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ABSTRACT

This paper studies top-k query evaluation for an important
class of probabilistic semi-structured data: nested DAGs
(Directed Acyclic Graphs) that describe possible execution
flows of Business Processes (BPs for short). We consider
queries with projection, that select portions (sub-flows) of
the execution flows that interest the user and are most likely
to occur at run-time. Retrieving common sub-flows is cru-
cial for various applications such as targeted advertisement
and BP optimization. Sub-flows are ranked here by the sum
of likelihood of EX-flows in which they appear, in contrast
to the max-of-likelihood semantics studied in previous work;
we show that while sum semantics is more natural, it makes
query evaluation much more challenging. We study the
problem for BPs and queries of varying classes and present
efficient query evaluation algorithms whenever possible.

Categories and Subject Descriptors

H.2.3 [Database Management]: [Languages]; F.4.2 [Theory

of Computation]: [Grammars and Other Rewriting Sys-
tems]; G.3 [Mathematics of Computing]: [Probability
and Statistics]

General Terms
Algorithms, Languages, Theory

1. INTRODUCTION

A Business Process (BP for short) consists of a set of activ-
ities which, when combined in a flow, achieve some business
goal. A given BP may have a large, possibly infinite, num-
ber of possible execution flows (EX-flows for short), each
having a certain probability to occur at run time. BPs are
typically designed via high-level specifications [6] which are
later compiled into an executable code. Since the BP logic
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is captured by the specification, tools for querying and ana-
lyzing the possible EX-flows of a BP specification, as well as
their probability to occur at run time, are extremely valu-
able to companies [11, 12, 18].

This paper studies evaluation of top-k projection queries
that select portions of EX-flows that are of interest to the
user, and are most likely to occur at run-time. Before pre-
senting our results, let us briefly recall our model (from [13])
for probabilistic BPs, and motivate the specific query seman-
tics studied here.

BP specifications. A BP specification is abstractly mod-
eled as a nested DAG consisting of activities (nodes), and
links (edges) between them, that detail the execution order
of the activities [11, 14]. For example, consider a BP of an
on-line travel agency. The BP specification may include ac-
tivities (nodes) for flight and hotel reservation, car rental,
payment and confirmation services, and edges that describe
their execution order. The DAG shape allows to describe
parallel computations. For instance, advertisements may be
injected in parallel to the search. BP activities may be either
atomic, or compound. In the latter case their possible inter-
nal structures, called implementations, are also detailed as
DAGs, leading to the nested DAG structure. A compound
activity may have different possible implementations, cor-
responding to different user choices, variable values, servers
availability, etc. An Ezecution Flow (abbr. EX-flow) is then
an actual running instance of a BP, obtained by choosing
a single implementation for each compound activity. A BP
specification induces a set of such possible EX-flows; this
set may be large, or even infinite when the BP specification
contains recursion.

In practice, some EX-flows are more common than others.
This is modeled by a probability distribution over the possi-
ble implementations of compound activities [12, 13]. A BP
specification along with a description of such distribution is
called a Probabilistic BP. We note that the probabilities of
choices dictating the execution course are, in typical cases,
inter-dependent. To simplify the presentation we first as-
sume probabilistic independence between the choices made
throughout the EX-flow and present our results in this set-
ting. We then study how to extend the results to a settings
where dependencies are allowed (in a bounded manner).

Top-k projection queries. Among all possible flows of a
BP, analysts are often interested only in a part that is rele-
vant for their analysis. This part is typically described via
a query. Note, however, that among all qualifying execution



(sub-) flows, some are often more “interesting” than others.

In particular, given a BP specification, identifying the top-
k execution (sub-) flows that are most likely to occur in prac-
tice, out of those satisfying the query criteria, is crucial for
various applications. It can be used, for instance, to adjust
the BP web-site design to the needs of certain user groups,
or to personalize on-line advertisements. The importance of
top-k query evaluation is enhanced by the fact that the num-
ber of answers (qualifying sub-flows) to a simple query may
be extensively large, or even infinite when the BP contains
recursion [2].

Re-consider our example BP of an on-line, Web-based
travel agency. An analyst of this BP may wish to find out
how is one likely to book a travel package containing a flight
reservation?, or how is this likely to be done for travelers of
a particular airline company, say British Airways?. There
may be many different ways for users to book such travel
packages. But assume, for instance, that we obtain that a
likely scenario for British Airways reservations is one where
users first search for a package containing both flights and
hotels, but eventually do not reserve an hotel. Such a result
may imply that the combined deals suggested for British
Airways fliers are unappealing, (as users are specifically in-
terested in such deals, but refuse those presented to them),
and can be used to improve the Web site.

We note that the score assigned to each sub-flow (query
result) is defined here as the sum of probabilities of full EX-
flows in which it appears. This coincides with the intuitive
definition of likelihood of a sub-flow; but we also discuss
other possible scoring functions below.

Our results. The present paper is the first to provide top-
k query evaluation algorithms, for projection queries over
probabilistic BPs, with the sum-of-likelihoods semantics. Our
analysis offers a nearly complete picture of which combina-
tions of BP and query features lead to PTIME algorithms
and which to NP-hard or infeasible problems. We next de-
scribe the main results; in the following we refer to data
complexity, i.e. complexity with respect to the size of the
BP specification. This is because our query evaluation al-
gorithms all incur time that is exponential in the query size
(when considering a fixed-size BP specification).

To simplify the presentation we first assume probabilis-
tic independence between the choices made throughout the
execution flow and present our algorithms and complexity
results in this setting.

First, observe that the number of possible execution flows
of a given BP may be not only large but infinite, if the BP
contains recursion. Hence enumerating them all, to sum up
the likelihoods of relevant flows, is clearly not an option. We
nevertheless show that even when the BP contains recursion,
it is possible under plausible assumptions to identify the top-
k query answers (sub-flows) that are most likely to occur at
run-time. We present an EXPTIME algorithm for finding
the top-k query answers and show that, unless P=NP, a
PTIME algorithm does not exist.

Without recursion, the number of possible flows is finite
and exact likelihoods can be computed. However, we show
that query evaluation may still, in general, be impossible to
perform in PTIME (unless P=NP). The exact complexity
depends on the query characteristics. The query language
that we consider selects execution (sub) flows of interest, us-
ing execution patterns. Execution patterns are an adapta-
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tion of the tree-patterns offered by existing query languages
for XML, to BP nested DAGs. In particular, execution pat-
terns may include regular /transitive edges, that are matched
to simple edges/paths of the execution flow. We show that
when the projection is not over transitive edges, query eval-
uation can be performed in PTIME under unit-cost RAM
model with exact rational arithmetic (i.e., algebraic oper-
ations on rational numbers can be done in unit time) [5].
This computational model is used here for the same reasons
it was used in [15]: to avoid worrying about representation
of query result probabilities, since in general these probabil-
ities may be exponentially small with respect to the input
BP size.

Our results described so far referred to the case where all
probabilistic choices are independent. Then, we also con-
sider dependencies: we show that query evaluation is still
possible, in the practical case where only a bounded level of
dependency is allowed (to be formally defined below). In this
case, an overhead which is (double-)exponential in the above
bound is added to the complexity of query evaluation in the
cases where query evaluation was PTIME (EXPTIME).

While our work is motivated by a particular application
domain, our evaluation algorithms for projection queries are
notably applicable to other important settings where the
analysis of potentially infinite sets of graphs, generated prob-
abilistically, is needed. This includes XML schemas with
probabilities for generating synthetic test documents [8], Ac-
tive XML [1] where embedded calls to Web services may
have some probabilities for the possible returned answers,
and other graph-based models for probabilistic processes,
discussed below.

Difficulties and Novelty. We conclude the Introduction by
contrasting our work with related work.

Recursive Markov Chains and Probabilistic XML. Recur-
sive Markov Chains (RMCs) [15] are extensions of Markov
Chains (MCs) [21], that allow for recursion. An RMC con-
sists of a collection of Markov chains which can call each
other in a possibly recursive manner. RMCs may also be
thought of as an adaptation of Recursive State Machines [3]
to a probabilistic settings. In a recent work [4], the authors
show that RMCs can be used as a representation system
for probabilistic XML, that subsumes most of the previous
models for Probabilistic XML (e.g. [19, 9, 24]).

The analysis of RMCs was first studied in [15], in the
context of reachability and termination; the authors showed
that in the general case these problems are intractable (even
approximation is at least as difficult as SQRT-SUM [17],
which is conjectured not to have a PTIME solution). But
they provide PTIME algorithms for a large class of restricted
case (including the case of 1-exit RMC [15]). The work of
[4] then studies algorithms for a very powerful query lan-
guage, namely Monadic Second Order (MSO) Logic (again,
considering various restricted cases of RMCs). They provide
algorithms for MSO query evaluation that, while tractable
w.r.t. data complexity (the RMC size), have non-elementary
complexity in the query size and are thus impractical (but
this is the best that can be done for MSO [10]). [4] further
considers more restricted query languages such as tree pat-
terns and XPath, and shows that they incur lower combined
complexity.

When no dependencies between probabilistic choices made
during execution of the process are allowed, our model for



probabilistic BPs can be syntactically translated to 1-exit
RMCs (and vice versa). However, there are three important
distinctions between the current work and the works de-
scribed above. A first distinction is the query language used
for analysis. The above works study only boolean queries,
whose output is a single probability value. In contrast, our
work studies top-k projection queries, where the output con-
sists of a set of best ranked answers. We study evaluation
of boolean queries as a tool, and show that the transition
from boolean to projection queries in this context requires
non-trivial development, reflected by inherently higher com-
plexity of query evaluation. Second, evaluation of boolean
queries in our context also requires additional development:
the work of [19] cannot be used here as it does not allow for
recursion, the work of [4] for MSO queries requires much
higher (non-elementary vs. the EXPTIME in our work)
combined complexity, and the weaker query languages (tree
patterns and XPath) studied in [4] cannot capture the DAG-
shaped patterns expressible in our query language. Third,
previous work in this context assumes independence between
probabilistic choices, while our model and query evaluation
algorithms account for dependencies, which occur very reg-
ularly in the context of Business Processes.

Business Processes. Probabilistic BPs were introduced in
[12, 13]. Query evaluation there was based on a particular
maz semantics: [12] suggested an algorithm for identifying
full flows with maximal probability. In [13] we extended the
algorithm of [12] to rank sub-flows based on the mazimal
probability of full flows where they appear. This choice of
ranking was motivated in [13] by a specific application con-
cerning the recovery of missing information. Recall that the
current work ranks sub-flows based upon the sum of prob-
abilities of flows in which they appear. To illustrate the
difference between max and sum semantics, consider a case
where a particular deal consisting of a flight and a car rental,
is very popular, but where packages consisting of flight and
hotel reservations are overall more common (even though
each such offer is individually less popular than the specific
flight+car deal). Now, consider the query above that wishes
to identify how a package that includes a flight reservation is
typically booked. With sum semantics, the flight+hotel op-
tion is ranked highest, as it appears in most EX-flows. But
with maz semantics, flight+car would be ranked highest, as
there exists one very popular EX-flow where it appears.

The sum semantics is a common semantics for projection
queries, employed also for probabilistic XML and probabilis-
tic relational DB (e.g. [23, 16]). Yet, we show below that
in the BP context it makes query evaluation computation-
ally much harder, compared to maz semantics (NP-hard and
EXPTIME vs. the PTIME of [12, 13]). Intuitively, this
is because the computation now has to implicitly compute
sum-of-probabilities over all relevant flows (and there may
be infinitely many).

Other Probabilistic Process Models. There are many works
on analysis of various other models for probabilistic process
specifications (e.g. Probabilistic Pushdown Automata [20]
and Stochastic Context Free (Graph) Grammars [10]). The
discussion above for works on RMCs holds also for the anal-
ysis work on (restricted versions of) these models: to our
knowledge, these works consider only boolean queries; fur-
thermore, they either study evaluation of MSO queries (as
in e.g. [10]) and then suffer from non-elementary combined
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complexity, or consider very restricted kinds of analysis. In
contrast, our query language suggests a reasonable tradeoff
between expressibility and feasibility.

Paper Organization. In Section 2 we recall the model of
probabilistic BPs and queries over such BPs; in Section 3 we
study the complexity of query evaluation, providing lower
and upper bounds. In Section 4 we extend our results to
account for dependencies. We conclude in Section 5.

2. PRELIMINARIES

We start by recalling the basic model of [11] for proba-
bilistic BPs, EX-flows and queries.

BP specification. At a high-level, a BP specification en-
codes a set of activities and the order in which they may oc-
cur. A BP specification is modeled as a set of node-labeled
DAGs. Each DAG has a unique start node with no incom-
ing edges and a unique end node with no outgoing edges.
Nodes are labeled by activity names and directed edges im-
pose ordering constraints on the activities. Activities that
are not linked via a directed path are assumed to occur in
parallel. The DAGs are linked through implementation re-
lationships; the idea is that an activity a in one DAG is
realized via the activities in another DAG. We call such an
activity compound to differentiate it from atomic activities
which have no implementations. Compound activities may
have multiple possible implementations, and the choice of
implementation is controlled by a a condition referred to as
a guarding formula.

We assume the existence of two domains: A = Aatomic U
Acompouna of activity names and F of formulas in predicate
calculus.

DEFINITION 2.1. A BP specification is a triple (S, so, 7),
where S is a finite set of node-labeled DAGs, so € S is a
distinguished DAG consisting of a single activity, called the
root, 7 : Acompound — 29%F s the implementation function,
mapping each compound activity name in S to a set of pairs,
each consisting of an implementation (a DAG in S) and a
guarding formula in F.

Each DAG d in S has a unique start (end) node with no
ingoing (outgoing) edges, denoted start(d) (end(d)).

EXAMPLE 2.2. Fig. 1 depicts a partial BP specification.
Its root DAG consists of a single activity chooseTravel.
chooseTravel s a compound activity having 3 possible im-
plementations Fa, F3, Fy. These correspond to different choices
of travel search (flights only, flights + hotels, or flights + ho-
tels + cars) and are guarded by corresponding formulas. The
idea 1s that exactly one formula is satisfied at run-time (the
user chooses one of the three search types) and thus choose-
Travel is implemented either by F», F3 or Fy. Consider
for example F; it describes a group of activities comprising
user login, the injection of an advertisement, the Flights
activity, and the Confirm activity. Directed edges specify the
order of activities occurrence, e.g. users must login before
choosing a flight. Some of the activities (e.g. Advertise
and Flights) are not in a particular order, and thus may
occur in parallel. Login and Advertise are atomic whereas
Flights and Confirm are compound. Note that the specifi-
cation s recursive as e.g. F» may call F}.
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Figure 1: Business Process Specification

We note that satisfaction of guarding formulas is deter-
mined by external factors, such as user choices. We assume
that exactly one guarding formula can be satisfied when de-
termining the implementation of a given compound activity
occurrence, but satisfaction of guarding formulas can change
if activities occur several times. For instance, a user may
choose to search for flights and hotels the first time she goes
through Fi and for flights only the second time.

Execution Flows. An EX-flow is modeled as a nested DAG
that represents the execution of activities from a BP. Since,
in real-life, activities are not instantaneous, we model each
occurrence of an activity a by two a-labeled nodes, the first
standing for the activity activation and the second for its
completion point. These two nodes are connected by an
edge. The edges in the DAG represent the ordering among
activities activation/completion and the implementation re-
lationships. To emphasize the nested nature of executions,
the implementation of each compound activity appears in-
between its activation and completion nodes. An EX-flow
structure must adhere to the structure of the BP specifica-
tion, i.e., activities must occur in the same order and imple-
mentation relationships must conform to 7.

DEFINITION 2.3. Given a BP specification s = (S, so, T),
e is an execution flow (EX-flow) of s if:

e Base EX-Flow: e consists only of the activation and
completion nodes of the root activity so of s, connected
by a single edge, or,

e Expansion Step: ¢’ is an EX-flow of s, and e is ob-
tained from €’ by choosing some activation-completion
pair (n1,n2) of an activity a in €', choosing a pair of
implementation and guard (eaq, fo) € 7(a), adding to
¢’ the nodes and edges of e, as well as two new edges,
called implementation edges,

(n1, start(eq)) and (end(eq),n2), and finally annotat-
ing the pair (n1,n2) with the formula fq.

We require that (ni,m2) do mot have any implemen-
tation edges already connected to them in €', whereas
all its ancestor compound activities in €' do have such
implementation edges.

In the attached implementation e, each node is re-
placed by a corresponding pair of activation and com-
pletion nodes, connected by an edge.

We call e, a direct implementation of (n1,n2) and call
e an expansion of €', denoted e/ — e.
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We use ¢/ —* e to denote that e was obtained from e’ by a
sequence of expansions. An activity pair in e is unerpanded
if it is not the source of an implementation edge. We say
that an EX-flow is partial if it has unexpanded activities,
and full otherwise, and denote the set of all full flows of a
BP specification s by flows(s).

For a graph e, e is an EX-flow if it is a (partial or full)
flow of some BP specification s. Last, an abstract EX-flow €’
is obtained from an EX-flow e by deleting some occurrences
of guarding formulas from e.

EXAMPLE 2.4. Two EX-flows of the travel agency BP are
given in Fig. 2. Ordering edges (implementation edges) are
drawn by regular (resp. dashed) arrows. Each EX-flow de-
scribes a sequence of activities that occurred during the BP
exzecution. In Fig. 2(a) the user chooses a “flights+hotels”
search, reserving a “British Airways” flight and a “Marriott”
hotel, then confirms. Fig. 2 (b) depicts another possible
EX-flow, where the user chooses a “flights only” search, fol-
lowed by a choice of British Airways flight, but then resets
and makes other choices (omitted from the figure).

Likelihood. Some user choices / variable values are more
common than others, and thus EX-flows vary in their like-
lihood of occurring in practice. To model this we use two
likelihood functions. The first, named clikelihood (choice
likelihood), associates a value with each guarding formula
(implementation choice), describing the probability that the
formula holds. The second, named fikelihood (flow likeli-
hood) reflects the joint likelihood of satisfaction of guarding
formulas occurring along the flow. Formally,

DEFINITION 2.5. Given a BP s with root sg and a clikelihood
function 0, the f-ikelihood A of an EX-flow e of s (w.r.t.
0) is defined as follows:

1. Ife consists only of the activation and completion nodes
of the root activity so, Ale) = 1.

2. Else, if ¢ — e for some EX-flow €' of s, then A(e) =
A(e’) x 6(f), where f guards the implementation that
is added to €' to form e.

Note that the likelihood functions considered here assume
independence between choices; that is, the likelihood of every
formula to hold is constant, regardless of truth values of
other formulas / implementation choices taken. In practice,
choices may be dependent: for instance, the choice of hotel
may depend on the choice of airline that preceded it. In
Section 5 we explain how our results extend to the general
context where choices may be dependent.



$searchType=
chooseTravel

j“ﬂights+hotels "

Ta

~$choice = “confirm”
T

chooseTravef (a)

chooseTravel

. $searchType="flight only”

Ta

v
Flights }‘
$choice = “reset”
’{ chooseTravel

a
L]
@'( chooseTravel

(b)

chooseTravel

Figure 2: Execution Flows

EXAMPLE 2.6. Consider Table 1 that depicts the likeli-
hoods of value assignments for the different variables of the
travel agency BP, and consequently the c—likelihood function
for the corresponding guarding formulas. The fikelihood of
each EX-flow may be computed according to this c—likelihood
function, For instance, the flikelihood of the EX-flow in
Fig.2(a) is computed as the multiplication of the clikelihood
values of $searchType = “flights + hotels”, $airline =
“BritishAirways”, $Shotel = “Marriott”, and $choice =
“confirm”, that is 0.25 % 0.7 % 0.6 * 0.2 = 0.021.

Queries. Queries are defined using ezecution patterns, an
adaptation of the tree-patterns of existing XML query lan-
guages, to nested EX-flow DAGs. Such patterns are similar
in structure to EX-flows, but contain transitive edges that
match any EX-flow path, and transitive activity nodes, for
searching deep within the implementation subgraph, of the
corresponding compound activities, at any level of nesting.
Nodes/ formulas in the pattern may be labeled by the wild-
card ANY and then may match any EX-flow node/formula.

DEFINITION 2.7. An execution pattern, (abbr. EX-pattern),
s a pair p = (é,T) where é is an abstract EX-flow with node
labels in AU{ANY} and T is a set of activity pairs and edges
in €, called transitive activities and edges, resp.

EXAMPLE 2.8. An example EX-pattern is given in Figure
3(a) (ignore for now the rectangle surrounding a sub-graph
of the pattern). It describes EX-flows that contain some
“British Airways” (abbr. “BA”) flight search that resulted in
a confirmation. The dashed edges are transitive edges. The
doubly bounded chooseTravel mnodes are transitive nodes.
Intuitively, the transitive edge comnected to chooseT'ravel
may match any sequence of searches and resets, and the
transitive edge connecting the Flights and Confirm activi-
ties may match any sequence of search activities (for hotels
and/or cars). The transitivity of the chooseTravel node al-
lows this matching to include indirect implementation of the
corresponding composite node, at any nesting level.

The matching of an EX-pattern to an EX-flow is called
an embedding.

$searchType P($searchType) | $airline P(Sairline)
flights only 0.5 BA 0.7
flights+hotels 0.25 AF 0.2
flights+hotels+cars 0.25 AL 0.1

$hotel P($hotel) $choice P($choice)
Marriott 0.6 reset 0.6
HolidayInn 0.3 confirm 0.2
CrownePlaza 0.1 cancel 0.2

Table 1: c-likelihood function

~ Flights
~ $airline = “BA”
Flights
Flights Flights
Sairline = “BA’ Sairine = “BA” !
Flights [ Fions | [ otels |
‘ + ' $hotel = “Marriott”
[ confirm ] [ Hoteis |
ﬁchoice = “confim” l
$choice = “confim’

$choice = “confim”

(2) (v) ()

chooseTravel

Figure 3: Query

DEFINITION 2.9. Let p be an EX-pattern and let e be an
EX-flow. An embedding of p into e is a homomorphism
from nodes and edges in p to nodes, edges and paths in e s.t.

1. [root] the root of p is mapped to the root of e.

2. [nodes] activity pairs in p are mapped to activity pairs
in e, preserving node labels and formulas; a node la-
beled by ANY may be mapped to nodes with any activity
name. For non-transitive compound activity pairs in
p, nodes in their direct implementation are mapped to
nodes in the direct implementation of the correspond-
g activity pair in e.

3. ledges] each (transitive) edge from node m to n in p
is mapped to an edge (path) from (m) to Y(n) in e.

We are now ready to define projection queries and their
results.

DEFINITION 2.10. A projection query q = (p, P) consists
of an execution pattern p accompanied by a sub-graph P of




the pattern, itself forming an execution pattern, called the
projected part of the pattern.

Given a BP specification s and a projection query q¢ =
(p, P), let ¥ be the set of all possible embeddings 1 of the
pattern p to EX-flows in flows(s), and let ¥l p be the set
obtained from W by restricting each embedding to the nodes
and edges of P. Two (restricted) embeddings in W) p are
considered equivalent if for every node/edge = in P, 1(z) and
¢'(z) are isomorphic up to node identifiers. The result of g
on s, denoted ¢(s), is a set consisting of one representative
for each such equivalence class. (The result is unique up to
the equivalence relation defined above).

We note that ¢(s) can be infinite. Also, each answer a €
q(s) may have infinitely many origins, namely, there may
be an infinite number of EX-flows e € flows(s) with an
embedding ¢ (of p to e) whose restriction to the output
node and edges is equivalent to a.

The likelihood of an answer o € ¢(s) is the sum of likeli-
hood of its origins, namely

likelihood(a, q,s) = > {A(e) | e € flows(s) Ae is an origin of a},
where A is the fikelihood function for s. When s is clear
from the context we will omit it and simply use likelihood(c, q).
If « is not in the set ¢(s) we say that likelihood(c, q) = 0.

EXAMPLE 2.11. Let us consider again the EX-pattern in
Figure 3(a), this time as a query, with the rectangle denot-
ing its projected part. Note that the projection focuses on the
ezecution sub-flows that may occur between the point where
a user chooses a “BritishAirways” flight and the final confir-
mation of her reservation. Note that, due to recursive nature
of the BP, there are in general an infinite number of such
possible sub-flows (query answers) - a user may reset and
restart the search an unbounded number of times. Two pos-
sible answers to the query appear in Fig. 3 (b) and (c). The
first answer corresponds to users that choose at some point
a “flightsOnly” search, pick a “BA” flight and then immedi-
ately confirm. The second answer corresponds to users that
choose at some point a “flights+hotels” search, pick “BA” as
airline and Marriott as hotel, and confirm.

Observe that each of these answers may have infinitely
many origin EX-flows. The likelihood of each answer is the
sum of likelihoods of all these origins. Let us compute for in-
stance the likelihood of answer (b). To compute the likelihood
here, we define a variable xans that reflects the likelihood of
a match for the answer. Intuitively, xans is the chance that
ans can be matched already in the first reservation choice of
the user, or alternatively that the user cancels and then a
match is obtained in the following reservation choices. Thus

Tans = c-likelihood ($searchType = “flightsOnly”)
*  clikelihood ($airline=“BA”)
*  clikelihood ($choice= “confirm”)
+ clikelihood (“reset”) * Tans.

Namely, Tans = 0.5%0.7% 0.2 + 0.6 * Tans = 0.07 + 0.6 * Tans.
Thus Tans = 0.07/0.4 = 0.175.

Given a BP specification s, a projection query g and a
number k, we use top—k(q, s) to denote the set of k answers
in q(s) having highest likelihood values.! TOP-K-ANSWERS
is then the problem of identifying, given g,s and k, the set
top—k(q, s).

!Observe that since distinct EX-flows may have the same

likelihood value, this set may not be unique, in which case
we pick one such set arbitrarily.
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3. QUERY EVALUATION

We study in this section the complexity of evaluating pro-
jection queries.

We start by presenting lower bounds: first, we show that
top-k query evaluation is f§P-hard even for non-recursive
BPs. Then, since our techniques will be based on comput-
ing (or approximating) the score of individual answers and
then identifying the top-k out of them, we consider lower
bounds specific to the first part. We show that for general
recursive specification, computing the exact scores of indi-
vidual answers may be impossible (since these scores may be
irrational), and even their approximation is hard in general.

Then we consider query evaluation algorithms, and show
that an EXPTIME query evaluation algorithm is possible, in
restricted cases when computing the exact scores of individ-
ual answers is possible, or when they can be approximated
and the different answer scores are different by at least some
fixed e. Under additional constraints we then show a PTIME
query evaluation algorithm.

3.1 Lower Bounds

Unfortunately, we can show that the problem is hard, even
for the restricted case where the Business Process is non-
recursive. This stems from the unique nested DAG structure
of BP specifications.

The following theorem holds:

THEOREM 3.1. TOP-K-ANSWERS is §P-hard (under Turing
computation model) in the BP size, even for non-recursive
specifications and for queries with no transitive nodes.

PROOF. The proof works by reduction from 3-SAT. Given
a 3NF formula with C' clauses and n variables, x1, ..., ZTn,
we generate a BP specification s and a query ¢ as follows:
the BP root activity » has C implementations, each with
clikelihood of 1/C. Each implementation represents a clause,
and has a start-node labeled by an activity S, an end-node
labeled by an activity E, and three sub-graphs connecting
these two nodes, each corresponding to one literal of the
clauses. The first activity in each such subgraph is labeled
Xi. If x1 appears in the corresponding literal positively
(negatively), the node labeled X7 has one outgoing edge,
whose target is labeled T' (F). Otherwise, the node labeled
X1 has two outgoing edges, to nodes labeled 7" and F'. Each
of these nodes has a single outgoing edge to a node labeled
by an activity X2, and this node again has one or two outgo-
ing edges, depending if the variable x> appears in the given
literal or not, and so on. (Thus all other X;’s in the subgraph
have two children). The last T'/F-labeled activities are the
sources of edges whose targets are the end-node labeled by
E. The EX-pattern of the query g consists of a root activity
labeled r with implementation containing two activities, S
and E, connected by a transitive edge. The projected part
of g consists of all nodes and edges of the EX-pattern.

Note that an answer of ¢ with respect to s is a path,
and this path uniquely defines a truth assignment A for the
variables z1, ..., zn: A(z;) = true (= false) if the X;-labeled
node is followed in the query answer by a node labeled by
T (F). We claim that for any value of k, there exist at
least k satisfying assignments to the formula if and only if
there are at least k answers to ¢ all having probability 1
(i.e. the top-k answers of ¢ all have a probability of 1). To
observe that this hold, note that every path that describes a
satisfying assignment appears in all implementations of the



root (since each implementation includes all paths that are
consistent with the corresponding claus), hence its likelihood
is 1. On the other hand, for every path that describes a non-
satisfying assignment, there is at least one implementation
that does not contain it (corresponding to a non-satisfied
clause), thus the likelihood value of such a path is less than
1. O

We will show in the sequel restricted cases that allows for
a PTIME (data complexity) algorithm for TOP-K-ANSWERS
in the unit-cost rational arithmetic model [5]. However,
the above theorem indicates that the existence of a general
PTIME solution in the unit-cost model is questionable, as
3-SAT (used in the above reduction) is a problem not known
to be solvable in PTIME under the unit-cost rational arith-
metic model.

The design of top-k algorithm requires a method for com-
paring the score of two possible answers. In principle, one
possible such method may be based upon explicit computa-
tion of these scores, which in our case corresponds to com-
puting the likelihood of a given answer (sub-flow) to appear
in a random EX-flow. However, exact computation of the
score turns out to be impossible here, as the following propo-
sition holds:

PROPOSITION 3.2. Given a BP specification s and an EX-
flow ans, likelihood(ans,s) may be irrational, even if all
likelihoods in s are rational.

The proof follows directly from results in [15], and is omit-
ted for lack of space.

Interestingly, we will show below that (under plausible
assumptions on the input), exact identification of top-k pro-
jection result is possible, using an approxzimation of the like-
lihoods of individual answers. However, we note that in
general such an approximation cannot be done in PTIME
(the proof follows from [15], and is omitted for lack of space):

PROPOSITION 3.3. The ezistence of a PTIME (in the BP

specification size) algorithm for approzimating likelihood(ans, s)

up to an additive error of a given € for every ans, s, implies
that SQRT—SUM € PTIME.

SQRT-SUM is the problem of deciding, given natural num-
bers (di, ...,d») and a natural number k, whether
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under Turing Computation Model [17].

We note here that query evaluation was shown in [11] to
be NP-hard with respect to the query size (i.e. when the
BP specification size is fixed), even for testing emptiness of
queries results, even for very simple queries and even for
non-recursive BP specifications (see [11] for details).

We next consider upper bounds. We will construct a top-
k query evaluation algorithm that uses, as a black box, an
algorithm for approximating likelihood(ans, s); we provide
such an approximation algorithm in Section 3.3.

3.2 Upper Bounds

We start by describing the general framework for our eval-
uation algorithm.

General Framework. Given a projection query ¢ = (p, P)
and a BP specification s, consider some (restricted) embed-
ding « that assigns (1) activities names from s to the ANY

" Vd; < k, strongly believed not be solvable in PTIME
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labels of P, and (2) a sequence of labeled nodes to each
transitive edge of P. Let a(p) denote the pattern obtained
from p (including its non-projected part) by replacing each
ANY label with the label dictated by «, and replacing each
transitive edge in P with the path assigned to it by « (and
treating each transitive node as a regular one). «(p) is pos-
sibly an answer to the query ¢ (it may not be a sub-flow of
any EX-flow of s, in which case it will not be an answer).
It is easy to observe that every possible query answer may
be obtained in such manner, for some embedding «. Thus,
one may consider the following query evaluation algorithm:
generate all possible assignments «; for each such «, gener-
ate the possible answer a(p), and compute the likelihood of
a(p) to appear in a random EX-flow. Then retrieve the k
answers having the greatest likelihood.

We note that this is the standard way of evaluating pro-
jection queries, employed for XML [19]. However, there are
two challenges here, absent from the XML settings: (1) the
number of possible assignments (and consequently the num-
ber of possible answers) is possibly infinite, and (2) as indi-
cated by Proposition 3.2, exactly computing the likelihood
of a given sub-flow is impossible in general, and we must use
an approximation.

We next consider these two obstacles and explain how we
tackle them.

Possibly infinite number of answers. Recall that the em-
beddings « considered above are assignments over (1) ANY-
labeled nodes and (2) transitive edges. While the number
of combinations for the first case (ANY labels) is bounded
by | s |‘q|, the number of possible paths in a recursive BPs,
and consequently the number of path assignments to tran-
sitive edges, may be infinite. This leads to infinitely many
possible projection answers. To bound the number of assign-
ments considered for transitive edges, we use the following
“small world” Lemma:

LEMMA 3.4. Given a BP s and a projection query q =
(p, P), there exists a set of top-k answers of ¢ w.r.t. s where
in each answer all the paths assigned to transitive edges in
P are of length bounded by |s| k.

ProOOF. By induction on k. Consider first k = 1. Assume
that ¢ is embedded by some embedding « in some EX-flow
e, and let M be a path in e such that a transitive edge T" of ¢
is matched to M. Further assume that |P| > |s|. In particu-
lar, this means that M contains a recursive invocation of at
least one activity a € S, otherwise the length of M may not
exceed the total number of nodes in implementation graphs
of S. We construct an EX-flow ¢’ that is obtained from e
by subsequently omitting sub-flow of e that are rooted at
recursive invocation of activities: first, we omit the sub-flow
rooted at the recursive invocation of a. If there still ex-
ists a recursive invocation of some activity @’ within M, we
then omit the sub-flow rooted at a’, and so forth, until any
activity name appears at most once among the remaining
nodes of the path M. We denote the remaining nodes and
edges that originally were in M as M’, and observe that
M’ is still a path (as we only removed connected sub-paths
of M). Clearly, €' is a flow of S, and flikelihood(e') > f-
likelihood(e) due to the monotonicity of fHikelihood. There
exists an embedding o of ¢ in €/, obtained from o by re-
placing the path M assigned to T by the new path M’. The
same construction may be employed for each such path M,



and consequently we obtain the existence of a top-1 answer
where each path assigned to T is of length bounded by | s |.

For k > 1, assume that there exists £ — 1 results with
transitive edges mapped to paths of length bounded by |s]| x
(k —1). Consider an embedding that assigns a path M of
length greater than |s| * k. Then in particular, it contains
more than k recursive invocations of compound activities.
We may employ the same technique as above to shorten the
path into a path M’ that contains at most k such recursive
invocations. M’ does not appear as one of the k — 1 results
as its length is greater than |s| = (kK — 1), but it is better
weighed than M due to the monotonicity of flikelihood,
and may thus be used as the k’th-best result. []

Consequently, we can enumerate a set of EX-flows includ-
ing all possible query answers.

No exact computation for scores of individual answers.
As stated above (Proposition 3.2), in general there is no ex-
act algorithm for computing the likelihood of a given an-
swer. Still, under plausible assumptions on the input, we
are able to perform exact evaluation of projection queries
in such cases. We start by assuming the existence of some
known e such that for every two answers o, o’ € g(s), either
likelihood(a, q) = likelihood(d/, q), or | likelihood(c, q) —
likelihood(c/, q) |> €. In this case we say that the answers
of ¢ (w.r.t. s) have separated likelihoods, and refer to € as the
separation factor of ¢ with respect to s. We note that similar
assumptions are made in the context of top-k query evalu-
ation over probabilistic relational data [23]. We consider
below the implications of withdrawing the assumption.
The following Lemma holds

LEMMA 3.5. For a BP s and a query q with separation
factor €, a set of top-k answers according to approximated
likelihood values, up to €/2 precision, is also a set of top-k
answers for to the exact likelihood values.

We now have an algorithm for TOP-K-ANSWERS, in present
of exact or approximated likelihood values for the possible
answers: generate the (exponentially large) set of candidate
answers based upon Lemma 3.4, then compute or approxi-
mate the likelihood of each such answer up to €/2, where €
is the separation factor, and declare the top-k answers.

Formally, we define RANK-ANSWER as the problem of com-
puting, given a BP specification s, a query ¢ and a possi-
ble projection answer «, likelihood(a,q,s). APPROX-RANK-
ANSWER is the problem of approximating this value up to,
at most, a given additive error. Then, following common
practice, let F©' be the class of problems solvable in time
complexity F', when given an oracle solving a problem L.
We obtain:

THEOREM 3.6. 1. If there exists an oracle for RANK-

ANSWER, then TOP—K—ANSWERS C E X PT 1M FERAK—ANSUER

2. If separated likelihoods are guaranteed with respect to
the input BP and query, and there exists an algorithm
for APPROX-RANK-ANSWER, then
TOP—K— ANSWERS C E X PT ] M FAPPROZ-RANK-ANSUER |

Furthermore, we note that the exponential overhead w.r.t.
the BP specification size in our top-k projection algorithm
was only due to the large number of assignments to transi-
tive edges, that had to be considered. For queries that do
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not project over such edges, it only remains to consider as-
signments to Any-labeled nodes; the number of such assign-
ments is only exponential in the query size (and polynomial
in the BP size). Consequently,

THEOREM 3.7. For queries that do not project over tran-
sitive edges, Theorem 3.6 holds, with the EXPTIME com-
plexity class replaced by PTIME with respect to the BP size
(with exponential dependency over the query size).

This will be useful when we provide, in the sequel, a
PTIME algorithm for RANK-ANSWER; plugging-in this algo-
rithm, we will obtain a case where TOP-K-ANSWERS can be
solved in PTIME.

Withdrawing the assumption. Recall that we have assumed
above that the projection results bear separate likelihoods,
i.e. that we are given some bound on the separation in-
between answers. If this does not hold then we may eas-
ily adapt our algorithm to find the top-k results up to an
error of u, for any given u. l.e, if o is ranked by the al-
gorithm above o, it is guaranteed that likelihood(c, q) >
likelihood(c', q) — .

To complete the picture, we next present algorithms for
APPROX-RANK-ANSWER, and, where possible, for RANK-ANSWER.

3.3 Ranking a Single Answer

We next show that an EXPTIME approximation for the
likelihood of a given sub-flow (answer). We note here that,
prior work cannot be directly employed for this task: while
our technique is inspired by [19], more work is required to
consider the possibly recursive nested-DAG structure that
we have here; using the algorithm of [4] for MSO query
evaluation would result in a non-elementary combined com-
plexity.

THEOREM 3.8. We may solve APPROX-RANK-ANSWER, ap-
proximating the probability up to j bits of precision, in time
exponential in the size of the BP specification, exponential
in the size of the query, and linear in j.

Combined with (part 2) of Theorem 3.6, we obtain:

COROLLARY 3.9. TOP-K-ANSWERS may be solved in EXP-
TIME (w.r.t. both the BP specification size and the query
size), for: (1) non-recursive BP specifications, and (2) re-
cursive BP specifications, when the query has separated like-
lihoods w.r.t. the specification.

While proving Theorem 3.8, we in fact solve here a more
general problem: we consider the approximation of the like-
lihood of boolean queries. A boolean query is simply an
EX-pattern; we use likelihood®(p, s) to denote the sum of
all EX-flows of s in which there exists an embedding of p.

We present the approximation algorithm in two steps. We
first consider a restricted case of non-recursive BP specifica-
tions, and show that an exact computation is possible here;
then, we explain why the algorithm does not apply to the
general case, and show the changes required to obtain an
approximation algorithm for this setting.

The non-recursive case. Our algorithm is based on the
following intuition. Recall that when a pattern p is embed-
ded into an EX-flow e, parts of the pattern are matched



to parts of the EX-flow. Our algorithm will compute the
likelihood of the full answer (w.r.t. the given BP) as an
arithmetic combination of the likelihoods of its parts (w.r.t.
parts of the BP).

To that end, we denote by Parts(p) the set of all boolean
(sub)queries obtained from an EX-pattern p by removing
one or more nodes and edges, and all the conjunctions of
such queries. The semantics of a conjunction is defined
in a natural manner. Further recall that a query (EX-
pattern) may include simple and transitive activities, where
implementations of simple (transitive) pattern activities are
matched to direct (possibly indirect) implementations of the
corresponding EX-flow activities. We extend, correspond-
ingly, our definition of Parts(p): each query ¢ appears in it
in two forms: as ¢%"°* and as ¢""9""*°*. Finally, we have de-
fined above likelihood® (p) for the likelihood that an EX-flow
starting from the BP root satisfies the EX-pattern p; we can
define likelihood®(q%"*%, a) (resp. likelihood®(q""*"*, a))
for the likelihood that a sub-flow starting from an implemen-
tation of a satisfies ¢ (in)directly, by extending the definition
of fikelihood (Def. 2.5) to sub-flows rooted at any com-
pound activity a.

Given a query p and a BP s, Algorithm EVAL-BOOL-QUERY
computes likelihood®(p) via Dynamic Programming. Ob-
serve that the non-recursive nature of the BP specification
induces a partial order > over its compound activities, such
that a1 > a2 if a2 may appear in an EX-flow originating
from a;. The algorithm first completes this partial order
to a total one and processes the compound activities of s,
in reversed order, from the most internal activities to the
root activity. EVAL-BOOL-QUERY (gradually) fills in a table
T of likelihoods whose rows and columns correspond to sub-
queries (direct and indirect) and compound activities, resp.
For each compound activity a and for all direct (resp. indi-
rect) queries g%t (¢™"¥Teet) in Parts(p), the algorithm
computes likelihood®(q¢%"*t,a) ( likelihood® (¢, a)),
using the likelihoods computed for the preceding activities.
The indirect likelihoods are computed only as auxiliaries, as
will be explained below.

Let p denote the query pattern p with its root activity
removed, and annotated as indirect, if p’s root activity is
transitive, and otherwise as direct. Note that with the no-
tations introduced above, likelihood® (p) = likelihood® (p, r),
with r being the root activity of the BP s. At the last itera-
tion of EVAL-BOOL-QUERY the root activity r is reached, and
(among others) likelihood® (p,r) is computed. Then T[p, 7],
which contains this value, is returned.

We next explain the two functions responsible for the com-
putation of likelihoods, namely ComputeDirectLikelihood
and ComputeIndirectLikelihood.

ComputeDirectLikelihood. Given ¢%"*** € Parts(p) and
a compound activity a of s, ComputeDirectLikelihood com-
putes likelihood®(¢¥"**, a). Recall that g has a nested-DAG
shape. The “upper level” of g refers to the outer most nodes
and edges of g, reachable by paths that do not include im-
plementation edges. A matching of ¢%"*°* corresponds to
(1) matching its upper level to some direct implementation
of a, and then (2) matching the implementations of the com-
pound activities nodes Ni,..., N appearing in the upper
level to implementations of the corresponding BP activities
(a direct/indirect match for the simple/transitive compound
activities).

Ignore for now the matching of the upper level, and con-
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sider the compound activities nodes N, ..., N,. We denote
the sub-queries rooted at these nodes by qi,...,qk. If N; is
transitive, then q; appears in an “indirect” form, otherwise
in a “direct” form. We then consider the matching of all
sub-queries, i.e. /\i:Lm’k qi.

The following identity holds:

likelihood® /\ qi,a) =

1 — likelihood"( \/
i=1,...,k

—gi;a) (1)

We thus focus on computing likelihoodb(\/i:1 TG, a).
Using the principle of inclusion and exclusion, this term
can be represented as sum of terms, all having the form
likelihoodb(/\igJ —¢;,a) for some subsets J of {1, ...,n}. Note
that the exponential blow-up here is only in the size of the
query, and not in that of the BP specification.

Now, re-consider the possible embeddings of the query
upper level, denoted embs(q,imp) for each implementation
imp of a. Each such conjunction must hold (1) in the cho-
sen implementation of a and (2) for all embeddings of the
query within the chosen implementation. As we require that
for all embeddings, all nodes are not matched, we may sim-
ply consider a single set of specification nodes, that contain
all nodes that participated in any embedding. Moreover,
the fulfillment of the negated expression is independent in-
between nodes. Thus we conclude (recall that for a node n
of a BP specification, A(n) is the activity name labeling n):

>

imp€eT(a)

likelihood®( J\ =g, A(n))
i€J

likelihood®( /\ —q;,a) =

i€J

n€embcembs(q,imp)

clikelihood (imp)=

()

Note that now each of the expressions likelihood” (. ; —qi, A(n))

satisfies A(n) <s a, as all of these nodes appeared in im-
plementations of a. However, /\ie ; 7qi does not belong to
Parts(q), so they do not appear in T. We thus apply the
following manipulation over it. First, we apply negation:

likelihood® ( J\ =g, M(n)) =
ieJ
1 — likelihood’(\/ qi,A\(n)))  (3)
ieJ

Now we apply again the principle of inclusion and exclu-
sion over \/,.; ¢; (again, only dependent on the query size)
and obtain expressions of the form likelihood” (\;. ;: ¢i, \(n)).
The expressions of the sort A, ;, ¢; are conjunctions of sub-
queries, hence belong to Parts(p), and thus the required
likelihood values already appear in the Dynamic Program-
ming table T and can be used.

ComputelndirectLikelihood. The computation here is sim-
ilar, but slightly more complicated due to the possibly in-
direct matches. Recall that when embedding a query indi-
rectly, query parts may be matched to different levels of the
implementation nesting. Thus, instead of dividing the query
simply by its compound nodes, we define the notion of query
splits. {qu,...,qm} is a split of ¢""¥"** if each ¢; is a sub-
graph of ¢""4"¢°* "and every node or edge of ¢'"%"¢° appear
in exactly one of the g;’s. We denote the set of all splits of
gimhirect by splits(g™m®meet), and consider the likelihood of

VspEsplits(qi"di’"‘ZCt) /\q'L Esp qi-



By applying the principle of inclusion and exclusion, we
obtain expressions of the form A  ¢p A, cqp @i for some
subsets SP of splits. (Note that the number of splits is, once
again, only a function of the query size). We can now unite
the two A\ expressions and obtain A g espr @i for some sp’.
From this point on the computation proceeds exactly as for
ComputeDirectLikelihood (with the only difference being
that the ¢;’s are now not necessarily partial flows rooted at
compound activities).

Complexity. The number of arithmetic operations performed
by the algorithm is polynomial in the BP size, with the ex-
ponent depending on the query size. The number of bits of
the computed likelihood values may become, however, ex-
ponential in the size of s. However, if we have a unit-cost
RAM model with exact rational arithmetic (i.e., algebraic
operations on arbitrary rationals can be done in unit time)
[5], we do not have to worry about the size of the numbers.
Consequently,

THEOREM 3.10. For non-recursive BP specifications,
RANK-ANSWER is in EXPTIME (combined complezity) under
Turing computation model and in PTIME (data complexity,
with exponential dependency on the query size) with unit-
cost exact rational arithmetic.

Combined with Theorem 3.7 and part 1 of Theorem 3.6,
we obtain:

COROLLARY 3.11. For non-recursive BP specifications, and

queries that do not project over transitive edges, TOP-K-
ANSWERS may be solved in PTIME (data complezity, with
exponential dependency on the query size) with unit-cost ra-
tional arithmetic.

The recursive case. To see that the previous algorithm
EVAL-BOOL-QUERY cannot be directly applied over recursive
BPs, observe that it assumed a total order over the BP ac-
tivity names. Likelihood of queries with respect to a given
activity a were computed out of previously computed likeli-
hoods for “smaller” activities (according to the assumed or-
der). Such order does not exist for recursive BPs. Thus,
instead of using simple arithmetic, our refined algorithm
generates an equations set whose solution corresponds to
the query likelihood. We explain this in more details next.

Refined Algorithm. Given a BP specification s and an EX-
pattern p, recall that EVAL-BOOL-QUERY gradually computed
likelihoods for each [sub-query ¢ € Parts(p), activity name
a]. We create a variable X, o, whose value will reflect
likelihood®(q, a), for each such pair [g,a]. We then choose
some arbitrary order over the BP activities, and using this
order, we follow the computation of EVAL-BOOL-QUERY, at-
tempting to gradually compute likelihood values. However,
in contrast to the non-recursive case, the computation of
likelihood for some [g, a] (i.e. computation of value for Xg )
may require some value likelihood®(q', a’) that was not com-
puted yet (possibly [¢’,a’] is [q,a] itself). To account for
that, we create an equation with X, , on its left-hand side.
The right-hand side will contain an arithmetic expression
similar to that obtained in the non-recursive case, but with
likelihood"(q',a’) replaced by X,/ ./, and so on. For each
pair [g,al, this process results in a single equation; repeat-
ing the computation for all pairs of activities names and
sub-queries, the result is a set of polynomial equations.
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We denote the obtained equations system by ES[p] and
show the following proposition.

PROPOSITION 3.12. The solution of ES[p|, with all vari-
ables in [0,1], restricted to Xp,» (r is the oot activity of s),
is exactly likelihood® (p, s). If more than one such solutions
exist, we use the Least Fized Point (LFP) solution.

Proor. To prove the proposition we need to show that
a Least Fixed Point (LFP) solution exists and captures the
correct likelihood values.

We first note that [15] also uses a set of equations to
describe the termination probability of Recursive Markov
Chains. An important property of the equations in [15] is
that all the coefficients in the equations are positive. The
consequent monotonicity of the polynomials is then used to
prove the existence of an LFP.

In contrast, in our case, the equations may have negative
coeflicients (due to the use of the inclusion-exclusion prin-
ciple). Thus, the proof of [15] cannot be directly applied
here. Nevertheless, the system is “piece-wise” monotone, in
the following sense: consider a “part-of” partial order over
the sub queries ¢ of p (including p itself). For each such
q and an activity a, the computation of likelihood®(q,a)
uses either likelihood values computed for queries that are
“smaller” than g, or values of the form likelihood®(g,b) for
some activity b (possibly b = a). We thus solve the equations
for likelihood® (¢, a) in an increasing order of such ¢ (and for
all compound activities a). Now, terms in the polynomial
that correspond to queries smaller than ¢ may be simply re-
placed by constants (computed in previous iterations). After
substitution, the formula contains only variables for some
likelihood® (g, b). It follows from the construction that these
variables appear with positive coefficients. The least fixed
point solution for the system may thus be computed in a
bottom-up fashion (dictated by the order over query parts)
using in each step the Algorithm of [15]; this least fixed point
solution constitutes the correct probabilities.

O
We can further show that the following Lemma holds.

LEMMA 3.13. Given an equations system ES[p] as above,
its LF'P solution may be approximated up to j bits of preci-
sion, in time exponential in the number of variables in ES[p]
and linear in j.

The proof follows that of Thm. 4.2 in [15] that uses the ex-
istential theory of reals [7] to approximate the LFP solution
of an equations set. Combined with Proposition 3.12, this
allows for an EXPTIME approximation algorithm (under
both Turing computational model and the unit-cost RAM
model with exact rational arithmetic), and concludes the
Proof of Theorem 3.8.

4. DEPENDENCIES

Throughout the paper we assumed full independence be-
tween c-likelihood values of choices dictating the EX-flow.
In practice, user choices (variables values) are often corre-
lated. We next introduce dependencies between implemen-
tation choices, and revisit query evaluation for this settings.

We start by recalling the definition of [13] for bounded-
history c-ikelihood functions. To introduce dependency,



we first extend the definition of cikelihood to consider
not only a given guarding formula, but also a partial EX-
flow €’ representing the history that had occurred before
the formula was evaluated. Namely, c-ikelihood is now
a function of both ¢’ and f, where ¢’ is a partial EX-flow
and f is a guarding formula for some implementation of
the activity that is next to be expanded in e’. For clarity
of presentation, we assume a total order on the expansions
order (but our results stay intact even if this is not the case).
We can now define bounded-history c-likelihood functions.
Recall that we assumed that given an EX-flow e, the expan-
sion sequence leading to e is well defined. The last choice
preceding (the expansion of) a node n in this sequence, de-
noted PrevChoice(e,n), is the guarding formula of the im-
plementation selected for the last compound activity node
7 in this sequence that preceded n (in the above defined
sense). Similarly, PrevChoice®(e,n) are the last two pre-
ceding choices, and more generally PrevChoicei(e, n) is a
vector consisting of the ¢ last preceding choices. We are now
ready to define bounded-history cikelihood functions.

DEFINITION 4.1. We say that a clikelihood function § is
bounded-history, with history bound b, if for every activity
name a, every guarding formula f of a, and every two pairs

of [EX-flow,next-to-be-expanded-node] [e,n], [¢/,n'] where A(n)

A(n') = a and PrevChoice®(e,n) = PrevChoice’(e/,n’), it
holds that c-likelihood (e, f) = c-likelihood (€', f).

Such bounded-history dependencies are common in prac-
tice, and moreover studies on the behavior of typical Web
applications indicate the history size to be in practice rel-
atively small (approximately 4) [22]. When no such bound
exists, even the problem of testing, for a given EX-pattern p
and a BP s, the existence of an EX-flow of s with likelihood
> 0, to which p may be embedded becomes undecidable
(proof by reduction from the halting problem, see [13]).

For bounded-history cikelihood functions, we may show
that one cannot hope to obtain an algorithm whose complex-
ity is polynomial in the history-bound b, as the following
theorem holds:

THEOREM 4.2. Given a BP specification with a bounded-
memory c-likelihood function, TOP-K-ANSWERS is §P-hard
w.r.t. the history size, even for non-recursive BP specifica-
tions and queries that do not project out transitive edges.

The proof (adapted from [13]) is by reduction from 3-
SAT, showing that testing for the existence of a flow with
likelihood > 0 that matches a given EX-pattern is NP-hard
in b.

We next show that all our upper bounds extend to the set-

ting of bounded-memory c-ikelihood functions with bounded-

history, property. The complexity now is also dependent on
the history bound

THEOREM 4.3. All of our above algorithms may be ex-
tended to consider BPs with bounded-history c—likelihood
function, with an overhead that is (double-)exponential in
the history size b for algorithms of PTIME (EXPTIME)
data complezity.

7 mapping activities names in s’ to activities names in s such
that the EX-flows of s and s’ are the same up to applying
m, and bear the same fikelihood value. We then explain
how to apply each of the algorithms depicted in the previous
section over s’.

COMPILE-HISTORY-INDEPENDENT. The algorithm constructs
a BP s’ as follows:

e Activities Names. The activities names in s” are tuples
of the form (a, pre = [prei,...,pres,...,prew, ...
post = [post], ..., posts, ... ,posty ... post?]) where a
is an activity name, preé denotes a formula guarding
the implementation chosen for a; in its previous j ex-
pansions, prior to expanding a, and post§ denotes a
formula guaranteed to guard the implementation cho-
sen for a; in its next j expansions. We use prej- =1
if a; was not expanded j steps before the flow reaches
a, and postj- = 1 if a; will not be expanded j times
before the execution of a terminates.

e Guarding Formulas and Likelihood Function. Let fi, ...
be the guarding formulas appearing in s, then guard-
ing formulas in s’ are of the form (f;, pre) where pre is
a vector of formulas of size b. The c-likelihood func-
tion is defined as cikelihood (f;, pre) = clikelihood
(fpre, fi) where fpre is some arbitrary partial EX-flow
of s for which the next node to be expanded is guarded
by fi, and in which the last implementation were guarded
by the sequence of formulas in pre (This is uniquely
defined, due to the history bound of size b).

e Implementation Function. Next we construct the im-
plementations of (a,pre,post) in s’. For each imple-
mentation F; of a in s (guarded by f;), we create a set
of new implementations, all guarded by f;. Each im-
plementation is obtained by annotating each activity
b in F; with vectors of pre and post conditions. The
construction is as follows: (a) if r is the root of an im-
plementation F; of (a, preq, post,) guarded by f; (note
that many such activity names are created for any ac-
tivity name a, differing in their pre- and post-condition
vectors), then the pre-condition of r is obtained from
prea, shifted by one step, recording F; (and possibly
deleting some formula from the vector, if reached the
bound), (b) if there exists an edge from some node n
to some node n' in F;, the post-condition annotating n
complies with the pre-condition annotating n’, and (c)
if e is the end node of F3, the post-condition annotating
it complies with post,.

e Renaming Function. We define 7 (a, pre, post) = a for
each activity name (a, pre, post).

LEMMA 4.4. Given an EX-flow e and a renaming func-
tion m, let II(e) be the EX-flow obtained from e by replac-
ing each actiwity name a with (a). For every EX-flow
e € flows(s) if and only if l(e) € flows(s'); additionally,
FHikelihood (e, s) = fikelihood (II(e), s")

PRrROOF. We describe Algorithm COMPILE-HISTORY-INDEPENDENT PROOF SKETCH. Note that every implementation of a’ =

that, given a probabilistic BP specification s with activities
ai,-..,an and a bounded-history clikelihood function, gen-
erates a new probabilistic BP specification s’ with history-
independent c-likelihood function, and a renaming function

(a,pre, post) in s’ was obtained from an implementation of
a in s by replacing all activity names b in this implementa-
tion by some activity names b, pre’, post’. Thus, by applying
m over all activities in the corresponding implementation of

7pr€nm}7



a’ one obtains every possible implementation of a, and only
such implementations. As for likelihood of flows, we show,
by induction on the size of e, that likelihood (e,s) =
Hikelihood (II(e),s’): for the induction basis, a flow con-
sisting only of the root activity of s (s’) has a weight of 1;
now, assume that f-likelihood (e1) = f-ikelihood (e}) for e;
(e}) that bears exactly the same structure as e (e’) except
for its last implementation choice. Then this last implemen-
tation bears, in s, a weight of f-likelihood (e1)* cikelihood
(e1, f) where f is its guarding formula. The corresponding
implementation in s’ bears a weight of flikelihood (e )x*
cikelihood ((f, pre))) where pre is the pre vector encoded
within the activity in e} whose implementation was chosen
to form e. But clikelihood (e, f) = cikelihood ((f, pre)),
because the algorithm construction of the implementation
function defines a pre-condition vector that is consistent
with the sequence of implementation choices made in the
course of the flow (in this case e;). [

We can now apply the top-k algorithms depicted in the
previous section over s’. The algorithms need to be adapted
to account for the newly created activities names of s’, in
the following manner: the original algorithms had matched
each query node n to specification nodes having the same
activity name as n. In s’, the nodes activities names encode
both the original activity name of the corresponding node
in s, as well as some additional information on flow history.
Thus, we extend the notion of an embedding: a query node
with activity name a may match a specification node that
encodes a, along with any history information. We then run
the algorithms using this definition of an embedding instead
of the original one.

Complexity. The complexity of Algorithm COMPILE-HISTORY-

INDEPNDENT is polynomial in the size of its input BP spec-
ification s but exponential in the history bound b, as the
number of pre and post vectors in the algorithm construc-
tion is exponential in b. The same holds for the size of
the BP specification s’ outputted. Now, when applying a
PTIME top-k algorithm over s’, the overall complexity is
polynomial in the size of s and exponential in b; when we
apply an algorithm that incurs exponential time in the size
of s’, this translates into time exponential in the size of s
but double-exponential in b.

It is open whether the double exponential dependency on
b can be avoided (and reduced to a single exponent).

S. CONCLUSION

This paper studies the complexity of query evaluation
for top-k projection queries over probabilistic Business Pro-
cesses, where the query results are parts of possible Exe-
cution Flows that are of interest to the analyst; the query
results are ranked by their likelihood of appearing in a ran-
dom execution flow of the given process. We have stud-
ied the complexity of query evaluation for varying classes of
queries and BP specifications, and presented restricted cases
that allow for efficient query evaluation.

Future research includes the development of dedicated op-
timization techniques, especially in light of the high worst
case complexity of query evaluation in some cases. We also
intend to analyze the complexity algorithms that support
richer query features such as joins and aggregates, com-
bined with projection. Additionally, we have assumed above
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monotonicity of the weight function, which may not hold in
some cases. We intend to consider relaxations of this as-
sumption, and to study their effect on query evaluation.
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