
QUASAR: Querying Annotation, Structure, and Reasoning

Luying Chen
Oxford University

luying.chen@cs.ox.ac.uk

Michael Benedikt
Oxford University

michael.benedikt@cs.ox.ac.uk

Evgeny Kharlamov
Free University of Bozen-Bolzano

kharlamov@inf.unibz.it

1. INTRODUCTION
An increasing number of systems provide the ability to se-

mantically annotate documents. OpenCalais [4], Evri API [2],
Zemanta [6], and AlchemyAPI [1] are web-hosted systems
that return annotated documents, i.e. documents with anno-
tations that are overlayed on the document structure. Many
of the annotations can be linked to standard ontologies, such
as DBpedia and YAGO. These annotations give insight as to
the meaning of documents in a variety of ways, identifying
entities and relationships inside them, classifying them ac-
cording to topic or theme, and giving the attitude or sen-
timent of a document or document fragment. In order for
users (or applications) to make use of these annotations with
a means to access and manipulate documents that contain
them, we provide a query language for doing this and demon-
strate its utility on a demo system built on top of diverse
semantic annotators and external ontologies. We explain
how integrating semantic annotations and utilizing external
knowledge helps in increasing the quality of query answers
over annotated documents by both filtering out irrelevant
answers and obtaining extra answers that are not explicitly
available in the annotated documents.

The benefit of our querying system for semantically-anno-
tated documents stems from its ability to filter query results
based on the presence of annotations in diverse annotation
vocabularies, with the filtering specification taking advan-
tage of the multiple kinds of relationships within an anno-
tated document. These relationships include:

Document structure: a query language should be able to ask
for annotations that lie in a certain position within a docu-
ment, within a certain paragraph, etc. E.g. “return all anno-
tations appearing in the first few document’s paragraphs”.

Explicit annotation structure: an annotation may only iden-
tify an entity, or may distinguish the particular class to
which it belongs. An annotation may even identify the par-
ticular entity instance, relating it to a named entity in an
ontology. An annotation may be a relationship or role, with
its arguments likewise being known or unknown instances.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2012, March 26–30, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-0790-1/12/02 ...$10.00.

Paragraph 1

Paragraph 2

...

Annotated Document

... acquisition in New York ...

... Based in Bristol, Isis
employs 65 workers ...

Concept Annotations:

City Company

Knowledge Base

Company(Isis)

Place(New York)

City(Moscow)

City ⊆ Place
....

....

ABox:

TBox:

snippet

Figure 1: Data Model Example

A query language should be able to ask for all annotations
given by a certain annotator, having a certain entity or rela-
tionship class, or containing a particular instance. E.g. “re-
turn all entities annotated by OpenCalais as a city”.

Implicit knowledge: an important feature of annotations is
that they have a well-defined semantics, encoded in the rules
of an ontology. A query language should be able to make
use of the ontology and exploit implicit properties of annota-
tions accessible via reasoning, rather than syntactic match-
ing. E.g., one should be able to ask for all annotations of en-
tities that the ontology infers are politicians – such a query
would include entities labeled as presidents, senators, etc.
One should be able to ask for all annotations with a per-
son who is known to be married to a US politician – such
a query returns snippets containing Hilary Clinton, Michele
Obama, etc. Implementing such queries requires integrating
reasoning with structural querying.

In this paper, we introduce QUASAR (QUerying Annota-
tion, Structure And Reasoning), a system for structured
querying of annotated documents that deals with all of the
above structural aspects. We start by introducing the data
model and QUASAR language in Section 2. In Section 3, we
describe the prototype architecture and its implementation.
Demonstration details are in Section 4, while the last section
discusses the related work. An accompanying video can be
downloaded and previewed from URL:http://www.cs.ox.
ac.uk/people/luying.chen/quasar/QuasarDemo.avi, show-
ing the features of the prototype system.

2. DATA MODEL AND LANGUAGE
2.1 Data Model

618

We explain the components of the data model using the
example in Figure 1. The model has several components:

Document Structure. We assume documents to be di-
vided up into a hierarchy of blocks, which can be referred to
and navigated in by queries. In our prototype the hierarchy
is of depth three: a document is divided into paragraphs,
then into a sequence of sentences, then into tokens. A con-
tiguous sequence of blocks is referred to as a region. In
Figure 1 we have three paragraphs where the first one has a
sentence containing a snippet of two tokens “New York”.

Document Annotations. An annotation associates meta-
data with a region. We refer to the labeled regions as snip-
pets. The metadata attached varies from one annotator to
another. These semantic annotators could have diverse an-
notating purposes, such as entity and fact annotation, sen-
timent annotation and topic annotation. For example, in
Figure 1, an entity annotator annotates “New York” with
City and “Isis” with Company, along with the URI disam-
biguating the snippet, e.g. the URI of Isis in DBpedia.

Knowledgebases (KBs). A KB consists of a TBox or on-
tology which defines structural properties of data, e.g., that
every city is a place (in Figure 1 we represent this with a
subclass relationship City ⊆ Place); and an ABox which is
a collection of data assertions that instantiate classes and
binary relations. In Figure 1 we have three ABox assertions,
e.g., Company(Isis) which says that Isis is a member of the
class Company. We assume that every assertion comes with
the URIs of its components, e.g., Company(Isis) comes with
the Wiki pages of Isis and of the term company. Note that
KBs allow users to query over “extended” facts – facts that
could either already exist in the KB, or be inferred by rea-
soners. In Figure 1 we can infer Place(Moscow).

Using URIs we can link assertions from KBs to anno-
tated snippets of annotated documents, and thus KBs can
be employed as external background resources to enhance
the quality of query answering over annotated documents.
QUASAR has abstract interfaces corresponding to each com-
ponent of the data model – e.g. for accessing annotators and
KBs, and for loading and accessing annotated documents.

2.2 The QUASAR language
We aim for a language that allows querying over anno-

tations, document structure, and information derived from
annotations using reasoning. The general form of a query
block contains three subclauses: a SELECT subclause, a
FROM subclause and a WHERE subclause. More precisely:

SELECT [annotation attributes] (required)
FROM [corpora Annotationvars] (required)
WHERE [constraints] (optional)

We select annotations FROM a sequence of corpora, as-
sociating each annotation with a variable. In the WHERE
clause we can impose several kinds of constraints. There
are annotation content constraints which can be explicit
or implicit, and annotation proximity constraints. Explicit
content constraints state exactly what predicates or enti-
ties should occur in an annotation. We omit details of the
grammar due to space limit and illustrate it on the follow-
ing examples. The following query Q1

place asks for annotated
snippets in the corpus“Corp1”that are annotated as a place:

SELECT * FROM Corp1.Annotation ?a

WHERE ?a.assertion.predicate = “Place”

Here ?a is an annotation variable. Such a query would be
appropriate in a situation where user does not have access to
background information. Implicit content constraints state
that a predicate or entity occuring in an annotation should
satisfy some properties with respect to an ontology. A vari-
ant of the query above, Q2

place allows a user to ask for an
annotation in Corp1 that is annotated as a subtype of Place:

SELECT * FROM Corp1.Annotation ?a

WHERE ?a.assertion = ?Z(?x) [OntologyFilter:SubType(?Z,“Place”)]

Here ?Z and ?x are predicate and argument variables, im-
plicitly existentially quantified; OntologyFilter introduces a
constraint based on facts inferred from the ontology. In our
prototype, the particular ontology being used need not be
explicitly referenced in the query above, but is in a separate
configuration file. Since determining subtype relationships
may require reasoning (they may not be explicit in the on-
tology), our system has a full reasoner embedded in it.

Annotation Proximity constraints (omitted in the full gram-
mar for brevity) give restrictions on the position of snippets
within the document structure. The following simple query
Qbegin fetches all the annotated snippets in the body of the
document occurring in the first two paragraphs:

SELECT * FROM Corp1.Annotation ?a

WHERE ?a.snippet.paraNum ≤ 2

The QUASAR system allows to combine annotations from
different annotators and vocabularies. Consider the query
fetching all snippets labeled with Place and mentioned in
a negative tone in the document. The relation operator ≈
means an overlap between the spans of two snippets.

SELECT ?b FROM Corp1.Annotation ?a, Corp1.Annotation ?b
WHERE ?a.assertion.predicate = “Negative”

AND ?b.assertion.predicate = “Place”
AND ?a.snippet ≈ ?b.snippet

The flexibility of the language also allows the user to nar-
row the answers to those that satisfy very specific criteria,
thus addressing the problem of “too many answers” that oc-
curs often in keyword querying. As an example, consider
a user who is looking for cities which are the birthplace of
some politician. The information need can be expressed very
specifically with the following query Qcity:

SELECT * FROM Corp1.Annotation ?a
WHERE ?a.assertion = City(?x) [OntologyFilter:

Birthplace(?y, ?x) AND Politician(?y)]

The language also gives the user the ability to control the
extent to which implicit information is utilized in a very
fined-grained manner. Consider the situation in which a
user wants to find annotations mentioning a place. Above
we have seen one embodiment of this as a query, Q1

place. It
requires the annotation “Place” to be explicit in the anno-
tation structure but does not require the entity to be rec-
ognized as a specific place known to the KB. We have also
seen the alternative formulation Q2

place, in which the anno-
tation can be a subtype of place, but again not requiring the
entity to be recognized as a specific place. In contrast, the
user could issue the query Q3

place, asking for annotations that
recognize an entity that the ontology knows to be a place:

SELECT * FROM Corp1.Annotation ?a

WHERE ?a.assertion = ?Z(?x) [OntologyFilter: Place(?x)]

Finally, the user who wants the broadest semantics possible
could ask the query Q4

place, which finds anything that can be
inferred to be a place: Q2

place UNION Q3
place.

619

Annotator Resulting
annotations&

snippet
pointersRequest

Annotations

ResultSet

AccessAPI
Annotations

Response

Documents

RewrittenQuery

CQ

Query

Statement

QueryString

QueryParser QRewritting
-based

ReasonerAPI

Local
AnnotationStore

Annotator

QueryPlanner

QueryExecutor

Knowledge
Base

AnnotatorWrapperAPI

Index

Result
Composer

Other
ReasonerAPII

Abox

Tbox

Annotation
harvest module Index

module

Query processing
module

Figure 2: Quasar System Architecture

The ability to get many kinds of “implicit results” ad-
dresses the problem of “too few answers” common in tra-
ditional search. In summary, the QUASAR language gives
the user the ability to combine document structure, explicit
annotation structure, and implicit knowledge, while dealing
with multiple vocabularies and annotators. It allows the
user to pull in implicit results, but allows fine-grained con-
trol over how and whether implicit information is used.

3. SYSTEM OVERVIEW
3.1 System Architecture

The architecture of QUASAR is shown in Figure 2.

Offline Modules. The Annotation Harvest Module con-
tains two kinds of components: Annotators and Annotator-
Wrappers. In order to integrate annotators with distinct
APIs, metadata and response formats, we define an uni-
form wrapper interface for the interaction between annota-
tors and the system. Based on the interface, concrete An-
notatorWrappers must be implemented for each annotator
employed. Each AnnotatorWrapper submits documents to
the corresponding annotator and then harvests the struc-
tural information about annotations from the response into
the global AnnotationStore. Note that the documents them-
selves remain external to the store; the store use only point-
ers into those documents for efficiency reasons. The Index
Module is responsible for maintaining the indices on the ex-
plicit information of annotations.

Online Modules. The Query Processing Module covers the
top-level components for parsing, planing and executing the
QUASAR queries, as well as reasoners for inferring implicit
information of annotations. The entry point for a QUASAR
query is the QueryParser. The parsed query is sent to the
QueryPlanner decides on a strategy for execution, includ-
ing: which Reasoner and KnowledgeBase to use (if multiple
reasoners/KBs are available), which indices to use for ac-
cessing the annotation store. If a Rewritten-based Reasoner
is used, the QueryPlanner interacts with the reasoner to
unfold the ontology-related constraints in favor of unions of
conjunctive queries over the KBs. Note that the KBs may
be accessed remotely (e.g. DBPedia public SPARQL end-
point), the join between structural constraints and semantic
constraints have to be performed within QueryPlanner it-

self. The QueryExecutor fulfills these plans by interacting
with the AnnotationStore and the KnowledgeBase.

The results returned from QueryExecutor will generally
contain annotation snippets represented by pointers encod-
ing the location within the source documents. The Result-
Composer translates these pointers into concrete snippets
within the document that are suitable for user’s navigation.

3.2 Implementation
The QUASAR system is implemented in Java, with ab-

stract interfaces for the components shown in Figure 2. The
choices of these components used in our prototype are:

Annotator. In the prototype, two text analysis APIs –
OpenCalais and AlchemyAPI are employed as the semantic
annotators. OpenCalais performs entity and relation facts
extraction, while AlchemyAPI provide the support for entity
and sentiment extraction.

Annotator wrapper. Tailored wrappers for OpenCalais
and AlchemyAPI are implemented to harvest the seman-
tic annotations in diverse purposes. JENA RDF API[3] is
employed to parse and explore annotation information from
RDF-based response of annotators.

Annotation store. Since annotation storage will always
be a core component of the QUASAR middleware, we have
built an annotation store on top of BerkeleyDB JAVA Edi-
tion [8]. It is an embedded non-SQL persistence layer, pro-
viding flexible low level access primitives to the annota-
tion objects. Currently we index annotations by annotation
predicate and position measured by several granularities –
e.g. by document, by paragraph, and by sentence.

Reasoner. Our API allows access to reasoning resources for
determining whether a conjunctive query is derivable from
a set of facts using axioms of a particular ontology. Because
the ontologies we deal with have fairly simple axioms (e.g.
DBpedia), currently we are able to use a reasoner based on
query-rewriting – REQUIEM [9]. For the ontologies we use,
REQUIEM produces a union of conjunctive queries that can
be applied to the KB.

Knowledgebases. KBs could either be maintained inter-
nally or accessed externally (e.g. endpoints of SPARQL). In
our prototype we import the well-known cross-domain ontol-
ogy – DBpedia as the background KB. We used a standard
relational database, MySQL v5.1.51, encoding fact triples
as relations. For rewriting-based reasoners, the wrapped
format of the rewritten query is thus translated into SQL
for evaluation in MySQL. Standard indexing approaches are
applied to speed the performance.

Example corpus. The default corpus we use for demon-
strating sample queries comes from the acquisition subcate-
gory of Reuters-21578[5]. The imported corpus contains 719
documents from Reuters newswire in 1987.

Empirical evaluation. The QUASAR query engine and
related persistence layer are set up on Windows XP SP3,
Intel Core 2 Quad CPU,2.50 GHz and 3GB of RAM. We
tested our system on DBpedia, importing the core ontology
ABox of DBpedia 3.5.1, including 5,491,908 and 11,135,755
triples for concept assertions and role assertions respectively.
Over 24,000 annotations are extracted from the corpus.

Since the prototype is built upon third-party data stor-
age engines, the query performance is dependent on these
components as well as on our own optimization. Here we

620

Figure 3: Main GUI of QUASAR

give preliminary numbers for our BerkeleyDB/MySQL im-
plementation on the sample queries in Subsection 2.2. Queries
Q1

place and Qbegin do not make use of reasoning, and are eval-
uated with the help of BerkeleyDB indexes: on our sample
corpus they take 0.22s and 0.096s respectively. Evaluation
time for Qcity using a naive query plan requires 4.406s on
a hot cache. In fact, further optimization can be done by
materializing the ABox of each KB, avoiding the blow-up
in query-rewriting. Indeed, DBpedia performs such materi-
alization for the subsumption hierarchy already; taking ad-
vantage of this reduces the execution time for Qcity to 0.73s.

4. DEMONSTRATION DETAILS
A screenshot of the main components is shown in Figure 3.

The demonstration GUI allows a user to either choose a
predefined query from a collection of samples or compose
a new one from scratch. She can query all the annotated
corpora registered in the system’s corpora directory.

The GUI provides users with four modes to preview the
set of resulting annotations returned by our query engine:
a “Plain list” view, “Group by label” view, “Group by docu-
ment” view, and “Group by instance” view. For any of these
“grouping modes” the group names with results are shown
along with the total number of results per group. By click-
ing on each group entry, the user can further preview the
annotation sublist of the corresponding group. Here, each
annotation is represented as a highlighted snippet, along
with a window giving its context.

From the “Legend” pane, the user can explore the anno-
tation tasks and corresponding vocabularies supported by
each annotator. For queries with OntologyFilter, the user
can browse the results of the rewritten query produced by
the reasoner. When the user selects an item from the list
of annotations, the system shows the whole text region (the
document by default) together with the filtered annotations
it contains. The user can navigate the annotations by press-
ing the next or previous buttons in the toolbar. If she is
interested in one particular highlighted snippet, by mousing
over the region she will see a description of all the corre-
sponding annotations associated with the snippet, including
annotators, annotation types, and the participating entities
from both annotators and knowledge base (if applicable).
The user can click the entity URI links to browse more in-
formation from external Linked Data and Web assets such
as DBpedia and YAGO.

5. CONCLUSION AND RELATED WORK
The QUASAR system is the first step in devising a rich

querying environment which enhances structured querying
on documents with access to annotation structure and rea-
soners. We have shown how such systems can allow users
to specify their information needs with greater precision. In
ongoing work we are exploring enhancements that allow the
knowledgebases to be formed dynamically (i.e. as the out-
put of queries), and also a scored semantics that takes into
account annotation uncertainty.

Our work comes from the perspective of melding tradi-
tional structured querying with ontology and annotation ac-
cess. In contrast, there has been considerable activity in the
DB and IR research communities that takes keyword query-
ing as a starting point and enhances it with some support
for “semantics” – e.g. making use of a knowledgebase. Many
of these maintain the use of a keyword-based query interface
but make use of entity annotations. Others make limited ex-
tensions to keyword queries; e.g., Ilyas and Pound’s QUICK
system [10] provides support for queries that supplement
keywords with structured entity/relationship annotations.
As with keyword queries, they do not use a “hard” boolean
semantics for the language – instead the query processor
looks first for entities in a KB that match the annotations;
it then uses these entities to search for relevant documents.

Other work targets enhances keyword search by exploit-
ing the output of semantic annotators. The KIM platform
[7] supports access to semantically annotated documents,
but with no full query language for accessing the annotation
and document structure in tandem. The DOCQS system of
Zhou, Cheng, and Chang [11] provides a language for com-
bining keyword search with matching of entities produced
by an entity extractor. Their language does not support ac-
cess to a reasoner. On the other hand, their query languages
does support more powerful structure manipulation opera-
tions than ours does, such as aggregation and grouping.

Acknowledgements. Benedikt and Kharlamov are sup-
ported by EPSRC EP/G004021/1 and EP/H017690/1. Khar-
lamov is supported by ERC FP7 grant Webdam (n. 226513)
and EU projects ACSI (FP7-ICT-257593).

6. REFERENCES
[1] Alchemyapi www.alchemyapi.com/api/entity/.

[2] Evriapi. www.evri.com/.

[3] Jenaapi. jena.sourceforge.net.

[4] Opencalais. www.opencalais.com/.

[5] Reuters-21578. www.daviddlewis.com/resources/
testcollections/reuters21578/.

[6] Zemanta api. http://developer.zemanta.com/.

[7] A. Kiryakov, B. Popov, I. Terziev, D. Manov, and
D. Ognyanoff. Semantic annotation, indexing, and
retrieval. J. Web Semantics, 2(1):49 – 79, 2004.

[8] M. A. Olson, K. Bostic, and M. Seltzer. Berkeley db.
In USENIX Technical Conference, pages 43–43, 1999.

[9] H. Pérez-Urbina, I. Horrocks, and B. Motik. Practical
aspects of query rewriting for OWL2. In OWLED, 09.

[10] J. Pound, I. F. Ilyas, and G. E. Weddell. Quick:
Expressive and flexible search over knowledge bases
and text collections. PVLDB, 3(2):1573–1576, 2010.

[11] M. Zhou, T. Cheng, and K. C.-C. Chang. DoCQS: a
prototype system for supporting data-oriented content
query. In SIGMOD, pages 1211–1214, 2010.

621

