that we have 
ensured the expressive power of the language (composition, fall-

back solution to Java etc.). Another enabler is the fact that 
MapLan works with generic namespaces of arbitrary dimensions. 
While this approach proved helpful to map between two specific 
databases, it can also be used to describe a broad range of other 
mapping scenarios (including relational databases). For example, 
we used MapLan to generate SDMX [6] data messages from the 
primary database. As another example, when the primary database 
was replaced by a completely new system we could easily plug-in 
the new database even though the data representation had 
changed. As a fancier example, we used MapLan for consistency 
checks for data to be published. Since the data is available in a 
hyper cube (publication document, table id, row, column) we 
could easily and efficiently express checks like adding up 
columns and seeing if that ends up with the figure in the “total” 
column. 

6. FUTURE WORK 
MapLan is now a mature “working horse” and we do not plan to 
change much. One idea is to use survey metadata like row/column 
descriptions to automatically comment the mapping artifacts or 
even generate skeletons of mapping declarations. More visionary 
would be to introduce a visual and interactive mapping 
development environment. However, while the framework would 
be ready for that, it is questionable if this will raise productivity 
the way the introduction of MapLan did. 
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