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ABSTRACT

The growing sizes of text repositories on the world wide web
has created a need for efficient indexing and retrieval meth-
ods for text collections. Almost all of the text retrieval and
indexing methods have been designed for the case of sim-
ple keyword search, in which a few keywords are specified,
and the text is retrieved on the basis of matches to these
keywords. However, in many applications there is a need
for a greater specificity during the search, such as the use
of phrases, sentences, text fragments, or even documents for
the retrieval process. An even more general case is one in
which a collection of documents is available as a query to
the search process. In such cases, it is desirable to return
sets of all pairwise similar documents. Such queries are re-
ferred to as corpus to corpus queries, and are computation-
ally intensive because of the very large number of document
pairs which need to be compared. Such cases cannot be
efficiently processed by the available indexing and search-
ing methods. Most of the currently available techniques can
index the text based on only a small number of keywords
or representative phrases. In this paper, we design a com-
pressed finger print index which can support the following
more general queries: (a) The method can process very ef-
ficient document-to-corpus search because of their efficient
bit-wise operations for the search process. (b) We further
extend the method to work for corpus-to-corpus queries, in
which it is desirable to determine the most similar pairs of
documents in two collections. We design an efficient search
technique which is able to reduce the search time for large
collections. The key technique used to enable this is an effi-
cient fingerprint representation, which can be used effective-
ly for the search process. To the best of our knowledge, this
is the first work on corpus-based search in massive document
collections.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Clustering
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1. INTRODUCTION

The rapid growth of text information has lead to a tremen-
dous need for efficient methods for retrieving such text doc-
uments. Most of the known methods for text indexing and
retrieval are designed for keyword-based search. Typically,
such queries are designed for a small number of words and
phrases for retrieval purposes. Most of these techniques are
based on variations of the inverted index representation [12].
While such index structures are quite effective for the case
of single keyword-based queries, they are not designed for
cases in which it is desired to determine responses to queries
in which the target is a text document or even a corpus of
documents. Some examples of relevant applications are as
follows:

e In many scientific applications, the target for the search
may be a publication or patent in a particular subject
area. For such fine grained searches, it is often possible
to have similar portions of the text at several places.
In some cases, a particular author may have the ten-
dency to use similar sentence structure across different
documents, and such fine grained behavior may have
an impact on the search process. This is not possible
with the use of the traditional index structures.

e News articles on the same story often share large seg-
ments of the text in common. This is because the quot-
ed portions of the text, or the text which is obtained
from a professional newswire service may be almost
identical. This results in some largely identical seg-
ments of text, though other portions may be different.
By using a collection of documents, it is also possi-
ble to perform duplicate or partial duplicate detection
across the text corpus.

e Professional product descriptions at online sites may
often share large segments of the text which are iden-
tical. This is because descriptive content is often stan-
dardized across similar products which are produced
by different sources. At the same time, there may be
enough distinctive vocabulary in other portions, so as
to throw off a pure bag-of-words based search process.

The problem of corpus-to-corpus search is defined as one in
which we have a target corpus of documents 7 and a docu-
ment corpus C. We would like to determine the & document



pairs from 7 and C with the greatest similarity. This is
useful in applications where it is desirable to determine sim-
ilar documents across the two collections. The problem of
corpus-to-corpus search is particularly challenging because
of the potentially large number of computations which may
be required in such a process. For example, consider a large
corpus containing 107 documents, and the search set con-
tains 10* documents. Let us also assume that each document
contains an average of 10% words. In such a case, even a sim-
ple comparison between the two collections on the basis of
the words are likely to require at least 107 x 10% x 10® = 104
word-pair comparisons. Assuming that each comparison (in-
cluding the overheads of parsing, and string comparisons)
conservatively required 100 CPU cycles, it would require a
1GHz computer 107 seconds, which is more than 10 days
of computation. For larger document collections and query
sets, this can quickly become impractical. Our goal is signif-
icantly reduce this computational time without compromis-
ing on the quality of the retrieved documents. We propose
the following:

e For document-to-corpus queries, we design an efficient
hash-based fingerprint representation, which is friend-
ly to the use of efficient cluster-based indexing tech-
niques. We show that such a technique can achieve
very fast online response times.

For corpus-to-corpus queries, our indexing technique
provides an efficient search process, which provides
several orders of magnitude scale up in query process-
ing times. While this is not necessarily designed to
provide online query processing, a huge response time
of a few minutes is much more acceptable than a re-
sponse time of a few days.

In addition, our approach also has some advantages in
terms of the quality of the retrieved results because of
the approach used for search and processing. We will
discuss more on this issue later.

One important aspect of document-to-corpus search is that

the structure of the document is very important in the re-

trieval process. This is not the case for keyword-based search,
in which similarity is based on the membership of a few

words. A long target document may have a significant amoun-
t of embedded structure in it, and it can be challenging

to use this structure in the retrieval process. Some recen-

t work [1] has shown that the use of distance information

for document-to-corpus similarity search provides superior

quality results to the use of well known similarity measures

such as the cosine metric. In any case, document-to-corpus

similarity search is cannot be performed efficiently with tra-

ditional structures such as the inverted index because of the

large number of inverted lists which need to be accessed. The

larger the document, the more inefficient the use of an in-

verted structure is likely to be.

In this paper, we will use a compression based approach in
order to create a hash-based compressed representation of the
distance-graphs for the document. These compressed repre-
sentations essentially function as fingerprints which can be
clustered and utilized for efficient query processing. The
distance-graph is a novel representation for text which was
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proposed in [1], and has the advantage of retaining partial
information about the underlying structure of the documen-
t. We further construct a compressed representation of the
distance graph, which can be leveraged for effective retrieval
and processing. Specifically, each document is compressed
into a stream of bits which retain partial information about
the underlying structure. This allows for efficient bitwise
matching operations during the query processing approach.
A clustering approach is used in order to further improve
the quality of the index representation. We provide experi-
mental results illustrating the effectiveness of the method.

This paper is organized as follows. In the next section, we
will discuss the distance-graph representation and its use
for creating an index. In section 3, we will discuss the al-
gorithm for query processing and provide an analysis of the
effectiveness of the approach. The experimental results are
presented in section 4. Section 5 contains the conclusions
and summary.

1.1 Related Work

The problem of text indexing has been widely studied in
the literature [5, 14] because of the tremendous application
to a wide variety of information retrieval applications. Tex-
t can either be indexed as strings [9] or as a bag-of-words
[12, 11]. The string-based indexing method [7, 9] works well
with strings in the biological domain, but is generally not
very widely used for text applications, because of the se-
mantic interpretability of words, and the variation in the
word order. The most widely used method for text index-
ing is the bag-of-words methods in terms of the inverted
index [2, 10, 12]. However, this approach is generally ef-
fective for smaller search queries, because a larger target
text document requires the access of a large number of in-
verted lists for query processing. While match queries can
be efficiently implemented over a small number of terms, a
large number of lists can make the retrieval process much
more challenging. Furthermore, the computation of more
involved distance functions such as the cosine function be-
comes computationally challenging with the use of an in-
verted file. Furthermore, it has been shown [1] that the
bag-of-words approach is also qualitatively not very effec-
tive for document-to-document retrieval, without the use of
information about word ordering in the target documents.
Some methods [4, 13, 15, 16] have proposed the mining of
phrases on order to improve the quality of similarity search,
though these methods are not designed as indexing schemes.
Therefore, efficiency continues to be a problem.

Another well known method for text indexing are those of
signature files [3, 5, 8, 6, 17]. The signature file also uses a
hash-based approach for signature construction, but it uses
a hash function of a fized range over the bag-of-words ap-
proach. It has been shown in [17], that such an approach is
not very effective for the case where there is tremendous vari-
ability in source and target document length, as would nat-
urally be the case in any corpus-to-corpus retrieval system.
In our fingerprint scheme, we use a 2-dimensional hashing
scheme, in which the range of the hash function is document-
dependent, the second dimension of the hashing is used to
increase the robustness required for effective similarity com-
putation. The conversion is applied on the distance graph
in order to retain information about word order.



2. STRUCTURE-BASED BIT STRING REP-
RESENTATION

When the target query is a document, as opposed to a set
of keywords, the relative ordering of the words are much
more important for the similarity search process. Larger
documents require a much more fine-grained search than a
bag-of-words representation, because of the greater impor-
tance of the word-ordering. Distance graphs are a natural
representation [1] which preserve a high level of information
about the ordering and distance between the words in the
document. In this paper, we will show how to leverage the
distance-graph representation in combination with a hash-
based index.

Before proceeding further, we will review the concept of a
distance graph, as defined in [1]. Distance graphs can be
defined to be of a variety of orders depending upon the lev-
el of distance information which is retained. Specifically,
distance graphs of order m retain information about word
pairs which are at a distance of at most m in the underlying
document. We define a distance graph as follows:

DEFINITION 1 (Di1sT. GRAPH [1]). A distance graph of
order m for a document D drawn from a corpus C is defined
as graph G(C,D,m) = (N(C), A(D,m)), where N(C) is the
set of nodes defined specific to the corpus C, and A(D,m)
is the set of edges in the document. The sets N(C) and
A(D,m) are defined as follows:

e The set N(C) contains one node for each distinct word
in the entire document corpus C. Therefore, we will
use the term “node i” and “word i” interchangeably to
represent the index of the corresponding word in the
corpus. Note that the corpus C may contain a large
number of documents, and the index of the correspond-
ing word (node) remains unchanged over the represen-
tation of the different documents in C. Therefore, the
set of nodes is denoted by N(C), and is a function of
the corpus C.

e The set A(D,m) contains a directed edge from node i
to node j if the word i precedes word j by at most m
positions at least once in the document. For example,
for successive words, the value of m is 1.

We note that the set A(D,m) always contains an edge from
each node to itself. This is because of the fact that any word
precedes itself at distance 0 by default.

For the purposes of representation, it is assumed that the
stop-words are removed from the text before distance graph
construction. In other words, stop-words are not counted
while computing the distances for the graph, and are also
not included in the node set N(C). This greatly reduces the
number of edges in the distance graph representation. This
also translates to better efficiency during processing.

We note that the order-0 representation contains only self
loops with corresponding word frequencies. Therefore, this
representation is quite similar to the vector-space represen-
tation. Representations of higher orders provide structural
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Figure 1: Illustration of Distance Graph Represen-
tation

insights of different levels of complexity. An example of
the distance graph representation for a well-known nursery
rhyme “Mary had a little lamb” is illustrated in Figure 1. In
this figure, we have illustrated the distance graphs of order-
s 0, 1 and 2 for the text fragment. The distance graph is
constructed only with respect to the remaining words in the
document, after the stop-words have already been pruned.
The distances are then computed with respect to the pruned
representation. Note that the distance graphs or order 0
contain only self loops. The number of edges in the rep-
resentation will increase for distance graphs of successively
higher orders. Another observation is that the frequency of
the self loops in distance graphs of order 2 increases over
the order-0 and order-1 representations. This is because
of repetitive words such as “little” and “lamb” which occur
within alternate positions of one another. Such repetitions
do not change the frequencies of order-0 and order-1 dis-
tance graphs, but do affect the order-2 distance graphs. We
note that distance graphs of higher orders may sometimes
be richer, though this is not necessarily true for orders high-
er than 5 or 10. It has been shown in [1] that it is better to
use distance graphs of lower orders such as 1 or 2.

In this paper, we use such a compression-based index on
top of this distance graph representation which (a) can be
efficiently used for document-to-corpus similarity search, (b)
can be used efficiently for corpus-to-corpus similarity search,
and (c¢) qualitatively more effective than a pure vector-space
based similarity.

2.1 A Hash-Based Fingerprint Index

In this section, we will present a hash-based compression
index for indexing the documents. We note that the num-
ber of possible distinct edges is very large is potentially the
size of the square of the underlying lexicon. For a lexicon of
size 10°, the number of possible distinct edges can be 10'°
or greater. The large domain size of distinct edges can cre-
ate a challenge for designing efficient indexing methods for
the distance graph representation. Hash-based methods are
a natural method for compressing the edge-inclusion infor-
mation, so as to ensure the ability of performing effective
similarity search. Furthermore, we use a binary representa-
tion of the hashed values, so as to ensure the use of efficient
bitwise operations during the similarity search process.

The fingerprint data structure consists of a two-dimensional
array with w - h binary cells with a length of A and width of
w. Since each cell is binary, it can be stored efficiently, with



only one bit. Each hash function corresponds to one of w
1-dimensional arrays with h cells each. Each such set of w-h
cells is used to store the representation of a single distance-
graph. As we will see later, the value of h is dependent
on the number of edges in the distance-graph. The binary
values in the cells are useful in keeping track of the presence
or absence of the different edges in the distance graph with
the use of a hash-based mapping.

The w - h cells in this fingerprint are defined with the use of
w independent hash functions, each of which take the string
representation of an edge as an argument, and map onto
uniformly random integers in the range [0,k — 1]. Each of
the w arrays of h cells is used to map the presence or absence
of edges in a particular distance graph with the use of one of
the hash functions. These different ways of mapping provide
more robustness to the mapping process. Thus, the (7, j)th
cell corresponds to the ith hash function mapping to the
value j — 1. For each edge in the distance graph, we apply
each of the w hash functions (to a string representation of the
edge) in order to obtain a mapping to a number in [0...h —
1]. When the ith hash function maps to value j, we set the
bit in cell (4,5 + 1) from the fingerprint to 1. Membership
can be checked for a particular edge in the distance graph
by evaluating whether all the w hash functions for that edge
map onto a cell with a value of 1. In some cases, different
distinct edges may be mapped onto the same cell by the hash
function. This is referred to as a collision, and it reduces
the accuracy of the representation. This is the reason that
w independent hash functions are used in order to improve
the robustness of the mapping process. The idea is to create
an approximate fingerprint which provides an accurate idea
of the inclusion information most of the time. As we will see
later, this representation can be used to create an efficient
and effective index for query processing.

In order to accommodate documents of different sizes in the
collection, we use hash functions of different ranges. The
documents are mapped to one of these sketch tables, de-
pending upon the number of edges in the corresponding dis-
tance graph. For a given document, for which the distance
graph contains L edges, we use a sketch table whose hash

function ranges in the interval {0. .. (2r10g(L)] —-1)-(14+a)},
where a > 0 is a user-defined parameter larger than 0. The
parameter « is referred to as the hash-range factor, as it af-
fects the range of the hash function, and the accuracy which
the document is represented. As we will see later, the value
of a regulates the level of accuracy of the hashing process.
Since the value of L can vary widely depending upon the
size of the document, it is clear that we need hash functions
of exponentially increasing ranges in order to accommodate
documents of different sizes. In order to facilitate further
discussion, we need to define the concept of the level of a
fingerprint. A fingerprint of the gth level uses hash func-
tions which lie in the interval [0...(27 — 1) - (1 + «)]. Each
fingerprint uses w different hash functions, which are inde-
pendent of one another. While these hash functions remain
the same for each document in a given level in the entire
corpus, they will naturally be different across different level-
s. This is because the range of the hash function is different
across different levels. The jth hash function of the gth lev-
el sketch table is denoted by ¢g%/(-). We note that the total
number of levels of fingerprints varies logarithmically in the
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maximum number of edges in any document. Therefore, the
number of levels is quite modest in practice.

Next, we discuss how a particular document can be con-
verted into the bit-wise format of the sketch table. Let us
consider a document D, which contains L edges. We use a
sketch table whose level ¢ and corresponding hash-function
range [0, (29 —1)- (14 «)] is defined by setting g = [log(L)].
For each edge between word nodes ¢ and j, we create a new
string by concatenating ¢, '#’, and j, and then apply the
hash functions directly to the newly concatenated string
i ® # @ j, where @ denotes the concatenation operator.
In addition, we explicitly store the number of distinct edges
in a particular document D. The number of distinct edges
in a particular document D is denoted by n(D).

The bit string representing the distance graph is of size

29-(14+a) = olog(z) -(14a), and therefore contains a num-
ber of bits which is at most a 2 - (1 4+ «) factor of the edges
in the distance graph. As we will see later, the use of the bit
representation facilitates efficient document-to-corpus simi-
larity search. The bit vector for the document D and the
ith hash function at the gth level is denoted by B?(D,1).
We define the fingerprint representation of a document as
follows:

DEFINITION 2  (FINGERPRINT REPRESENTATION). The
fingerprint representation of a document D with n(D) dis-
tinct edges (in the corresponding distance graph) and level
O(D) = [log(n(D))] is defined as the set of the following
values:

o The representation contains a set of w-h binary cells,
in the form of a 2-dimensional binary array. Each of
the w 1-dimensional arrays corresponds to a different
hash function, with corresponding bit vector BO®) (D, 1)
with h bits in it. The value of i (index of the hash func-
tion) may range from 1 through w. The value of w is
decided by the user. The range h of the hash func-
tion is 2°P) . (1 + a), where a > 0 is a user-defined
parameter.

e The fingerprint representation contains the number of
edges n(D) in the underlying distance graph.

2.2 Fingerprint-based Similarity

The most naive method for retrieving the document is to
directly use a sequential-scan based similarity search. Our
first step is to define a fingerprint-based similarity function,
which derives its motivation from the cosine function for
similarity. The bit-string representations lend themselves to
similarity computations because of the efficiency of bitwise
operations on many platforms. We define the similarity be-
tween two documents as the normalized dot product between
the corresponding representations. For a document D with
level O(D), let the vector B®P)(D, i) be the ith bit vector
which represents the presence of absence of edges in A(D, 7).
We note that the value of i may range from 1 through w.
Before defining the normalized dot product, we first define
the unnormalized dot product between the two fingerprint
vectors. The fingerprint dot product FDot(D1, D) is de-
fined only between documents of the same order.



DEFINITION 3. The fingerprint dot product between the
documents D1 and D2 of the same order q is defined as the
average of all dot products between BY(D1,1) and BY(D2,1)
over different values of the index i of the hash function.
;H:l Bq(Dhi) . Bq(D27i)

w

FDOt(Dl,DQ) = (1)

The dot product between each pair BY(D1,4) and BY(Das, 1)
can be computed quite simply as a dot product between two
bit string vectors of length h each.

We note that since documents are maintained in compressed
form, the similarity computation cannot be performed exact-
ly. The fingerprint representation however provides a way to
efficiently approximate the dot-product between the binary
representation of the underlying distance graphs. We fur-
ther use normalization factors in order to adjust for the fact
that different documents may contain a different number of
edges in the distance graph representations. These factors
are essentially the norms of the underlying vectors. The nor-
malized fingerprint similarity between documents D; and Do
is defined as follows:

DEFINITION 4  (NORMALIZED FIN. SIM.). The normal-
ized fingerprint similarity between D1 and D2 is obtained by
dividing un-normalized value by /n(D1) - n(D2). In other
words, if H(D1, D2) represent the normalized fingerprint dot
product, we have:

FDOt(D1, D2)

HDL Do) = D (D)

(2)

We note that the naive query processing technique requires
only bit vector computations, which are typically very ef-
ficient on most platforms. For example, the dot product
between the bit vectors B{D;,i) and BY(D2, ) can be com-
puted using the “AND” operations. The main factor to keep
in mind is that we have bit vector representations of multi-
ple levels, which need to be compared against a given target
document. Since the dot product is defined only between
documents of the same level, the target document needs to
be converted into different levels in order to enable similar-
ity computation across the whole collection. We note that
the number of levels is not very large, and is logarithmically
related to the size of the largest document. Therefore, if
Lmaz be the number of edges in the largest document, then
the number of levels is given by 10g,(Lmae). The target doc-
ument is transformed into representations of these different
levels. The representation of a given level of the target doc-
ument is used in order to perform retrieval with documents
of each level. In other words, when we transform the target
document to bit strings of level g, then we use only the doc-
uments of level ¢ for retrieval. The similarity computation
can be performed with the documents of the different levels,
and then the closest set of documents over different levels
can be combined together.

2.3 Faster Document-to-Corpus Queries

The last section provided a naive approach for perform-
ing faster document-to-corpus queries. In this section, we
will design a more efficient index which can use the hash-
based fingerprints for a more efficient solution. The overall
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Algorithm FindClosestDocument(Target: T,
Partitioned Groups: Gi ...Gr, O, NumOfNeighbors:
begin
PessimisticBound = 0;
BestSoFar = {};
Scan entire outlier set O and update
PessimisticBound and BestSoFar;
Compute Optimistic(i) for each G;;
for each ¢ € {1...r} in order of
reducing value of dot product of fingerprint
representation of 7" and F; do
begin
if Optimistic(i) > PessimisticBound
begin
Compute similarity of each fingerprint in
G; to the conversion of target document T’
to a fingerprint of the same level as G;
and update the values of BestSoFar and
PessimisticBound, if applicable
end
end
return(BestSoFar);
end end

Figure 2: Query Processing with Fingerprints

approach for performing faster document-to-corpus queries
uses a branch-and-bound pruning methodology, which seg-
ments the document collections into different clusters, and
then prunes some of these clusters in an ordered search pro-
cess. Specifically, we use two parameters y and y in order to
regulate the clustering process. The parameter v represents
the normalized radius of the cluster, whereas the parameter
w represents the critical mass of a cluster. Specifically, the
fingerprint representation C¥ of corpus C is partitioned into
groups Gi . ..G,, along with a special outlier group O which
satisfies the following properties:

e There exists a fingerprint representative F; € G;, such
that the fingerprint representation of each graph in G;
is at a maximum hamming distance of at most - h-w
to the representative point of its cluster. We call the
graph F; the medoid representative of group G;. The
parameter v is referred to as the hamming radius of
the group.

e Each group G; contains only fingerprints of a particu-
lar level. Since F; contains h - w bits, it follows that
the parameter « is a normalized radius which can be
compared effectively over fingerprints of different levels
and different number of hash functions.

e FEach group G; contains at least p fingerprints. This
is the critical mass requirement for each group, and is
essential in order to ensure an efficient pruning process.

Once these groups have been created, they can be used in
conjunction with a simple branch-and-bound technique in
level to perform the query processing.

Before discussing the process of construction of these groups
in more detail, we will discuss how they can be leveraged for
the purpose of query processing. Let us consider a corpus
C which has already been partitioned into groups Gi ...Gr,



along with the corresponding medoid representative F;. It
is assumed that the value of r is much less than the total
number of documents in the collection. This is also ensured
by the fact that we impose a minimum critical mass y on the
collection. Let us also assume that the fingerprint represen-
tation of the target document 7' is denoted by T. The first
step is to estimate the cosine distance between the target
fingerprint 7, and each of the different medoid representa-
tives Fi ... F.. As discussed earlier, this cosine distance is
computed by first estimating the dot product by using the
minimum of the dot product values over the w different bit
string representations. This is averaged over the w different
representations. This dot product is then normalized using
the norms of the two documents. This is possible since the
norms are stored explicitly with the fingerprints.

The overall approach is to compute the dot product of the
target document T to each of the fingerprint representa-
tives Fi...F, and sort them in order of decreasing value
of this dot product. The clusters associated with each of
these groups are then processed in order of reducing simi-
larity. In order to apply the branch and bound method, we
maintain a global pessimistic bound on the similarity value,
and a local optimistic bound which is specific to a particular
group. The cluster associated with a particular group may
be ignored for the purposes of further exploration if the lo-
cal optimistic bound is no better than the global pessimistic
bound. It remains to explain how the local optimistic bound
and global pessimistic bound are maintained for each group.

The global pessimistic bound for each group is simply the
closest fingerprint found to the target fingerprint so far. In
the event that we are trying the find the k best neighbors
(rather than the nearest neighbor only), this pessimistic
bound is set to the kth best value found so far. This global
pessimistic bound continues to improve over time, as more
fingerprints are compared to the target. Furthermore, the
different groups are processed in order of decreasing opti-
mistic bound. Therefore, as time passes, the chances of the
pruning condition being satisfied will increase monotonical-

ly.

The overall algorithm is illustrated by the algorithm Find-
ClosestDocument in Figure 2. The best set of documents
found so far is simply the set of k& documents with the high-
est fingerprint-based similarity. This is stored in the set
BestSoFar in Figure 2. The variable PessimisticBound
denotes the similarity of the kth best document in this set.
We first scan the entire outlier set O and compute the k best
neighbors from this set. We use these neighbors to update
BestSoFar and PessimisticBound. Next, we compute the
optimistic bound Optimistic(i) for each group, and process
them in reducing value of Optimistic(i). A group is scanned
only if Optimistic(i) is at least equal to PessimisticBound.
We note that the value of Optimistic(i) continually reduces
throughout the process (because of the sort order of process-
ing), and the value of PessimisticBound continues to in-
crease as more and more records are encountered. Therefore,
as soon as we reach the first group for which Optimistic(i)
is less than PessimisticBound, we are guaranteed that this
will continue to be the case for all remaining groups, and
we can terminate scanning any more groups for the near-
est neighbors. At this point, we can report the best set of
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documents found so far as the k nearest neighbors.

2.3.1 Computation of the Optimistic Bound

A key subroutine required for the use of the above method is
the computation of the optimistic bound of target document
T to the group G;. It remains to explain, how this optimistic
bound is computed. Let us consider the group G;, which has
the representative fingerprint denoted by F;. Let us assume
that the norm of the target document is n(7"). Let us as-
sume that the level of all documents in G; is q. Then, the
smallest number of edges in the distance graph representa-
tion of any document in this group is 27!, Then, it can be
shown that an optimistic bound of the fingerprint distance
of target document 7' to any document in G; is given by
Vn(F;)-H(T,F;) + v

2(a—1)/2 2<‘1*1>/2<\/n(7T)'

LEMMA 1. Let G; be any group of documents with lev-
el q and representative medoid fingerprint F; and hamming
radius y. Then, any documents in R; € G; has similarity
H(T, R;) to T, which satisfies the following upper bound:

H(T,R;) < Vn(Fi)'H(TvFi)+ v-h (3)
= 2(a—1)/2 20-1/2 .\ /n(T)

Proof Sketch: Let R; be any document in the group G;.
Then, the value of normalized dot product H(T, R;) is de-
fined as follows:

FDot(T, R;)

n(T) - v/n(R:)
In order to compute an optimistic (upper) bound on the
expression above, we need to compute an upper bound on
the numerator and a lower bound on the denominator. Since

the hamming distance between R; and F; is no larger than
~ -+ h-w, it follows that:

FDot(T, R;) < FDot(T, F;) +~-h

H(T,R;) = (4)

()

Furthermore, since the smallest number of edges in the dis-
tance graph for an document in this group (of level q) is
given by 2971, it follows that:

n(Ri) > 297 (6)

By substituting the upper bound of Equation 5, and the
lower bound of Equation 6 in the respective numerator and
denominator of Equation 4, it is possible to convert the ex-
pression of Equation 4 into an inequality which provides an
upper bound on H(T, R;). After performing the substitu-
tion and subsequent algebraic simplification, it is easy to
show the result. [J

The query processing method discussed above assumes that
the documents have already been partitioned into groups
G1...G, with the appropriate hamming thresholds. It re-
mains to show how this is done.

2.4 Constructing the Index Partition

Each partition G; of the index needs to contain fingerprints
which are of the same level. This step is executed as a
preprocessing step in order to create an index which is sub-
sequently used for repeated query processing. The first step



is to convert the corpus C into the fingerprint representation
C’. Let Lmae be the largest number of edges in any dis-
tance graph representation of the corpus C. We note that
this fingerprint representation contains documents of differ-
ent levels &1 ... Es, where &; is the set of documents in corpus
C of level 4. The value of s is log,(Lmaz)-

For the documents &; of the ith level, we use a two phase
processing approach for partitioning into groups with min-
imum mass g and (normalized) hamming radius . In the
first phase, we retain a set of representatives medoids Q,
which are initialized to a single fingerprint from &;. Asso-
ciated with the jth medoid in Q, we have a set of finger-
prints Z;. The documents are scanned one by one, and it
is checked whether the closest medoid in Q to the current-
ly being scanned fingerprint D is at a normalized hamming
distance of at most v across the w different hash functions.
If this is indeed the case, and the closest medoid is the jth
medoid, then we add the current fingerprint D to the set Z;.
Otherwise, we add the fingerprint D to the current medoid
set Q, which increases by 1. At the end of the first phase,
we have a representative medoid set Q for &;, though many
of the corresponding sets Z; to each medoid in Q may not
satisfy the critical mass requirement u. Therefore, each set
Z; which has less than p fingerprints needs to either be re-
distributed to a different representative medoid, or it needs
to be added to the outlier set. Therefore, at the beginning
of the second phase, we prune all medoids from Q which
have less than g fingerprints assigned to them. We create
a new subset of documents which were assigned to these
medoids. This subset of documents are scanned again one
by one, and it is checked whether the corresponding ham-
ming distance to the closest (remaining) medoid in pruned
set Q is less than . If this is the case, then this document
is re-assigned to the corresponding medoid. Otherwise, it is
added to the outlier set O. The set of medoids and their
assigned documents forms a valid partition of fingerprints
of level &;, which satisfies the hamming radius and critical
mass requirements. This process is repeated for documents
of each level &;, and the corresponding set of groups and the
outlier set is correspondingly augmented during this process.

2.5 Extension to Corpus-to-Corpus Similarity

Queries

The method can also be extended to the case of corpus-to-
corpus similarity queries. In this case, we have a target cor-
pus T, and we wish to determine all documents pairs from
(T,C), which have the largest similarity. The main differ-
ence in this case is the way in which the most similar objects
are tracked, and the optimistic and pessimistic bounds are
computed. The value of Optimistic(i) is now computed by
performing the same optimistic bound computation between
F; and each T € T, and then picking the particular value
of T' € T for which the optimistic bound is as large as pos-
sible. As in the previous case, we maintain the top k& most
similar candidates, except that in this case, we maintain the
target-document pairs. When a particular partition G; is not
pruned, we compute the similarity between each T' € T and
each document of the partition, and dynamically maintain
the k£ best candidates. The similarity between the kth best
pair is maintained as the pessimistic bound.
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2.6 Speeding up the Pruning with Approxi-

mation
It is possible to speed up the pruning process further, by
allowing some approximation in the determination of the
k nearest neighbors. We define an e-approximate set of k
nearest neighbors as follows:

DEFINITION 5  (e-APPROXIMATE NEAREST NEIGHBORS).
Any set S of k-nearest neighbors to the target T is said to be
e-approximate, if the similarity of each element in S to T is
at least within € of the similarity of the kth nearest neighbor
toT.

We note that this relaxation in the definition of the k near-
est neighbors can greatly speed up the pruning process. In
order to determine the e-approximate k-nearest neighbors,
the only difference in the algorithm is to use a relaxation on
the pruning condition. In this case, we prune a group G;, on-
ly if Optimistic(i) is no larger than PessimisticBound + e.
This relaxation of the pruning condition greatly speeds up
the search process. Furthermore, we will see that this re-
laxation does not affect the practical quality of the solution
obtained.

3. EXPERIMENTAL RESULTS

In this section, we will present the effectiveness and efficien-
cy results for our method. We used a variety of real data sets
in order to test the effectiveness of our approach. Our goal
is to show that the approach is able to achieve significantly
greater efficiency than the baseline which uses the inverted
index. In addition, we will show that the similarity function
which is used by the fingerprint method also continues to
retain its effectiveness. All experiments were conducted on
a Lenovo X61 running Windows 7 Ultimate with an Intel
Core2 Duo T8300 Pentium 4 processor with a speed of 2.4
GHz, 2 GB of RAM, and a 160 GB hard drive. We imple-
mented our algorithms in Java using jdk 1.6 and a virtual
memory of 1GB.

3.1 Baseline Method

The baseline method for our scheme was the inverted repre-
sentation for indexing. In this context, we used the standard
cosine measure for similarity based on the tf-idf representa-
tion of the text documents. The inverted representation
is described in [12], and was implemented as follows. For
each word in the lexicon, we created an inverted list with
the document identifiers containing the word. Each of these
document identifiers was attached to a normalized frequency
(of the word in the document), and the corresponding Lo-
norm of the (normalized) frequencies. The Ly-norm of the
frequencies is required in order to compute the normalized
value of the cosine similarity. For each target document, we
determined the corresponding inverted lists, and maintained
a set of floating point counters for each document identifier
occurring in any of these inverted lists. These counters were
used in conjunction with the method discussed in [12] for
computing the closest documents to the target.

3.2 Evaluation Measures

Since the nature of the similarity function changes with the
use of the fingerprint method, it is critical that the corre-
sponding quality of the distances continue to be maintained.



Therefore, we need to test not only for efficiency, but also
for effectiveness. One way of testing the quality is to use an
external criterion in terms of class labels. For a given target
corpus query set, we ranked all the source-target document
pairs in order of reducing similarity, and picked the top 10%
of the pairs based on different similarity measures. We com-
puted the fraction of times that these pairs matched in class
label value. We refer to this as the label match purity, and
express this as a fraction in the range [0, 1].

We also tested the efficiency of the query processing time for
both schemes. For the case of the standard cosine similarity,
the inverted index was used for query processing. We also
tested the index construction time for both the fingerprint
and inverted representations.

3.3 Data Sets

The data sets used were commonly used for evaluation of au-
tomatic text categorization techniques. All words in these
data sets were stemmed and the stop-words were removed.
Since these data sets were derived from classification appli-
cations, each of them had a clearly demarcated training and
test data set. In each case, we sampled the query set from
the test collection and used the training data as the corpus
to be queried:

Reuters-21578: The Reuters-21578 data set contains doc-
uments from Reuters newswire service. We downloaded the
"R8” version' of the Reuters-21578 data set which contains
the top 8 most frequent classes and includes 2189 test doc-
uments and 5485 training documents.

20 Newsgroups Data Set: The 20 Newsgroups data set is
a collection of approximately 20,000 newsgroup documents,
which are partitioned (nearly) evenly across 20 different cy-
bergroups. We chose the "bydate” version? of 20 Newsgroups
which contains 7528 test documents and 11293 training doc-
uments.

CADE Data Set: The web pages for this data set® were
extracted from the CAD Web Directory, which are Brazilian
web pages classified by human experts. These data set con-
tains 13661 test documents and 27322 training documents.

3.4 Effectiveness Results

First, we will present the effectiveness results of the finger-
print representation in terms of the quality of the similar-
ity search. This is necessary, because the use of the fin-
gerprint representation results in a change in the similarity
function. Unless otherwise mentioned, we set the normal-
ized hash range a to 3, the number of hash functions w to
1, the order of the distance graph m to 1, u to 10, and the
normalized radius for building the fingerprints to 1. In each
case, we used a query-corpus size of 1000. The purity results
for different data sets and variations of the parameters are
illustrated in Figures 3(a) to (g). We will now describe the
detailed results in each of the figures below.

In Figures 3(a) to (c), we have illustrated the variation in la-
bel purity with increasing value of the hash range factor « for
the Reuters, 20 Newsgroup, and Cade data sets respective-
ly. The hash range factor is illustrated on the X-axis, and

Thttp://web.ist.utl.pt/ acardoso/datasets,/
http://web.ist.utl.pt/ acardoso/datasets/
3http://web.ist.utl.pt/ acardoso/datasets/
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the label purity is illustrated on the Y-axis for each figure
(and corresponding data set). The results for the standard
tf-idf based similarity are also illustrated in the same figure.
Since the cosine similarity does not use the parameter a,
the value for the traditional similarity measure is a horizon-
tal line in all cases. We note that the fingerprint scheme
performed better for increasing values of «a, because this re-
sults in a larger hash range, and therefore fewer collisions.
We note that for values of « larger than 1, the fingerprint
scheme always has a higher effectiveness as compared to the
traditional similarity scheme.

In Figure 3(d), we have illustrated the variation in the effec-
tiveness with different normalized radius rates. All schemes
are illustrated on the same figure. We note that the radius
rate controls the granularity of the clustering process. We
have also illustrated the effectiveness of the tf-idf scheme in
the same figure, but this effectiveness is always a horizontal
line, since the radius parameter is specific to our scheme.
The radius parameter is illustrated on the X-axis, whereas
the cluster purity for all schemes and all data sets are illus-
trated on the Y-axis. All other parameters are set to their
default values mentioned above. It is evident that the finger-
print scheme is insensitive to the value of the radius. This
is quite encouraging, because it implies that the scheme can
be used effectively with a wide range of parameters. In each
case, the fingerprint scheme performs at least slightly better
than the tf-idf method, though the difference is small at this
choice of parameters for two of the data sets (Reuters and
20 Newsgroup). In the case of the Cade data set, however,
the difference is quite significant. These results also show
that the scheme is quite robust to different choices of the
radius.

We also note that the choice of € decides the level of approx-
imation for the scheme. An increase value of € facilitates a
greater level of pruning (and therefore better efficiency) at
the expense of quality. Therefore, it was interesting to test
the level of quality degradation over different choice of the
parameter €. The results are illustrated in Figure 3(e). All
parameters were set to the default values mentioned above.
The value of € is illustrated on the X-axis, whereas the label
match purity is illustrated on the Y-axis. It is evident that
for values of € < 0.25, the fingerprint scheme maintained its
entire quality. However, if the value of ¢ was chosen to be
too large, the quality of the solutions degraded. We will also
show in the efficiency section, that the use of larger values of
€ also improved the underlying query processing times dras-
tically. Savings were also achieved for values of € which were
less than 0.25.

We note that multiple hash functions were used in order to
improve the robustness of the scheme. In Figure 3(f), we
have tested the effectiveness of the fingerprint scheme for
different number of hash functions. This is denoted by the
parameter w. The results are illustrated for all three data
sets as a bar chart for different number of hash function-
s. We have also included a bar for the effectiveness of the
baseline tf-idf scheme. One of our interesting observations
was that the use of more than one hash function did not
improve the accuracy much in most cases (at least in the
average case). Therefore, it was possible to use an efficien-
t scheme using only one hash function, without losing too
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much effectiveness. We also tested the scheme for distance
graphs of different orders, which is denoted by the parameter
m. The results are illustrated in Figure 3(g) for all the three
data sets. It is evident that in each case, the use of distance
graphs of order 1, provided optimum results in all cases for
the different data sets. This is a useful observation, since
distance graphs are quite sparse, and it is possible to imple-
ment the algorithms quite efficiently for distance graphs of
this order.

One summary observation from the different results present-
ed is that the effectiveness of the fingerprint representation is
either competitive to or superior to the tf-idf method for all
data sets. Furthermore it is quite robust to the variation in
different parameter values, and it works well for low values of
the distance graph order and number of hash function. The
latter observation bodes well for its efficiency. In fact, we
will show that the fingerprint method also has tremendous
efficiency advantages over the tf-idf scheme. On an overall
basis, this would suggest that the fingerprint scheme has a
clear advantage over the baseline both in terms of effective-
ness and efficiency. In the next section, we present detailed
efficiency results.

3.5 Efficiency Results

The fingerprint scheme has a pre-processing stage which is
a one-time cost required for creation of the index. The tf-idf
scheme also has a one-time cost required for index creating.
The running times for index creation of both schemes are
illustrated in Figure 4(a). It is evident that the fingerprint
scheme requires more time for index construction because it
is more complex than the simple inverted index, and it re-
quires a clustering stage for partitioning of the index. How-
ever, we note that this is simply the pre-processing time,
which is a one-time cost, and the query-processing times are
much more critical in terms of usability of the scheme. Both
the schemes require a few minutes for index construction,
and this is quite acceptable for a one-time cost. As we will
see below, the fingerprint scheme provides significant sav-
ings in terms of query processing time, the importance of
which outweighs any overhead for one-time pre-processing.

For the case of query efficiency, we tested both the document-
to-corpus and the corpus-to-corpus queries separately, be-
cause (unlike effectiveness), these two kinds of queries be-
have in a fundamentally different way. As in the previous
case, we tested both the fingerprint and the tf-idf scheme.
Unless otherwise mentioned, we set the normalized hash
range « to 1, the number of hash functions w to 1, the order
of the distance graph m to 1, u to 10, and the normalized
radius for building the fingerprints to 1. In each case, we
used a default query corpus size of 1000.

In Figure 4(b), we have illustrated the efficiency of the corpus-
to-corpus queries (CC Queries) with increasing value of the
normalized radius for all the three data sets. The results
for the tf-idf method are also presented as a horizontal line,
as the results do not depend upon the normalized radius.
The normalized radius is illustrated on the X-axis, and the
query time is illustrated on the Y-axis. It is evident that
the fingerprint method was always significantly more effi-
cient than the tf-idf method, and the query times increased
slightly with increasing radius. We have also presented the
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results for the document-to-corpus queries (DC queries) in
Figure 4(c). The results are quite similar to the case of the
corpus-to-corpus queries.

The parameter € is used in order to control the level of ap-
proximation of the scheme. In Figure 4(d), we have illus-
trated the efficiency variation with the parameter € for all
three data sets. The parameter € is illustrated on the X-axis,
whereas the query time is illustrated on the Y-axis. It is evi-
dent that the efficiency increasing with increasing value of e.
This is because a larger fraction of the data is pruned with
increasing value of the parameter e. An important point to
remember from our earlier effectiveness results in Figure 3(e)
is that the quality of the results maintain their robustness
over a wide range of values for the parameter €. Therefore,
the greater efficiency can be achieved at practically no loss
in accuracy.

We also tested the scalability of the method with increas-
ing text corpus size and query-corpus size. The scalabili-
ty results with increasing text corpus size for the corpus-
to-corpus and document-to-corpus queries are illustrated in
Figures 3(e) and (f) respectively. While the tf-idf method
scales linearly with increasing text collection size, the fin-
gerprint method scales sublinearly with text collection size.
This is because the efficiency of branch-and-bound increas-
es with increasing database size. For the same fraction of
database access, a larger collection allows for better prun-
ing because of superior pessimistic bounds. In each case,
the fingerprint method is much more efficient than the tf-idf
method.

We also tested the scalability of the corpus-to-corpus queries
with increasing query corpus size. The results for the corpus-
to-corpus and document-to-corpus queries are illustrated in
Figures 3(g) )respectively. The tf-idf method needs to itera-
tively go through all the query documents, and its scalability
is therefore linear with query size. On the other hand, the
fingerprint method has the advantage of better pruning with
increasing query corpus size. Therefore, it shows sublinear s-
calability with increasing query corpus size. Furthermore, it
continues to be significantly more efficient than the baseline
tf-idf method in all cases. This suggests that the fingerprint
scheme is more efficient and scalable with increasing query-
and database sizes in a wide variety of scenarios.

4. CONCLUSIONS AND SUMMARY

In this paper, we presented an efficient fingerprint-based in-
dex which provides the first available technique for resolving
corpus-to-corpus queries. Such queries have become increas-
ingly important in real scenarios because of search scenarios
in which it may be desirable to determine documents which
could be similar to any member from a particular query cor-
pus. We designed an efficient fingerprint-based scheme in
conjunction with a branch-and-bound method, which pro-
vides better accuracy than the tf-idf method in terms of
quality, is significantly more efficient, and also shows sublin-
ear scalability with increasing corpus and query sizes. The
sublinear scalability also suggests that the approach is par-
ticularly useful for very large databases and query sets, which
is the most difficult case in practical scenarios.
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