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ABSTRACT

Nowadays, organizations need to use OLAP (On Line Ana-
lytical Processing) tools together with geographical informa-
tion. To support this, the notion of SOLAP (Spatial OLAP)
arouse, aimed at exploring spatial data in the same way as
OLAP operates over tables. SOLAP however, only accounts
for discrete spatial data. More sophisticated GIS-based deci-
sion support systems are increasingly being needed, to han-
dle more complex types of data, like continuous fields. Fields
describe physical phenomena that change continuously in
time and/or space (e.g.,temperature). Although many mod-
els have been proposed for adding spatial information to
OLAP tools, no one allows the user to perceive data as
a cube, and analyze any type of spatial data, continuous
or discrete, together with typical alphanumerical discrete
OLAP data, using only the classic OLAP operators (e.g.,
Roll-up, Drill-down). In this paper we propose an algebra
that operates over data cubes, independently of the under-
lying data types and physical data representation. That
means, in our approach, the final user only sees the typical
OLAP operators at the query level. At lower abstraction
levels we provide discrete and continuous spatial data sup-
port as well as different ways of partitioning the space. We
also describe a proof-of-concept implementation to illustrate
the ideas presented in the paper. As far as we are aware of,
this is the first proposal that allows analyzing discrete and
continuous spatiotemporal data and OLAP cubes together,
using just the traditional OLAP operations, thus providing
a very general framework for spatiotemporal data analysis.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Spatial Databases and
GIS; H.4.2 [Information Systems Applications]: Deci-
sion Support

General Terms

Theory
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1. INTRODUCTION
OLAP (On Line Analytical Processing) [10] comprises

a set of tools and algorithms that allow efficiently query-
ing multidimensional databases containing large amounts of
data, usually called Data Warehouses. In this multidimen-
sional model, data can be perceived as a cube, where each
cell contains a measure or set of measures of interest. At the
logical level, OLAP data are typically organized as a set of
dimensions and fact tables. Modern organizations need to
use OLAP analytical capabilities together with geographical
information. In this direction, SOLAP (standing for Spatial
OLAP), a concept introduced by Rivest et al. [17], aims at
exploring spatial data by drilling on maps, in the same way
as OLAP operates over tables and charts. However, SO-
LAP only accounts for discrete spatial data, where spatial
objects are represented as geometries. More sophisticated
GIS-based decision support systems are increasingly being
needed, able to handle more complex types of data, like con-
tinuous fields (from now on, fields). Fields describe physical
phenomena that change continuously in time and/or space,
like temperature, land elevation, land use and population
density, frequently used in human geography [23]. They are
perceived as having a value at each point in a continuous N-
dimensional spatial and/or spatiotemporal domain. More-
over, a field can be used to describe the names of countries
and for those points that do no belong to any country a
distinguished value can be assigned. In real-world practice,
scientists and practitioners register the values of a field by
taking samples at (generally) fixed locations, and inferring
the values at other points in space using some interpolation
method. Thus, fields can be described by a function that
indicates the distribution of the phenomena or feature of in-
terest. The most popular discrete representation for fields is
the raster model, where the 2D space is divided into regular
squares. The raster model is frequently used for represent-
ing soil type, temperature, among other physical phenom-
ena. Other representations have also been proposed, like
the Voronoi diagrams [13, 21] or TIN, the latter usually em-
ployed to represent an ‘Altitude’ field [12].

For adding spatial information to OLAP tools, many mod-
els have been proposed, at the conceptual and logical levels.
We find this unnecessary from the user’s point of view. We
believe that a user of a spatio-temporal enabled OLAP sys-
tem would like to find the data cube at the conceptual level,
independently of the kind of underlying data. Such a model
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would allow to analyze any type of spatial data, continuous
(independently of the underlying representation) or discrete,
together with typical alphanumerical discrete OLAP data,
using only the classic OLAP operators, like Roll-up, Drill-
down, and/or Drill-across. To achieve this, at the logical
and physical levels we need different mechanisms to manage
these different kinds of data and data representations.
In light of the above, in this paper we present an algebra

that operates over data cubes, independently of the under-
lying data types and physical data representation. That
means, the final user only sees the typical OLAP operators
at the user query level. At the logical level, we describe
operations that allow to manage different kinds of spatial
data. For this, we present a discrete model for continuous
fields that allows us to considered them as standard data
cubes with one-level dimensions. Further, based the former,
and on the work of Abelló et al. [1], we define mapping
mechanisms that allow to analyze together cubes containing
alphanumerical and spatial (discrete and continuous) data,
providing support to the conceptual model. Finally, at the
physical level, a model that allows representing continuous
data in a discrete way, and a collection of operators over
this model, gives support to our proposal at the physical
level (that means, at the logical level we do not care about
how continuous data are represented). Finally, we provide a
proof-of-concept implementation to illustrate the ideas pre-
sented in the paper. As far as we are aware of, our proposal is
the first one that allows analyzing discrete and continuous
spatiotemporal data and OLAP cubes together, using the
traditional OLAP operations, thus providing a very general
framework for spatiotemporal data analysis.

1.1 Motivation
We motivate our work with an example from the wine in-

dustry that we use throughout the paper. John, who owns
a vineyard, stores information about grape production in
SOLAP cubes (i.e., cubes that include spatial dimensions).
To make well-informed decisions, he needs to incorporate
external information about precipitation, temperature, alti-
tude and soil type (i.e., physical phenomena stored as fields).
He knows that climate changes impact directly on wine pro-
duction. More specifically, metrics such as average growing
season temperatures can be used for establishing optimum
regions for wine production, for each wine variety [9]. For
example, Cabernet Sauvignon is produced in regions that
span from intermediate to hot climates, with temperatures
ranging from 16.50C to 19.50C in the growing season.
As a concrete example, let us consider the following sce-

nario. The quality of the wine for each type of grape depends
on the specific climatic conditions for periods such as bud
break, flowering, ripeness and harvest. Thus, John performs
a cross-analysis of the production of each kind of grape with
the temperature amplitude and average precipitation dur-
ing those periods, for each country region. Technically, the
latter information is stored as fields. Since different kinds of
data (alphanumerical, discrete spatial, and spatio-temporal
fields) are involved, standard approaches require using differ-
ent tools and languages, and integrating the information in
an ad-hoc manner. Instead, with our approach he will only
deal with typical OLAP operators, without caring about the
type of data stored in a cube, and how these data are stored
at the physical level. A cross-analysis like the above would
be expressed as (we explain this in detail later in the paper):

DrillAcross(

Dice(

RollUp(

DrillAcross(

DrillAcross(

RollUp(tempField,geoDim,region,MIN),

RollUp(tempField,geoDim,region,MAX)),

RollUp(precipField,geoDim,region,AVG)),

dateDim,month,AVG),

month>=Feb-2010 and month<=Sep-2010),

RollUp(RollUp(grapeSOLAP,dateDim,month,AVG),

geoDim,region,AVG),

AVG)

That means, John only sees cubes (i.e., tempField, precip-
Field, and grapeSOLAP), and does not care about the data
these cubes contain. The distinction of data types and data
representations is performed at the logical and physical lev-
els (e.g., temperature can be a field type at the logical level,
and stored as a rasterized grid at the physical level). We
also explain later the key role of the Drill-Across operator
for relating cubes of different kinds. As far as we are aware
of, this is a completely novel approach in the OLAP field.

1.2 Related Work
The joint contribution of the GIS and database communi-

ties to the problem of analyzing fields using OLAP models
has been limited. Shanmugasundaram et al. [18] propose
a data cube representation that deals with continuous di-
mensions not needing a predefined discrete hierarchy. They
focus on using the known data density to calculate aggregate
queries without accessing the data. This representation re-
duces the storage requirements, but continuity is addressed
in a limited way. Few proposals address the integration
of field and OLAP data. Ahmed and Miquel [3] discuss
the importance of modeling multidimensional structures for
field-based data and analyze how either cell values or inter-
polation methods can be used for inferring values at non-
sampled points. Nevertheless, neither formal definitions are
provided nor methods for calculating aggregating functions
in the continuous cube are described. Vaisman and Zimanyi
[20] present a conceptual model for SOLAP that supports
dimensions and measures representing continuous fields, and
characterize multidimensional queries over fields. They de-
fine a field data type, a set of associated operations, and a
multidimensional calculus supporting this data type. Gomez
et al. [6] proposed physical data structures for implement-
ing this set of operators. Therefore, these proposals operate
at the logical and physical levels, respectively. Bimonte et
al. [4] recently introduced a multidimensional model that
supports measures and dimension as continuous field data,
although they do not consider the fields as OLAP cubes,
neither integrate the continuous and discrete models with
an unique set of OLAP operators. In a recent work, the
authors of the present paper [5] sketched a closed generic
map algebra over spatio-temporal continuous fields, inde-
pendent of the underlying field representation, and how this
idea can be used for an integrated analysis of spatial and
OLAP data. Here we generalize and formalize these ideas,
and present a complete framework for analysis, along with
a proof-of-concept implementation.

Regarding algebras for field analysis, Tomlin [19] proposed
Map Algebra, an informal language for manipulating two-
dimensional fields, represented as raster data. This language
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basically consists in three operators denoted Local, Focal and
Zonal. For instance, given a collection of grids, and an ag-
gregate function, the Local operator returns a grid such that
the value in each cell is the result of applying the aggregate
function to values of the cell at the same location in the input
grids. Map Algebra operators have been implemented in dif-
ferent GIS (Geographic Information Systems), like ArcGIS1.
Mennis and Viger [14] generalized the concept of Map Alge-
bra, adding the temporal dimension. More recently, Mennis
[16] proposed the Multidimensional Map Algebra, an exten-
sion of Map Algebra that allows working with raster data
of different dimensionality. The proposal also discusses the
local, focal, and zonal operators in this mixing of raster data
and how to define neighborhoods and lags. For example, a
Grid and a 4D HyperCube can participate of operations.
Regarding continuous data representation, the main draw-

back of the raster model is that the value assigned to a
cell may represent many sampled points (i.e., the actual
sampled values are lost). That means, the space is arbi-
trary partitioned (technically, tessellated) without consid-
ering the sampled points. Therefore, alternatives to raster
data are discussed in the literature. For example, Ledoux
and Gold [13] argue that using Voronoi diagrams for repre-
senting fields has several advantages, and they redefine the
local, focal and zonal operations when space is tessellated
using Voronoi diagrams. Ledoux [21] proposes a solution for
creating a 3D discrete Voronoi diagram and discuss its im-
plementation. Other discrete representation exist (like TIN,
mentioned in Section 1).

1.3 Contributions and Paper Organization
Existing proposals for adding support to continuous fields

require the definition of a new data model. This actually also
happens with many of the proposals for Spatial-OLAP (SO-
LAP). The direct consequence of this is that each time a new
kind of data needs to be added, new models need to be de-
veloped. Our approach, on the contrary, focuses in keeping
unchanged the traditional OLAP cube model and operators
at the conceptual model, defining polymorphic operators at
the logical level, and caring about the data representation
at the physical level. In this sense, our approach can sup-
port also other kinds of data representations, beyond the
ones addressed in this paper. We organize the presenta-
tion as follows. We start introducing a multidimensional
data model over which we will build our proposal (Section
2). We then present a discrete data model for represent-
ing continuous fields and an algebra that makes use of these
operators (Section 3). This data model is general enough
to support any kind of underlying data representation (e.g.,
Voronoi, Raster, TIN). In Section 4 we show that actually
fields can be considered as another kind of data cube. We
detail how each typical OLAP operator can be applied over
field cubes, and how a mapping mechanism allows combin-
ing cubes of different kinds thanks to the Drill-Across oper-
ator. To show the plausibility of our approach, in Section 5
we present a proof-of-concept implementation over a Post-
greSQL database. We conclude in Section 6.

2. MULTIDIMENSIONAL MODEL
Many formal models for OLAP had been proposed ([7,

8, 22]). We now introduce the one that we will use in the

1
http://www.esri.com/software/arcgis/index.html

remainder of the paper, although most of the existing models
can be used as a basis for our work.

Definition 1 (Dimension Schema). A dimension
schema is a tuple 〈nameDS,L,→〉 where: (a) nameDS is
the name of the dimension; (b) L is a non-empty finite set
of levels, which contains a distinguished level denoted All;
(c) Each level l ∈ L has associated a non-empty finite set
of level descriptors LD(l), each one of them having domain
Domldi ; (d) → is a partial order called a rollup relation on
the levels in L. This partial order defines a hierarchy in the
dimension; (e) The reflexive and transitive closure of the
rollup relation has a unique bottom level and a unique top
level. The top level is the distinguished level All. A spatial
dimension schema is a dimension schema where at least one
level l ∈ L has exactly one level description with domain
of type geometry (e.g. point, polygon).

Definition 2 (Cube Schema). A cube schema is a tu-
ple 〈nameCS,D,M〉 where nameCS is the name of the cube,
D is a finite set of dimension schemas, and M is also a finite
set of levels called measures.

Definition 3 (Dimension Instance). A dimension
instance I of a dimension schema < nameDS,L,→> con-
sists of: (a) A finite set of members for each level ∈ L where
each member is identified by an ID. The level All has a
unique member, ‘all’; (b) A mapping function Val ld map-
ping level descriptor names to values in their domain; (c)
A set of rollup relations of the form Rollupli→lj from the
members of level li to the members of level lj , for each pair
of levels li and lj in L.

Definition 4 (Cube Instance). Given a cube schema
〈nameCS,Dims,Measures〉 such that |Dims| = D, and
|Measures| = M , a dimension instance Ii for each di ∈
Dims, i = 1..D, and a set Points={(c1, . . . , cD)| ci is a
member ofIi, i = 1..D}. A cube instance C is a partial func-
tion (let us call it data cube) with signature: dom(Points)→
dom(m1) × ... × dom(mM) where mi ∈ Measures, i=1..M,
mapping members in Points to members in Measures.

Example 1 (Cube schema and instance). Our pro-
ducer John needs to analyze the harvest production (a mea-
sure), along different dimensions, namely the crop block and
the picking date. Let us call these dimensions blockDim and
dateDim, respectively. The former is a spatial dimension
since it contains level descriptors with domain geometry.
In order to achieve this goal, John builds a cube, denoted
grapeCS, as follows.

Grape cube schema: 〈grapeCS, 〈dateDim, {date,month,
year,All}, {date → month,month → year, year → All}〉,
〈blockDim, {block, district, province, g, gT,All}, {block →
district, district → province, province → All, block →
g, g → gT, gT → All}〉, {harvest}〉.

The level descriptors are: LD(block)={blockID, bGeom},
LD(district)={distName, dGeom}, ..., LD(g) = {grape},
LD(gT ) = {gType}, ..., LD(date)={date}. Fig. 1 shows
both dimension schemas.

Table 1 depicts a relational instance of grapeCS, for blocks
located in Belgium.

302

http:// www.esri.com/software/arcgis/index.html


dateDim blockDim measures
date month year All blockID bGeom distName dGeom provName pGeom grape gType All harvest
2009-08-27 Aug-09 2009 all 58381 geo01 Turnhout geo15 Antwerpen geo70 Chardonnay White all 7693
2009-10-15 Oct-09 2009 all 59315 geo47 Mechelen geo11 Antwerpen geo70 Kerner White all 7736
2009-08-19 Aug-09 2009 all 58394 geo31 Mechelen geo11 Antwerpen geo70 Pinot Noir Red all 7009
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2009-10-19 Oct-09 2009 all 58996 geo57 Leuven geo43 Brabant geo24 Kerner White all 6086
2009-08-12 Aug-09 2009 all 59025 geo88 Nijvel geo30 Brabant geo24 Pinot Blanc White all 7428

Table 1: grapeCS instance

(a) blockDim (b) dateDim

Figure 1: (a) crop dimension (b) date dimension

2.1 OLAP Cube Operators
Our proposal for an OLAP model that seamlessly sup-

ports different kinds of spatio-temporal analysis, places the
data cube at the conceptual level. Thus, we briefly review
the OLAP operators, with emphasis on the Drill-Across op-
erator, which plays a crucial role in our approach.

Dice. Selects values of domain in dimensions or measures
that satisfy a boolean condition σ, since both of them can
be treated interchangeably [2, 7].

Slice. Reduces the dimensionality of a cube by removing
one of its dimensions, i.e., a cube of N-1 dimensions is ob-
tained from a cube of N dimensions. In order to discard
the selected dimension, it must contain just one value in its
domain. Thus, if the dimension has more than one value
two approaches can be used: we can apply the Roll-Up (see
below) operator for summarizing into a singleton [2], or the
Dice operator for choosing only one value.

Roll-Up and Drill-Down. A Roll-up operator aggregates
measures according to a dimension hierarchy, to obtain mea-
sures at a coarser granularity for a given dimension, based
on the use of a preexisting hierarchy over this dimension.
Drill-Down de-aggregates previously summarized measures
and can be considered the inverse of Roll-Up. Following
Agrawal et al. [2], we consider Drill-Down a high-level op-
eration that can be implemented by tracking the (stored)
paths followed during user navigation.

Drill-Across. Relates information contained in two data
cubes having the same dimensions. Thus, measures from
different cubes can be compared. According to Kimball
[11], Drill-Across can only be applied when both cubes have
not only the same schema dimensions but also the same in-
stances. However, other authors relax this restriction. This
is the approach of Abelló et al. [1], which we follow here,
using two concepts: (a) Dimension-Dimension Derivation:

Used when two dimensions come from a common concept
although their structures differ. For example, they do not
have the same levels because their granularities are not the
same. This would be the case of a spatial dimension with
‘point’ granularity, and another one with ‘polygon’ granular-
ity. A solution consists in rolling up the former to a common
level. Even, if necessary, a new level could be introduced.
(b) Dimension-Dimension Association: Corresponds to the
case in which two cubes have different dimensions, but one
of them could be defined as the association of several ones.
For example in one cube we define latitude and longitude
as separated dimensions; in another one we store only one
dimension containing the ‘point’ geometry. A mapping func-
tion can solve this problem. To follow the latter approach,
we need to formalize a semantic mapping between dimen-
sions that will the allow to build a new data cube from two
other ones, such that measures in both cubes appear to-
gether in the new one.

Definition 5 (Levels for Mapping). Given a a cube
schema 〈nameCS,Dims,Measures〉, a Level for Mapping,
denoted LM(nameCS), is the set {(d, l)|d ∈ Dims and l ∈
Levels(d)}, and this set satisfies the following condition: ev-
ery dimension appears exactly once in the semantic mapping
LM(nameCS).

Definition 6 (Cube Semantic Mapping). Given two
cube instances c1 and c2 with schema 〈nameCS1, Dims1,
Measures1〉 and 〈nameCS2, Dims2,Measures2〉, and two
sets LM(nameCS1) and LM(nameCS2), a cube semantic
mapping SM(c1, c2), consists of: (a) A cube schema map-
ping for identifying p1 ∈ LM(nameCS1) that can be seman-
tically matched to p2 ∈ LM(nameCS2) without using those
pairs more than once in this mapping. (b) A boolean function
that expresses the semantic equivalence among the members
of the matched levels (in the cube schema mapping). This is
the cube instance mapping.

Property 1 (one to one). A cube schema mapping
must satisfy: (a) SM(p1, p2) = SM(p′1, p2) = true iff p1 =
p′1; and (b) SM(p1, p2) = SM(p1, p′2) = true iff p2 = p′2.
This assures that there not exists one coordinate in one in-
stance cube that can be mapped to more than one coordinate
in the other instance cube.

Example 2 (Drill-Across). Let us consider two cubes
c1 and c2 with cube schemas cs1 and cs2, respectively. Cube
cs1 contains the measure sales and two spatial dimensions
D1 (with level description distx) and D2 (with level descrip-
tion disty). Both dimensions represent districts as points.
Cube cs2 contains the measure population and a spatial di-
mension SD with two levels, dist and prov, (both with level
description geom of type Polygon), such that dist → prov.
To apply the Drill-Across operation between both cubes, we
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need to define LM(cs1) = {(D1, distx), (D2, disty)} and
LM(cs2) = {(SD, dist)}. Therefore, SM(c1, c2) specifies:
(a) a cube semantic mapping between the first two pairs of
LM(cs1) and the pair in LM(cs2); (b) a cube instance map-
ping given by the boolean function “contains(geom,Point
(distx, disty))”, where geom is the descriptor of the level in
LM(cs2). The Drill-Across defined in this way satisfies the
one-to-one property, since although members in c1 are de-
fined by Points (coordinates) and members in c2 are defined
by Polygons, both of them represent the same concept.
Suppose now that dimension SD contains only the level

province. It would be incorrect to perform a Drill-Across
between c1 and c2 since the one-to-one property is not sat-
isfied. We cannot build a new cube with dimensions D1 and
D2 (district concept) where members give context to mea-
sures recorded at different granularities (sales at the dis-
trict level and population at the province level). Table 2
shows both cubes, where Lx, Ly, Nx, Ny, Tx and Ty refer to
the coordinates of Leuven, Nijvel and Turnhout, respectively.
Also, gAnt and gBrabant refer to the geometries of Antwerpen
and Brabant, respectively. Thus, to perform a Drill-Across
in this example, we must first combine dimensions D1 and
D2 in c1 into only one, second to introduce a new level that
represent province, and finally roll-up to the new level (to
avoid the problems shown in Table 2).

3. DISCRETE DATA MODEL FOR FIELDS
A key point in our proposal requires showing that spatial

continuous data could be seen as a data cube. Since cubes
are discrete structures, we need a formal data model for rep-
resenting continuous fields (CF) in a discrete way. Moreover,
this model must be independent of the underlying represen-
tation of continuous data, in order to provide the required
level of abstraction. Formally, a Continuous Field F con-
sists in: (a) A continuous domain D; (b) A range of values
R; (c) A mapping function f : D → R. Since operators are
performed over a bounded domain, the notion of Bounded
Continuous Field is first introduced.

Definition 7 (Bounded CF). A Bounded Continuous
Field BF consists in: (a) a domain Dom(BF ) = Dom1(BF )
× . . . ... × DomN (BF ), where Domi is a closed interval
in R, ∀i, i = 1..N ; (b) a list of N labels Labels(BF ) =
〈l1, . . . , ln〉, to describe semantically each dimension in the
domain, where li 6= lj , ∀i, i = 1..n, ∀j, j = 1..n . (c) a
set of values R

⋃
{⊥}, denoted Range(BF ), where ⊥ is a

distinguished value that does not belong to R; (d) a mapping
function Fn : Dom(BF )→ Range(BF ).

In practice, the values of the function are restricted to
some specific area of interest, and only a finite set of samples
points are known. For estimating the values at non-sampled
points, different interpolation functions can be used, usually
based on a partition of the space, denoted a tessellation.
For example, a Rasterized Tessellation is a regular partition
of a 2D or 3D domain, where samples are used to assign a
value to each cell and, if more than one value exist, all values
corresponding to the same cell are summarized into a single
one. A Voronoi Tessellation over a finite set of samples
is an irregular partition where the segments in the Voronoi
diagram are composed of all the points equidistant to the two
nearest samples, and the nodes are the points equidistant
to three or more samples [13]. Given a tessellation, many

interpolation functions could be used, the simplest one being
the constant function, which assigns to every point inside a
cell the value of the sampled value contained in it.

Definition 8 (Discretized Field). An N-dimensio-
nal Discretized Field (DField) F is a Bounded CF with:
(a) a non-empty finite set of K tuples of dimension N+1,
Samples(F ) = {(x11, . . . , . . . , x1n, v1), ..., (xk1, . . . , xkn, vk)},
where ∀i, ∀j, i = 1..K, j = 1..N, xij ∈ Domj(F ), and
∀i, i = 1..K, vi ∈ Range(F ); (b) an interpolation function
fs over Samples(F ), used for defining Fn (Definition 7).

A DField contains only sampled values. Given an N-
dimensional DField DF, we denote (a) sampled tuple each
element s of Samples(DF); (b) sampled point (sp(s)) the
first N components of a sampled tuple; (c) sampled value
(sv(s)) the last component of a sampled tuple. DFields
can be classified into spatial discretized field (SDField) and
spatio-temporal discretized field (STDField).

Definition 9 (Spatial Discretized Field). A Spa-
tial Discretized Field (DField) F is a DField (see Definition
8) such that: (a) Its domain Dom(F ) is spatial; (b) Dom(F )
is tessellated such that at least one sample belongs to each ge-
ometry, i.e., T (Dom(F )) = {g1, . . . , gp}, and ∀i, i = 1..p ∃ s
∈ Samples(F ) such that sp(s) ∈ gi.

Borrowing ideas from Cubic Map Algebra [15], we model
a spatio-temporal DField as a list of snapshots of SDFields
across time, such that each snapshot is valid during a cer-
tain time interval. These time intervals induce a temporal
partition of the time dimension. In each of the snapshots
we can only apply the fs function defined above. Snapshots
can be of different kinds, meaning that the first one could
be a raster tessellation, and the next one could be a Voronoi
partition. This is formalized in Definition 10 below.

Definition 10 (Spatio-Temporal DFields). A ST-
DField F is a time-ordered sequence of N-dimensional SD-
Fields {F1, F2, ...FK}, Seq(F), such that: (a) Dom(Fi) is the
same ∀i, i = 1..K, denoted Doms(F ); (b) Each Fi is a snap-
shot of the field taken at time tFi , and has an associated
time interval IFi ⊂ R representing its interval of validity,
such that: (1) Domt(F ) =

⋃
i=1..K IFi ; (2) IFi = [sFi , eFi)

where sFi = tFi − (tFi+1
− tFi)/2 and eFi = tFi + (tFi+1

−
tFi)/2 (thus, ∀i, i = 1..K ∀j, j = 1..K IFi

⋂
IFj=∅);

(c) Dom(F)= Doms(F ) × Domt(F ); (d) Labels(Fi) is the
same ∀i, i = 1..K, and Labels(F)= 〈l1, . . . ln, T ime〉 where
li ∈ Labels(F1), ∀i, i = 1..N ; (e) Range(Fi) is the same
∀i, i = 1..K, denoted Range(F ); (f) Samples(F)= {(sp(s),
sFi+(eFi−sFi)/2, sv(s))| ∃Fi ∈ Seq(F ) ∃s ∈ Samples(Fi)};
(g) fs is the same ∀i, i = 1..K; (h) Fn(x1, . . . xn, t) =
Fni(x1, . . . xn) where Fni is the Fn corresponding to the
snapshot Fi if t ∈ IFi .

Example 3 (DFields and STDFields). The soil pH
measures the acidity or basicity in soils. The Normalized
Difference Vegetation Index (NDVI) is used to analyze the
quality and development of vegetation based on remote sens-
ing measurements of the radiation intensity emitted by plants.
Fig. 2 shows a Voronoi SDField Soil pH, a raster SDField
NDVI and an STDField temperature, where the first two
snapshots correspond to a Voronoi representation, and the
other ones, to rasterized partitions.
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c1
distX distY sales
LX LY 300
NX NY 400
TX TY 200

c2
geom population

gBrabant 15
gAnt 18

DrillAcross(c1, c2)
distX distY sales population
LX LY 300 15
NX NY 400 15
TX TY 200 18

DrillAcross(c2, c1)
geom population sales

gBrabant 15 300
gBrabant 15 400

gAnt 18 200

Table 2: On the left, c1 and c2 cubes. On the right, two Drill-Across problems.

(a) pH

(b) NDVI (c) temperature

Figure 2: Examples of DFields

3.1 A Closed Generic Map Algebra for DFields
We mentioned in Section 1.2 that existing proposals of al-

gebras for fields cannot handle fields with different kinds of
tessellations. In this section we propose a Map Algebra that
overcomes this limitation. Moreover, our meta-operators
conform a closed algebra and can be nested in field expres-
sions. The operators we propose below are at logical level,
that is, at the conceptual level we still have only the typi-
cal OLAP operators. However, to produce this abstraction
layer, some mappings mechanisms are needed.
Fields may come from different sources, and their dimen-

sions can be labeled differently from each other, even if they
refer to the same semantic concept. In order to operate with
them, it is necessary that they are domain compatible, i.e.,
they have the same dimensionality (2D, 3D) and there ex-
ists a semantic mapping among the labels belonging to same
domains. This mapping aims to identify which labels refer
to the same concepts although they have different names
defined in different order. For example, F1 and F2 with
Labels(F1) = 〈X,Y 〉, Dom(X)=[10, 30], Dom(Y)=[50, 120]
and Labels(F2) = 〈coordY, coordX〉, Dom(coordY)=[50,
120], Dom(coorX)=[10, 30] are domain compatible if we de-
fine a semantic mapping by matching X with coordX and
Y with coordY. We omit the complete formalization of this
mapping for the sake of space. Now, we can redefine the
traditional Map Algebra operators, in order to support any
kind of underlying representation, making use of the notion
of “Discretized Field” introduced above.
The Generic Local Operator receives a collection of

domain-compatible DFields, and produces a new one whose
values at each location p are computed applying a function
f to the values at the same location p in all the input fields.

Definition 11 (Local Constructor). Given a set of
k domain-compatible DFields F1, F2, ..., Fk, and a func-
tion fl : Range(F1) × .. × Range(Fk) → Rn ∪ {⊥},

Local(fl , F1, . . . , Fk) builds a new DField denoted Output
such that: (a) Dom(Output) = Dom(F1) (could be any
other one); (b) Labels(Output) = Labels(F1); (c) T (Dom(
Output)) = T (Dom(F1)); (d) Samples (Output) = {s′|s′ =
〈sp(s), v′〉 and s ∈ Samples(F1) and v′ = fl(Fn1(sp(s)),
Fn2(sp(s)

∗1), ..., Fnk(sp(s)
∗1)) where Fni is the function

Fn of Fi and sp(s)∗1 is the transposition according the se-
mantic mapping (with respect to F1) }; (e) Range(Output) =
Range(fl); (f) Fn(Output) is based on fs of F1.

The Focal and Zonal operators aggregate values over
a region. When an aggregate function (like Sum, Avg) is
applied over a field, we must define the region of the do-
main where the values will be aggregated. Given an N-
dimensional DField F, an aggregation region, denoted Ag-
gRegion, is an M-dimensional region with M≤N such that
AggRegion ⊆ Dom(F). To approximate aggregates in this
region, we need the following definition.

Definition 12 (Representative Points). Given a
DField F where T (Dom(F )) = {g1, g2, ...gn}, we associate
a unique point to each geometry, and denote it a represen-
tative point, rep(gi), ∀i, i = 1..n. The value of the function
at rep(gi) is called a representative value vrep(gi).

In a Voronoi Tessellation there is exactly one sample for
each geometry, defined as the representative point of such
geometry. Analogously in the raster model (although the
representative point is not necessarily the original sample).

The Generic Focal Operator receives a DField F and
produces a new one such as at each location p its value is cal-
culated aggregating the values of F in the neighborhood of
p using a function A. The new DField keeps the representa-
tion and labels of the input parameter. The neighborhood of
a point can be defined using different criteria (e.g., for raster
data as a collection of cells around a given one). Since we
do not use this operator in the rest of the paper, for the sake
of space we omit its formal definition.

The Generic Zonal Operator receives two DFields F
and Ref (domain-compatible), and an aggregate function
A, and produces a new DField. Ref is divided in zones
where the values are the same. For each of such zones, A is
applied over the corresponding values in F (i.e., the result
contains as many groups as different representative values
exist). Note that, opposite to the case of Tomlin’s Map
Algebra, here the zonal operators return a field, which makes
the algebra closed. Before giving a formal definition, we need
the notion of Isopartition.

Definition 13 (Isopartition of a DField). Given a
DField F, and V = {vrep(gi)|gi ∈ T (Dom(F ))}, an isopar-
tition of F with respect to V, denoted as IP (F, V ) is the set
{t|t = 〈v, {g1, g2, . . . gk}〉, v ∈ V, and ∀i, i = 1..k, vrep(gi) =
v}. Note that in an isopartition, two zones with the same
value can be disjoint.
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Definition 14 (The Zonal Constructor). Let Ref
and F be two N-dimensional domain compatible DFields and
an aggregate function A : AggRegions × Fields → Rn ∪
{⊥}. Zonal(A, Ref, F ) builds a new DField such that: (a)
Dom(Output) = Dom(Ref); (b) Labels(Output) = Labels(
Ref); (c) T (Dom(Output)) = T (Dom(Ref)); (d) Samples(
Output) = {s′|s′ = 〈sp(s), v′〉, s ∈ Samples(Ref), v′ =
A(Reg, F ), and ∃ 〈 sv(s), {g1, . . . gk}〉 ∈ IP (Ref, V ) where
V = {vrep(gi)|gi ∈ T (Dom(Ref))} and Reg = ∪i=1..k gi};
(e) Range(Output) = Range(A); (f) Fn(Output) is based
on the fs of Ref.

Example 4 (Generic Map Algebra). The Natural
Resources Conservation Service (NRCS) classifies a pH level
of a soil as ‘acidic’ for pH < 6.6, ‘neutral’ for pH between
6.6 and 7.3, and ‘alkaline’ for pH > 7.3. We want to gen-
erate a new DField with the average NDVI index for each
zone defined by this pH classification, using the 2D Voronoi
SDField pH in Fig. 2(a), and the 2D raster SDField NDVI
of Fig. 2(b).
For comparing a DField against a constant value we need

to generate a constant DField (i.e., one such that all of its
samples have the same value), and then apply a Local oper-
ator. In our example, we first build the SDField denoted
cte (Fig. 3(a)), with the lower and upper values of the
pH, and then we apply Local(fnRange, pH, cte) where the
function is defined as fnRange(v1, v2) = {if v1 < v2[0]
then return ‘acidic’ else if v1 < v2[1] then return ‘neu-
tral’ else return ‘alkaline’}. Fig. 3(b) depicts this interme-
diate result. Finally, for obtaining the average by zone we
apply the Zonal operator between the pHRange and NDVI
SDFields. Figs. 3(c) and 3(d) show the overlapped inter-
mediate pHRange and NDVI SDField previous to the final
step and the final resulting SDField, respectively. Since the
Generic Map Algebra is closed, the query can be expressed
as: Zonal(Avg, Local(fnRange, pH, cte), NDV I).

4. DFIELDS AND OLAP CUBES
We argue that the structure of a DField fits perfectly into

the concept of a data cube. A cube is composed of facts,
measures and dimensions. In a DField, the fact of interest
is precisely what the field represents. The (one-level) dimen-
sions are the domains of the field. Thus, an N-dimensional
DField can be modeled with N schema dimensions of the
form 〈li, {li, All}, {li → All}〉, ∀i, i = 1..N , and the measure
given by the field value. Thus, the cube schema is given
by 〈fieldName,D,M〉 where D is the set of schema dimen-
sions of the field, and M (i.e., the measure) is the set whose
unique element represents the range of the field (e.g., tem-
perature values). Notice that we model a DField with a
hierarchy of only one level. For example, the cube schema
for the STDField temperature of Example 3 is given by
〈temperature, {〈x, {x,All}, {x → All}〉, 〈y, {y,All}, {y →
All}〉, 〈t, {t, All}, {t → All}〉}, {value}〉. Thus, it contains
two spatial and one temporal dimensions.
Therefore, a DField can be perceived as a typical OLAP

cube over which we can apply the traditional OLAP op-
erators. Discrete spatial data are essentially analogous to
non-spatial cubes at a high abstraction level (this is implicit
in Definition 1). Thus, at the conceptual model the user
can perceive information as a data cube, and leave the im-
plementation details to lower abstraction layers.
Following this line of reasoning, at the logical level, each

(a) cte (b) pHRange= Local( fnRange,
pH, cte)

(c) pHRange and NDVI over-
lapped

(d) final result

Figure 3: Zonal(Avg,Local(fnRange,pH,cte),NDVI)

OLAP cube operator might be re-defined for each added
kind of data type. In our case, for the field data type. More-
over, these operators are polymorphic and, at the physical
level, some of them need to be implemented differently de-
pending on the specific kind of DField, i.e. SField or ST-
DField, without affecting the queries that users pose. We
now propose the semantics for each OLAP operator that ap-
plies to DFields. In the remainder we consider the following
set of aggregate functions A = {Max, Min, Avg, Sum}.
These are polymorphic functions, i.e., they are defined for
single or vectorial values. In the case of DFields having vec-
torial values, if the user chooses one of these aggregation
functions as a parameter, the same function will be applied
to all the components of the vectorial value. If the user
wants to apply a different aggregation for each component,
a user-defined function must be used.

4.1 Dice Operator on DFields
Applying a Dice operation (i.e., a selection of values in

dimensions or measures that satisfy a boolean condition σ)
to a DField, might introduce a discontinuity (e.g. σ=x < 20
or x>50) over its domain. In order to guarantee spatial con-
tinuity the Dice operator over a DField sets to ⊥ the value
of samples when the condition σ is not satisfied. Formally:

Definition 15 (Dice Operator on DFields). The
input of this operator is an N-dimensional DField F and
a boolean predicate σ over dimensions and measures. The
output is a new N-dimensional DField NF such that: (a)
Dom(NF ) = Dom(F ); (b) Labels(NF ) = Labels(F ); (c)
T (Dom(NF )) = T (Dom(F )); (d) Samples (NF ) = {〈sp(s),
v′〉| s ∈ Samples(F ), v′ = sv(s) if σ is satisfied or
⊥ otherwise }; (e) Range(NF ) = Range(F ) ∪ {⊥}; (f)
Fn(NF ) = Fn(F ).
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(a)

(b)

(c)

Figure 4: (a) SDField temperature. (b) auxi←
Slice(temperature, t, Avg). (c) Dice( auxi, ‘x ≥ 20
and v < 24’)

4.2 Slice Operator on DFields
Here we cannot apply a Dice operator to produce a sin-

gleton in the dimension to be removed (as in OLAP cubes),
because this would produce ⊥ values. For assuring a single-
ton, an aggregation to the All must be applied.

Definition 16 (Slice Operator on DFields). This
operator receives an N-dimensional DField F, a dimension
in the domain with label J and an aggregate function Agg ∈
A}. It returns a new (N-1)-dimensional DField NF as fol-
lows: If the sliced dimension is temporal, then NF = Local
(Agg, Fk, ...F1) such that Fk is the last DField of Seq(F).
Else NF is built as follows: (a) Dom(NF ) = Dom1(F )×...×
Domj−1(F ) ×Domj+1(F )×...×Domn(F ); (b) Labels(NF )
= 〈L1(F ) × ... × Lj−1(F ) × Lj+1(F ) × ... × Ln(F ); (c)
T (Dom(NF )) = T (Dom(F )), that means, the type of tessel-
lation is preserved after eliminating the dimension with label
J. (Analogously, for a STDField the operator preserves the
tessellation of each snapshot); (d) Each sample in NF satis-
fies the following condition: 〈(x1, ..., xj−1, xj+1, ..., xn), v

′〉 ∈
Samples(NF ) ⇒ ( ∃m, ∃i, 1 ≤ i ≤ m, ∀〈(x1, ..., xj−1, xj ,
xj+1, ..., xn), vi〉 ∈ Samples(F ) ⇒ v′ = Agg(v1...vm) ), (e)
Range(NF ) = Range(Agg); (f) Fn(NF ) = Fn(F ).

Example 5. Given the 3D STDField temperature of Ex-
ample 3, we want to compute its values independently of the
timestamp in which they were registered, only keeping those
values with temperature less than 24 located in places such
that coordinate x is greater or equal than 20. To remove
the temporal dimension we apply the Slice operator (see Fig.
4(b)), and for selecting the samples that satisfy the required
condition, we apply the Dice operator. The query reads:
Dice(Slice(temperature, t, Avg), ‘x ≥ 20 and v < 24’). Fig.
4(c) depicts the final result.

4.3 Roll-Up and Drill-Down over DFields
In general, a Roll-Up aggregates measures according to a

dimension hierarchy. In our case, this aggregation is per-

formed over an external hierarchy. For example, to obtain
the average precipitation by district (i.e., polygons), an ex-
ternal hierarchy where a 2D Point level rolls-up to a 2D Poly-
gon level could be introduced. In this work we only analyze
the case of the Roll-Up operator over spatial hierarchies. We
do not discuss Drill-Down, since it can be implemented by
tracking navigation paths, as in traditional OLAP.

Spatial Roll-Up Over SDFields. A Spatial Roll-Up over a
DField aggregates values of the DField according to geomet-
ric regions of interest that conform a spatial hierarchy, and
can be solved by using the zonal operator. Technically, since
the geometries in these hierarchies are not DFields, an oper-
ator, denoted GeomToField must be applied to convert a set
of geometries in one level into a DField. Then, a Roll-Up of
a DField F over a spatial dimension consists in applying the
Generic Zonal operator to F, where the reference field is the
DField produced by the GeomToField operator applied over
the geometries in the corresponding level of the hierarchy.

Definition 17 (GeomToField Operator). Input:
an N-dimensional SDField F, a set G of disjoint labeled ge-
ometries over an N-dimensional space. Output: a new N-
dimensional DField NF as follows: (a) Dom(NF) = Dom(F)
(b) Labels(NF) = Labels(F) (c) T(Dom(NF)) = ( (G ∩
GDom) ∪ (GDom - UG) ) where GDom is the resulting
geometry of the union of all the geometries of T(Dom(F))
and UG is the union of all the geometries of G (d) Sam-
ples(NF)= {(p, v)|(∃g ∈ (G∩GDom) and p is any point of g
and v = label(g)) or (∃g ∈ (GDom - UG) and p is any
point of (GDom - UG) and v = ⊥)} (e) Range(NF)= la-
bels of G ∪ {⊥} (f) Fn= Cte ∈ (F ).

Definition 18 (Spatial Roll-Up over a DField).
Input: an N-dimensional SDField F, a geometric spatial di-
mension instance I with schema 〈dimName,L,→〉, a level
l ∈ L containing a level descriptor whose domain type is an
N-dimensional geometry, an aggregate function Agg ∈ A}.
Output: Zonal(GeomToField(F,G), F,Agg) where Zonal
is the generic operator defined in Section 3, and G is the
set of geometries of l, each one labeled with the ID of the
member that corresponds to it.

Example 6 (Spatial Roll-Up). We have the SD-
Field altitude (Fig. 5 (a)), and the hierarchy instance of the
blockDim schema in Example 1. There is also the dimen-
sion instance containing only the Antwerpen and Brabant
provinces, and the districts in each one of such provinces. A
first Roll-Up aggregates the altitudes over districts obtain-
ing a new SDField F2 (Fig. 5 (b)). A second Roll-Up to the
province level calculates the average altitude by province, ob-
taining F3. (Fig. 5 (c)).

Spatial Roll-Up over a STDField. Here, we apply the
spatial Roll-Up to each snapshot of the temporal sequence
seq(F) in the STDField. Formally:

Definition 19 (Spatial Roll-up over STDFields).
Input: an N-dimensional STDField F, a spatial dimension
instance I with schema 〈dimName,L,→〉, a label l ∈ L with
description in the geometry domain, an aggregate function
Agg ∈ A}. Output: a new N-dimensional STDField NF
such that: (a) Dom(NF ) = Dom(F ); (b) Labels(NF ) =
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(a) SdField altitude (b) District rollup

(c) Province rollup (d) All rollup

Figure 5: Spatial Roll-Up over SDField altitude
.

Labels(F ); (c) Seq(NF ) = {Zonal( GeomToField( Fi, G),
Fi, Agg) such that Fi ∈ Seq(F ) and G is the set of geome-
tries of l, each one labeled with the ID of the member that
corresponds to it }; (d) Range(NF ) = Range(Agg) ∪ {⊥};
(e) Fn(NF ) = Fn(F ).

Temporal Roll-Up Over STDFields. A temporal Roll-
Up over a STDField F (a temporal sequence of SDFields,
Seq(F)) aggregates values of the STDField according to the
members (temporal intervals) of an external temporal hier-
archy. For each member m of a hierarchy level, a Generic
Local operator is applied over all the snapshots in Seq(F)
whose intervals have non-empty intersection with it. The
youngest snapshot is chosen as the first parameter of this
operation. Thus, the output is a new STDField that con-
tains as many summarized SDFields as members in the cor-
responding level of the temporal hierarchy.

Definition 20 (Temporal Roll-Up). Input: an N-
dimensional STDField F, a temporal dimension instance I
with schema 〈H,L,→〉, a label l ∈ L, an aggregate func-
tion Agg ∈ A. Output: a new N-dimensional STDField NF
as follows: (a) Dom(NF) = Dom(F) (b) Labels(NF) = La-
bels(F) (c) Seq(NF) = {Fm|∃m ∈ l and Fm = Local(Agg,
Fk+q, . . . , Fk) and Fk+i ∈ R(m) ∀i, i = 1 . . . q where R(m) =
{Fj |Fj ∈ Seq(F ) and Ij∩m 6= ∅} (d) Range(NF)= Range(Agg)
∪ {⊥} (e) Fn(NF) = Fn(F)

Example 7 (Temporal Roll-Up). Consider an ST-
DField temperature with intervals I1 = [03/01/09; 31/03/09),
I2 = [01/04/09; 31/05/09), I3 = [01/06/09; 31/07/09),
I4 = [01/08/09; 31/10/09), I5 = [01/11/09; 30/11/09), I6 =
[01/ 12/09; 31/ 12/09], a temporal dimension with schema
〈TDS, {Date,Quarter, All}, {Date→ Quarter}, {Quarter
→ All}〉, and an instance H of TDS with Members(Quarter)
= {Q1−09, Q2−09, Q3−09, Q4−09}. RollUp(temperature,
H,Quarter, Avg) produces a new STDField with only four
snapshots, corresponding to the aggregation of the snapshots
in Seq(temperature) into the quarters of 2009 (See Fig. 6).

Figure 6: RollUp(temperature, H, Quarter, Avg)

4.4 The Drill-Across Operation
Drill-Across is the only operator that mixes two cubes.

We consider two cases: (a) Both cubes are DFields; (b)
One cube is a DField and the other one is a traditional
OLAP cube. Putting together DField cubes and traditional
OLAP cubes, requires polymorphic operators at the logical
level, since Drill-Across produces different results depending
of its operands (i.e., the kinds of cubes). In the case of two
DFields, this represents no problem: both cubes contain
hierarchies with exactly one level in a continuous domain.
However, when we have a field and a non-field cube, the
problem becomes more involved, since we need to chose the
cube to be returned. In this paper we propose the resulting
cube to be the one coming from the traditional OLAP side.

Drill-Across between DFields. When we perform a Drill-
Across between two DFields, both cubes contain hierar-
chies with exactly one level in a continuous domain. In this
case, both cubes must be domain-compatible, and the Drill-
Across reduces to apply a Generic Local operator.

Definition 21 (Drill-Across between DFields).
The operator receives two domain compatible DFields F1 and
F2, and returns a new SDField NF = Local(fl, F1, F2),
where fl : Range(F1) × Range(F2) → Range(F1) ×
Range(F2) such that fl(a, b) = (a, b) (i.e., a vector com-
posed of both values).

Example 8. For a (raster) SDField NDVI and a (TIN)
SDField Altitude, we can apply DrillAcross(NDVI, Altitude)
and build a cube where the two measures can be analyzed
together. Fig. 7 shows the resulting field.

Drill-Across between DField and OLAP Cubes. Con-
ceptually, a semantic mapping that assures the one-to-one
property between a continuous cube (i.e., a cube with in-
finite members) and a discrete one is not possible unless
we summarize values in the continuous domain. When per-
forming a Drill-Across operation between a DField and an
OLAP cube, the latter has associated an external hierarchy,
over which the former is summarized. In the following, for

308



(a) (b) (c)

Figure 7: (a) SDField NDVI. (b) SDField Altitude.
(c) Drill-Across (NDVI, Altitude).

the sake of space, we only discuss the Drill-Across between
a spatial DField and an OLAP cube, and omit the case of
the spatio-temporal DField.
Intuitively, the SDField rolls up to the lowest level in the

spatial dimension hierarchy of the OLAP cube, and gener-
ates a new output SDField containing aggregated values at
the level of the non-field cube. This new SDField contains
as many summarized values vi as members gi (geometries)
in the OLAP cube. The last step builds the output cube,
using a function denoted GetMeasures that iterates over all
of the discrete values ‘gi’ and adds the corresponding ‘vi’ to
the rows of the output OLAP cube that matches ‘gi’.

Definition 22. Input: An SDField F, a non-field cube
C with schema 〈Csc, {〈SDim,LS ,→S〉},M〉 where SDim is
the spatial dimension, an aggregate function Agg ∈ A. Out-
put: a non-field cube NC with schema 〈NCsc, {〈NSDim,
NLS ,→N S〉}, NM〉 where NM = M ∪ {Fname}, NLS

contains all levels S such that L → S where L is the lowest
level of SDim in C, and→N S is a subset of→S whose levels
∈ NLS. NC is obtained adding the measures resulting from
applying GetMeasures(Rollup(F, SDim, L, Aggs)).

Example 9. Given the SDField altitude (Fig. 8(a)) and
the OLAP cube grapes in Fig. 8(b)), we want to enrich the
latter with the average altitude corresponding to its lower
level of the spatial hierarchy (district). This new cube can be
obtained applying Drill-Across(altitude, grapes, Avg) which:
(a) creates a new cube R with the same columns of the grapes
cube, and adds a new column named altitude; (b) applies a
Roll-Up over the SDField altitude using the geometries of
the districts in grapes; (c) iterates over each geometry gi,
takes the aggregate value and adds it to the column altitude
of R for the row corresponding to gi. For example, if the
output of the Roll-Up results in an average altitude of 41.4
for the geometry of Turnhout, then the row corresponding to
Turnhout in the output SOLAP cube R will have 41.4 for
the column altitude. Fig. 8(c) shows the resulting cube.

5. IMPLEMENTATION AND USE CASES
We have implemented a prototype as a proof-of-concept of

the plausibility of our proposal. We now sketch this imple-
mentation and present two use cases that show how complex
queries can be elegantly expressed hiding the different kinds
of spatial data types involved. We use the cube schema
grapeCS introduced in Example 1. This cube contains two
dimensions: dateDim and blockDim. The latter has all the
information about vineyards represented as geometries. The

(a) SDField alti-
tude

(b) SOLAP grapes (c) Output SOLAP

Figure 8: Drill-Across(altitude, grapes, Avg)

measure of grapeCS is vine harvest (in Kg). We also use the
instance cube grapes (Table 1). Finally, we include three
DFields, corresponding to Belgium: the STDField tempera-
ture, the STDField precipitation, and the SDField altitude.
All of them with raster tessellation.

Data for fields used in our examples have been downloaded
from the WorldClim site2. For our region of interest (a
portion of Belgium), we used elevation raster data with a
resolution of 5 arc-minutes, obtaining 655 cells, and spatio-
temporal temperature and precipitation raster data with a
resolution of 10 arc-minutes. Precipitation and temperature
data correspond to monthly values during 2009, resulting
in 185 cells for each month. Raster data was downloaded
in a generic grid format and imported into a PostgreSQL
database equipped with the PostGIS plugin for handling
spatial data types. This generates polygons with their as-
sociated values. The units for elevation, precipitation, and
temperature are meters, milimeters, and Celsius degrees*10,
respectively. For the grapes cube, we used a real-world
map of Belgium containing geographic, demographic and
economic information about provinces and districts (repre-
sented as polygons). The maps were obtained from the spa-
tial library of the GIS Center3. With this geographical in-
formation we built the spatial hierarchy dimension described
above. The fact table was populated synthetically with 1758
tuples. These data reflects the real distribution of vine har-
vest over provinces, and the real proportion of blocks accord-
ing to wine production in districts. On the other hand, dates
were generated randomly, although keeping unchanged the
harvest time of each kind of vinegrape. We implemented
the operators in the Java programming language, and for
visualization of results we use OpenJump 1.44.

Use Case 1. We want to produce a data cube containing
the grape types and the harvest of the blocks (from the
SOLAP grapes cube), and their average precipitation during
the period that precedes the grape harvest of 2009, i.e., from
March to September of 2009. This can be expressed in the
algebra we presented in Section 4. We need the following
temporal hierarchy: Date → Period;Period → All. Its
instance, named TH, is built as follows: (a) Members of level
Date correspond to 2009; (b) Members of the level Period
are period1, period2 and period3; (c) All the dates previous
to ’01/03/2009’ roll-up to period1, dates from ’01/03/2009’
to ’01/10/2009’ roll-up to period2, and the rest of the dates
roll-up to period3; (d) period, period2 and period3 roll-up

2
http://www.worldclim.org/current

3
http://giscenter-sl.isu.edu/other/world/europe/belgium/

4
http://www.openjump.org/
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to ‘all’. For assembling this information in a single data
cube, we use the Drill-Across operator. The cube is built as
follows:

1. DrillAcross(

2. Slice(

3. Dice(

4. RollUp(precipitation,TH,Period,Avg),

5. t>=’01/03/2009’ AND t<=’30/09/2009’),

6. t,Avg),

7. Slice(

8. Dice(grapes,Year(Date)=2009),

9. dateDim,Avg),

10. Avg)

We explain this query in detail. The RollUp operator (line
4) prepares the aggregation of precipitations in three peri-
ods (the second being the one we are interested in). (See
Fig. 9(a)). The Dice operator (lines 3 to 5) keeps those
values which belong to the chosen period. Fig. 9(b) depicts
the temporary STDField produced. The nested Slice oper-
ator (line 2 to 6) removes the temporal dimension (after a
summarization to the ‘All’ level is performed) and generates
the SDField shown in Fig. 9(c). The Dice operator (line 8)
restricts the cube to members rolling up to 2009 in the Date
level. Then, the Slice operator (lines 7 to 9) eliminates one
of the dimensions not used in the query, preparing the cube
for the Drill-Across with an SDField. Finally, a Drill-Across
(lines 1 to 10) is applied to link the measures of both worlds,
as shown in Fig. 9(d). Notice that, according to Definition
22, the Drill-Across operator generates a non-field cube and
the last column corresponds to the measure added from the
DField (by applying the GetMeasures() operation).

Use Case 2. We now want to build an OLAP cube to ana-
lyze districts in Belgium which present the ideal conditions
for the Malbec crop, which are related to the range of tem-
perature, and average precipitation during specific periods
(e.g., best conditions for the harvesting period are tempera-
tures between 18 and 22 Celsius degrees, and average precip-
itations of less than 40 mm). Thus, we build an STDField for
analysis including minimum and maximum temperatures,
and average precipitation summarized by district, for the
following periods: bud break (February-March), flowering
(first part of April), ripeness (from the second half of April
to the end of August), harvesting (September). To solve
this query we use another instance of the same temporal
hierarchy of the previous example. This instance, named
TH2, is built as follows: (a) We consider dates in 2009; (b)
Members of the dimension level Period are p1, p2, p3, p4,
p5 and p6; (c) All the dates in January roll-up to p1, dates
in February-March roll-up to p2, dates in first part of April
roll-up to p3, dates from second part of April to the end of
August roll-up to p4, dates in September roll-up to p5, and
the dates in October-December roll-up to p6; (d) p1, p2, p3,
p4, p5 and 6 roll-up to ‘all’. The query reads:

1. DrillAcross(

2. DrillAcross(

3. RollUp(

4. RollUp(temperature,TH2,Period,Avg),

5. blockDim,district,Min),

6. RollUp(

7. RollUp(temperature,TH2,Period,Avg),

8. blockDim,district,Max)

9. ),

10. RollUp(

11. RollUp(precipitation,TH2,Period,Avg),

12. blockDim,district, Avg))

The nested Roll-Up operator (line 4) prepares the aggre-
gation of temperatures in six periods, and the Roll-Up op-
erator (lines 3 to 5) computes the minimum temperature
for each disctrict. Analogously, the expression from lines 6
to 8 computes the maximum temperature. Thus, the Drill-
Across operator (lines 2 to 9) mixes those values, previously
calculated. The expression from lines 10 to 12 calculates
the average level of precipitation for each district. Finally,
a Drill-Across operator is used for obtaining the three mea-
sures together associated to each district.

(a) bud break period (b) flowering period

(c) ripeness period (d) harvest period

Figure 10: Query for Use Case 2(periods p2, p3, p4, p5)

6. CONCLUSION AND FUTURE WORK
In this paper we showed, formally and through a proof-

of concept implementation, how spatiotemporal data of dif-
ferent kinds can be seamlessly considered as typical OLAP
cubes at the conceptual level, in a way that a user is only
exposed to the traditional OLAP operators. We showed
that this approach provides the capability of expressing com-
plex queries in an elegant and simple way, hiding the im-
plementation details, and also adding an abstraction layer,
not present in any previous proposal in the spatio-temporal
OLAP literature. An obvious consequence of this work is
that we can now think on an implementation of a generic
OLAP tool that can reutilize the enormous amount of exist-
ing work in OLAP to implement powerful tools for spatio-
temporal data analysis.
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