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ABSTRACT
Motivated by both established and new applications, we
study navigational query languages for graphs (binary re-
lations). The simplest language has only the two opera-
tors union and composition, together with the identity re-
lation. We make more powerful languages by adding any
of the following operators: intersection; set difference; pro-
jection; coprojection; converse; transitive closure; and the
diversity relation. All these operators map binary relations
to binary relations. We compare the expressive power of all
resulting languages. We do this not only for general path
queries (queries where the result may be any binary rela-
tion) but also for boolean or yes/no queries (expressed by the
nonemptiness of an expression). For both cases, we present
the complete Hasse diagram of relative expressiveness. In
particular, the Hasse diagram for boolean queries contains
nontrivial separations and a few surprising collapses.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic and Formal Languages]:
Model theory; H.2.3 [Database Management]: Query
languages
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1. INTRODUCTION
The expressive power of XPath as a query language for

navigating on trees is well understood [6, 19,20]. Motivated
by data on the Web [2, 12] and new applications such as
dataspaces [13], Linked Data [7], and RDF [1], it is natural
to look at similar navigational query languages for graphs.
Graph query languages have a rich history in database the-
ory. Indeed, motivated by object-oriented and semistruc-
tured database systems, graph query languages have been
investigated since the mid 80’s. This is nicely reviewed in
the survey of graph database models by Angles and Gutiér-
rez [4].

In the present paper, we consider a number of natural op-
erators on binary relations (graphs): union; composition; in-
tersection; set difference; projection; coprojection; converse;
transitive closure; and the identity and diversity relations1.
While some of these operators also appear in XPath, they
are there evaluated on trees. The largest language that we
consider has all operators, while the smallest language has
only union, composition, and the identity relation. Just as
in the relational algebra, expressions are built up from input
relation names using these operators. Since each operator
maps binary relations to binary relations, these query lan-
guages express queries from binary relations to binary re-
lations: we call such queries path queries. By identifying
nonemptiness with the boolean value ‘true’ and emptiness
with ‘false’, as is standard in database theory [3], we can
also express yes/no queries within this framework. To dis-
tinguish them from general path queries, we shall refer to
the latter as boolean queries.

The contribution of the present paper is providing a com-
plete comparison of the expressiveness of all resulting lan-

1We assume that identity and diversity return all identical,
respectively, nonidentical pairs of values from the active do-
main.
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guages, and this both for general path queries and boolean
queries. While establishing the relative expressiveness for
general path queries did not yield particularly surprising re-
sults, the task for the case of boolean queries proved much
more challenging. For example, consider the converse oper-
ator R−1 = {(y, x) | (x, y) ∈ R}. On the one hand, adding
converse to a language not yet containing this feature some-
times adds boolean query power. This is, e.g., the case
for the language containing all other features. The proof,
however, is nontrivial and involves a specialized application
of invariance under bisimulation known from arrow logics.
On the other hand, adding converse to a language contain-
ing projection but not containing intersection and transitive
closure does not add any boolean query power. We thus
obtain a result mirroring similar results known for XPath
on trees [6, 22, 27], where, e.g., downward XPath is known
to be as powerful as full XPath for queries evaluated at the
root. Marx also obtained a similar result for XPath with
transitive closure [19], but we show here that this no longer
holds on graphs.

We conclude this introduction by a short discussion of
some of the methods we use. In many cases where we sep-
arate a language L1 from a language L2, we can do this in
a strong sense: we are able to give a single counterexample,
consisting of a pair (A,B) of finite binary relations such that
A and B are distinguishable by an expression from L1 but
indistinguishable by any expression from L2. Notice that
in general, separation is established by providing an infinite
sequence of relation pairs such that some expression from L1

distinguishes all pairs but no single expression of L2 distin-
guishes all pairs. Existence of a single counterexample pair
is therefore nonobvious, and we do not really know whether
there is a deeper reason why in our setting this strong form
of separation can often be established. Strong separation
is desirable as indistinguishability of a pair of finite binary
relations can in principle be checked by computer, as the
number of possible binary relations on a finite domain is fi-
nite. In some cases, however, a brute-force approach is not
feasible within a reasonable time. Fortunately, by applying
invariance under bisimulation for arrow logics [21], we can
alternatively check a sufficient condition for indistinguisha-
bility in polynomial time. We have applied this alternative
approach in our computer checks. Finally, we developed two
methods to establish ordinary separation for the cases where
we could not establish strong separation. The first method,
applicable to languages that fall in the class of conjunctive
queries, is based on homomorphism techniques. The second
method, applicable to languages with transitive closure, is
based on proofs in the classical finite model theory style, in-
volving winning strategies in bisimulation pebble games for
longer and longer rounds on pairs of larger and larger finite
structures.

Our work is certainly not an endpoint in this line of re-
search, as many questions remain to be answered. It is inter-
esting to investigate, for example, the decidability of satisfia-
bility or containment of expressions. Indeed, the decidability
of these problems is very important for query optimization.
The language with all operators except transitive closure is
equivalent in expressive power to FO3 (for path as well as
for boolean queries [26]), where these problems are known
to be undecidable; we come back to these issues in Section 8.
Other interesting questions that can be guided by our com-
parison are, e.g., the complexity of query evaluation; and

the complexity of the containment problem.

Related Work. The languages considered here are very
natural and similar to languages already considered in the
fields of description logics, dynamic logics, arrow logics, and
relation algebras [5,8,16,17,21]. Thus, our results also yield
some new insight into those logics. The investigation of ex-
pressive power as in the present paper is very natural from a
database theory perspective. In the above-mentioned fields,
however, one is primarily interested in other questions, such
as computational complexity of model checking, decidabil-
ity of satisfiability, and axiomatizability of equivalence. We
must point out that, also in the database field, graph query
languages have been investigated intensively [4]. There is,
for example, the work on conjunctive regular path queries
(CRPQs) [9, 10]. The focus there, however, is not so much
on expressiveness either but on the complexity of the con-
tainment problem.

Organization. The paper is organized as follows. In Sec-
tion 2, we define the class of languages studied in the paper.
In Section 3, we describe the techniques we use to separate
one language from another. Then we establish the complete
Hasse diagram of relative expressiveness. We do so for path
queries in Section 4, and for boolean queries in Section 5. In
Section 6, we show there are a few additional collapses in the
Hasse diagram when one is interested in unlabeled graphs
only. Finally, we conclude and discuss future research direc-
tions in Section 7 and Section 8.

In this extended abstract, the proofs are either omitted or
only summarily sketched.

2. PRELIMINARIES
In this paper, we are interested in navigating over graphs

whose edges are labeled by symbols from a finite, nonempty
set of labels Λ. For our purposes, a graph is a relational
structure G, consisting of a set of nodes V and, for every
R ∈ Λ, a relation G(R) ⊆ V ×V , the set of edges with label
R. In what follows, both V and G(R) may be infinite, unless
explicitly stated otherwise.2

The most basic language for navigating over graphs we
consider is the algebra N whose expressions are built recur-
sively from the edge labels, the primitive ∅, and the primitive
id , using composition (e1 ◦ e2) and union (e1 ∪ e2). Seman-
tically, each expression e ∈ N defines a path query. A path
query takes as input a graph G and returns a binary relation
e(G) ⊆ adom(G) × adom(G), where adom(G) denotes the
active domain of G, which is the set of all entries occurring
in one of the relations of G, i.e.,

adom(G) = {m | ∃n, ∃R : (m,n) ∈ G(R) ∨ (n,m) ∈ G(R)}.

In particular, the semantics of N is inductively defined as
follows:

R(G) = G(R) ;

∅(G) = ∅ ;

id(G) = {(m,m) | m ∈ adom(G)} ;

e1 ◦ e2(G) = {(m,n) | ∃p ((m, p) ∈ e1(G) & (p, n) ∈ e2(G))} ;

e1 ∪ e2(G) = e1(G) ∪ e2(G) .

The basic algebra N can be extended by adding some of
the following features: diversity (di), converse (e−1), inter-
section (e1 ∩ e2), difference (e1 \ e2), projections (π1(e) and
2Notwithstanding, all inexpressibility results in this paper
already hold over finite graphs.
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π2(e)), coprojections (π1(e) and π2(e)), and transitive clo-
sure (e+). We refer to the operators in the basic algebra
N as basic features; we refer to the extensions as nonbasic
features. The semantics of the extensions is as follows:

di(G) = {(m,n) | m,n ∈ adom(G) & m 6= n} ;

e−1(G) = {(m,n) | (n,m) ∈ e(G)} ;

e1 ∩ e2(G) = e1(G) ∩ e2(G) ;

e1 \ e2(G) = e1(G) \ e2(G) ;

π1(e)(G) = {(m,m) | m ∈ adom(G) & ∃n (m,n) ∈ e(G)} ;

π2(e)(G) = {(m,m) | m ∈ adom(G) & ∃n (n,m) ∈ e(G)} ;

π1(e)(G) = {(m,m) | m ∈ adom(G) & ¬∃n (m,n) ∈ e(G)} ;

π2(e)(G) = {(m,m) | m ∈ adom(G) & ¬∃n (n,m) ∈ e(G)} ;

e+(G) =
[

k≥1

ek(G) .

Here, ek denotes e ◦ · · · ◦ e (k times).
If F is a set of nonbasic features, we denote by N (F )

the language obtained by adding all features in F to N . For
example, N (∩) denotes the extension ofN with intersection,
and N (∩, π) denotes the extension of N with intersection
and both projections.3

Note that the language N (\, di ,−1) is better known as the
relation algebra. It is known that for every set of nonbasic
features F not containing transitive closure, all path queries
expressible in N (F ) are also expressible in the relation al-
gebra [17].

We will actually compare language expressiveness at the
level of both path queries and boolean queries.

Definition 1. A path query q is expressible in a language
N (F ) if there exists an expression e ∈ N (F ) such that, for
every graph G, we have e(G) = q(G). Similarly, a boolean
query q is expressible in N (F ) if there exists an expression
e ∈ N (F ) such that, for every graph G, we have that e(G)
is nonempty if, and only if, q(G) is true. In both cases, we
say that q is expressed by e.

In what follows, we write N (F1) ≤path N (F2) if every
path query expressible inN (F1) is also expressible inN (F2).
Similarly, we write N (F1) ≤bool N (F2) if every boolean
query expressible in N (F1) is also expressible in N (F2).
Note that N (F1) ≤path N (F2) implies N (F1) ≤bool N (F2),
but not necessarily the other way around. We write 6≤path

and 6≤bool for the negation of ≤path and ≤bool.
For the technical development, it will be useful to consider

the following variants of 6≤path and 6≤bool.

Definition 2. The language N (F1) is strongly separa-
ble from the language N (F2) at the level of path queries if
there exists a path query q expressible in N (F1) and a fi-
nite graph G, such that, for every expression e ∈ N (F2), we

have q(G) 6= e(G). We write N (F1) 6≤path
strong N (F2) in this

case. Similarly, N (F1) is strongly separable from N (F2) at
the level of boolean queries if there exists a boolean query
q expressible in N (F1) and two finite graphs G1 and G2,
with q(G1) true and q(G2) false, such that, for every expres-
sion e ∈ N (F2), e(G1) and e(G2) are both empty, or both
nonempty. We write N (F1) 6≤bool

strong N (F2) in this case.

3We do not consider extensions ofN in which only one of the
two projections, respectively one of the two coprojections, is
present.

3. TOOLS TO ESTABLISH SEPARATION
Our results in Sections 4 and 5 will use the following tools

to separate a language N (F1) from a language N (F2), i.e.,
to obtain that N (F1) 6≤path N (F2), or N (F1) 6≤bool N (F2).

3.1 Path separation
Since N (F1) ≤path N (F2) implies N (F1) ≤bool N (F2),

also N (F1) 6≤bool N (F2) implies N (F1) 6≤path N (F2) by
contraposition. In most instances, we can therefore establish
separation at the level of general path queries by establish-
ing separation at the level of boolean queries. In the cases
whereN (F1) 6≤path N (F2) althoughN (F1) ≤bool N (F2), we
either rely on the well-known result of the inexpressibility of
transitive closure in FO (see, e.g., [3]) or identify a finite
graph G and an expression e1 in N (F1) and show that, for
each expression e2 in N (F2), e1(G) 6= e2(G). Notice that, in
the latter case, we actually establish strong path separation.

3.2 Boolean separation
To establish separation at the level of boolean queries, we

use the following techniques.

3.2.1 Brute-force approach
Two graphs G1 and G2 are said to be distinguishable at

the boolean level in a languageN (F ) if there exists a boolean
query q expressible in N (F ) such that exactly one of q(G1)
and q(G2) is true, and the other is false. If such a query
does not exists, G1 and G2 are said to be indistinguishable
in N (F ).

Using this terminology, two languages N (F1) and N (F2)
are strongly separable if there exist two finite graphs G1 and
G2 that are distinguishable in N (F1), but indistinguishable
in N (F2).

For two finite graphs G1 and G2, (in)distinguishability in
a language N (F ) can easily be machine-checked through the
Brute-Force Algorithm described below.

First observe that adom(G1) and adom(G2) are finite since
G1 and G2 are finite. Moreover, for any e in N (F ), e(G1) ⊆
adom(G1)×adom(G1) and e(G2) ⊆ adom(G2)×adom(G2).
Hence, e(G1) and e(G2) are finite and the set {(e(G1), e(G2)) |
e ∈ N (F )} is also finite. Clearly, G1 is indistinguishable
from G2 if this set contains only pairs that are both empty
or both nonempty.

The Brute-Force Algorithm computes the above set by
first initializing the set

B = {(id(G1), id(G2))} ∪ {(di(G1), di(G2))}
∪ {(G1(R), G2(R)) | R ∈ Λ}

(where {(di(G1), di(G2))} is omitted if di 6∈ F ). It then
adds new pairs (R1, R2) to B by closing B pair-wise under
the features in N (F ). That is, for every binary operator ⊗
in N (F ) and all pairs (R1, R2), (S1, S2) in B the algorithm
adds (R1 ⊗ S1, R2 ⊗ S2) to B, and similarly for the unary
operators. Since there are only a finite number of pairs,
the algorithm is guaranteed to end. Of course, the worst-
case complexity of this brute-force algorithm is exponential.
Nevertheless, we have successfully checked indistinguishabil-
ity using this Brute-Force Algorithm in many of the cases
that follow.

3.2.2 Bisimulation
We will not always be able to use the methodology above

199



to separate two languages. In particular, to establish that
N (−1,∩) 6≤bool N (\, di) and N (−1,+) 6≤bool N (\, di ,+) we
will employ invariance results under the notion of bisimula-
tion below. In essence, this notion is based on the notion of
bisimulation known from arrow logics [21]. Below, we adapt
this notion to the current setting.

We require the following preliminary definitions. Let G =
(G, a, b) denote a marked graph, i.e., a graph G with a, b ∈
adom(G). The degree of an expression e is the maximum
depth of nested applications of composition, projection and
coprojection in e. For example, the degree of R ◦ R is 1,
while the degree of both R ◦ (R ◦R) and π1(R ◦R) is 2. In-
tuitively, the depth of e corresponds to the quantifier rank of
the standard translation of e into FO3. For a set of features
F , N (F )k denotes the set of expressions in N (F ) of degree
at most k.

In what follows, we are only concerned with bisimulation
results regarding N (\, di). The following is an appropriate
notion of bisimulation for this language.

Definition 3 (Bisimilarity). Let k be a natural num-
ber, and let G1 = (G1, a1, b1) and G2 = (G2, a2, b2) be
marked graphs. We say that G1 is bisimilar to G2 up to
depth k, denoted G1 'k G2, if the following conditions are
satisfied:

Atoms a1 = b1 if and only if a2 = b2; and (a1, b1) ∈ G1(R)
if and only if (a2, b2) ∈ G2(R), for every R ∈ Λ;

Forth if k > 0, then, for every c1 in adom(G1), there exists
some c2 in adom(G2) such that both (G1, a1, c1) 'k−1

(G2, a2, c2) and (G1, c1, b1) 'k−1 (G2, c2, b2);

Back if k > 0, then, for every c2 in adom(G2), there exists
some c1 in adom(G1) such that both (G1, a1, c1) 'k−1

(G2, a2, c2) and (G1, c1, b1) 'k−1 (G2, c2, b2).

Expressions in N (\, di) of depth at most k are invariant
under bisimulation:

Proposition 4. Let k be a natural number; let e be an
expression in N (\, di)k; and let G1 = (G1, a1, b1) and G2 =
(G2, a2, b2) be marked graphs. If G1 'k G2 then (a1, b1) ∈
e(G1)⇔ (a2, b2) ∈ e(G2).

In other words, if G1 'k G2, then any expression of degree
at most k either both selects (a1, b1) in G1 and (a2, b2) in
G2, or neither of them. As such, the marked graphs G1 and
G2 are indistinguishable by expressions in N (\, di)k. The
proof of Proposition 4 is by a straightforward induction on
e.

The following proposition states how we can use Proposi-
tion 4 to show that some boolean query is not expressible in
N (\, di)k.

Proposition 5. Let k be a natural number. A boolean
query q is not expressible in N (\, di)k if there exist graphs
G1 and G2 such that q(G1) is true and q(G2) is false, and,
for each pair (a1, b1) ∈ adom(G1)2, there exists (a2, b2) ∈
adom(G2)2 such that (G1, a1, b1) 'k (G2, a2, b2).

As Proposition 5 is standard in finite model theory, we
omit the proof.

3.2.3 Homomorphism approach
To show that N (π) 6≤bool N (−1, di ,+), we used an en-

tirely different technique, which is based on the following
observation: let Q = H ← B be a conjunctive query and
let G be a graph; if Q(G) is nonempty, then there exists a
homomorphism from B to G. Notice that queries in N (π)
are conjunctive. Let Q1 = H1 ← B1 be a particular query
in N (π). If we can somehow reduce the equivalence of Q1

to a query in N (−1, di ,+) at the boolean level to the equiva-
lence of conjunctive queries at the boolean level, we may be
able to use the above property to establish the existence of
a nontrivial endomorphism of B1. If no such endomorphism
exists, we have obtained the required contradiction.

4. PATH QUERIES
In this section, we characterize the order ≤path of relative

expressiveness for path queries by Theorem 7 below.
Towards the statement of this characterization, first notice

the following interdependencies between features:

π1(e) = (e ◦ e−1) ∩ id = (e ◦ (id ∪ di)) ∩ id = π1(π1(e));

π2(e) = (e−1 ◦ e) ∩ id = ((id ∪ di) ◦ e) ∩ id = π2(π2(e));

π1(e) = id \ π1(e);

π2(e) = id \ π2(e);

e1 ∩ e2 = e1 \ (e1 \ e2).

For a set of nonbasic features F , let F be the set obtained
by augmenting F with all nonbasic features that can be ex-
pressed inN (F ) through a repeated application of the above

equalities. For example, {\,−1} = {\,−1,∩, π, π}.
Notice that, if F1 ⊆ F 2, we can always rewrite an expres-

sion e ∈ N (F1) into an equivalent expression in N (F2) using
the equalities above. Therefore, we obtain

Proposition 6. If F1 ⊆ F 2, then N (F1) ≤path N (F2).

We will actually show that the converse also holds, whence

Theorem 7. N (F1) ≤path N (F2) if and only if F1 ⊆ F 2.

The “only if” direction of Theorem 7, however, requires a
detailed analysis. For the clarity of presentation, we divide
the languages under consideration into the following four
classes:

C = {N (F ) | ∩ 6∈ F , + 6∈ F},
C[∩] = {N (F ) | ∩ ∈ F , + 6∈ F},
C[+] = {N (F ) | ∩ 6∈ F , + ∈ F},

C[∩,+] = {N (F ) | ∩ ∈ F , + ∈ F}.

We first establish the “only if” direction for the cases where
N (F1) and N (F2) belong to the same class. We do so for
each class separately in Sections 4.1–4.4. Finally, in Sec-
tion 4.5, we consider the case where N (F1) and N (F2) be-
long to distinct classes.

4.1 Languages without ∩ and without +

In this subsection, we show the “only if” direction of The-
orem 7, restricted to C, the class of languages without ∩ and
without +.

Proposition 8. Let N (F1) and N (F2) be in C. If F1 6⊆
F 2, then N (F1) 6≤path N (F2).

200



N ( −1, di )

N ( −1, di, π )

N ( −1 )

N ( −1, π , π)

N ( −1, π )

N ( −1, di, π , π)

N ( di )

N ( di, π )

N

N ( π )

N ( π , π)

N ( di, π , π)

(a) Hasse diagram of ≤path for C.

N ( ∩, di, π , π)N ( ∩, −1, di, π , π)

N ( ∩, −1, di , π)

N ( \, π ,∩, π) = N ( \, π ,∩, π)

N ( ∩, −1 , π)

N ( ∩, −1, π , π)

N ( \, −1 ,∩, π, π)

N ( ∩, π )

N ( ∩ )

N ( \ ,∩)

N ( ∩, di , π)

N ( \, −1, di ,∩, π, π)

N ( ∩, π , π)

N ( \, di ,∩, π, π)

(b) Hasse diagram of ≤path and ≤bool for C[∩].

Figure 1: For each language, the boxed features are a minimal set of nonbasic features defining the lan-
guage, while the other features can be derived from them in the sense of Theorem 7 (using the appropriate
interdependencies).

Propositions 6 and 8 combined yield the Hasse diagram
of ≤path for C, shown in Figure 1(a). It is indeed readily
verified that for any two languages N (F1) and N (F2) in C,
there is a path from N (F1) to N (F2) in Figure 1(a) if and
only if F1 ⊆ F 2.

Towards a proof of Proposition 8, we first establish the
following. For later use, we sometimes prove results that
are stronger than strictly needed for this purpose.

Proposition 9. Let F1 and F2 be sets of nonbasic fea-
tures.

1. If di ∈ F 1 and di 6∈ F 2, then N (F1) 6≤bool
strong N (F2).

2. If π ∈ F 1, π 6∈ F 2, and \ 6∈ F 2, then N (F1) 6≤bool
strong

N (F2).

3. If π ∈ F 1 and F2 ⊆ {−1, di ,+}, then N (F1) 6≤bool

N (F2).

4. If −1 ∈ F 1 and −1 6∈ F 2, then N (F1) 6≤path
strong N (F2).

Proof. For (1), consider a graph consisting of two self-
loops, and a graph consisting of a single self-loop, all with the
same label. It can be verified by the Brute-Force Algorithm
of Section 3.2.1 that these graphs are not distinguishable
in N (F2). The graphs, however, are distinguishable by the
boolean query expressed by di .

For (2), it can be verified by the Brute-Force Algorithm
that the graphs shown in Figure 2 (a) are not distinguishable
in N (F2). The graphs, however, are distinguishable by the
boolean query expressed by π2(R).

For (3), we use the homomorphism approach outlined in
Section 3.2.3. The proof is omitted.

For (4), we establish strong path separation at the level
of path queries as explained in Section 3.1. Thereto, we
consider the graph G shown in Figure 4. It is easily verified
that G−1 cannot be obtained from G using an expression in
N (F2).

Proposition 9 is now used to show that for every pair F1

and F2 of sets of nonbasic features for which F1 6⊆ F 2 (i.e.,

(b)

(d)

(c)

(a)

Figure 2: Graph pairs used to prove 6≤bool
strong results

in Sections 4 and 5. All edges are assumed to have
the same label R.
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Figure 3: Query pattern used to prove Proposition 9
(3). All edges are assumed to have the same label
R.

Figure 4: Graph used to prove Proposition 9 (4).
Both edges are assumed to have the same label R.

for which there is no path in Figure 1(a)), that N (F1) 6≤path

N (F2). To illustrate the reasoning involved, consider the
case where F1 = {di , π} and F2 = {π}. By Proposition 9 (1)
we obtain that N (di , π) 6≤bool

strong N (π) and hence also that

N (di , π) 6≤bool N (π). Since ≤path implies ≤bool, we hence
also obtain N (di , π) 6≤path N (π) by contraposition.

The remainder of the proof of Proposition 8 is a combina-
torial analysis to verify that Proposition 9 covers all relevant
cases. First, note that there are 90 ordered pairs of dis-
tinct languages N (F1) and N (F2) in C for which F1 6⊆ F 1.
As illustrated above, we subsequently use the statements
in Proposition 9 to establish that, for each of these pairs,
N (F1) 6≤path N (F2). Concretely, Proposition 9 (1) deals
with 36 pairs, Proposition 9 (2) deals with another 24 pairs,
Proposition 9 (3) deals with another 12 pairs, and, finally,
Proposition 9 (4) deals with the remaining 18 pairs.

4.2 Languages with ∩ and without +

In this subsection, we show the “only if” direction of The-
orem 7, restricted to C[∩], the class of languages with ∩ but
without +.

Proposition 10. Let N (F1) and N (F2) be in C[∩]. If
F1 6⊆ F 2, then N (F1) 6≤path N (F2).

Propositions 6 and 10 combined yield the Hasse diagram
of ≤path for C[∩], shown in Figure 1(b).

Towards a proof of Proposition 10, we first establish the
following.

Proposition 11. Let F1 and F2 be sets of nonbasic fea-
tures.

1. If \ ∈ F 1 and \ 6∈ F 2, then N (F1) 6≤bool
strong N (F2).

2. If π ∈ F 1, and F2 ⊆ {\,∩,+}, then N (F1) 6≤bool
strong

N (F2).

Proof. For (1), consider a 3-clique, and a bow-tie con-
sisting of two 3-cliques. It can be verified by the Brute-Force
Algorithm of Section 3.2.1 that these graphs are not distin-
guishable in N (F2). The graphs, however, are distinguish-
able by the boolean query expressed by R2 \ R. For (2), it
can be verified by the Brute-Force Algorithm that the graphs
shown in Figure 2 (b) are not distinguishable in N (F2). The
graphs, however, are distinguishable by the boolean query
expressed by π1(R2) ◦R ◦ π2(R2).

Propositions 9 and 11 are now used to show that for ev-
ery pair F1 and F2 of sets of nonbasic features for which
F1 6⊆ F 2 (i.e., for which there is no path in Figure 1(b)),
that N (F1) 6≤path N (F2). To illustrate the reasoning in-
volved, consider the case where F1 = {∩, π} and F2 = {∩}.
By Proposition 11 (2) we obtain N (∩, π) 6≤bool

strong N (\,+)

and hence, since N (∩) ≤path N (\,+), also N (∩, π) 6≤bool
strong

N (∩). Therefore, N (∩, π) 6≤path N (∩).
The remainder of the proof of Proposition 10 is a combi-

natorial analysis to verify that Propositions 9 and 11 cover
all relevant cases. First, note that there are 123 ordered
pairs of distinct languages N (F1) and N (F2) in C[∩] for
which F1 6⊆ F 2. As illustrated above, we subsequently use
the statements in Propositions 9 and 11 to establish that, for
each of these pairs, N (F1) 6≤path N (F2). Concretely, Propo-
sition 9 (1) deals with 48 pairs, Proposition 9 (2) deals with
another 28 pairs, Proposition 9 (4) deals with another 25
pairs, Proposition 11 (1) deals with another 18 pairs, and,
finally, Proposition 11 (2) deals with the remaining 4 pairs.

4.3 Languages without ∩ and with +

The characterization of ≤path for C[+], the languages with-
out ∩ but with +, can easily be derived from the character-
ization of ≤path for C, using the following observation.

Proposition 12. Let F1 and F2 be sets of nonbasic fea-
tures for which ∩ 6∈ F 1, ∩ 6∈ F 2, + 6∈ F 1, and + 6∈ F 2. Then,
N (F1 ∪ {+}) ≤path N (F2 ∪ {+}) if and only if N (F1) ≤path

N (F2).

Proof. The “if” is obvious. To see the “only if”, assume
that N (F1) 6≤path N (F2). In Section 4.1, we showed that
this can be established using one of the 4 statements of
Proposition 9. Therefore, we can distinguish the following
cases:

(1) Case N (F1) 6≤bool
strong N (F2). By definition of 6≤bool

strong

there exists a boolean query q expressible in N (F1), and
two finite graphs G1 and G2 such that q(G1) is true, q(G2)
is false, and, for any expression e ∈ N (F2), e(G1) and
e(G2) are both empty, or both nonempty. From this, we
will now establish N (F1 ∪ {+}) 6≤bool

strong N (F2 ∪ {+}), which

implies N (F1 ∪ {+}) 6≤path N (F2 ∪ {+}). Towards this
end, first observe that, since q is expressible in N (F1), it
is also expressible in N (F1 ∪ {+}). Now let e′ be an ex-
pression in N (F2 ∪ {+}). We will show that again, e′(G1)
and e′(G2) are both empty, or both nonempty. The crux
here is that, on finite graphs, one can always compute the
transitive closure by means of a finite composition. Indeed,
let n = max(n1, n2) with n1 the number of nodes in G1 and
n2 the number of nodes in G2. It is readily verified that, for
any graph H with at most n nodes, and any expression f ∈
N (F2), we have f+(H) = (

Sn
i=1 f

i)(H). By consistently
replacing occurrences of the transitive closure operator in
e′ using this equality, we obtain an expression e′′ ∈ N (F2)
such that e′′(G1) = e′(G1) and e′′(G2) = e′(G2). Since
e′′(G1) and e′′(G2) are both empty or both nonempty, also
e′(G1) and e′(G2) must be both empty, or both nonempty,
as desired.

(2) Case N (F1) 6≤path
strong N (F2). Similar to Case (1). (De-

tails omitted.)

(3) Case π ∈ F 1 and F2 ⊆ {−1, di}. Follows immediately
from Proposition 9 (3).
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Corollary 13. Let N (F1) and N (F2) be in C[+]. If
F1 6⊆ F 2, then N (F1) 6≤path N (F2).

Proposition 6 and Corollary 13 combined yields that the
Hasse diagram of ≤path for C[+] can be obtained from the
Hasse diagram of ≤path for C (Figure 1(a)), simply by adding
+ as a primitive to each language.

4.4 Languages with ∩ and with +

As in Section 4.3, we have the following.

Proposition 14. Let F1 and F2 be sets of nonbasic fea-
tures for which ∩ ∈ F 1, ∩ ∈ F 2, + 6∈ F 1, and + 6∈ F 2. Then,
N (F1 ∪ {+}) ≤path N (F2 ∪ {+}) if and only if N (F1) ≤path

N (F2).

The proof is similar to the proof of Proposition 12. (Details
omitted.)

Corollary 15. Let N (F1) and N (F2) be in C[∩,+]. If
F1 6⊆ F 2, then N (F1) 6≤path N (F2).

Proposition 6 and Corollary 15 combined yields that the
Hasse diagram of ≤path for C[∩,+] can be obtained from the
Hasse diagram of ≤path for C[∩] (Figure 1(b)), simply by
adding + as a primitive to each language.

4.5 Cross-relationships between subdiagrams
To finish the proof of Theorem 7, we finally show the“only

if” direction for the case where N (F1) and N (F2) belong to
different classes.

Proposition 16. Let N (F1) and N (F2) be languages that
belong to different classes among C, C[∩], C[+], and C[∩,+].
If F1 6⊆ F 2, then N (F1) 6≤path N (F2).

Towards a proof of Proposition 16, we first establish the
following.

Proposition 17. Let F1 and F2 be sets of nonbasic fea-
tures.

1. If ∩ ∈ F 1 and ∩ 6∈ F 2, then N (F1) 6≤bool
strong N (F2).

2. If + ∈ F 1 and + 6∈ F 2, then N (F1) 6≤bool N (F2).

Proof. For (1), it can be verified by the Brute-Force
Algorithm of Section 3.2.1 that the graphs shown in Fig-
ure 2 (c) are not distinguishable in N (F2). The graphs,
however, are distinguishable by the boolean query expressed
by R2∩id . For (2), it is well known that reachability queries
such as the boolean query expressed by R ◦ S+ ◦ T cannot
be expressed in FO (see, e.g., [3]).

As detailed below, Propositions 17, 9, and 11 are now sub-
sequently used to show that for every pair F1 and F2 of sets
of nonbasic features for which F1 6⊆ F 2, that N (F1) 6≤path

N (F2), in the same way as in Sections 4.1 and 4.2.
The remainder of the proof of Proposition 16 is again a

combinatorial analysis to verify that the above-mentioned
propositions cover all relevant cases. First, note that there
are 1675 ordered pairs of languages N (F1) and N (F2) that
belong to two distinct classes among C, C[∩], C[+], and
C[∩,+] for which F1 6⊆ F 2. Concretely, Proposition 17 (1)
deals with 672 of these pairs, Proposition 17 (2) deals with
another 508 pairs, Proposition 9 (1) deals with another 228

pairs, Proposition 9 (2) deals with another 94 pairs, Propo-
sition 9 (3) deals with another 12 pairs, Proposition 9 (4)
deals with another 130 pairs, Proposition 11 (1) deals with
another 18 pairs, and, finally, Proposition 11 (2) deals with
the 13 remaining pairs.

Propositions 6, 8, 10, and 16, and Corollaries 13 and 15,
together prove Theorem 7.

Hence, the Hasse diagram of ≤path can be obtained from
the subdiagrams for C, C[∩], C[+], and C[∩,+] by simply
adding the canonical inclusion arrows between

1. the subdiagram for C and the subdiagram for C[∩] (12
arrows);

2. the subdiagram for C and the subdiagram for C[+] (12
arrows);

3. the subdiagram for C[∩] and the subdiagram for C[∩,+]
(14 arrows);

4. the subdiagram for C[+] and the subdiagram for C[∩,+]
(12 arrows).

So, all paths between the subdiagrams are induced by the
canonical inclusion arrows above and the 5 equations from
the beginning of Section 4.

5. BOOLEAN QUERIES
In this section, we characterize the order ≤bool of relative

expressiveness for boolean queries by Theorem 20 below.
Towards the statement of this characterization, first ob-

serve that N (F1) ≤path N (F2) implies N (F1) ≤bool N (F2).
The converse does not hold, however. Indeed, from Proposi-
tion 18 below, it follows that, e.g., N (−1) ≤bool N (π). From
Theorem 7, however, we know that N (−1) 6≤path N (π).

Proposition 18. Let F be a set of nonbasic features for
which ∩ 6∈ F and + 6∈ F . Then, N (F ∪ {−1}) ≤bool N (F ∪
{π}).

Example 19. To illustrate Proposition 18 (proof omit-
ted), consider the expression e1 = R3 ◦ R−1 ◦ R3 in N (−1).
The expression π1(e1) can be equivalently expressed in N (π)
as π1

`
R3 ◦π2(π1(R3)◦R)

´
. Now observe that, for any graph

G, we have that e1(G) is nonempty if and only if π1(e1)(G)
is nonempty.

Using this same observation, one can express the non-
emptiness of the expression e2 = R ◦π2((R ◦S)∪ (R−1 ◦S))
in N (−1, π) by the non-emptiness of the expression π1(e2) =
π1

`
R ◦ π2(R ◦ S) ◦ π2(π1(R) ◦ S)

´
in N (π) .

Proposition 18 shows that, at the level of boolean queries,
−1 does not add expressive power in the presence of π and in
the absence of ∩ and +. We thus obtain a result mirroring
similar results known for XPath on trees [6, 22, 27], where
downward XPath is known to be as powerful as full XPath
for queries evaluated at the root. Note that Marx [19] also
obtained a similar result for XPath with transitive closure,
but we will show below that this no longer holds on graphs
(see Proposition 28).

To accommodate the collapse of −1 in our characterization
of ≤bool, we introduce the following notation. For a set of

nonbasic features F , define eF as follows.

eF =

(
F ∪ {−1} if π ∈ F , ∩ 6∈ F , and + 6∈ F
F otherwise
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For example, {̃π, di} = {−1, π, π, di}.
We will establish the following characterization.

Theorem 20. N (F1) ≤bool N (F2) if and only if F1 ⊆eF2.

The “if” direction of Theorem 20 is shown in Proposi-
tion 21.

Proposition 21. If F1 ⊆ eF2, then N (F1) ≤bool N (F2).

Proof. We distinguish two cases. If F1 ⊆ F 2, then
N (F1) ≤path N (F2), by Proposition 6, whence N (F1) ≤bool

N (F2). In the other case, π ∈ F 2, ∩ 6∈ F 2, and + 6∈ F 2,

and F1 ⊆ F 2 ∪ {−1}. By definition, F 2 ∪ {−1} = F2 ∪ {−1},
since π ∈ F 2. Hence, F1 ⊆ F2 ∪ {−1}. Then, by Theorem 7,
N (F1) ≤path N (F2 ∪{−1}). Since F2 ∪{−1} ⊆ F 2 ∪{−1}, it
also follows that N (F1) ≤path N (F 2 ∪ {−1}). Since ∩ 6∈ F 2

and + 6∈ F 2, we have that N (F 2 ∪ {−1}) ≤bool N (F 2 ∪
{π}) = N (F 2), by Proposition 18. By combining these, we
finally find that N (F1) ≤bool N (F 2). Proposition 21 now
follows from the fact that N (F 2) and N (F2) are equivalent
at the level of path queries and hence also at the level of
boolean queries.

The “only if” direction of Theorem 20, requires a detailed
analysis, which proceeds along the same lines as the analysis
in Section 4. We first establish the “only if” direction for
the cases where N (F1) and N (F2) belong to the same class
among C, C[∩], C[+], C[∩,+], and then consider the case
where N (F1) and N (F2) belong to distinct classes.

5.1 Languages without ∩ and without +

In this subsection, we show the “only if” direction of The-
orem 20, restricted to C, the class of languages without ∩
and without +.

Proposition 22. Let N (F1) and N (F2) be in C. If F1 6⊆eF2, then N (F1) 6≤bool N (F2).

Propositions 21 and 22 combined yield the Hasse diagram
of ≤bool for C, shown in Figure 5. It is indeed readily verified
that for any two languages N (F1) and N (F2) in C, there is a

path fromN (F1) toN (F2) in Figure 5 if and only if F1 ⊆ eF2.
Towards a proof of Proposition 22, we first establish the

following.

Proposition 23. Let F be a set of nonbasic features. If
−1 ∈ F , then N (F ) 6≤bool

strong N (di ,+).

Proof. It can be verified by the Brute-Force Algorithm
of Section 3.2.1 that the graphs shown in Figure 2 (c) are
not distinguishable in N (di ,+). The graphs, however, are
distinguishable by the boolean query expressed by R2◦R−1◦
R2.

As detailed below, Propositions 9 and 23 are now subse-
quently used to show that for every pair F1 and F2 of sets

of nonbasic features for which F1 6⊆ eF2, that N (F1) 6≤bool

N (F2), in the same way as in Sections 4.1 and 4.2.
The remainder of the proof of Proposition 22 is again a

combinatorial analysis to verify that the above-mentioned
propositions cover all relevant cases. First, note that there
are 34 ordered pairs of distinct languages N (F1) and N (F2)

in C for which F1 6⊆ eF2. (These are exactly the pairs for

N ( −1, di, π ) = N ( di, π )

N ( −1, π , π) = N ( π , π)

N ( −1, di, π , π) = N ( di, π , π)

N ( −1, π ) = N ( π )

N ( di )

N ( −1, di )

N

N ( −1 )

Figure 5: The Hasse diagram of ≤bool for C. For
each language, the boxed features are a minimal set
of nonbasic features defining the language, while the
other features can be derived from them in the sense
of Theorem 7 (using the appropriate interdependen-
cies).

which there is no path from N (F1) to N (F2) in Figure 5.)
Concretely, Proposition 9 (1) deals with 16 of these pairs,
Proposition 9 (2) deals with another 9 pairs, Proposition 9 (3)
deals with another 6 pairs, and, finally, Proposition 23 deals
with the remaining 3 pairs.

5.2 Languages with ∩ and without +

In this subsection, we show the “only if” direction of The-
orem 20, restricted to C[∩], the class of languages with ∩
but without +.

Proposition 24. Let N (F1) and N (F2) be in C[∩]. If

F1 6⊆ eF2, then N (F1) 6≤bool
strong N (F2).

Notice that since ∩ ∈ F 2, eF2 = F 2. Hence, Proposition 7
and Proposition 24 combined show that ≤bool coincides with
≤path on C[∩]. As a result, the Hasse diagram of ≤bool for
C[∩] is the same as the Hasse diagram of≤path for C[∩] shown
in Figure 1(b). Note that, in addition, all separations are
strong.

Towards a proof of Proposition 24, we first establish the
following.

Proposition 25. Let F1 and F2 be sets of nonbasic fea-
tures. If −1 ∈ F1, ∩ ∈ F1, and −1 6∈ F2, then N (F1) 6≤bool

strong

N (F2).

Proof. The graphs G1 and G2 shown in Figure 2 (d),
top and bottom, are distinguished by the boolean query q
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expressed by (R2 ◦ R−1 ◦ R) ∩ R. On these graphs, the
Brute-Force Algorithm of Section 3.2.1 does not terminate
in a reasonable time. Using a variant of the well-known algo-
rithm by Paige and Tarjan [24], it can be verified in polyno-
mial time, however, that for each pair (a1, b1) ∈ adom(G1)2,
there exists (a2, b2) ∈ adom(G2)2 such that (G1, a1, b1) 'k

(G2, a2, b2) for any depth k. From Proposition 5, it follows
that q is not expressible in N (F2).

The remainder of the proof of Proposition 24 proceeds as
the proof of Proposition 10, except that Proposition 25 is
used instead of Proposition 9 (4).

5.3 Languages without ∩ and with +

In this subsection, we show the “only if” direction of The-
orem 20, restricted to C[+], the class of languages without ∩
but with +.

Proposition 26. Let N (F1) and N (F2) be in C[+]. If

F1 6⊆ eF2, then N (F1) 6≤bool N (F2).

Notice that since + ∈ F2, eF2 = F 2. Hence, Proposition 7
and Proposition 26 combined show that ≤bool coincides with
≤path on C[+]. As a result, the Hasse diagram of ≤bool for
C[+] is the same as the Hasse diagram of ≤path for C[+]. (Re-
call that the latter is obtained from Figure 1(a) by adding
+ as a primitive to each language.) Observe in particular
that the collapses for ≤bool compared to ≤path in the case of
languages without ∩ and without + disappear again when
+ is added.

Towards a proof of Proposition 26, we first remark the
following.

Remark 27. Let F1, F2, and G be arbitrary sets of non-
basic features. (In particular, they may or may not contain
∩, \, or +.) While it is straightforward that N (F1) ≤path

N (F2) implies N (F1 ∪G) ≤path N (F2 ∪G), the correspond-
ing statement for ≤bool does not hold. Indeed, by Proposi-
tion 18, N (−1, π) ≤bool N (π). However, N (−1, π,+) 6≤bool

N (π,+), as will follow from Proposition 28 below (proof
omitted).

Proposition 28. Let F1 and F2 be sets of nonbasic fea-
tures. If −1 ∈ F 1, + ∈ F 1, and −1 6∈ F 2, then N (F1) 6≤bool

N (F2).

The remainder of the proof of Proposition 26 proceeds
as the proof of Proposition 8, except that Proposition 28 is
used instead of Proposition 9 (4).

5.4 Languages with ∩ and with +

As in Section 4.4, we have the following.

Proposition 29. Let F1 and F2 be sets of nonbasic fea-
tures for which ∩ ∈ F 1, ∩ ∈ F 2, + 6∈ F 1, and + 6∈ F 2. Then,
N (F1 ∪ {+}) ≤bool N (F2 ∪ {+}) if and only if N (F1) ≤bool

N (F2).

Proof. By Remark 27, we may not straightforwardly
infer from N (F1) ≤bool N (F2) that N (F1 ∪ {+}) ≤bool

N (F2 ∪ {+}). However, we established in Section 5.2 that
N (F1) ≤bool N (F2) implies N (F1) ≤path N (F2), whence
also that N (F1 ∪ {+}) ≤path N (F2 ∪ {+}) and N (F1 ∪
{+}) ≤bool N (F2 ∪ {+}). This settles the “if”. To see the
“only if”, assume that N (F1) 6≤bool N (F2). By Proposi-
tions 21 and 24, it follows thatN (F1) 6≤bool

strong N (F2), whence

N (F1 ∪ {+}) 6≤bool
strong N (F2 ∪ {+}).

Corollary 30. Let N (F1) and N (F2) be in C[∩,+]. If

F1 6⊆ eF2, then N (F1) 6≤bool
strong N (F2).

Notice that since + ∈ F2, eF2 = F 2. Hence, Proposition 7
and Corollary 30 combined show that ≤bool coincides with
≤path on C[∩,+]. As a result, the Hasse diagram of ≤bool

for C[∩,+] is the same as the Hasse diagram of ≤path for
C[∩,+]. (Recall that the latter is obtained from Figure 1(b)
by adding + as a primitive to each language.) Note that, in
addition, all separations are strong.

5.5 Cross-relationships between subdiagrams
To finish the proof of Theorem 20, we finally show the

“only if” direction for the case where N (F1) and N (F2) be-
long to different classes.

Proposition 31. Let N (F1) and N (F2) be languages that
belong to different classes among C, C[∩], C[+], and C[∩,+].

If F1 6⊆ eF2, then N (F1) 6≤bool N (F2).

Towards a proof of Proposition 31, we first establish the
following.

Proposition 32. Let F1 be a set of nonbasic features. If
−1 ∈ F 1, and F2 ⊆ {\,∩,+}, then N (F1) 6≤bool

strong N (F2).

Proof. It can be verified by the Brute-Force Algorithm
of Section 3.2.1 that the graphs shown in Figure 2 (b) are
not distinguishable in N (F2). The graphs, however, are dis-
tinguishable by the boolean query expressed by R2 ◦ R−1 ◦
R2.

As detailed below, Propositions 17, 9, 11, 23, 25, 28, and
32 are now subsequently used to show that for every pair F1

and F2 of sets of nonbasic features for which F1 6⊆ eF2, that
N (F1) 6≤bool N (F2), in the same way as in Sections 5.1–5.4.

The remainder of the proof of Proposition 31 is again a
combinatorial analysis to verify that the above-mentioned
propositions cover all relevant cases. First, note that there
are 1370 ordered pairs of languages N (F1) and N (F2) that
belong to two distinct classes among C, C[∩], C[+], and

C[∩,+] for which F1 6⊆ eF2. Concretely, Proposition 17 (1)
deals with 560 of these pairs, Proposition 17 (2) deals with
another 460 pairs, Proposition 9 (1) deals with another 184
pairs, Proposition 9 (2) deals with another 68 pairs, Propo-
sition 9 (3) deals with another 6 pairs, Proposition 11 (1)
deals with another 21 pairs, Proposition 11 (2) deals with
another 20 pairs, Proposition 23 deals with another 3 pairs,
Proposition 25 deals with another 18 pairs, Proposition 28
deals with another 26 pairs, and, finally, Proposition 32 deals
with the 4 remaining pairs.

Propositions 21, 22, 24, 26, and 31, and Corollary 30,
together prove Theorem 20.

Hence, the Hasse diagram of ≤bool can be obtained from
the subdiagrams for C, C[∩], C[+], and C[∩,+] by simply
adding the canonical inclusion arrows between

1. the subdiagram for C and the subdiagram for C[∩] tak-
ing into account only the representations with the fea-
ture sets that are minimal with respect to inclusion (8
arrows);

2. the subdiagram for C and the subdiagram for C[+] tak-
ing into account only the representations with the fea-
ture sets that are minimal with respect to inclusion (8
arrows);
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3. the subdiagram for C[∩] and the subdiagram for C[∩,+]
(14 arrows);

4. the subdiagram for C[+] and the subdiagram for C[∩,+]
(12 arrows).

So, all paths between the subdiagrams are induced by the
canonical inclusion arrows above, the 5 equations from the
beginning of Section 4, and Proposition 18.

6. QUERIES ON UNLABELED GRAPHS
In this section, we consider the case in which the set Λ

of edge labels is a singleton. In other words, a graph G is
then a relational structure consisting of a set of nodes V and
a relation E ⊆ V × V , the set of edges of G. We use the
notation ≤path

unl and ≤bool
unl to compare the expressiveness of

languages on such unlabeled graphs.
Of course,N (F1) ≤path N (F2) impliesN (F1) ≤path

unl N (F2),

and N (F1) ≤bool N (F2) implies N (F1) ≤bool
unl N (F2).

We must emphasize that, with the exception of Proposi-
tion 17 (2), none of the separation results from Sections 4
and 5 depend on the presence of multiple edge labels, and
therefore already hold in the case of unlabeled graphs. For
Proposition 17 (2), however, at the level of general path
queries, we can establish the following counterpart using the
well-known fact that transitive closure of a binary relation
is not expressible in FO, and hence also not in any N (F )
without transitive closure [26]:

Proposition 33. Let F1 and F2 be sets of nonbasic fea-
tures. If + ∈ F 1, and + 6∈ F 2, then N (F1) 6≤path

unl N (F2).

We therefore have

Proposition 34. Let F1 and F2 be sets of nonbasic fea-
tures. Then, N (F1) ≤path

unl N (F2) if and only if N (F1) ≤path

N (F2).

We may thus conclude that ≤path
unl coincides with ≤path.

At the level of boolean queries, as we show next, a coun-
terpart of Proposition 17 (2), similar to Proposition 33, does
not exist. It will actually turn out that, on unlabeled graphs,
adding transitive closure does not always add expressive
power.

However, we have the following weaker result.

Proposition 35. Let F1 and F2 be sets of nonbasic fea-
tures.

1. If + ∈ F 1, ∩ ∈ F 1, and + 6∈ F 2, then N (F1) 6≤bool
unl

N (F2).

2. If + ∈ F 1, −1 ∈ F 1, and + 6∈ F 2, then N (F1) 6≤bool
unl

N (F2).

Proof. For (1), it is well known that the query that
checks whether a graph contains a cycle cannot be expressed
in FO (see, e.g., [3]). The query, however, is expressed by
R+ ∩ id . For (2), a classical Ehrenfeucht-Fräıssé argument

shows that the boolean query expressed by R2◦(R ◦R−1)
+◦

R2 cannot be expressed in FO (see, e.g., [3]).

The languages not covered by the statements in Proposi-
tion 35 are N (+), N (π,+), N (di ,+), N (π,+), N (di , π,+),
and N (di , π,+). We have the following collapses for ≤bool

unl

compared to ≤bool.

Proposition 36. The following collapses occur at the level
of boolean queries on unlabeled graphs, but not on labeled
graphs:

N (+) ≤bool
unl N , (1)

N (π,+) ≤bool
unl N (π), and (2)

N (di ,+) ≤bool
unl N (di). (3)

Proof. We first sketch the proof of Statement (2). Let e
be an expression in N (π,+). We show that a sufficient con-
dition for e(G) to be nonempty is that Rm(G) is nonempty,
where m is a natural number computable from e. We then
show that on a graph G with Rm(G) empty, e can equiva-
lently be expressed by an expression e′ in N (π). From the
above, it follows immediately that e(G) is nonempty if and
only if Rm ∪ e′(G) is nonempty. This proves Statement (2).
Additionally, we show that, if e is in N (+), then e′ is in N ,
which proves Statement (1). The proof of Statement (3) is
omitted.

It is still open whether the languagesN (π,+), N (di , π,+),
and/or N (di , π,+) collapse to any language without +. It
is conjectured that N (π,+) ≤bool

unl N (π); N (di , π,+) ≤bool
unl

N (di , π); and N (di , π,+) ≤bool
unl N (di , π).

7. CONCLUSIONS
In this paper, we considered all languages defined by the

basic features union, composition, and the identity relation,
and none, some, or all the nonbasic features intersection,
set difference, projection, coprojection, converse, transitive
closure, and the diversity relation. While some of these lan-
guages have been studied in the context of XPath, they are
there evaluated over trees. In our work, we have studied
these languages as simple navigational query languages for
graphs. The main contribution of this paper is that we have
been able to perform a complete comparison of all the lan-
guages under consideration, and this both at the level of
general path queries and the level of boolean queries.

Especially in the case of boolean queries, we encountered
some nontrivial separations and a few surprising collapses.
With regard to the latter, we refer in particular to the re-
sult stating that converse can be eliminated in the presence
of projection and in the absence of intersection and tran-
sitive closure. However, these collapses disappear again if
intersection or transitive closure is added.

Finally, we discussed the restrictions of the above lan-
guages to unlabeled graphs. We first established that the
relative expressiveness of these languages at the level of gen-
eral path queries remains unchanged by this restriction. At
the level of boolean queries, however, some additional col-
lapses occur. Using intricate arguments, we were able to
establish that the three languages defined by the basic fea-
tures augmented by transitive closure, respectively projec-
tion and transitive closure, respectively the diversity relation
and transitive closure, collapse to their counterparts with-
out transitive closure. For three remaining languages with
transitive closure, it remains open whether such collapse oc-
curs, though the present authors conjecture that this is the
case.

8. FURTHER RESEARCH
There are alternative modalities for expressing boolean

queries apart from interpreting the nonemptiness of an ex-
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pression as “true” and emptiness as “false”. For example, we
can switch these interpretations and interpret nonemptiness
as “false” and emptiness as “true”. Yet another possibility
is to consider a boolean query q expressible if there are two
expressions e1 and e2 such that e1(G) = e2(G) if, and only
if, q(G) is “true”, for all G. For some of our languages, these
alternative modalities would not make a difference, but it
would for others. Looking into these alternative modalities
is an interesting topic for further research.

In the present paper, we have been focusing on expressive
power, but, of course, it is also interesting to investigate the
decidability of satisfiability or containment of expressions.
Much is already known. From the undecidability of FO3,
it follows that the most powerful language without transi-
tive closure is undecidable, and the same holds even without
converse. From the decidability of ICPDL [14], all languages
without set difference are decidable, although this is not yet
known if these languages are restricted to finite relations.
An interesting topic for further research is the decidability
of satisfiability or validity of the languages with set differ-
ence, but without the diversity relation.

Another natural question is whether the invariance under
arrow logic bisimulation, that we use as a tool to prove some
nonexpressibility results, actually provides characterizations
of indistinguishability in the various languages (say, up to
some quantifier rank), as is the case for modal logic [15]. We
have in fact proved this in a number of cases [11]. A fur-
ther question then is whether van Benthem-style expressive
completeness results [23] can be established.

Finally, there are still other interesting operators on bi-
nary relations that can be considered. A good example is
residuation [25], a derived operator of the calculus of rela-
tions, and interesting to consider separately, as we have done
for projection and coprojection. Residuation is interesting
from a database perspective because it corresponds to the
set containment join (e.g., [18]).
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