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ABSTRACT
The goal of Knowledge Compilation is to represent a Boolean
expression in a format in which it can answer a range of
online-queries in PTIME. The online-query of main interest
to us is model counting, because of its application to query
evaluation on probabilistic databases, but other online-queries
can be supported as well such as testing for equivalence, test-
ing for implication, etc. In this paper we study the following
problem. Given a database query q, decide whether its lin-
eage can be compiled efficiently into a given target language.
We consider four target languages, of strictly increasing ex-
pressive power(when the size of compilation is constrained to
be polynomial in the input size): Read-Once Boolean formu-
lae, OBDD, FBDD and d-DNNF. For each target, we study
the class of database queries that admit polynomial size rep-
resentation: these queries can also be evaluated in PTIME
over probabilistic databases. When queries are restricted
to conjunctive queries without self-joins, it was known that
these four classes collapse to the class of hierarchical queries,
which is also the class of PTIME queries over probabilistic
databases. Our main result in this paper is that, in the case
of Unions of Conjunctive Queries (UCQ), these classes form
a strict hierarchy. Thus, unlike conjunctive queries without
self-joins, the expressive power of UCQ differs considerably
w.r.t. these target compilation languages. Moreover, we give
a complete characterization of the first two target languages,
based on the query’s syntax.
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1. INTRODUCTION
The goal of Knowledge compilation [6, 13, 27] is to rep-

resent a Boolean expression in a format in which it can
answer a range of problems, also called online-queries, in
PTIME. Typical problems are satisfiability, validity, impli-
cation, model counting, substitution with constants, sub-
stitution with functions. For example, the model counting
problem asks for the number of satisfying assignments to
a Boolean expression; the more general probability compu-
tation problem asks for the probability of that expression
being true, if every variable is true/false independently with
some probability. If one compiles the Boolean expression
into (say) an FBDD , then the model counting problem and
the probability computation problem can be solved in lin-
ear time in the size of the FBDD . Different compilation
languages can solve efficiently different classes of problems,
in time polynomial in the size of compiled expression. This
motivates the need to know if an expression can be com-
piled into a small-sized or compact representation in a given
language.

The provenance of a query on a relational database is an
expression that describes how the answer was derived from
the tuples in the database [17]. In this paper, we are inter-
ested in the flavor of provenance called PosBool in [25] (see
also [18]), which we will refer to as lineage. The lineage is
a Boolean expression over Boolean variables corresponding
to tuples in the input database. Our goal in this paper is
to identify queries whose lineage admits a compact compila-
tion. Our main motivation comes from (but is not limited to)
probabilistic databases, where the problem is the following:
given a query and a probabilistic database (i.e. each tuple
has a given probability), compute the probability of each
query answer [10]. If the lineage has been compiled into a
compact format that supports the probability computation,
then one can compute the output probabilities efficiently. In
this paper we study queries whose lineage always admits a
compact compilation, on any database instance. We are only
interested in the data complexity i.e. we assume the query
size to be a constant. Our query language is that of unions
of conjunctive queries, UCQ , and, as usual, we restrict our
discussion to Boolean queries.

We consider four compilation targets. For each target T ,
we denote UCQ(T ) the class of UCQ queries whose lineage
admits a compact compilation in T for all input databases.
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Query Syntactic Membership in UCQ(T ), where T is
properties RO OBDD FBDD UCQ P

q1 = R(x1)S(x1, y1) ∨ S(x2, y2)T (x2) inversion-free;
read-once

yes yes yes yes yes

q2 = R(x1), S(x1, y1), S(x2, y2), T (x2) inversion-free no yes yes yes yes

qV = R(x1), S(x1, y1)

∨ S(x2, y2), T (y2)

∨R(x3), T (y3)

has inversion;
all lattice points
have separators

no no yes yes yes

qW =

(R(x1), S1(x1, y1) ∨ S2(x2, y2), S3(x2, y2))

∧ (R(x3), S1(x3, y3) ∨ S3(x4, y4), T (y4))

∧ (S1(x5, y5), S2(x5, y5) ∨ S3(x6, y6), T (y6))

lattice point 0̂
has no separator
but is erasable

no no no yes yes

q9 in Fig. 1

lattice point 0̂
has no separator
and has µ = 0
and is non-
erasable

no no no ? yes [11]

h1 = R(x1), S(x1, y1) ∨ S(x2, y2), T (y2)
lattice point 0̂
has no separator
and has µ 6= 0

no no no no no∗ [8, 11]

Table 1: Several representative queries. All queries are hierarchical, and have the additional syntactic
properties shown. 0̂ denotes the minimal element of the query’s CNF-lattice; µ its Mobius function. Queries
q2, qV , qW separate the corresponding classes. We conjecture that q9 separates UCQ(UCQ) from UCQ(P ). ∗ h1

separates UCQ(P ) from UCQ, assuming FP 6= #P .

The first target are Read Once formulas, RO . A Boolean
expression is RO if it can be written using the connectors
∧, ∨, ¬ in such a way that every input variable is used only
once. Read-once formulas admit an elegant characterization
due to Gurvich [19] (see [16]). Thus, UCQ(RO) is the class
of queries q such that for every input database, the lineage
of q on that database is a read-once formula. The second
and third targets are Ordered and Free BDD. A Binary De-
cision Diagram1, BDD, is a rooted DAG where each internal
node is labeled with a variable and has two outgoing edges
labeled 0 and 1, and each sink node is labeled either 0 or 1.
A BDD can be used to compute the value of the Boolean
expression: starting at the root node, at each variable node
follow the 0 or the 1 edge according to the variable’s value,
stop after reaching a sink node, and return its label. A
BDD is free (hence FBDD) if any path from the root to a
sink node reads every variable at most once. An FBDD is
ordered (hence OBDD) if there exists a total order on the
Boolean variables s.t. any path from the root to a sink node
reads the variables in this order (it may skip some variables).
Thus, UCQ(OBDD) and UCQ(FBDD) denote the class of
queries q s.t. that for any database instance D, the lineage
of q on D admits an OBDD (FBDD) of polynomial size in
D. Finally, our fourth target are d-DNNF, introduced by
Darwiche [12] (see also [13]), which are DAGs whose leaves
are labeled with Boolean variables or their negation, and in-
ternal nodes are labeled either an independent-∧ (where the
two children must have distinct sets of Boolean variables),
or with disjoint-∨ (where the two children must be exclu-

1BDD are also known as Branching Program(BP) in the
literature

sive Boolean formulas). UCQ(UCQ) represents the class of
queries whose lineage admits a polynomial size d-DNNF, for
any input database.

In addition to these four classes defined by a compila-
tion target, we also consider UCQ(P ), the class of queries q
with the property that, for every probabilistic database D,
the probability of q on D can be computed in PTIME in the
size ofD. It follows from known results that these five classes
form an increasing hierarchy: UCQ(RO) ⊆ UCQ(OBDD) ⊆
UCQ(FBDD) ⊆ UCQ(UCQ) ⊆ UCQ(P ).

Dalvi and Suciu [9, 10] have studied the evaluation prob-
lem over probabilistic databases for conjunctive queries with-
out self-joins, denoted here CQ−, and showed that the class
of queries computable in PTIME, CQ−(P ), consists pre-
cisely of hierarchical queries (reviewed in Sect. 2). Olteanu
and Huang [20] have shown a remarkable result: that for
any hierarchical query, its lineage is a read-once formula. In
other words, they explained that the reason why hierarchical
queries can be computed in PTIME is because their lineage
is read once. This immediately implies (assuming FP 6=
#P ) that the following five classes collapse: CQ−(RO) =
CQ−(OBDD) = CQ−(FBDD) = CQ−(UCQ) = CQ−(P ).

In this paper we show that, on unions of conjunctive
queries (UCQ), these classes no longer collapse. In fact
they form a strict hierarchy: UCQ(RO) ( UCQ(OBDD) (
UCQ(FBDD) ( UCQ(UCQ) ⊆ UCQ(P ). This means that
the reason why certain queries can be computed in PTIME
over probabilistic database is no longer their read-onceness,
or any other efficient compilation method. (We were not
able to separate UCQ(UCQ) from UCQ(P ) but we conjec-
ture that they are also separated); instead, each notion of
efficiency is distinct. We refer to Table 1 to discuss our
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results.
Our results make use of three syntactic properties of a

query, called inversion [8], separator [11], and hierarchical
queries [10], reviewed in Sect. 2. The following strict impli-
cations hold: inversion-free implies existence of separators
at all levels, which implies the query is hierarchical.

We give a complete characterization of UCQ(RO) and
UCQ(OBDD). UCQ(OBDD) coincides with inversion-free
queries. UCQ(RO) coincides with queries that are both
inversion-free and can be written using ∧,∨, ∃ such that ev-
ery relation symbol occurs only once. For example, q1 in Ta-
ble 1 can be written as ∃x.((R(x) ∨ T (x)) ∧ ∃y.(S(x, y))):
here each symbol R,S, T occurs only once and, since q1 is
also inversion-free, it follows that it is in UCQ(RO). Note
that the characterization of UCQ(RO) is unrelated to Gur-
vich’s characterization of read-once Boolean expressions [19,
16], or to the algorithm for checking read-once-ness in [22]:
these results are about the lineage, our result is about the
query.

For UCQ(FBDD) and UCQ(UCQ), we only give sufficient
conditions by making use of the CNF-lattice associated to
a query (introduced in [11]), where each lattice element x
is labeled by a subquery, denoted λ(x). A sufficient condi-
tion for a query to be in UCQ(FBDD) is for every lattice
element to have a separator and to satisfy some additional
condition. A sufficient condition for UCQ(UCQ) is that
every lattice element must have a separator, except those
lattice elements that can be erased (a notion we define in
Sect. 6). For comparison, the necessary and sufficient con-
dition for UCQ(P ) is that every lattice element must have
a separator, except those lattice elements where the Mobius
function is 0 (µ = 0) [11]. If an element can be erased, then
its Mobius function is 0, but the converse is not true, as
illustrated by q9 in Table 1. We conjecture that q9 is not in
UCQ(UCQ).

The most difficult results in this paper are the separation
results UCQ(OBDD) ( UCQ(FBDD) ( UCQ(UCQ); they
are separated by the queries qV and qW respectively in Ta-
ble 1. The lineage for queries in UCQ is a simple Boolean
expression: it is monotone, and has a DNF expression of
polynomial size. In this sense, our separation results make
important contributions to the general separation problem of
polynomial-size OBDD , FBDD , and d-DNNF. Early lower
bounds for FBDD were for non-monotone formulas, with
exponential size DNFs. The first “simple” Boolean formula
shown to have exponential FBDD was given by Gál in [14],
followed by a “very simple” formula given by Bollig and We-
gener [1]. The latter is of importance to us, because that
formula is precisely the lineage of the non-hierarchical query
R(x), S(x, y), T (y), and it implies that all non-hierarchical
queries have exponential size FBDD , but says nothing about
hierarchical queries (qW is hierarchical).

The lineage of the query qV , that we use for the first major
separation UCQ(OBDD) ( UCQ(FBDD) is, to the best of
our knowledge, the first “simple” Boolean formula separat-
ing polynomial-size OBDD from FBDD . Previous Boolean
formulas separating the two classes are non-monotone, and
do not have polynomial size DNFs. The classic example is
the Weighted Bit Addressing problem (WBA), defined as
F (X1, . . . , Xn) = XP

i=1,nXi
(where X0 = 0). Bryant [5]

has shown that has it has no polynomial size OBDD , while
Gergov and Meinel [15] and independently Sieling and We-
gener [23] have shown that WBA has a polynomial sized

FBDD . More examples are given in [26]. Our charac-
terization of UCQ(OBDD) and UCQ(FBDD) allows one
to give a class of simple boolean expressions that separate
polynomial-size OBDD from FBDD .

The lineage of the query qW that we use for our second
major separation UCQ(FBDD) ( UCQ(UCQ) is also, to
the best of our knowledge, the first “simple” Boolean for-
mula separating polynomial-size FBDD from d-DNNF. The
previous separation relies on a result due to Bollig and We-
gener [2]: they give an example of two Boolean formulas
Φ1,Φ2 that have polynomial size OBDD , Φ1 ∧ Φ2 ≡ false,
yet Φ1 ∨ Φ2 cannot have polynomial size FBDD . Hence
Φ1 ∨ Φ2 separates d-DNNF from FBDD .

Finally, we note that no lower bounds for d-DNNFs are
presently known, except for formulas whose probability com-
putation problem is hard for #P. In particular, we leave
open the question whether UCQ(UCQ) ( UCQ(P ). How-
ever, our algorithm in Sect. 6 suggests how d-DNNFs may be
constructed for general queries, which further suggests that
this is not possible for q9. We conjecture that q9 is not in
UCQ(UCQ), and, hence, that its lineage has no polynomial
size d-DNNF.

The paper is organized as follows. We give the basic defi-
nitions and review the relevant results in [11] in Sect. 2, then
discuss read-once, OBDD , FBDD , and d-DNNF in Sect. 3,
Sect. 4, Sect. 5, Sect. 6. We conclude in Sect. 7. The missing
proofs can be found in the full version of this paper.

2. BACKGROUND AND DEFINITIONS
In this paper we discuss unions of conjunctive queries

(UCQ), which are expressions defined by the following gram-
mar:

Q ::=R(x̄) | ∃x.Q1 | Q1 ∧Q2 | Q1 ∨Q2 (1)

R(x̄) is a relational atom with variables and/or constants,
whose relation symbol R is from a fixed vocabulary. We
replace ∧ with comma, and drop ∃, when no confusion arises:
for example we write R(x), S(x) for ∃x.(R(x) ∧ S(x)).

A query is an expression as defined by Eq. 1, up to logical
equivalence. We consider only Boolean queries in this paper.
A conjunctive query (CQ) is a query that can be written
without ∨. Given two conjunctive queries q, q′, the logical
implication q ⇒ q′ holds iff there exists a homomorphism
q′ → q [7].

Let D be a database instance. Denote Xt a distinct
Boolean variable for each tuple t ∈ D. LetQ be a UCQ . The
lineage of Q on D is the Boolean expression ΦDQ , or simply
ΦQ if D is understood from the context, defined inductively
as follows, where ADom(D) denotes the active domain of
the database instance:

ΦR(ā) = XR(ā) Φ∃x.Q =
_

a∈ADom(D)

ΦQ[a/x] (2)

ΦQ1∧Q2 = ΦQ1 ∧ ΦQ2 ΦQ1∨Q2 = ΦQ1 ∨ ΦQ2 (3)

The query evaluation problem on probabilistic databases
is the following. Given numbers p(t) ∈ [0, 1], compute the
probability that the formula ΦQ is equal to 1, if each Boolean
variable Xt is set to 1 independently, with probability p(t);
the resulting probability is denoted P (Q) = P (ΦDQ).
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1̂

0̂ = d1 ∨ d2

d1
d2

d1

d1 ∨ d2

0̂ = d1 ∨ d2 ∨ d3

d2 ∨ d3

d3d2

d1 = h30 ∨ h32

qW = d1 ∧ d2 ∧ d3 q9 = d1 ∧ d2 ∧ d3 ∧ d4

d1 d2
d3

d1 ∨ d2

1̂

d4

0̂ = d1 ∨ d2 ∨ d3 ∨ d4

d1 ∨ d3 d2 ∨ d3

d4 = h30 ∨ h31 ∨ h32

d3 = h30 ∨ h33

d2 = h31 ∨ h33

d1 = h32 ∨ h33

qV = d1 ∧ d2

1̂

d1 = R(x1), S(x1, y1)

∨ T (y2)

d2 = S(x2, y2), T (y2)

∨ R(x1)
d3 = h31 ∨ h33

d2 = h30 ∨ h33

Where:

h30 =R(x0), S1(x0, y0)

h31 =S1(x1, y1), S2(x1, y1)

h32 =S2(x2, y2), S3(x2, y2)

h33 =S3(x3, y3), T (y3)

Figure 1: CNF Lattices for the queries qV , qW , and q9. In the lattices for qW and q9, µ(0̂, 1̂) = 0; in all other
cases, µ(x, 1̂) 6= 0. In qW the element 0̂ is erasable (Def. 6.4); in q9, the element 0̂ is not erasable.

Definition 2.1. UCQ(P ) is the class of UCQ queries Q
s.t. for any probabilistic database D, the probability P (Q)
can be computed in PTIME in the size of D.

A complete characterization of the class UCQ(P ) was
given in [11]. We review here, since we will reuse many
of those concepts, and also present some new results that
we need in this paper. We start with some basics:

• A component, c, is a conjunctive query that is con-
nected if whenever c ≡ q1 ∧ q2 then either c ≡ q1 or
c ≡ q2. If c has no constants, then an equivalent def-
inition is: whenever q1, q2 are two conjunctive queries
without constants and q1 ∧ q2 ⇒ c then either q1 ⇒ c
or q2 ⇒ c.

• Every conjunctive query can be written as a conjunc-
tion of components, q = c1, c2, . . . , ck. If q has no
constants, then the implication q ⇒ q′ holds iff ∀j.∃i
s.t. ci ⇒ c′j .

• A disjunctive query is a disjunction of components, d =
c1 ∨ . . . ∨ ck. An implication d⇒ d′ holds iff ∀i.∃j s.t.
ci ⇒ c′j .

• A UCQ in DNF is an expression of the form Q =
q1 ∨ . . . ∨ qm. An implication Q ⇒ Q′ holds iff ∀i.∃j
s.t. qi ⇒ q′j .

• A UCQ in CNF is an expression of the form Q = d1 ∧
. . . ∧ dm. If no constants are used in the queries, then
the implication Q⇒ Q′ holds iff ∀j.∃i s.t. di ⇒ dj .

The containment condition for DNF is due to Sagiv and
Yannakakis [21]. The containment condition for CNF is
from [11], and only holds if the queries have no constants: for
example R(x, a), S(a, z)⇒ R(x, y), S(y, z) (where a is a con-
stant), but neither R(x, a) 6⇒ R(x, y), S(y, z) nor S(a, z) 6⇒
R(x, y), S(y, z).

Following [11] we first perform the following transforma-
tions on the query. They preserve the lineage of the query
and hence membership in UCQ(P ) and all the classes con-
sidered in this paper.

Remove constants Every query with constants is rewrit-
ten into an equivalent query without constants, over

an extended vocabulary. For example, R(x, a), S(x) ∨
R(x, y), T (x) is rewritten as R1(x), S(x)∨R1(x), T (x)∨
R2(x, y), T (y), where R1(x) = πx(σy=a(R(x, y))) and
R2(x, y) = σy 6=a(R(x, y)).

Ranking Assume an ordered domain. A query is ranked if
it remains consistent after adding all predicates of the
form x < y, for all pairs of variables x, y that co-occur
in some atom, with x occuring before y. For example,
R(x, y), R(y, z), R(x, z) is ranked (x < y∧y < z∧x < z
is consistent), while R(x, y), R(y, x) is not ranked (x <
y ∧ y < x is inconsistent), and R(x, x, y) is not ranked
(x < x ∧ x < y is inconsistent). Every query is rewrit-
ten into an equivalent, ranked query, over an extended
vocabulary. We give here the main intuition by illus-
trating with q = R(x, y), R(y, x), and refer to [11] for
further details. Denoting R1(x) = πx(σx=y(R(x, y))),
R2(x, y) = σx<y(R), R3(y, x) = πyx(σx>y(R)), we
rewrite the query as R1(x1) ∨ R2(x2, y2), R3(x2, y2).
The new query is ranked.

The reason for the first transformation is to ensure that
the implication criteria for CNF expressions holds. As a
consequence, every UCQ has a unique, minimal representa-
tion in DNF, and a unique, minimal representation in CNF.
The reason for the second transformation will become clear
below. We will assume throughout the paper that a CNF or
DNF expression of a query is minimized.

The first step in characterizing UCQ(P ) is to describe a
class of disjunctive queries that are hard for #P, using the
notion of a separator. Consider a query, and a subexpression
of the form ∃w.Q (see grammar Eq. 1): the scope of the
variable w is the subexpression Q.

Definition 2.2. A variable w is called a root variable if
it occurs in all atoms in its scope.

For a simple illustration, consider ∃x.∃y.R(x) ∧ S(x, y).
Then x is a root variable, but y is not. However, we can
write the query equivalently as ∃x.R(x) ∧ (∃y.S(x, y)): now
both x and y are root variables.

Definition 2.3. A disjunctive query d has a separator if
d ≡ ∃w.Q, w is a root variable, and for every two atoms
g, g′ with the same relational symbol, w occurs in the same
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position in g and in g′. The variable w is called a separator
variable.

Theorem 2.4. [11] Let d be a ranked disjunctive query
s.t. each component has at least one variable. If d has no
separator, then d is hard for #P.

If d has any component without variables then it has no
separator: for example d = R() ∨ S(x) has no separator be-
cause there is no root variable in R(). Evey disjunctive query
can be written as d = d0 ∨ d′ where d0 contains all com-
ponents without variables and d′ contains all components
with variables. Since d0 and d′ are independent probabilistic
events, computing P (d) reduces to computing P (d′). This is
the reason why the theorem focuses only on the latter. Note
that the theorem holds only if the query is ranked: for a
counter-example, R(x, y), R(y, x) has no separator, yet is in
UCQ(P ) (this follows from the ranking shown above, and
from Theorem 2.7 below); this is the reason why we rank
queries.

Conversely, if d has a separator, d = ∃w.Q, then its prob-
ability can be computed as P (d) = 1−

Q
i(1−P (Q[ai/w])),

where a1, . . . , an is the active domain of the database, be-
cause the eventsQ[a1/w], . . . , Q[an/w] are independent. Fur-
themore, this can be computed efficiently, provided that each
query Q[ai/w] is in UCQ(P ). Although we disallowed con-
stants in queries, the expression Q[ai/w] is OK because all
occurrences of a relational symbol have the constant a in the
same position; we simply remove a from all atoms, renaming
all relational symbols, and decreasing their arity by 1.

Example 2.5. Query q1 in Table 1 has a separator, be-
cause2 q1 ≡ ∃w.(R(w), S(w, y1) ∨ S(w, y2), T (w)). We can
compute its probability as P (q1) = 1−

Q
i(1−P (R(ai), S(ai, y1)∨

S(ai, y2), T (ai))). Query h1, on the other hand, does not
have a separator: if we write it as ∃w.(R(w), S(w, y1) ∨
S(w, y2), T (y2)) then w is not a root variable, and if we write
it as ∃w.(R(w), S(w, y1)∨S(x2, w), T (w)) then w occurs on
different positions in S(w, y1) and S(x2, w). Therefore, h1

is hard for #P.

Consider a UCQ in CNF: Q = d1 ∧ . . . ∧ dk. For each
subset s ⊆ [k] denote ds =

W
i∈s di. The inclusion/exclusion

formula gives us P (Q) = −
P
s6=∅(−1)|s|P (ds) and, there-

fore, if all ds are in UCQ(P ) (in particular, they have sep-
arators), then so is Q. The formula is exponential in the
size of the query, but this does not affect data complexity.
However, the condition ds ∈ UCQ(P ) is not necessary for all
s: some terms in the inclusion/exclusion formula may can-
cel out, and Q may be in UCQ(P ) even if some disjunctive
queries ds are hard.

To characterize precisely when Q is in UCQ(P ), [11] de-
fines the CNF lattice (L,≤) forQ. Each element x ∈ L corre-
sponds to a distinct disjunctive query, denoted λ(x) = ds, for
some s ⊆ [k], up to logical equivalence; that is, if ds1 ≡ ds2
then they correspond to the same element in x ∈ L. The
order relation ≤ is reversed logical implication: x ≤ y iff
λ(y)⇒ λ(x).

The maximal element in the lattice is denoted 1̂, and cor-
responds to d∅ ≡ false: all other elements correspond to
non-trivial disjunctive queries ds. The minimal element of
the lattice is denoted 0̂, and corresponds to λ(0̂) = d1∨ . . .∨
2We omitted the inner quantifiers ∃y1 and ∃y2.

dk. Three examples are shown in Fig. 1. The Mobius func-
tion of a lattice (L,≤) is the function µ : L×L→ Z defined
by µ(x, x) = 1, µ(x, y) = −

P
x<z≤y µ(z, y), and µ(x, y) = 0

whenever x 6≤ y. Mobius’ inversion formula applied to P (Q)
is: P (Q) = −

P
x<1̂ µ(x, 1̂)P (λ(x)). Now it becomes obvi-

ous that we only need to compute P (ds) for those queries
for which µ(x, 1̂) 6= 0. This justifies:

Definition 2.6 (Safe queries). [11] (1) Let Q = d1∧
. . . ∧ dk, and k ≥ 2. Then Q is safe if for every element
x in its CNF lattice, if µ(x, 1̂) 6= 0, then the disjunctive
query λ(x) is safe (recursively). (2) Let d = d0 ∨ d1, be a
disjunctive query where d0 contains all components without
variables, and d1 contains all components with at least one
variable. Then d is safe if d1 has a separator w and d1[a/w]
is safe (recursively), for a constant a.

The characterization of UCQ(P ) is:

Theorem 2.7. [11] Any safe query is in UCQ(P ). Any
unsafe query is hard for #P.

The first part of the theorem follows from our discussion so
far. The second part is proven in [11] by using Theorem 2.4.

This completes the characterization of UCQ(P ) from [11].
We still need to introduce two more notions that we use
in rest of the paper: hierarchical queries and inversion-free
queries.

Hierarchical queries Let q be a conjunctive query, and
denote at(x) the set of atoms containing the variable x ∈
V ars(q). We say that q is hierarchical if for any two variables
x, y, we have at(x) ⊆ at(y) or at(x) ⊇ at(y), or at(x) ∩
at(y) = ∅. A UCQ query Q is hierarchical if it is the union
of hierarchical conjunctive queries. We give an alternative
definition next:

Definition 2.8. Let Q be a query expression given by the
grammar Eq. 1. We say that it is a hierarchical expression
if every variable is a root variable.

It is easy to check that a query is hierarchical iff it can be
written as a hierarchical expression. For example, the query
R(x, y), S(x, z) is hierarchical, because it can be written as
∃x.(∃y.R(x, y) ∧ ∃z.S(x, z)). Examples of non-hierarchical
queries are R(x), S(x, y), T (y) and R(x, y), R(y, z), R(x, z).
The following is easy to prove :

Proposition 2.9. If Q is safe, then it is hierarchical.

In particular, if Q has separators at all levels (meaning at
each point in the lattice, and recursively), then it is hierar-
chical. The converse is not true: for example h1 in Table 1 is
hierarchical, but unsafe. Thus, all non-hierarchical queries
are #P-hard, but the converse fails for UCQ queries (it holds
for CQ− queries). We treat non-hierarchical queries sepa-
rately when proving hardness of FBDD queries.

Inversions We use inversion-free queries, introduced in [8],
to characterize UCQ(RO) and UCQ(OBDD). Let Q =
q1∨ . . .∨ qk be a query in DNF. The unification graph G has
as nodes all pairs of variables (x, y) that co-occur in some
atom, and has an edge between (x, y) and (x′, y′) if : suppose
x, y co-occur in g , x′, y′ co-occur in g′, then g and g′ are
over the same relation symbol and x, y appear at the same
positions in g as x′, y′ in g′. (In other words, g and g′ are
unifiable, and the unification equates x = x′ and y = y′.).
Given x, y ∈ V ars(qi), denote x � y if at(x) 6⊆ at(y).
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Definition 2.10 (Inversion). [8] An inversion in Q is
a path of length ≥ 0 in G from a node (x, y) to a node (x′, y′)
s.t. x � y and x′ ≺ y′. If no such path exists, we say Q is
inversion-free.

If a query is non-hierarchical then it has an inversion.
Indeed, let x, y be two variables s.t. at(x) ∩ at(y) 6= ∅ and
neither of the two sets at(x), at(y) contains the other. Then
we have x � y and x ≺ y, and the empty path at (x, y) is an
inversion. The converse fails: h1 in Table 1 is hierarchical,
yet has an inversion, from (x1, y1) to (x2, y2).

We give now an alternative, syntactic characterization of
an inversion-free query, which we need later. Consider a
query expression Q given by the grammar Eq. 1. Let g
be an atom in Q, over the relation symbol R of arity k;
thus g contains k distinct variables. Assume the existen-
tial quantifiers of these k variables are in the following or-
der: ∃x1, ∃x2, . . . , ∃xk. In other words, each variable xi+1 is
within the scope of xi. Define πg to be the permutation for
which g = R(xπg(1), . . . , xπg(k)).

Definition 2.11. A query expression Q given by the gram-
mar Eq. 1 is an inversion-free expression if it is a hierarchi-
cal expression, and for any two atoms g1, g2 with the same
relational symbol, πg1 = πg2 .

If Q is a hierarchical expression and R a relational symbol,
then we write πR for the common permutation πg of all
atoms g with symbol R.

Proposition 2.12. Q is inversion free iff it can be writ-
ten as an inversion-free expression.

For example, an inversion-free expression for q1 in Ta-
ble 1 is ∃x1.R(x1),∃y1.S(x1, y1) ∨ ∃x2.T (x2), ∃y2.S(x2, y2):
in both S-atoms the existential variables xi, yi are intro-
duced in the same order, for i = 1, 2. On the other hand,
the query h1 has an inversion: if we write it hierarchically
as ∃x1.R(x1),∃y1.S(x1, y1) ∨ ∃y2.T (y2).∃x2.S(x2, y2), then
the variables in S(x2, y2) are introduced in a different order
from those of S(x1, y1).

We end with a simple remark. If d is a disjunctive query
that is inversion free, then it has a separator. Indeed, write
d =

W
i ci, and write each component as a hierarchical ex-

pression, ci = ∃xi.Qi. Re-write d as ∃w.(
W
iQi[w/xi]).

Then w is a separator variable: it oviously occurs in all
atoms, and in every atom with relation symbol R, it must
occur in position πR(1).

3. QUERIES WITH READ-ONCE LINEAGE
A Boolean expression Φ is read once (RO) if it can be writ-

ten using the connectors ∨,∧,¬ such that every Boolean
variable occurs at most once. We consider only positive
Boolean expressions in this paper, and therefore will use
only ∨ and ∧. The probability of a read-once Boolean ex-
pression can be computed in linear time, because of inde-
pendence: P (Φ1 ∧ Φ2) = P (Φ1) · P (Φ2) and P (Φ1 ∨ Φ2) =
1 − (1 − P (Φ1))(1 − P (Φ2)); this justifies our interest in
this class of expressions. In this section we characterize the
queries that have read-once lineages. An elegant character-
ization of read-once Boolean expressions was given by Gur-
vich [19] (see [16]), but we will not use that characterization.
Note that our characterization is of queries, while Gurvich’s
characterization is of Boolean expressions.

Definition 3.1. UCQ(RO) is the class of queries Q s.t.
for every database instance D, the lineage of Q on D is a
read once Boolean expression.

Recall that CQ− denotes the set of conjunctive queries
without self-joins. Dalvi and Suciu [9, 10] showed that
CQ−(P ) is precisely the class of hierarchical queries. Olteanu
and Huang [20] showed that all hierarchical queries in CQ−

have read-once lineages, implying CQ−(RO) = CQ−(P ) =
“hierarchical queries”. In this section we characterize the
class UCQ(RO).

Definition 3.2. Let Q be a query expression given by the
grammar Eq. 1. We say that Q is hierarchical-read-once if
it is hierarchical (see Def. 2.8), and every relational symbol
occurs at most once. A query is hierarchical-read-once if it
is equivalent to a hierarchical-read-once expression.

Obviously, every hierarchical CQ− query is also hierarchical-
read-once; our definition is more interesting when applied to
UCQ. The following is a necessary condition for hierarchical-
read-once-ness:

Proposition 3.3. If Q is a hierarchical read-once expres-
sion then it is also an inversion-free expression.

The proof is immediate, since no two distinct atoms in Q
may refer to the same relational symbol, hence the condition
πg1 = πg2 is satisfied vacuously.

For a simple example, consider query q1 in Table 1. It is
equivalent to the expression ∃x.(R(x) ∨ T (x)) ∧ ∃y.S(x, y),
which is both hierarchical and read-once. Notice that in
the definition we require Q to be be at the same time hi-
erarchical and read-once. Sometimes we can achieve these
two goals separately, but not simultaneously: for example
h1 = R(x1), S(x1, y1) ∨ S(x2, y2), T (y2) is hierarchical, and
can also be written as ∃x.∃y.(R(x)∨T (y))∧S(x, y), which is
read-once. Since h1 has an inversion, by Prop. 3.3 it cannot
be written simultaneously as a hierarchical and read-once
expression.

Theorem 3.4. Q ∈ UCQ(RO) iff it is hierarchical-read-
once.

The “if” direction is a straightforward extension of the
technique used in [20] to prove that hierarchical queries in
CQ− are read-once. For the “only-if”, we construct one
database instance D that is “large enough” (depending only
on the query), and prove the following: if Q’s lineage on D
is read-once, then Q is hierarchical-read-once.

It is decidable if a given query Q is hierarchical-read-once,
because for a fixed vocabulary there are only finitely many
hierarchical-read-once expressions: simply iterate over all of
them and check equivalence to Q. This implies that it is
decidable whether Q ∈ UCQ(RO). For example, one can
check that q2 in Table 1 is not in UCQ(RO), by enumer-
ating all hierarchical-read-once expressions over the vocab-
ulary R,S, T ; we will return to q2 in the next section.

4. QUERIES AND OBDD
OBDD were introduced by Bryant [3] and studied ex-

tensively in the context of model checking and knowledge
representation. A good survey can be found in [27]; we
give here a quick overview. A BDD, is a rooted DAG with
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Figure 2: OBDD for the query R(x), S(x, y)( cf. [20])

two kinds of nodes. A sink node or output node is a node
without any outgoing edges, which is labeled either 0 or 1.
An inner node, decision node, or branching node is labeled
with a Boolean variable X and has two outgoing edges,
labeled 0 and 1 respectively. Every node u uniquely de-
fines a Boolean expression Φu as follows: Φu = false and
Φu = true for a sink node labeled 0 or 1 respectively, and
Φu = ¬X ∧ Φu0 ∨ X ∧ Φu1 for an inner node labeled with
X and with successors u0, u1 respectively. The BDD repre-
sents a Boolean expression Φ : Φ ≡ Φu where u is the root
of the BDD. A Free BDD, or FBDD is one in which every
path from the root to a sink node contains any variable X
at most once. Given an FBDD that represents Φ, one can
compute the probability P (Φ) in time linear in the size of
the FBDD : this justifies our interest in FBDD .

While it is trivial to construct a large FBDD for Φ (e.g.
as a tree of size 2n that checks exhaustively all n variables
X1, . . . , Xn), it is not trivial at all to construct a compact
FBDD . To simplify the construction problem, Bryant [4]
introduced the notion of Ordered BDD, OBDD , which is an
FBDD such that there exists a total order Π on the set of
variables s.t. on each path from the root to a sink, the vari-
ables X1, . . . , Xn are tested in the order Π (variables may
be skipped). One also writes Π-OBDD , to emphasize that
the OBDD has order Π. Therefore, the OBDD construc-
tion problem has been reduced to the problem of finding a
variable order Π.

Every read-once formula Φ admits an OBDD whose size is
linear in Φ, by an inductive argument: if Φ = Φ1 ∧ Φ2 first
construct OBDDs for Φ1 and Φ2, and replace every sink-
node labeled 1 in Φ1 with (an edge to) the root of Φ2; for
Φ1 ∨ Φ2, replace every sink-node labeled 0 in Φ1 with the
root of Φ2.

Definition 4.1. UCQ(OBDD) is the class of queries Q
s.t. for every database D, the lineage of Q on D has an
OBDD of size polynomial in the database size.

We show an example in Fig. 2. In this section we prove
the following:

Theorem 4.2. Q ∈ UCQ(OBDD) iff it is inversion-free.

We have seen that q2 from Table 1 is not read-once. How-
ever, q2 ∈ UCQ(OBDD), because it is inversion-free, there-
fore we obtain the following separation:

Proposition 4.3. q2 ∈ UCQ(OBDD)−UCQ(RO)

The significance of this result is the following. Olteanu
and Huang [20] showed that all hierarchical queries in CQ−

have an OBDD whose size is linear in that of the database,
proving that CQ−(RO) = CQ−(OBDD). Our proposition
shows that these classes no longer collapse over UCQ .

We also note that all inversion-free queries are hierarchi-
cal (Sect. 2), therefore any non-hierarchical query is not in
UCQ(OBDD).

In the remainder of the section we prove Theorem 4.2, in
two stages : first showing that inversion-free formulae have
polynomial size OBDD , and then that those with inversion
have exponential size OBDD .

4.1 Tractable Queries
Given an OBDD of Φ over variables x̄ with variable order

Π, the width at level k, k ≤ n is the number of distinct
subformulae that result after checking first k variables in the
order Π, i.e. |{Φxπ(1)...xπ(k)=b̄

| b̄ ∈ {0, 1}k}|. The width of

an OBDD is the maximum width at any level. If the number
of variables is n, and width w, then a trivial upper bound
on the size of the OBDD is nw. In what follows, we give
a variable ordering for inversion-free queries under which
the width is always constant(exponential in query size) and
hence the size of OBDD is linear.

We also need to define the notion of shared BDD. A
shared BDD for a set of formulas Φ1,Φ2, . . . ,Φm is a BDD
where the sink nodes are labeled with {0, 1}m i.e. they give
the valuation for each of the Φi,1 ≤ i ≤ m. This means
a node reached by following the assignments x̄ from the
root can be thought of as representing a set of subformulae
Φ1x̄,Φ2x̄, . . . ,Φkx̄. Shared BDD evaluate a set of formulae
simultaneously: this enables us to compute any combination
function of the formulae. So, for instance, one can derive
the OBDD of Φ1⊗Φ2 for any boolean operation ⊗ from the
shared OBDD for Φ1,Φ2

The following is a well-known lemma for OBDD synthesis.

Lemma 4.4. (cf. [27]) Let Φ1,Φ2 be two boolean func-
tions and consider a fixed variable order Π. If there exists
Π-OBDDs of width w1, w2 for Φ1, Φ2 respectively, then
there exists a shared Π-OBDD of width w1w2 for Φ1,Φ2.

Proposition 4.5. If Q is inversion-free, then for every
database D its lineage has an OBDD with width w = 2g,
where g is the number of atoms in the query. Therefore, the
size of the OBDD is linear in the size of the database.

We give a simple proof, using Lemma 4.4, that constructs
the OBDD inductively on the hierarchical expression for Q
: the resulting OBDD has size O(|D|).
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Proof. Consider a hierarchical expression for Q, and let
πR be the permutation associated to the symbolR (Def. 2.11).
Let D be a database, and assume that its active domain
ADom(D) is an ordered domain. We start by defining a
linear order Π on all tuples in D. Fix any linear order on
the relational symbols, R1 < R2 < . . .. We add all rela-
tion symbols to ADom(D), placing them at the beginning
of the order. We associate to each tuple in D a string in
(ADom(D))∗, as follows: tuple R(aπR(1), aπR(2), . . . , aπR(k))
is associated to the string a1a2 . . . akR. That is, the first
element is the constant on the root attribute position; the
second element is the constant on the attribute position cor-
responding to a quantifier depth 2, etc. We add the relation
name at the end. Next, we order the Boolean variables in the
lineage expression ΦDQ lexicographically by their string, and
denote Π the resulting order. We prove that Π-OBDD has
width w = 2g, inductively on the structure of the inversion-
free expression Q. If Q = Q1∨/∧Q2 then we use Lemma 4.4.
If Q = ∃x.Q1, then ΦQ =

W
a∈ADom(D) ΦQ[a/x]. Let the ac-

tive domain consists of a1 < a2 < . . . < an, in this order.
The OBDDs for ΦQ[a1/x], . . . , ΦQ[an/x] are over disjoint sets
of Boolean variables (because x is a root variable); assume
that their width is w. The OBDD for ΦQ consists of their
union, where we redirect the 0 sink nodes of ΦQ[ai/x] to the
root node of ΦQ[ai+1/x]: the width is still w. The OBDD
of a single ground atom, say R(ā), has width only 2. This
completes the proof.

Corollary 4.6. If a set of components c1, c2, . . . , cm is
inversion-free, then for every database D, they have a shared-
OBDD with size linear in the size of the database.

4.2 Hard Queries
For k ≥ 1, define the following queries (see also Fig. 1):

hk0 =R(x0), S1(x0, y0)

hki =Si(xi, yi), Si+1(xi, yi) i = 1, k − 1

hkk =Sk(xk, yk), T (yk)

Denote hk =
W
i=0,k hki. The queries hk were shown in [8,

11] to be hard for #P and are used to prove the hardness
of a much larger class of unsafe queries. We show here that
they have a remarkable property w.r.t. OBDD : if the same
variable order Π is used to compute all queries hk0, hk1, . . . ,
hkk, then at least one of these k+1 OBDDs has exponential
size. Note that each query is inversion-free, hence it admits
an efficient OBDD , e.g. Fig. 2 illustrates hk0: what we prove
is that there is no common order under which all have an
efficient OBDD . This tool is quite powerful, allowing us to
give a rather simple proof that queries with inversion have
exponential size OBDD (Prop. 4.8). There is no analogous
tool for proving #P-hardness: all queries hki are in PTIME,
for i = 0, k, and this tells us nothing about the larger query
where they occur.

The complete bipartite graph of size n is the following
database D over the vocabulary of hk: relation R has n tu-
plesR(a1), . . . , R(an), relation T has n tuples T (b1), . . . , T (bn),
and each relation Si has n2 tuples Si(aj , bl), for i = 1, k, and
j, l = 1, n.

Proposition 4.7. Let D be the complete bipartite graph
of size n, and fix any ordering Π on the corresponding Boolean
variables. For any i = 0, k, let ni be the size of some Π-
OBDD for the lineage of hki on D. Then

Pk
i=0 ni > k ·2

n
2k .

Proof. Denote the Boolean variables associated to the
tuples R(ai), i = 1, n with X1, X2, . . .; those associated to
the tuples Sp(ai, bj) with Zpij ; and those associated to the tu-
ples T (bj) with Yj . We will refer generically to any variable
as vi, and assume the order Π is v1, v2, . . . Denote Φkp the
lineage of hkp on D; by assumption, we have Π-OBDD for
each of them. Assume w.l.o.g. that each OBDD is complete
i.e. every path from root to sink contains every variable
exactly once.

In any OBDD of a Boolean expression Φ, the number of
nodes at level h (i.e. after first h variables v1 . . . vh have
been eliminated) is the size of the set {Φ[(v1 . . . vh) = b̄] |
b̄ ∈ {0, 1}h}. This is because every distinct subformula will
result in a new separate node. A standard technique in
proving lower bounds on the size of OBDD is to find a level
where the number of distinct formulae must be exponential.
This immediately gives the same exponential lower bound
on the size of OBDD for that ordering.

For any level h, denote h1, h2 the number of X, and of
Y variables respectively in the initial sequence v1, v2, . . . , vh
of Π. Define h to be the first level for which h1 + h2 =
n. Denote Xset = {Xi | Xi ∈ {v1, . . . , vh}} and Xunset =
X \Xset, and similarly Yset, Yunset, Zset, Zunset. W.l.o.g.
assume h1 ≥ n/2.

Consider the OBDD for Φk0 =
W
ij XiZ

1
ij . Suppose there

exists j s.t. ∀i.Xi ∈ Xset ⇒ Z1
ij ∈ Zunset; then for each as-

signment b̄ to Xset, we get a different subformula Φk0[Xset =

b̄]. Since the number of such formulae is 2h1 ≥ 2n/2, we

obtain n0 > 2n/2, which proves the claim. Hence we can
assume there is no such j. This means ∀j, ∃i s.t. Xi ∈ Xset

and Z1
ij ∈ Zset.

Define S to be a set of pairs (i, j) as follows. For each j
s.t. Yj ∈ Yunset, choose some i s.t. Z1

ij ∈ Zset: then include
(i, j) in S. Note that the cardinality of S is n− h2 = h1.

For each p = 1, . . . , k − 1, denote Cp the subset of S con-
sisting of indices (i, j) s.t. Z1

ij , . . . , Z
p
ij ∈ Zset and Zp+1

ij ∈
Zunset; and let Ck = S −

S
p=1,k−1 Cp. Thus, C1, . . . , Ck

forms a partition of S. Denoting c1, . . . , ck their cardinali-
ties we have c1 + . . .+ ck = h1.

Next, for each p = 1, . . . , k − 1, consider the OBDD for
Φkp =

W
ij Z

p
ijZ

p+1
ij . Forall (i, j) ∈ Cp we have Zpij ∈ Zset

and Zp+1
ij ∈ Zunset. Each assignment of the former variables

leads to a different expression over the latter variables: hence
there are at least 2cp distinct expressions, therefore the num-
ber of nodes in this OBDD is np ≥ 2cp .

Finally, consider the OBDD for Φkk =
W
ij Z

k
ijYj . Forall

(i, j) ∈ Ck we have Zkij ∈ Zset and Yj ∈ Yunset. Using the
same arugment, we obtain nk ≥ 2ck .

Putting everything together we obtain:X
i=1,k

ni ≥
X
i=1,k

2ci ≥ k2

P
i ci
k

=k2
h1
k > k2

n
2k

Notice that n0 does not appear above, but we used it in
order to construct the set S. This proves our claim.

Proposition 4.8. Let Q be a query, and suppose it has
an inversion of length k > 0. Let D0 be a complete bipartite
graph of size n (i.e. a database over the vocabulary of hk).
Then there exists a database D for Q s.t. |D| = O(|D0|)
and any OBDD for Q has size Ω(k2n/2k).
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Figure 3: FBDD for the query qV

We explain here the main idea. We use the inversion of
length k to construct a database D that mimics the query
hk over a complete bipartite graph. Assuming an OBDD for
Q on this database, we show that one can set the Boolean
variables to 0 or 1, to obtain a lineage for each hki. What is
interesting is that this construction cannot be used to prove
#P-hardness of Q by reduction from hk: in other words, Q
over D is not equivalent to hk over D0. But we make Q
equivalent to each hki, and by Prop. 4.7 this is sufficient to
prove that Q has a no compact OBDD .

If Q has an inversion of length 0, then it is non-hierarchical
and as we discuss later in Theorem 5.8 Q /∈ UCQ(FBDD),
and hence Q /∈ UCQ(OBDD) either.

5. QUERIES AND FBDD
We now turn to FBDD , also known as Read-Once Branch-

ing Programs. Unlike OBDD , here we no longer require the
same variable order on different paths. FBDD are known to
be strictly more expressive than OBDD over arbitrary (non-
monotone) Boolean expressions, for example the Weighted
Bit Addressing problem admits polynomial sized FBDD , but
no polynomial size OBDD [5, 15, 23]. On the other hand, to
the best of our knowledge no monotone formula was known
to separate these two classes. Moreover, over conjunctive
queries without self-joins, FBDD are no more expressive
than OBDD , since the latter already capture CQ−(P ). In
this section we show that FBDD are strictly more expres-
sive than OBDD over UCQ . In particular, we give a simple
(!) monotone Boolean expression that has a polynomial size
FBDD , but no OBDD .

Definition 5.1. UCQ(FBDD) is the class of queries Q
s.t. for any database D, the lineage of Q on D has an FBDD
of size polynomial in the database size.

Clearly UCQ(OBDD) ⊆ UCQ(FBDD): we prove now
that the inclusion is strict, using a simple example.

Example 5.2. Consider qV in Table 1. This query has
an inversion between S(x1, y1) and S(x2, y2), hence it does
not admit a compact OBDD. We show how to construct a
compact FBDD. Write it in CNF:

qV =(R(x1), S(x1, y1) ∨ T (y3)) ∧ (S(x2, y2), T (y2) ∨R(x3))

=d1 ∧ d2

Its CNF lattice is shown in Fig. 1. The minimal element of
the lattice is:

d3 =d1 ∨ d2 = R(x3) ∨ T (x3)

Each of d1, d2, d3 is inversion-free, hence they have OBDDs,
denote them F1, F2, F3. Of course, F1 and F2 use different
variable orderings and cannot be combined into an OBDD
for qV . Consider the database given by the bipartite graph
(Sect. 4) and assume the following order on the active do-
main: a1 < . . . < an < b1 < . . . < bn. Our FBDD starts
by computing d3. If d3 = 0, then qV = 0; this is a sink
node. If d3 = 1, then, depending on which sink node in F3

we have reached, either d1 = 1 or d2 = 1, and we need con-
tinue with either F2 or of F1 respectively. This way, no path
goes through both F1 and F2. Note that the FBDD is not
ordered, since some paths use the order in F1, others that in
F2. Fig. 3 illustrates the construction;

Thus:

Proposition 5.3. qV ∈ UCQ(FBDD)−UCQ(OBDD).

The significance of this result is the following. The lin-
eage of qV is, to the best of our knowledge, the first “simple”
Boolean expression (i.e. monotone, and with polynomial
size DNF) that has a polynomial size FBDD but no polyno-
mial size OBDD . Previous examples separating these classes
where Weighted Bit Addressing problem (WBA) [5, 15, 23],
and other examples given in [26], and these were not “sim-
ple”. Our result also constrasts UCQ to CQ−: for the latter
it follows from [20] that CQ−(OBDD) = CQ−(FBDD).

In the reminder of this section we will give a partial char-
acterization of UCQ(FBDD), by providing a sufficient con-
dition, and a necessary condition for membership. We start
with the sufficient condition.

Definition 5.4. Let d =
W
ci and d′ =

W
c′j be two dis-

junctive queries, s.t. the logical implication d′ ⇒ d holds.
We say that d dominates d′ if for every component c′j in d′

and for every atom g in c′j one of the following conditions
hold: (a) the relation symbol of g does not occur in d, or (b)
there exists a component ci and a homomorphism ci → c′j
whose image contains g.

In Example 5.2, d3 dominates d1: if one considers the
component R(x1), S(x1, y1) in d1, then the atom R(x1) is
the image of a homomorphism, while the atom S(x1, y1)
does not occur at all in d3. Similarly d3 dominates d2.

In analogy to the definition of safe queries Def. 2.6 we
define here rf-safe queries3:

3r is for restricted, since we don’t have a full characterization
yet
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Definition 5.5. (1) Let Q = d1 ∧ . . . ∧ dk, and k ≥ 2.
Then Q is rf-safe if for every element x in its CNF lattice
the disjunctive query λ(x) is rf-safe, and for every two lattice
elements x ≤ y, λ(x) dominates λ(y). (2) Let d = d0 ∨ d1,
be a disjunctive query, where d0 contains all components ci
without variables, and d1 contains all components ci with at
least one variable. Then d is rf-safe if d1 has a separator w
and d1[a/w] is rf-safe, for a constant a.

For example, query qV is rf-safe, since d3 dominates both
d1 and d2. Our sufficient characterization of UCQ(FBDD)
is:

Theorem 5.6. Every rf-safe query is in UCQ(FBDD).

But this is not a complete characterization. The following
query qT , is not rf-safe, but one can construct a polynomial-
size FBDD for it.

qT = (T1(x), A(x), V (x, y, z) ∨ T3(z), C(z) ∨ T2(y), B(y), D(y)),

(T2(y), B(y), V (x, y, z) ∨ T1(x), A(x) ∨ T3(z), C(z)),

(T3(z), C(z), V (x, y, z) ∨ T1(x), A(x) ∨ T2(y), B(y), D(y))

Next, we present our separation result. Recall the query
qW from Table 1. We prove here:

Theorem 5.7. qW 6∈ UCQ(FBDD).

We will return to this query in the next section.
Our hardness result for FBDD is more limited in scope

than that for OBDD ; in particular it says nothing about
non-hierarchical queries. This, however, follows from a very
strong result by Bollig&Wegener[1]. They showed that, for
arbitrary large n, there exists a bipartite graph G s.t. the
formula Φ =

W
(i,j)∈GXiYj has no polynomial size FBDD4.

This immediately implies that the queryQ = R(x), S(x, y), T (y)
is not in UCQ(FBDD), because from any FBDD for Q on
the complete, bipartited graph one can obtain and FBDD
for Φ by setting all variables XS(i,j) = 1 for (i, j) ∈ G and
setting XS(i,j) = 0 for (i, j) 6∈ G. In particular, this implies:

Theorem 5.8. (cf. [1]) If Q is non-hierarchical, then
Q 6∈ UCQ(FBDD).

6. QUERIES AND D-DNNFS
d-DNNFs were introduced by Darwiche [12]; a good sur-

vey is [13], we review them here briefly. A Negation Normal
Form is a rooted DAG, internal nodes are labeled with ∨
or ∧, and leaves are labeled with either a Boolean variable
X or its negation ¬X. Each node x in an NNF represents
a Boolean expression Φx, and the NNF is said to represent
Φz, where z is the root node. A Decomposable NNF, or
DNNF, is one where for every ∧ node, the expressions of its
children are over disjoint sets of Boolean variables. A Deter-
ministic DNNF, or d-DNNF is a DNNF where for every ∨
node, the expressions of its children are mutually exclusive.
Given a d-DNNF one can compute its probability in polyno-
mial time, by applying the rules P (Φx∧Φy) = P (Φx)P (Φy)

4Their graph is the following: fix n = p2 where p
is a prime number. Then G = {(a+ bp, c+ dp) |
c ≡ (a+ bd) mod p}.

and P (Φx ∨ Φy) = P (Φx) + P (Φy) (and similarly for nodes
with out-degree greater than 2); this justifies our interest
in d-DNNF. Any FBDD of size n can be converted to an d-
DNNF of size 5n [13]: for every node x in the FBDD , testing
a variable X, write its formula as (¬X)∧Φy∨X∧Φz, where
y and z are the 0-child and the 1-child: obviously, the ∨ is
“deterministic”, and the ∧’s are “decomposable”.

It is open whether d-DNNFs are closed under negation [13,
pp. 14]; NNFs are obviously closed under negation, but
the d-DNNFs impose asymmetric restrictions on ∧ and ∨,
so by switching them during negation, the resulting NNF
is no longer a d-DNNF. For that reason, we extend here
d-DNNF’s with ¬-nodes, and denote the result d-DNNF¬:
probability computation can still be done in polynomial time
on an d-DNNF¬.

Definition 6.1. UCQ(UCQ) is the class of queries Q
s.t. for any database D, the negation of Q’s lineage on
D has a dDNNF of size polynomial in the database size.
UCQ(UCQ¬) is the class of queries Q whose lineage on a
database D admits a d-DNNF¬ whose size is polynomial in
D.

UCQ(FBDD) ⊆ UCQ(UCQ) ⊆ UCQ(UCQ¬) ⊆ UCQ(P );
we prove now that the first inclusion is strict, by using an
example.

Example 6.2. Consider qW = d1 ∧ d2 ∧ d3 in Fig. 1.
Denote the three lower points in the lattice as:

d12 =d1 ∨ d2

d23 =d2 ∨ d3

d123 =d1 ∨ d2 ∨ d3

We have seen in Theorem 5.7 that qW does not have a poly-
nomial size FBDD. On the other hand, this query is in
UCQ(P ), because µ(0̂, 1̂) = 0: to compute the probability
we only need the other 5 points in the lattice (which form a
W, hence the name). Thus, this query is right at the bor-
der of UCQ(FBDD) and UCQ(P ), an interesting study for
d-DNNFs.

We construct a compact d-DNNF for ¬qW , by writing:

¬qW =¬d2 ∨ (d2 ∧ ¬d1) ∨ (d2 ∧ ¬d3) (4)

Both ∨’s are “deterministic”: clearly ¬d2 is disjoint from
the other two, and the last two queries are disjoint because of
the implication d2 ⇒ d1 ∨ d3 (this can be seen from Fig. 1).
On the other hand, each of the three smaller queries in Eq. 4
has an OBDD. ¬d2 has an OBDD because d2 is inversion-
free; d2 ∧ ¬d1 has an OBDD because there is no inversion
between d2 and d1, hence they have OBDDs using the same
variable order, and we can synthesize an OBDD for d2∧¬d1

using Lemma 4.4.

Proposition 6.3. qW ∈ UCQ(UCQ)−UCQ(FBDD).

The significance of this result is the following. This is, to
the best of our knowledge, the first example of a “simple”
Boolean expression (meaning monotone, and with a poly-
nomial size DNF) that has a d-DNNF but with no FBDD .
The previous separation of FBDD and d-DNNFs is based on
a result by Bollig and Wegener [2], which we review briefly.
Consider a Boolean matrix of variables Xij . Let Φ1 denote
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the formula “there are an even number of 1’s and there is a
row consisting only of 1’s”. Let Φ2 denote the formula“there
are an odd number of 1’s and there is a column consisting
only of 1’s”; [2] show that Φ1 ∨ Φ2 does not have a poly-
nomial size FBDD . However, this formula has a polynomial
size d-DNNF, because each of Φ1,Φ2 that have polynomial
size OBDDs and Φ1 ∧ Φ2 ≡ false. Note, however, that
these formulas are non-monotone and have exponential size
DNF’s (they are not in AC0). By contrast, the lineage of
qW is monotone, has polynomial size DNF, and separates
FBDD from d-DNNF.

In the rest of the section, we give a sufficient criteria for
a query Q to be in UCQ(UCQ¬), which is quite interest-
ing because it explains the border between d-DNNF’s and
PTIME in terms of lattice-theoretic concepts. For that pur-
pose we adapt the “incomplete algorithm based on condi-
tioning”, which was described in [11] in order to illustrate
the power of the Mobius’ inversion formula approach for
capturing all of UCQ(P ). We adapt here the algorithm to
UCQ¬.

Given a query Q = d1 ∧ . . . ∧ dm, if m = 1 then Q is
a disjunctive query; in this case it must have a separator
(otherwise it is #P-hard (Theorem 2.4)), d1 = ∃w.Q1 and
we write: ¬Q =

V
a∈ADom(D) d1[a/w]. The ∧ operator is

“decomposable”, i.e. its children are independent.
The interesting case is m ≥ 2. Let (L,≤) be the CNF lat-

tice: its co-atoms are d1, . . . , dm, and every element is a meet
of co-atoms. Choose a subset Γ ⊆ L (to be described below),
and define the query C =

V
x∈Γ λ(x). Let u1, . . . , uk be the

minimal elements of the set {z | z ∈ L,¬(∃x ∈ Γ.z ≤ x)}.
For each i = 1, k denote the query Qi =

V
ui≤x λ(x): this is

a conjunction of disjunctive queries, and it suffices to take
only those x that are coatoms. Write Q as:

¬Q =¬C ∨ (C ∧ ¬Q)

=¬C ∨ (C ∧ ¬Q1) ∨ . . . (C ∧ ¬Qk)

All ∨’s are “deterministic” (i.e. disjoint), because the ui’s
are minimal elements. Next, write:

C ∧ ¬Qi =¬((¬C ∧ ¬Qi) ∨Qi)
=¬(¬(C ∨Qi) ∨ ¬(¬Qi))

Here, too, the outermost ∨ is “deterministic”, which can be
seen easily in the first line. After this we continue to com-
pute the d-DNNF¬, recursively, for ¬C, ¬Qi, and ¬(C∨Qi),
for i = 1, k. Each of these queries is the negation of a
UCQ . Furthermore, the CNF lattice of that UCQ is a meet-
sublattice of L. Indeed, Qi = ∧dj is the disjunction of a
subset of the co-atoms d1, . . . , dk; C = ∧cp is the disjunc-
tion of a subset of queries cp in the lattice (not necessarily
coatoms); and, by writing C ∨Qi as

V
(dj ∨ cp) we see that

it, too, is the disjunction of queries in L (since dj ∨ cp is
their meet in L). Thus, if we choose Γ s.t. k ≥ 2: then all
these lattices are strict subsets of L and we are guaranteed
to make progress, eventually reaching m = 1.

One strategy is to choose Γ = {0̂}: then u1, . . . , uk are
all atoms of the lattice, and we have k ≥ 2 (since in our
lattice 0̂ is the meet of atoms). But, with this strategy we
eventually reach every query in the lattice: in some cases,
some of these queries are hard (as was d123 in Example 6.2),
and they do not have an d-DNNF¬. In those cases we need
a different strategy.

In general we have a set Z ⊆ L of elements whose queries
are hard: we will choose Γ such that, eventually, all elements

in Z are removed from all sublattices. In Example 6.2, Z =
{d123} and we have chosen Γ = {d2}: hence C = q2, Q1 =
d1, Q2 = d3, C∧Q1 = d12, C∧Q2 = d23, and all five lattices
have a single co-atom, none touches the toxic d123. We need
a strategy to choose Γ for a general Z. Here, it helps to
notice that, by Theorem 2.7, we must have µ(z, 1̂) = 0 for
all z ∈ Z (otherwise there is no compact d-DNNF¬). We set
as goal to choose Γ such that, in all sublattices (for C, Qi,
and C ∨ Qi), if that sublattice contains some z ∈ Z, then
µ(z, 1̂) = 0 for all z ∈ Z. This ensures that all Z’s will be
eliminated: when we reach a lattice with a single coatom
x, then µ(x, 1̂) = −1 and we are guaranteed x 6∈ Z. The
following procedure from [11] ensures this:

ZA = {a | a covers some element z ∈ Z}
E = {1̂} ∪ join-closure(Z ∪ ZA)

Γ = co-atoms(E)

Definition 6.4. Let (L,≤) be a lattice, and Z ⊆ L. We
say that Z is erasable in L if either Z = ∅ or, denoting
L0 = meet-closure(Γ), Z ∩ L0 is erasable in L0.

If Z is erasable, then forall z ∈ Z, µ(z, 1̂) = 0. Indeed, in
any lattice where 0̂ is not the meet of co-atoms, µ(0̂, 1̂) =
0 [24]: if we ever eliminate z, then z is not the meet of co-
atoms in [z, 1̂], hence µ(z, 1̂) = 0. However, the converse is
false: in the lattice of q9 in Fig. 1, taking Z = {0̂}, we have
ZA = all four atoms, E = L, Γ = all four co-atoms, and its
meet-closure is L.

This justifies the following definition of d-safe queries,
analogous to safe queries Def. 2.6.

Definition 6.5. (1) Let Q = d1 ∧ . . . ∧ dk, and k ≥ 2.
Then Q is d-safe if there exists a subset Z of its CNF lattice
s.t. Z is erasable in L, and for every x ∈ L − Z, the query
λ(x) is d-safe. (2) Let d = c1 ∨ . . . ∨ ck be a disjunctive
query, and let d = d0∪d1, where d0 contains all components
ci without variables, and d1 contains all components ci with
at least one variable. Then d is d-safe if d1 has a separator
w and d1[a/w] is d-safe.

Theorem 6.6. If Q is d-safe, then it is in UCQ(UCQ¬).

Thus, the distinction between d-DNNFs and PTIME over
UCQ boils down to the distinction between an erasable el-
ement of a lattice, and an element z for which µ(z, 1̂) = 0.
The former implies the latter, but the converse fails, as illus-
trated by q9 in Table 1: q9 is in UCQ(P ), but is not d-safe,
because its minimal element 0̂ is labeled with h3 (a hard
query), and is not erasable (see Fig. 1). We conjecture that
q9 does not have a polynomial size d-DNNF¬.

7. CONCLUSION
We have studied the problem of compiling the query lin-

eage into compact representations. We considered four com-
pilation targets: read-once, OBDD , FBDD , and d-DNNF.
We showed that over the query language of unions of con-
junctive queries, these four classes form a strict hierarchy.
For the first two classes we gave a complete characterization
based on the query’s syntax. For the last two classes we
gave sufficient characterizations.

Our two main separation results (between UCQ(OBDD)
and UCQ(FBDD), and between UCQ(FBDD) and UCQ(UCQ))
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are the first examples of“simple”Boolean expressions (mean-
ing: monontone, and with polynomial size DNFs) that sep-
arate those two classes.

We leave three open problems: complete characterizations
of FBDD and d-DNNF, and separation of the latter from
PTIME. Also, as future work, it would be interesting to in-
vestigate compact representations of lineages in other semir-
ings described in [17].
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