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ABSTRACT
With the increasing popularity of Web 2.0 streams, people
become overwhelmed by the available information. This is
partly countered by tagging blog posts and tweets, so that
users can filter messages according to their tags. However,
this is insufficient for detecting newly emerging topics that
are not reflected by a single tag but are rather expressed by
unusual tag combinations. This paper presents enBlogue, an
approach for automatically detecting such emergent topics.
EnBlogue uses a time-sliding window to compute statistics
about tags and tag-pairs. These statistics are then used
to identify unusual shifts in correlations, most of the time
caused by real-world events. We analyze the strength of
these shifts and measure the degree of unpredictability they
include, used to rank tag-pairs expressing emergent topics.
Additionally, this “indicator of surprise” is carried over to
subsequent time points, as user interests do not abruptly
vanish from one moment to the other. To avoid monitoring
all tag-pairs we can also select a subset of tags, e.g., the
most popular or volatile of them, to be used as seed-tags for
subsequent pair-wise correlation computations. The system
is fully implemented and publicly available on the Web, pro-
cessing live Twitter data. We present experimental studies
based on real world datasets demonstrating both the predic-
tion quality by means of a user study and the efficiency of
enBlogue.
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H.4 [Information Systems Applications]: Miscellaneous;

∗A demonstration of enBlogue [2] was given at SIGMOD
2011, in Athens, Greece (. . . where it identified, during the
demonstration session, the tag pair “Athens Syntagma”, de-
scribing the riots taking place at the Syntagma square in
front of the Greek parliament, ≈400m away from the con-
ference site).
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1. INTRODUCTION
Web 2.0 streams, like blog postings, micro-blogging tweets,

or RSS feeds from online communities, offer a wealth of
latest news about real-world events and societal discussion.
For example, natural disasters, military incidents, celebrity
scandals, or an upcoming movie premiere are sometimes cov-
ered more candidly and in particular more promptly in these
forums than on official news channels. On the other hand,
this wealth may easily overwhelm users which are not inter-
ested in continuously checking the entire stream of informa-
tion at all times, but prefer automatic notifications of recent
events which are expressed through emergent topics arising
in social media. For instance, users might be interested in
the latest news on certain celebrities or political happen-
ings. We can think of this as a continuously updated portal,
summarizing the gist of everything new.
Documents carry information in the form of categorical

information or simple tags, i.e., short textual annotations
that describe the content of the document. We refer to such
information as tags in this paper, which can be either given
explicitly or can be derived means of topic classification or
named entity tagging. However, these tags are in general
rather imprecise and highlight only one aspect at a time.
For instance, emergent topics with tags such as “France”,
“Cuba”, or “Vancouver”might not draw much attention and
topics like“Justin Bieber”or“Lady Gaga”might be interest-
ing only to the respective fan groups. Naturally, a context is
needed to make sense of certain observations. In this work,
we aim at monitoring emergent topics that consist of pairs

(or in general, sets) of tags. “Vancouver Riots” pointing on
the violence after the Stanley cup defeat of the Vancouver
Canucks, “France nuclear power plant” reporting on the ex-
plosion in one French nuclear power plant in mid September
2011, and“earthquake Cuba” telling us about the happening
and the location of the event. Note that such combinations
could come directly from a taxonomy, but immediately after
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Figure 1: Interesting shift in correlation of two tags.

the event, no category for this topic would exist in the tax-
onomy; it may take the Web 2.0 platform providers a few
hours or even days to create categories like “France nuclear
plant explosion”. Such manual creation of categories might
not be desirable or feasible, given that many events are very
volatile and of interest for only some hours/days.
Tag combinations not only carry much more information

than single tags, they also allow us to identify events right

after they happen; small changes in the popularity of a topic
(used for trend detection) are much more visible for narrow
topics (e.g., “Obama scandal”) compared to generally pop-
ular ones (e.g., “Obama”), where an additional amount of a
couple of dozen new messages can hardly be observed.
Spotting trends is very different from identifying popular

topics; we are interested in sudden changes in the popular-
ity, expressed through unusual overlap of tag usage, com-
puted based on co-occurrence statistics. This is much more
meaningful for our purpose than looking at the pairwise co-
variance of single-tag frequency statistics (i.e., covariance/
correlation between time series).
Figure 1 gives an example of two tags and the correspond-

ing overlap in terms of the number of documents (within a
time window of interest) that contain both tags. The figure
shows the behavior over time for two tags, a popular tag t1
and a less popular tag t2. By inspecting the size of the inter-
section over time, we see that the peaks in the popular tag
have no influence on the size of the overlap. In contrast, we
observe in Figure 1 that the size of the intersection increases
towards the end of the shown time interval, an explanation
for which cannot be given solely by looking at the individual
frequencies of t1 and t2.

This paper addresses the issue of detecting the onset of an
emerging topic in Web 2.0 streams. We focus on new topics
that are not yet reflected in the taxonomy, but we leverage
the fact that postings are often pre-annotated with cate-
gories or named entities by their authors. Alternatively, we
may use machine-learning tools for automatically classifying
a posting or extracting entities.
The identified emergent topics open up opportunities for

a full exploration of social media given the detected tag sets
as input. Hence, we see enBlogue as a portal to stay tuned

on issues that become “en vogue” while inspecting only the
very essence of the massive amount of available information.
In the following, we refer to explicitly given categories as

tags, and use the word topic solely for implicitly observed
emerging topics.

1.1 Contributions and Outline
We consider unexpected but significant changes in the cor-

relation of tag pairs as an indicator of an emergent topic. We
refer to such changes in correlation patterns as shifts. For
example, consider two tags “Cuba” and “earthquake”, which

used to be uncorrelated. When a high overlap of items as-
signed to both tags is observed, we may interpret this as the
onset of an emergent topic.
A simple approach would define the correlation between

two tags to be given by the frequency of the intersection
of these tags or the Jaccard coefficient. In practice none of
these measures alone is able to identify accurately a shift.
We use a combination of these two measures in order to iden-
tify emergent topics. To escape the scalability problem due
to the quadratic number of tag pairs, we can choose a sub-
set of tags, called seed tags, and monitor only the tag pairs
that consist of at least one seed tag. We choose seed tags
to be the most popular tags at every evaluation since topics
consisting of popular tags are more likely to be interesting
to a large fraction of users. However, seed tags may also be
chosen based on their volatility (i.e., the first derivative in
frequency), or a combination of volatility and popularity.
In this work we present an in-depth description of our

framework, algorithms, and implementation details. Our
approach has high predictive power regarding topics that are
about to become hot. It can handle high rates of new data
items, by using efficient techniques for tracking correlation
measures and identifying interesting shifts. We experimen-
tally evaluate the approach using real world data, studying
the performance and accuracy.
Our solution is fully implemented in a prototype system

called enBlogue, as we aim to identify trendsetters from blogs
(and other streams) that are “en vogue”. The system can be
tried out live on the Web at URL http://blogue.mmci.

uni-saarland.de, continuously processing 10% of all Twit-
ter data. The result ranking is updated every hour.
The paper is organized as follows. Section 2 discusses re-

lated work. Section 3 presents our framework for Web 2.0
streams. Section 4 discusses statistical measures for charac-
terizing interesting seed tags and tag pairs over time. Sec-
tion 5 presents the algorithms used in enBlogue and the
necessary implementation details. Section 6 reports on the
implementation details of our competitor. Section 7 gives
experimental results with real-life datasets from news, blogs,
and tweets. Section 8 concludes the paper.

2. RELATED WORK
There is a vast amount of literature on stream mining and

time-series analysis; overviews are given in [16, 14]. In par-
ticular, the state-of-the-art on efficient frequent-item mining
is fairly mature [12], based on a rich suite of statistical syn-
opses and other approximation techniques. However, these
methods do not carry over to detecting correlations between
items evolving over time. Analyzing correlations between
time-series is a standard problem, but considers only time-
series of scalar values as opposed to our richer setting of
tagged document sets. Moreover, with a few exceptions such
as [33], time-series correlation mining does not scale to many
thousands of per-item time-series. Generally, our problem
differs from traditional time-series mining in two ways: 1)
We aim to find shifts, i.e., strong gradients, in correlations,
rather than correlations per se. 2) Instead of scalar values,
we consider streams of tagged postings and thus face a much
richer structure in the underlying data.
Interestingness and novelty measures have been studied

in the context of association-rule mining (e.g., [30, 21] and
references given there), incremental clustering of documents
(e.g., [19]), and novelty detection in time-series (e.g., [24]).
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Our measures resemble the ones in this prior work, but our
problem is fairly different. Interestingness is a time-invariant
or snapshot-oriented measure in the literature. Novelty typ-
ically refers to anomalies and surprising patterns in a time-
series, based on regression models. In that sense, shift detec-
tion alone is a well studied problem. However, our problem
setting requires detecting prominent shifts in the correla-
tions among a huge number of different tag-wise organized
but overlapping streams.
Mining online news for events was a hot issue in informa-

tion retrieval a decade ago (see, e.g., [1, 31, 20, 23]). The
focus was on identifying keyword contexts that constitute
specific events (e.g., political elections, sports competitions,
etc.). This early work did not consider implicitly emerg-
ing topics, and disregarded scalability issues. Recent work
on discovering and tracking events and themes in blogs (or
even tweets) include [4, 5, 6, 7, 15, 22, 28, 32, 18]. This line
of work focuses on single themes, as expressed, for exam-
ple, by distinctive phrases. There is no analysis of emerging
correlations. Many of these approaches compute clusters
or latent-aspect models of related keywords or annotations;
these clustering or EM-style learning methods are not able
to cope with the scale and dynamics of our problem setting.
The Taglines project [13] on mining the evolution of tag
clouds emphasizes visualizations, not detecting interesting
correlation trends.
The recent work by Budak et al. [9] uses structural in-

formation obtained from the social network graph for trend
detection, focusing on single tags rather than tag combina-
tion. According to [9], structural information helps fighting
spam, hence, increasing result quality. However, availability
of user graphs can not be taken granted in a general scenario,
considered in our own work.
Das Sarma et al. [27] aim at detecting temporal rela-

tionships between entities. First, co-peaking entities are ex-
tracted from the stream, which are then grouped according
to co-occurrence. Subsequently, these groups are separated
depending on time intervals.
The general idea of first detecting bursty tags is also the

core idea in the works by Cataldi et al. [11], and Math-
ioudakis and Koudas [26]. Cataldi et al. focus mainly in
the trend analysis and they seem to disregard any runtime
issues that could harm a real-time application. In their work
they consider a topic to be emergent if it can be described
by at least one bursty keyword, which, as we claim at the
introduction of this work, can be misleading.
The work by Mathioudakis and Koudas [26] is the closest

competitor to our enBlogue system. Their system, coined
Twitter Monitor, discovers topic trends in tweets, by detect-
ing bursty single tags. Tag groups are formed by clustering
co-occurring bursty tags or using spectral analysis. This
approach is quite different from our setting: unlike looking
solely for bursty tags, we detect shifts in tag correlations as
they dynamically arise.

3. PROBLEM STATEMENT AND
METHODOLOGICAL FRAMEWORK

We consider a stream of incoming documents (news, blogs,
tweets), each carrying a timestamp reflecting the time of cre-
ation. We assume that the document metadata includes sets
of tags, or alternatively an annotation mechanism (e.g., an
automatic classifier) that assigns tags to documents. In both

notation explanation

tuple - a triple consisting of timestamp, document
identifier and set of tags/entities

tag - a simple annotation to a document, explic-
itly given or extracted on the fly. Extracted
named entities are also treated as tags.

topic - a pair of tags (or in general sets of tags)
W - size of the sliding window that determines

at each time point the set of recent tuples to
consider

min - minimum number of documents to qualify
a tag for further analysis (otherwise it is con-
sidered noise)

� - the number of past values stored for each
tag as the history, used in the prediction task

k - the size of the final ranking of emergent top-
ics

Table 1: Overview of used notation.

cases, the stream of (timestamp, document)-pairs can be
interpreted as a stream of (timestamp, document, tagset)-
triplets. Tags would also include taxonomic categories or
named entities extracted from the document contents. We
consider in-order streams, where items arrive in timestamp
order. The problem then is to compute a ranking of tag pairs
by their likelihood that they contain an emergent topic.
Looking at the raw document stream at some point in time

does not give insights on popular tags or tag correlations. A
standard approach to look at continuous time ranges of a
data stream is to define a sliding window. Such a window,
of size W , defines a temporally “coarser” view, consisting of
all documents from the original stream with a timestamp
inside the current window, also called active documents. At
evaluation time we perform our analysis using all currently
active documents.
The size of the sliding window is application dependent.

For instance, when considering news streams obtained from
blogs or newspapers, a window size of W = 6h, 12h, or 24h
seems to be reasonable. For Twitter, much shorter sizes, for
instance, W = 1h or 2h is more appropriate.
It is straightforward to count the number of documents for

a particular tag, to look at the number of documents that
contain two or more specified tags at the same time, or to
apply more sophisticated means to capture tag correlations.
To further enrich the incoming documents, we make use

of an entity tagging approach which extracts named entities
from the document contents.
We aim at identifying emergent topics consisting of pairs

(or in general sets) of tags. Emergent topics are identified
by observing changes in the popularity of topics; an emer-
gent topic exhibits an unexpected behavior. We believe that
unexpected behavior triggers user interest. More precisely,
as introduced later, we model “interestingness” as a mixture
of the topic’s level of emergence and general popularity.

This problem is challenging for three reasons:

• Dynamics and Diversity: New items arrive at a high
rate with many different tags. The rates for different
tags can vary rapidly.

• Unpredictable Interestingness: Hot topics are not the
same as emergent topics. We cannot simply mine in-
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teresting tag pairs based on their joint steady-state
popularity.

• Scalability: The first two challenges make it impossi-
ble to rely on precomputed statistics. Thus, we have
to dynamically analyze tag-pair correlations and their
change patterns. The Web 2.0 settings that we con-
sider here have taxonomies with tens of thousands of
tags (categories).

Our framework consists of three stages:

1. Seed tag selection: As the name indicates, seed tags
are used to trigger the computation in the following
steps and can be determined based on different criteria,
such as popularity or volatility.

2. Correlation tracking: For each tag pair that con-
tains at least one seed tag, we keep track of their cor-
relations. For each such pair, we continuously monitor
the documents that are annotated with both tags.

3. Shift detection: Based on the correlations computed
in the previous stage, we inspect the temporal changes
in the correlations to detect emergent shifts.

The third stage provides for each considered pair a quan-
titative measure for the shift within a configurable time pe-
riod. These values are used to rank tag pairs and to report
the top-k most interesting emergent ones.
The handling of suddenly correlated tag pairs can be gen-

eralized to n-tuples of pairs for n > 2. In our framework and
algorithms, the required additional steps are very straight-
forward.

4. THE 3 CORE STAGES AND THE FINAL
SCORE COMPUTATION

4.1 Identifying Seed Tags
To identify emergent topics (i.e., shifts in tag-pair corre-

lations), we start with a subset of all possible tag pairs. We
generate topic candidates by first selecting interesting seed
tags and then analyzing only correlations of pairs having at
least one seed tag. Seed tags are chosen based on popularity.
The rationale is that for a tag pair to become interesting and
form an emergent topic, at least one of the two tags should
be “hot” by itself. Popularity is easy to measure as it merely
requires computing a sliding-window average of the popu-
larity of elements in the document stream. Additionally or
alternatively, we can also monitor the first derivative of the
popularity function, thus identifying tags with high volatil-
ity and select these as seed tags.

4.2 Measuring Tag Correlations
Calculating the correlation of two tags is based on the

documents that carry these tags.
Consider two tags t1 and t2 and the corresponding docu-

ment sets S1 and S2 that have them as tags. We are inter-
ested in calculating how correlated these two tags are, based
on their corresponding sets of documents currently present
in the sliding window. Generally speaking, a good measure
should reflect (i) how important the topic is to the commu-
nity of users interested in any aspect of it, i.e., how likely it
is to see both tags together compared to the separate occur-
rences (local importance), and (ii) how important the topic

is to the whole community, i.e., how likely it is to see both
tags together (global importance)
We opted for the Jaccard coefficient as the measure of

local importance as it is a well studied/accepted measure for
the similarity of two sets. Although it provides an estimate
of how strongly connected two tags are, it does not take
under consideration how important the pair of these tags
is compared to the rest of the pairs in the current window.
An estimation of this importance is given by the average
number of documents in the current window that contain
both tags. We use the product of these two measures and
we obtain the following formula for calculating, at any point
in time, the correlation of two tags t1 and t2, where N is the
number of documents in the current window:

corr(t1, t2) :=

local importance
� �� �
|S1 ∩ S2|
|S1 ∪ S2|

∗

global importance
� �� �
|S1 ∩ S2|

N
(1)

4.3 Shift Detection
As we have already mentioned our goal is to present the

user with a list of the top-k most interesting emergent top-
ics. A topic is considered to be emergent when its behavior
deviates from the expected, similar to [24]. The more it
deviates the more emergent the topic is.
The behavior of a topic is said to be expected if we can

predict it by taking into account its previous behavior. The
prediction of the behavior of a topic is attempted with the
use of exponential smoothing. Exponential smoothing is
a forecasting technique that uses a weighted moving aver-
age of past data as the basis for the forecast. The process
gives greater weights to most recent observations and smaller
weights to observations in the more distant past. The rea-
son for this is that the future value may be more dependent
upon the recent past. The exponential smoothing equation
is the following:

v̂t = avt−1 + (1− a)v̂t−1 (2)

where 0 < a ≤ 1, t > 0, vt−1 is the previously observed
value and v̂t−1 is the previously predicted value

A topic is emergent if its real correlation is larger than the

predicted value. The difference between these two values is
called prediction error and it is defined as

error(t) = vt − v̂t

The prediction error has the property to be greater when
the difference between the predicted and the computed cor-
related values is large. As a consequence, topics that were
not strongly correlated in the past and are a bit more cor-
related now are not detected in the top-k emergent topics.
To avoid this we use the relative prediction error, defined as

relativeError(t) =
vt − v̂t

vt
(3)

4.4 Overall Scoring
The relative prediction error detects the topics that are

emergent but it cannot detect the emergent topics that are
interesting at the same time. We believe that a good mea-
sure for the interestingness of a topic is popularity. So we
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define the score of an emergent topic to be

score(t) =
relativeError(t)
| ln(popularity(t))| (4)

We chose to divide by the absolute value of the natural log-
arithm of the popularity and not just to multiply with the
popularity because the natural logarithm has the property
of dampening the effect popularity has on the final score.
At the same time, the bigger the difference of the relative
errors for two topics the more difficult it is for the popularity
to affect the ranking of the topics. Consider the following
example:
Suppose we have four topics t1, t2, t3 and t4. Suppose

that the relative errors for the topics t1 and t2 are related by
relativeError1(t)
relativeError2(t)

= 1.010 and the relative errors for the topics

t3 and t4 are related by relativeError3(t)
relativeError4(t)

= 1.100. In order for
the popularity of topic t2 to affect the ranking of the topics
t1, t2, i.e. score2(t) > score1(t),

popularity2(t)
popularity1(t)

= 1.047. For
the popularity of topic t4 to affect the ranking of the topics
t3, t4

popularity4(t)
popularity3(t)

= 1.520.
In the simple case, where the relative error is just multi-

plied with the popularity, the relationship of the popular-
ities for the topics t1, t2 is sufficient to be popularity2(t)

popularity1(t)
=

1.011 in order to affect the ranking. For the topics t3, t4,
popularity4(t)
popularity3(t)

= 1.101.
So, in the example it is shown that by using the natural

logarithm of the popularity it is more difficult to affect the
ranking of the topics. Moreover an increase in the ratio
of relative errors of 8.9% (from 1.010 to 1.100) needs an
increase in the ratio of popularities of 45.2% (from 1.047 to
1.520) for the ranking to be affected. In the simple case this
increase in the ratio of popularities is just 8.9% (from 1.011
to 1.101), the same as the increase in the ratio of relative
errors.
This behavior of the natural logarithm is a desired behav-

ior. Since we are interested in emergent topics and not in
hot topics, we want to avoid the situation that the overall
score depends too much on the popularity, but at the same
time we want a big difference in the popularity, compared
to the difference in the relative errors, to be able to change
the ranking of a topic by affecting its score.

4.5 Score Smoothing
Naturally, if a topic’s behavior does not change much with

time, the capability of predicting the next value improves
and the topic is not considered emergent anymore. Intu-
itively though, we can say that a user does not loose inter-
est in a topic from one moment to another, e.g., in case of
a big scandal that causes almost every newspaper to write
articles about the story, but much fewer on the next day
or even having a constant number of articles per day in the
following days, which is then not a big surprise anymore,
but it is still of some interest to the user. Hence, the inter-
estingness of one day, e.g., the first day the event occurred,
should carry over to other days, with a dampening factor,
obviously.
This intuition is confirmed by the observation made in ar-

ticles from the New York Times archive. We used this source
as an example as we believe that the newspaper editors have
a good understanding of how long an event is interesting to
the consumers. We discovered that very often the number
of articles referring to one specific event decreases through
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Figure 2: Interesting shift in correlation of two tags.

time by a factor of

penalty(∆t) := e−λ∆t

where ∆t is the distance in time from the moment when the
most articles for the topic were written. After testing a large
number of topics we obtained on average a value of λ = 0.38.
This means that an interestingness score of yesterday gets
dampened by a factor of e−0.38 = 0.68, the value obtained
two days ago by a factor of 0.46, and so on.
This way, we get, per topic, a dampened interestingness

value for each point in the past, plus one current interest-
ingness value, which is obviously not dampened as ∆t = 0
This way, old “surprises” have a chance to influence a topic’s
ranking today.

score(τ) := maxt≤τ

�
relativeError(τ)
| ln(popularity(τ))| ∗ penalty(τ − t)

�

The dampening factor found from the New York Times
articles study seems to produce nice results when applied to
blog posts but not when applied to tweets. This is obviously
due to the fact that topics discussed in Twitter have a fast
refresh rate, while topics discussed in blogs have a refresh
rate that resembles that of newspapers.
The dampening factor e−0.38∆t has a half life of 1.8 eval-

uations. Since topics in Twitter change very often we are
obliged to evaluate new emergent topics more frequent, e.g.
every hour instead of one day which is the case for news-
papers. This means that with the use of the above damp-
ening factor a topic looses its half score after the second
hour. This is too fast and a smaller dampening factor is
needed. By experimentally testing various dampening fac-
tors, we concluded that the factor e−0.2∆t, which has half
life of 3.4 evaluations, is more appropriate for Twitter.
Since the number of previous values that we can store for

each topic is limited, the final score may not be the greatest
of all the observed scores of this topic but just the greatest
of the scores that we store. In practice this is not a restric-
tion as the dampening factor de-facto erases former scores
after a couple of time units in any case. Figure 2 shows an
illustration of the score derivation.

5. ENBLOGUE IMPLEMENTATION
With enBlogue we have implemented a full-fledged proto-

type system. The implementation is done in Java 1.6 and
follows the standard concepts of a push-based architecture
for stream processing. At the data source level, it consists of
several wrappers that either consume live streams or replay
existing datasets for experiments. Data is represented in an
array n-tuple format, consumed by stream operators, and
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pushed along producer-consumer edges in query-processing
plans. The filtered and manipulated data items finally ar-
rive at sinks in the operator DAG. One of the sinks is the
operator that computes the final rankings of emergent topics
and sends them to our Web server for visualization.
In Figure 4 the workflow is shown. Every block in the

illustration represents an operator. Each operator receives
data from the previous operator, processes them and pushes
the results to the next operator.
The Entity Tagger Operator is a preprocessing operator

used to further enrich the set of tags. It uses an automatic
entity extraction tool and finds, in the document, entities
like people, organizations and places. These entities are
added to the documents and treated afterwards as common
tags. Essentially it works by checking the document content
for phrases for which an article in Wikipedia exists.
The Sliding Window Manager is responsible for keeping

track of the documents arriving in the system. It maintains
the window and checks if the incoming document has a cre-
ation time inside the window. The size of the time sliding
window depends on the dataset. The Sliding Window Man-
ager blocks the information arriving to it until it receives
the first document with timestamp greater than the upper
limit of the window. When this happens it releases the tu-
ples currently in the window to the rest of the operators.
We call this moment evaluation point.
The operators that receive information at the evaluation

point execute our main algorithm. While the Entity Tagger
operator and the Sliding Window Manager execute contin-
ues procedures, i.e., a document is parsed as soon as it ar-
rives to the system, the operators that are part of our main
algorithm are executed only after every evaluation point and
until they process the data they received. We call this period
of time evaluation phase.
During the evaluation phase, the seeds are selected from

the Statistics operator (Figure 3, Algorithm: FIND SEEDS).
The Correlation Computation operator takes the seeds and
the total tags and finds the pairs of related tags. Two tags
are considered to be related if they co-exist in more than min

documents. For this (Figure 3, Algorithm: FIND EMERGENT

TOPICS, Line: 4) we use a number of threads that are running
in parallel. Each thread gets a subset of the seed-tags and is
responsible of examining only the pairs having at least one
seed-tag from the subset the thread is assigned. All threads
should finish their processing before the results are sent to
the Shift Detection Operator.
The Shift Detection operator identifies emergent topics

and is the final operator executing a part of our main al-
gorithm. This operator is responsible for detecting shifts on
related tag-pairs, using the formulas described in Section 4.3
(Figure 3, Algorithm: FIND EMERGENT TOPICS, Lines: 5-20)
and score them using the formula described in Section 4.5
(Figure 3, Algorithm: SCORE A PAIR OF TAGS). The output
of the Shift Detection operator is the final result.
As a last phase, before sending the results to the Web

Server, we have a post-processing phase. During this phase
the Diversification operator groups tag-pairs that refer to
the same event. Two tag pairs are placed in the same group
if they co-exist in 80% of the documents. The purpose of
this procedure is to maximize the number of different events
presented to user by avoid showing multiple tag-pairs that
refer to the same event. After the post-processing phase we
do not have tag-pairs anymore but tag-sets, which are sent
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Figure 4: Framework Workflow Illustration

to the Web Server.
Due to the design decisions that we have made (data is

pushed from one operator to the other) adding new opera-
tors is a simple and straightforward procedure. For example,
we could add a personalization operator which will receive
the results from the Shift Detection Operator. The Person-

alization Operator can use standard IR techniques such as
Language Models or methods based on tf*idf scores [25] to
select from the set of the results only those that satisfy the
users preferences by computing scores for topics based on
the scores of the documents annotated.
The Web-based user interface of enBlogue provides real-

time monitoring and user notifications in a push-based man-
ner (i.e., without the user having to continuously poll the
server for updates on emergent topic rankings). This has
been implemented using AJAX technology, more specifically,
the push-based variant offered by the open-source Ajax Push

Engine (APE) [3]. APE includes a Javascript framework for
real-time data streaming to Web browsers, without any in-
stallations on the client side.

6. IMPLEMENTATION OF AN ALTERNA-
TIVE APPROACH

We compare the performance of our approach with the
TwitterMonitor approach described in [26], which performs
trend detection in two steps. In the first step it identifies
bursty keywords and in the second step it groups the iden-
tified bursty keywords based on their co-occurrence. Every
set of bursty keywords is considered an event.
In TwitterMonitor, a keyword is called “bursty” if it is

encountered at an unusually high rate in the twitter data
stream. In our implementation of TwitterMonitor, we use
hashtags (i.e., of the form #xyz) and named-entities found
in tweets, as keywords, and call them simply tags in the
following. In order to find bursty tags we follow a procedure
very similar to the shift detection procedure of enBlogue,
described in Section 4.3. The difference is that instead of
processing tag-pairs and their correlations, as is the case
in enBlogue, in TwitterMonitor we process tags and their
popularities. (Figure 3, Algorithm: FIND BURSTY TAGS)

After identifying the bursty tags we group them into dis-
joint sets, exactly as described in [26] (Figure 3, Algorithm:
GROUP BURSTY TAGS). Two tags t1 and t2 may belong to the
same set only if they co-exist in at least one tweet and if
t1 belongs to the same set with keyword t2 and keyword t2
belongs to the same set with tag t3 then the keywords t1
and t3 also belong to the same set. We consider every set of
tags to represent an event or topic.
To determine a final ranking of the top events, we assign
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FIND EMERGENT TOPICS

1 for each tag in window
2 if it exists in more that min documents
3 create set of docs containing it
4 find the related pairs of tags found in this evaluation. . .

. . . where at least one of them is a seed tag
5 for each old pair of tags
6 remove the oldest correlation and popularity value
7 if it was found in this evaluation
8 compute the current correlation and popularity of it
9 add the new correlation and popularity values
10 else

11 add zero as the new correlation and new popularity
12 compute score of pair
13 for each new pair not found in the old ones
14 add zeros as the previous correlation and popularity values
15 compute the current correlation and popularity of it
16 add the new correlation and popularity values
17 compute score of pair
18 remove all pairs that have not been found . . .

. . . for � evaluations
19 sort events according to scores
20 return the k top events

SCORE A PAIR OF TAGS

1 predict current correlation value based on histoty
2 for each �+ 1 correlation values
3 dt = number of evaluation passed since this value was computed

4 error = (computedCorrelaion−predictedCorrelation)
computedCorrelation

5 reversePopularity = 1
|log(popularity)|

6 scoreTemp = error ∗ reversePopularity
7 if Twitter dataset
8 score = scoreTemp ∗ e−0.2∗dt

9 else

10 score = scoreTemp ∗ e−0.38∗dt

11 if maximum score computed so far
12 store
13 return maximum score

FIND SEEDS

1 find all tags in window
2 for each tag in window
3 if it does not exist in more than min documents
4 ignore it
5 sort the remaining tags based on their popularity
6 keep only the top k tags

Figure 3: The three core algorithms used in enBlogue

a score to each event. As [26] does not mention a way to
compute this, we adjust Formula (4), used in enBlogue, to
TwitterMonitor: We replaced the relativeError(t) in For-
mula (4) with the average burstiness of all tags which are
part of an event.
In enBlogue the relativeError of a topic is an indicator

of how bursty the topic is. In TwitterMonitor the average
burstiness is also an indicator of how bursty a topic is. Over-
all, Formula (4) is changed in TwitterMonitor to

score(t) =
averageBurstiness(t)
| ln(popularity(t))| (5)

where popularity is defined to be the average number of
documents containing all tags of a topic.

7. EXPERIMENTS
We used the enBlogue prototype to conduct a series of

experiments, with different datasets. For measurements, the
datasets were replayed from files that contain the raw data.
All computations were performed on the fly.
We also conducted a user study using live data from Twit-

ter. All measurements were performed on a server with two
quad-core 2.4 GHz Intel Xeon processors, 48 GB of RAM,
and a 2 TB RAID-5 disk.

Datasets
Blog dataset: We have obtained the ISWCM Spinn3r blog
dataset [10] consisting of 44 million blog posts created in the
time period from August 1st to October 1st, 2008. Each blog
has a set of categories assigned, which we use as tags. Ex-
amples of tags are Election 2008 and Economics, or Enter-

tainment and Sports. We use the blog posts from September
2008.
Twitter dataset: We have access to the“fire hose”stream

of Twitter, delivering 10% of all Tweets (in general, all sta-
tus updates). Tweets contain so called hash-tags, such as
#egypt and #revolution. We use the tweets from 02.07.2011

to 15.07.2011 in our study. The user study, however is per-
formed on live data received from the Twitter stream, de-
scribed below.
For both datasets the entity tagging is done on-the-fly, i.e.,

as documents are streaming in.

Measures of Interest
For each evaluation phase, i.e., whenever a ranking of emer-
gent topics is computed, we obtain the following measures:
Precision: An important aspect for user satisfaction is

the precision of the emergent topics that our methods sug-
gest to the user. This measure is used only in the user study
on live Twitter data. We report on the average precision@k
precision at k value, that is the fraction of topics marked
by the users to be interesting divided by k. We also in-
clude the results for the NDCG@k [17] values (normalized
discounted cumulative gain). For both measures, we com-
pute the statistical significance of the reported values using
Fisher’s randomization test and the paired t-test [8, 29].

Runtime: We report on runtime cost of our methods
for tag-pair tracking and shift detection. This captures the
average time spent at each evaluation phase. It does not
include pre-processing costs like named-entity tagging but
it includes the post-processing cost of diversification.
Relative Accuracy: When we run enBlogue using a spe-

cific amount of seed tags, the resulting emergent topics are
only approximated. In this measure we compute the relative
accuracy of the algorithm running compared to the base-line
using all tags as seed tags.

Algorithms
We compare the following algorithms:
enBlogue: This is our approach for emergent topic detec-

tion, described in this paper. For the naming of the different
configurations, we will refer to our algorithms by mention-
ing the number of seed tags used, for example our algorithm
using all tags as seeds will be referred as enBlogue-100%,
our algorithm using 20% of the tags as seeds will be referred
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FIND BURSTY TAGS

1 find all tags in the current window
2 for each tag in the old tags
3 if found in current window . . .

. . . and exists in more than min documents
4 add its frequency as current frequency of the tag
5 predict current frequency of tag based on history
6 score tag based on predicted and actual frequency
7 else

8 add zero as current frequency of the tag
9 predict current frequency of tag based on history
10 score the tag based on its predicted and actual frequency
11 for each tag found in this evaluation and not existing before
12 if it exists in more than min documents
13 add its frequency as the current frequency of the tag
14 add zeros as the previous frequencies of the tag
15 predict the current frequency of the tag based on history
16 score the tag based on its predicted and its actual frequency
17 else

18 ignore the tag
19 remove all tags that have not been found . . .

. . . for � evaluations
20 consider all tags with positive score as bursty tags

GROUP BURSTY TAGS

1 for each tag found bursty by the previous algorithm
2 create the sets of documents that contain it
3 find the related pairs of bursty tags
4 consider an undirected graph g where every node is a tag.
5 for each related pair of bursty tags
6 add an edge in the graph
7 find the connected components of the graph
8 consider each connected component to be an event
9 score each event
10 sort events according to scores
11 return the k top events

Figure 5: The two main algorithms used in our im-

plementation of TwitterMonitor.

as enBlogue-20% and so on.

TwitterMonitor (TM): This is our competitor ,the ap-
proach by Mathioudakis and Koudas [26], as described in
Section 6.

For both algorithms, we study the influence of the number
� of data points we consider from history (past) for the trend
detection. The number of result topics k has no influence
on the runtime of both implementations, we will hence not
report on any variation of k and set it to value 20. The
window sizes are also set to specific values, W = 1h in case
of Twitter and W = 6h in case of the Blog dataset. We do
study the effect of the number of tags and documents on the
algorithms’ performance, by grouping the observed runtime
values by the number of tags and documents, respectively.

7.1 User Study
We conducted a user study where we employ emergent

topic detection with enBlogue and the TM on live Twitter
data. We did not see a viable way to perform such a study
on offline (i.e., months or years old) data as it turned out
to be almost impossible for users to go mentally back in
time to check if an detected event is indeed noteworthy. In
particular for events that are of scale smaller than big occa-
sions like the Olympic games, huge hurricanes, US elections,
and so on. The events we derive from the live Twitter data

are most of the time much smaller, but nevertheless, a lot of
them are interesting and worth being shown on the Website.
For instance, on 16.09.2011 12:00 GMT enBlogue detected
events such as“Assad Syria”and“Lybia Niger Gadhafi”. We
have set up a website showing results for the two competing
algorithms in an anonymized form. We asked colleagues to
participate in the study which had the following task de-
scription: Every now and then, check the results published
on our website and try to identify interesting emergent top-
ics. Those topics that are deemed interesting are supposed
to be marked using an HTML checkbox. Since tags alone
are sometimes hard to map to a real world event, by clicking
on the tags, users are able to see sample Tweets containing
the emergent topic’s tags. For instance, at the same day
as above, we found the tag pair “dolphin Australia” (appar-
ently there was a new species discovered), which is hard to
make sense of without looking at additional information in
form of sample tweets. Interestingly, and as a support of
the whole approach, for a lot of events we discovered there
were no media information immediately available, only some
minutes/hours later in the breaking news section.
In the period of the user study, the last two weeks in

September, we recorded 80 non-redundant evaluations. Non-
redundant means that we eliminated duplicate submissions,
identified by IP address and the timestamp of the ranking
to be evaluated.
Figure 6 reports on the precision at k values for enBlogue

and TM. Users were asked to select noteworthy events out
of 20 events per algorithm. A precision value of x at 20
means that the fraction of x events have been considered
noteworthy in a ranking of 20. We observe that enBlogue
clearly outperforms TM. In average, enBlogue has identified
2.5 out of 20 noteworthy events per hour (for the time points
considered by the users in our evaluation study). This is in
contrast to often not even one noteworthy event (on average
0.8 out of 20 reported ones) delivered by TM. Note that
the 20 reported events were not filtered (except for a simple
keyword filter aiming at eliminating porn related Tweets).
For completeness we have also calculated the NDCG [17]

values, reported in Table2(right). We have computed the
paired t-test and Fisher’s randomized significance test over
both the precision@20 and the NDCG@20 values: The ran-
domized test computed for 100 000 permutations reported
a p-value of 0 for both the precision and the NDCG val-
ues. The paired t-test reported a p-value of 3.5 ∗ 10−13 for
ndcg@20 and 6.5 ∗ 10−25 for precision@20.

Table 3 shows sample results of the events detected on
three consecutive days (28th, 29th, 30th) in September 2011
with enBlogue. As we can see, enBlogue discovered quite
many interesting results at those days. Including the al-
liance plans between Microsoft and Samsung, the killing of
an Anwar al-Awlaki, a member of Al-Qaeda, by US mili-
tary forces, the case of Michael Jackson’s personal physician
Conrad Murray, the Hollywood actor Sean Penn visiting the
Tahrir place in Cairo, Egypt, and the scandal of Manchester
City’s Carlos Tevez, refusing the exchange during a game in
the European Soccer Champions League.

7.2 Runtime
In Table 4 and Table 5 we can see how the runtime varies

for the five versions of enBlogue and TM for different num-
ber of tags and documents. The runtime depends on three
factors:
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28.09.2011

lfc, liverpool, ynwa
orioles, red sox
dana, danafacts
europe, soteu
intel, samsung
detroit, tedx
bahrain, twitition, u.s. ambas-
sador
fifa, tevezexcuses
bieberfacts, justin bieber
microsoft, samsung
messi, fcblive, mascherano,
barca, puyol, abidal, xavi
arshavin, rosicky, sagna
anelka, cfc, ivanovic, kalou,
drogba, romeu
nadarkhani, iran, irani, yousef

29.09.2011

redsox, shocked, stunned, sea-
sonover
nadarkhani, iran, yousef
enoughisenough, occupysf, oc-
cupywallstreet
carlos tevez, manchester city
ownacolour, unicef
bahrain, egypt, usa
conrad murray, michael jack-
son
fact, healthcare reform
bologna, occupywallstreet, ows
bahrain, syria
real madrid, kaka, realmadrid
bologna, occupywallstreet
nationalcoffeeday, peetscoffee
celtic, udinese

30.09.2011

in america, occupywallstreet
redsox, terry francona
motegi, motogp
derby, liverpool
bahrain, u.s.
anonymous, antisec
rugby, samoa, southafrica
arsenal, spurs
israel, awlaki, alqaeda, yemen
egypt, noscaf
assad, syria
sean penn, tahrir
awlaki, obama
manutd, mufc
libertysquare, armenia, opposi-
tion, rally, yerevan
boston, terry francona

Table 3: Sample of the events detected in enBlogue and marked as relevant by at least one of the user study

participants.
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Figure 6: Precision@k values

initial pairs: We call initial pairs the pairs created by
matching all tags with all seeds tags, for enBlogue, all bursty
tags with all bursty tags, for TM. The initial pairs are checked
in order to find he pairs of related tags, called from now on
related pairs.
new related pairs: We call new related pairs the related
pairs found during the current evaluation. All new related
pairs are checked during the shift detection procedure (Sec-
tion 4.3) and during the scoring procedure (Section 4.4).
The number of new related pairs depends on the number of
initial pairs
old related pairs: We call old related pairs the related
pairs found during previous evaluations, but not during the
current evaluation, that are still stored and processed dur-
ing the scoring procedure (Section 4.4). The number of old
related pairs depends on the number of the new related pairs
of the previous evaluations.
Given a number of tags, the number of initial pairs is

proportional to the percentage of seeds used. This can be
verified by the results shown in the rows of Table 4 and Table
5, where we can se that, for every group of tags, the runtime
increases while the percentage of seeds increase. Since the
new related pairs depend on the initial pairs, in the same

Precision@k

k enBlogue TM

1 0.112 0.012
2 0.094 0.025
3 0.083 0.025
4 0.106 0.025
5 0.108 0.032
6 0.115 0.029
7 0.111 0.036
8 0.108 0.031
9 0.115 0.031
10 0.116 0.029
11 0.112 0.034
12 0.121 0.034
13 0.118 0.034
14 0.119 0.038
15 0.117 0.04
16 0.118 0.041
17 0.120 0.040
18 0.122 0.040
19 0.126 0.039
20 0.122 0.042

NDCG@k

k enBlogue TM

1 0.112 0.012
2 0.094 0.025
3 0.089 0.026
4 0.115 0.028
5 0.123 0.033
6 0.137 0.033
7 0.151 0.041
8 0.160 0.041
9 0.177 0.044
10 0.191 0.045
11 0.198 0.053
12 0.220 0.056
13 0.229 0.059
14 0.239 0.068
15 0.246 0.073
16 0.258 0.077
17 0.270 0.078
18 0.285 0.081
19 0.3 0.083
20 0.304 0.09

Table 2: Precision@k results (left) and NDCG@k re-

sults (right) achieved in the user study by the com-

peting algorithms.

tables, we can also see that the related pairs increase as the
percentage of seeds increases.
Given a percentage of seeds, the number of initial pairs

is proportional to the number of tags. This can be verified
by the results shown in the columns of Table 4 and Table 5,
where we can see that the average runtime increases while
the number of tags increases. The same is also true for the
new related pairs.
For TM there is no direct analogy between the number of

tags and the number of bursty tags. However it is expected
the number of bursty tags to increase as the number of tags
increase, which leads to an increase in the initial pairs. The
experiments showed that TM had, on average, 60% of the
maximum number of initial pairs. The maximum number of
initial pairs is defined to be the number of pairs produced
when all tags are used as seeds. By taking into account only
the number of initial pairs, TM should have been slower than
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Twitter Blog
2 4 2 4

enBlogue-10% 2.61 3.34 0.83 2.65
enBlogue-20% 3.11 4.02 1.09 3.50
enBlogue-40% 3.54 4.68 1.66 4.94
enBlogue-70% 4.67 6.02 1.85 6.22
enBlogue-100% 6.05 6.57 2.17 6.67
TM 2.44 3.99 0.54 0.96

Table 6: Average Runtime in seconds per past values

used for the prediction for Twitter and Blog datasets

enBlogue-10% and enBlogue-20% in any case. However, this
is not true because, as can be verified form Table 4 and Table
5, there are groups of tags where TM has to process less
new related pairs than enBlogue-20%. Moreover, in the TM
algorithm the notion of old related pairs does not exist, since
only the new related pairs are taken under consideration
during the scoring procedure. So, there are cases where TM
has been found to be faster even from enBlogue-10%.
Since an increase in the number of documents causes an

increase in the number of tags, the results for different num-
ber of documents are similar to those for different number
of tags. However, an increase in the number of documents
affects the runtime in one more way. It causes an increase
in the size of document-sets associated with each tag. This
results in greater runtimes when comparisons between sets
are performed. Such comparisons are needed to check the
initial pairs and when we compute the correlations for the
new related pairs.
In Table 6 we can see how the number � of past values

stored affects the average runtime for the five versions of
enBlogue and TM for the twitter (left) and the blog (right)
datasets. An increase in � causes an increase in the num-
ber of the old related pairs, which affects the runtime of
enBlogue versions. It also causes an increase in the num-
ber of tags that are found to be bursty, which affects the
runtime of TM. Since the characteristics of the two datasets
are very different we can see that the average runtimes are
affected in different ways on the two datasets. In the Twit-
ter dataset an increase in � affects more the number of tags
found bursty and less the number of old related pairs. This
causes a rapid increase in runtime for TM and smaller in-
creases in the runtimes of the enBlogue versions. In the
Blog dataset an increase in � affects more the number of
old related pairs and less the number of tags found to be
bursty. This causes a rapid increase in the runtime of the
five enBlogue versions and a smaller increase in the runtime
of TM.

7.3 Runtime and Relative Accuracy
In Table 7 we can see how the average runtime and the

average relative accuracy are affected by the percentage of
seeds. From this table it is obvious that a decrease in the
percentage of seeds does not cause the same percentage of
decrease in the average runtime. This is because the per-
centage of seeds affects by the same percentage the number
of initial pairs but not the number of new and old related
pairs.
In Table 7 we can also see that a small decrease in the

percentage of seeds causes a big decrease in the relative ac-
curacy. This is due to the fact that by using a smaller per-
centage of seed-tags there are some related pairs that cannot

Twitter Blog
Runtime Accuracy Runtime Accuracy

enBlogue-10% 3.34 0.14 2.65 0.13
enBlogue-20% 4.02 0.23 3.50 0.18
enBlogue-40% 4.68 0.37 4.94 0.29
enBlogue-70% 6.02 0.60 6.22 0.53
enBlogue-100% 6.57 1.00 6.67 1.00

Table 7: Average Runtime in seconds and Relative

Average Accuracy for Twitter and Blog datasets

be found in the results (the pairs that do not have at least
one of the selected seed-tags). This lack in related pairs
affects also the groups of tags, created during the diversifi-
cation procedure, and is responsible for the reduced relative
accuracy.
What is worth mentioning is that it is not clear whether

the results with 100% seeds are more of user interest or
not. Since we have chosen the seeds to be the most popular
tags there is the possibility that the results using a lower
percentage of seeds are more interesting than the results
with the 100% seeds. However the percentage of seeds might
be of importance since with a small number of seeds there
is the danger of having low diversity in the results.

8. CONCLUSION
This paper addressed the problem of information over-

load that arises with the advent of Web 2.0 streams by
introducing an approach, coined enBlogue, that automat-
ically discovers emergent topics based on tagged postings.
enBlogue incorporates techniques to analyze shifts in the
correlations of tags, as an indicator of the onset of a newly
emerging topic. We evaluated enBlogue by performing a
user study based on live Twitter data, where users were
asked to select those reported events they considered to
be noteworthy. This showed that enBlogue achieves, on
average, a 3 times higher result quality compared to the
state-of-the-art approach, at the cost of a slightly increased
runtime, which is well below 15 seconds for a real-world
workload of 10% of all Twitter data on an hourly basis.
Thus, we believe that enBlogue is well positioned to han-
dle highly demanding real world workloads, such as Twit-
ter, which receives more than 100 million tweets per day.
In addition to the development of the concepts and algo-
rithms necessary to discover emergent topics, we have built
a system that incorporates them and is available on the web
at http://blogue.mmci.uni-saarland.de showing results
based on live Twitter data.
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