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ABSTRACT

Provenance in scientific workflows is a double-edged sword.
On the one hand, recording information about the mod-
ule executions used to produce a data item, as well as the
parameter settings and intermediate data items passed be-
tween module executions, enables transparency and repro-
ducibility of results. On the other hand, a scientific workflow
often contains private or confidential data and uses propri-
etary modules. Hence, providing exact answers to prove-
nance queries over all executions of the workflow may reveal
private information. In this paper we discuss privacy con-
cerns in scientific workflows – data, module, and structural
privacy - and frame several natural questions: (i) Can we for-
mally analyze data, module, and structural privacy, giving
provable privacy guarantees for an unlimited/bounded num-
ber of provenance queries? (ii) How can we answer search
and structural queries over repositories of workflow specifi-
cations and their executions, providing as much information
as possible to the user while still guaranteeing privacy? We
then highlight some recent work in this area and point to
several directions for future work.

Categories and Subject Descriptors

H.2.0 [Database Management]: General—Security, in-
tegrity and protection; H.3.3 [Information Systems]: In-
formation Storage and Retrieval—Information Search and
Retrieval

General Terms

Design, Theory
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1. INTRODUCTION
Provenance in scientific workflows is of increasing inter-

est, as evidenced by several recent workshops, tutorials, and
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surveys on the topic. A number of tools for capturing prove-
nance have been developed in workflow systems such as my-
Grid/Taverna [33], Kepler [9], and VisTrails [20], and a stan-
dard for provenance representation called the Open Prove-
nance Model (OPM) [30] has been designed. By maintaining
information about the sequence of module executions used
to produce a data item, as well as the parameter settings and
intermediate data items passed between module executions,
the validity and reliability of data can be better understood
and results be made reproducible.

Currently, users of a workflow system can see a reposi-
tory of workflow specifications (as with myExperiment [32]
and some of the systems cited above), and possibly also the
initial inputs and final outputs of workflow executions. How-
ever, we envision a future in which extensive workflow execu-
tion records will be added to these repositories of workflow
specifications; we will call such repositories Workflow Prove-
nance repositories (WP repositories). WP repositories could be
used in several ways: Scientists who wish to perform new
analyses may use keyword search to find specifications of in-
terest to reuse or modify. They may also search executions
associated with a specification to understand the meaning
of the workflow, or to correct/debug an erroneous specifica-
tion. Finding erroneous or suspect data, a user may then
wish to ask structural queries over provenance information
to determine what downstream data might have been af-
fected, or to understand how the process failed that led to
creating the data.

However, workflow authors or owners may wish to keep
some information confidential in a WP repository. For ex-
ample, intermediate data within an execution may contain
sensitive information, such as a social security number, a
medical record, or financial information about an individ-
ual. Although users with the appropriate access level may
be allowed to see such confidential data, making it avail-
able to all users, even for scientific purposes, is an unac-
ceptable breach of privacy. Beyond data privacy, a module
itself may be proprietary, and hiding its description may
not be enough: users without the appropriate access level
should not be able to infer its behavior if they are allowed
to see the inputs and outputs of the module. Finally, details
of how certain modules in the workflow are connected may
be proprietary, and so showing how data is passed between
modules may reveal too much of the structure of the work-
flow. There is thus an inherent tradeoff between the utility of
the information provided in response to a search/query and
the privacy guarantees that authors/owners desire.

We illustrate these three types of privacy using an exam-
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ple from life sciences, a domain in which privacy concerns
are particularly acute. Consider a personalized disease sus-
ceptibility workflow in Figure 1 (see [37] for details). Data
privacy requires that the genetic disorders a patient is sus-
ceptible to (the output of M1) should not be revealed to
users without the required access privilege. Module privacy
with respect to M1 requires that the functionality of the
module – that is, the mappings between inputs and outputs
– is not revealed to users without the required access priv-
ilege. Assuming that M1 implements a function f1, no ad-
versarial user should be able to correctly deduce the output
f1(SNP, ethnicity) with high probability for any SNP1 and
ethnicity input pair. From a patient’s perspective, this is
important because they do not want someone who happens
to have access to their SNP and ethnicity information to
be able to determine what disorders they are susceptible
to. From the module owner’s perspective, they do not want
the module to be simulated by someone who observes some
of the input-output relationships. Finally, structural privacy
in this example might mean that users without the required
access privilege should not know whether or not lifestyle
was used to calculate the disorders output by M1.

Note the difference between module and data privacy: For
module privacy, we may reveal disorders as long as we
do not know the values of both SNP and ethnicity such
that disorders = f1(SNP, ethnicity). However, for data
privacy disorders can never be revealed.

As recently noted in [36], “You are better off designing in
security and privacy ... from the start, rather than trying to
add them later.”2 Accordingly, we believe that privacy guar-
antees should be integrated with the design of WP repositories
for scientific workflow systems.

Organization. We give a model of workflow specifica-
tions and their executions in Section 2. In Section 3 we enu-
merate privacy concerns, discuss related work, and highlight
our initial results in module privacy. We turn to keyword
search and queries on WP repositories in Section 4, and dis-
cuss how privacy concerns affects search and query results.
Section 5 concludes and points to future work.

2. MODEL
A workflow specification is typically represented by a di-

rected acyclic graph, with nodes denoting modules and edges
indicating dataflow between modules. Modules can be la-
beled with names, keywords, and descriptions; the descrip-
tion may include the name and type of input/output data.
Workflow specifications may be hierarchical, in the sense
that a module may be composite and itself contain a work-
flow. Composite modules are frequently used to simplify
workflow design and allow component reuse. Workflows that
do not have composite modules are referred as simple work-
flows.

For example, the workflow in Figure 1 estimates disease
susceptibility based on genome-wide SNP array data. The
top-most level of the workflow is given by the dotted box la-
beled W 1. The input to W 1 is a set of SNPs, ethnicity infor-

1Single Nucleotide Polymorphism (SNP), a DNA sequence
variation occurring when a single nucleotide in the genome
differs between members of a species or paired chromosomes
in an individual.
2While the context for this statement was the use of full
body scanning in airports (where the privacy issues are ob-
vious), it is equally valid in WP repositories!
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Figure 1: Disease Susceptibility Workflow Specification
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mation, lifestyle, family history, and physical symptoms, and
is indicated by a special node labeled I . The output for the
workflow is a prognosis, indicated by a special node labeled
O. The first module in W 1 is named M1 with description
“Determine Genetic Susceptibility”. M1 determines a set of
disorders the patient is genetically susceptible to based on
the input SNPs and ethnicity information. The second mod-
ule, named M2 with description “Evaluate Disorder Risk”,
refines the set of disorders for which the patient is at risk,
based on lifestyle, family history, and physical symptoms.

Figure 1 also contains τ -labeled edges that give the defi-
nitions of composite modules, which we call expansions. For
example, M1 is defined by the workflow W 2, M2 by the
workflow W 3, and M4 by the workflow W 4. Hence W 2 and
W 3 are subworkflows of W 1, and W 4 is a subworkflow of
W 2. The τ expansions (subworkflow relationships) natu-
rally yield an expansion hierarchy as shown in Figure 3.

Prefixes of the expansion hierarchy can be used to define
views of a workflow specification. A prefix of an expansion
hierarchy H is a tree obtained from H by deleting some of
its subtrees, and is denoted by the set of nodes contained
in the prefix. For example, {W 1, W 2} is a valid prefix for
the expansion hierarchy in Figure 3 but {W 1, W 4} is not.
Given a prefix, the view that it defines is given by expanding
the root workflow so that composite modules in the prefix
are replaced by their expansions. For example, the prefix
{W 1, W 2, W 4} determines a view of the specification in
Figure 1 that is the simple workflow obtained from W 1 by
replacing M1 withW 2 andM4 withW 4 (see Figure 5). The
prefix {W 1, W 2, W 3, W 4} is the full expansion, and yields
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Figure 4: Disease Susceptibility Workflow Execution
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Figure 5: Result of “Database, Disorder Risk” using prefix
{W1, W2, W4}

a workflow with module names I,O,M3, and M5 − M15,
and whose edges include one from M3 to M5 and another
from M8 toM9. We will shortly discuss the benefit of views.

A workflow specification describes the possible run-time
executions. Executions are modeled similarly to simple work-
flow graphs, but additionally associate a unique process id
with a module execution, and data with edges. When exe-
cution reaches a composite module, it continues in the cor-
responding subworkflow and eventually returns (like a pro-
cedure call). For example, an execution of the workflow
specification in Figure 1 is shown in Figure 4. In this exam-
ple, for clarity we show the process id appended to the name
of the module being executed, e.g., S1:M1. Each compos-
ite module execution is represented by two nodes, the first
standing for its activation and the second for its completion,
e.g., S1:M1-begin and S1:M1-end.

In an execution, data flows over the edges. We assume
that each data item (an object with a value) is the output
of exactly one module execution and has a unique id. We
therefore annotate each edge M → N in the execution with
the set of data items that flow as the output of M to the
input of N . For example, in Figure 4 the set {d0, d1} flows

from I to S1:M1.
The provenance of a data item d in an execution E is

therefore the subgraph induced by the set of paths from the
start node to the end node of E that produced d as output.
In the sequel, we blur the distinction between the provenance
of data items and the executions that produce them.

As introduced in [7], we can use views to simplify what
is seen of an execution. Using the view defined by prefix
{W 1}, the execution of Figure 4 would be simplified to that
in Figure 2. Views can also be used to define access control
to address privacy concerns. Specifically, we can define a
user’s access privilege as the finest grained view that s/he
can access, called an access view. We will return to the issue
of access views, keyword search and structural querying in
Section 4 after describing privacy concerns.

3. PRIVACY
Privacy concerns are tied to the workflow components:

data, modules, and the structure of a workflow. In data
privacy, private intermediate data, that is, data flowing be-
tween modules in a workflow execution, must not be revealed
to a user. Inmodule privacy, we wish to ensure that the func-
tionality of the module is hidden from the users in a strong
sense, namely, for any input to the module, a user should
not be able to guess with any degree of certainty the output
of the module. In structural privacy, we wish to ensure that
details of how a particular data product has been generated
in an execution of the workflow are kept private from a user,
and portions of the provenance graph must not be revealed.

Broadly speaking, the fundamental question to be ad-
dressed is: How do we provide provable guarantees on the
privacy of components in a workflow while maximizing util-
ity with respect to provenance queries? In doing so, we must
understand 1) how to measure privacy; 2) what information
can be hidden; 3) how to measure utility; and 4) how to
efficiently find solutions that simultaneously provide prov-
ably good guarantees on privacy and utility. Note that all
privacy guarantees must hold over repeated executions of a
workflow with varied inputs.

After briefly discussing issues of data privacy in our set-
ting, we describe our initial results for module privacy (see
[13, 14, 15] for details) as well as initial ideas on structural
privacy. We close by describing related work.

3.1 Data Privacy
In scientific workflows, provenance is used for ensuring

the repeatability of experiments and verifiability of results.
For example, if the output of a workflow execution is be-
lieved to be incorrect, the user will need to trace through
the intermediate data and parameter settings used by mod-
ules to determine the source of the error. Unlike statistical
databases, aggregate queries are not used, and the assump-
tion is that the values of data shown to the user are exact
rather than approximate. Existing techniques for preserving
data privacy in statistical and relational databases (see last
subsection) therefore do not directly extend to this setting.
Access control techniques to hide a data value must also be
used in conjunction with module privacy techniques to en-
sure that hidden data is not “leaked” through visible data
and modules whose behavior can be simulated (public mod-
ules). For example, hiding a data value that is the output
of a public reformatting module does not ensure its privacy.

We therefore start by focusing on module privacy.
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3.2 Module Privacy
To simplify the discussion, we assume that all modules

are atomic (i.e., not composite), yielding a workflow with a
single node in the expansion hierarchy (the workflow itself).
We return to the question of hierarchy later. Overloading
terminology slightly, we will also use I to denote the set of
input data to a module, and O to denote the set of output
data for a module.

In a typical scenario, some of the modules in a workflow
are private while others are public, i.e., their function and
behavior is assumed to be known. Our initial work [13, 14]
addresses a restricted case in which all modules are private
and the user has no apriori knowledge of their functionality.3

Although requiring all modules to be private is a special case,
the privacy issues are already complex and yield significant
insight into handling the general case in which some modules
may be public.

It is easy to see that if information about all interme-
diate data is repeatedly given for multiple executions of a
workflow on different initial inputs, then partial or complete
functionality of modules may be revealed. Our mechanism
to achieve privacy of modules is therefore to hide a care-
fully chosen subset of intermediate data, thereby limiting
the amount of provenance data shown to the user. We as-
sume that users can see initial input and final output data
as well as all connections or edges between modules in the
workflow; only the values of selected intermediate data are
hidden, and are hidden in all executions of the workflow.
Hiding is accomplished by access control.

Standalone Module Privacy. Informally, we say that
a module M in isolation (a standalone module) is Γ-private
for some parameter Γ ≥ 1 w.r.t. the information visible to
the user if, given any input I to the module, the user cannot
guess the correct output O = f(I) with probability greater
than 1

Γ
. Γ-privacy is similar to the concept of ℓ-diversity

[28] but extended to modules in a workflow setting.
Note that we can equivalently think of f as a table R over

a set of attributes A = I ∪ O that satisfies the functional
dependency I → O, and we use this in our formalization of
Γ-privacy.

Γ-privacy is formalized using a notion of consistent func-
tions: Two functions are said to be consistent w.r.t. a set V
of visible attributes (data items) if their tables are the same
when projected over V . Given a set of visible attributes for
M , for each input I the set of consistent functions must map
I to at least Γ different output values.

As a simple example, consider a module M whose func-
tionality is shown in the table R1

1 in Figure 6a. The at-
tributes under I (a1, a2) indicate the data input to M and
the attributes under O (a3, a4, a5) represent the data out-
put from M ; hence, each row in the table represents an
execution of M . If a2 and a4 are hidden in the displayed
provenance (V = {a1, a3, a5}), then Γ-privacy is achieved
for Γ=4, since there are four possible outputs for each input,
shown by the set of consistent functions represented in Fig-
ure 6. For example, input (0,0) can be mapped to outputs
(0,0,1), (0,1,1), (1,0,0) or (1,1,0). The same holds for inputs
(0,1), (1,0) and (1,1). We therefore call the set {a2, a4} a

3The functionality of a module with an underlying function
f refers to the input-output behavior of the module, i.e., the
(I,O = f(I)) pairs for all possible inputs I to the module,
and not the underlying algorithm to compute the function
f .

I O

a1 a2 a3 a4 a5

0 0 0 0 1
0 1 1 0 0
1 0 1 0 0
1 1 1 0 1

(a) R1
1

I O

a1 a2 a3 a4 a5

0 0 0 1 1
0 1 1 1 0
1 0 1 0 0
1 1 1 0 1

(b) R2
1

I O

a1 a2 a3 a4 a5

0 0 1 0 0
0 1 0 0 1
1 0 1 0 0
1 1 1 0 1

(c) R3
1

I O

a1 a2 a3 a4 a5

0 0 1 1 0
0 1 0 1 1
1 0 1 0 0
1 1 1 0 1

(d) R4
1

Figure 6: Consistent functions w.r.t. V = {a1, a3, a5}

safe subset for Γ = 4.
Other combinations of inputs/outputs may also be safe

subsets for Γ=4 for M , for example, {a4 , a5} (or any two of
the output attributes).4 In general, the standalone privacy
requirement of each module in a workflow is specified as a
requirements list, i.e., a list of safe subsets for some speci-
fied Γ. Since some of the input/output data items may be
more valuable than others to the user, we allow the user to
associate a cost with each data item, leading to the follow-
ing natural optimization problem: Given a requirements list
for M and a cost c(a) associated with each input/output
data item a, find a safe subset V s.t. the cost of the hidden
attributes, c(V ) =

∑
a∈V

c(a), is minimized.
Although in the worse case finding a minimal-cost safe at-

tribute set for a module may take time that is exponential
in the number k of attributes [13], k is typically not large
(often less than 10, see [32]), so the computation is still
feasible. Knowledge, on the part of the module designers,
about the module’s behavior and safe attribute sets may also
be exploited to speed up the computation. Furthermore, a
given module is often used in many workflows. For exam-
ple, sequence alignment modules, like BLAST or FASTA,
are used in many different biological workflows. Since the
safe subsets for individual modules can be used as building
blocks for attaining privacy for the full workflow, the effort
invested in deriving safe subsets for a module may therefore
be amortized over all uses.

In-network Module Privacy. The in-network Γ-privacy
of a module is defined similarly to standalone Γ-privacy: For
any input to any module in the workflow, the user should
not be able to guess the correct output of the module with
probability greater than 1

Γ
. Thus, the notion of in-network

privacy of a module is inherently linked to the topology of
the network representing the workflow as well as the func-
tionality of the modules – and the problem becomes consid-
erably more complex. For example, data sharing may occur,
in which output data from one module is input to more than
one downstream module.

In [13, 14] we show that, although a sequence of consis-
tent functions for the network is always consistent for the
individual standalone modules with respect to the same set
of hidden data, the converse is not true. In particular, a

4Note that {a1,a2} is only a safe subset for Γ=3, since each
input can only be mapped to (0,0,1), (1,0,0) or (1,0,1).
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sequence of consistent functions for a set of standalone mod-
ules with respect to a set of hidden data does not guarantee
that the same sequence is consistent in a network setting,
when the same set of data is hidden. In general, it appears
that in-network privacy of modules requires us to consider
the input-output behavior of all modules given all possible
initial inputs, which may be computationally infeasible.

However, we ultimately show in [13, 14] that in-network
privacy can indeed be captured in terms of the local stan-
dalone privacy requirements of individual modules. The re-
sulting secure-view optimization problem can be stated as
follows: Given a privacy parameter Γ ≥ 1, what is the min-
imum cost of intermediate data that needs to be hidden to
guarantee that all modules in the workflow have in-network
Γ-privacy? Our work in [14] shows that the problem is NP-
hard even in a very restricted setting, motivating poly-time
approximation algorithms for the secure-view problem.

General Workflows. We then show in [13] that ensuring
standalone privacy of private modules in workflows involv-
ing both public and private modules (general workflows) no
longer guarantees in-network privacy. However, by making
some of the public modules private (called privatization) we
can attain workflow privacy of all private modules in the
workflow. Since privatization has a cost, the optimization
problem becomes much harder: even without data sharing
the problem is Ω(log n)-hard to approximate.

Module Privacy in Hierarchical Workflows. We
now revisit module privacy in hierarchical workflows. Here
we assume that any module, whether composite or atomic,
could be private. If a private module is composite, then ex-
panding it might reveal something of its functionality. Ex-
pansions of private composite modules are therefore disal-
lowed, yielding a (maximal) access view consisting of all pre-
fixes of the expansion hierarchy terminating with either an
atomic or a private composite module. As described earlier,
input/output data would have to be hidden for the private
composite module to achieve the desired level of privacy.

3.3 Structural Privacy
We now describe some initial ideas on structural privacy.

Recall that the provenance of a data item is defined to be the
subgraph in an execution consisting of all execution paths
originating at the start node and terminating at the module
that produces the data item. The goal of structural pri-
vacy is to keep private the information that some module
M contributes to the generation of a data item d, output
by another module M ′. For instance, in the execution of
the workflow W 3, we may wish to hide the fact that the
reformatted data from PubMed Central (module M13) con-
tributes to updating of the private DB, and hence to the
output of module M11.

One possible solution is to delete edges and vertices so as
to eliminate all M ; M ′ paths. However, by doing so, we
may hide not only the fact that M ; M ′, but additional
provenance information that does not need be hidden, say,

the fact that M ; M
′′

for some M
′′

6= M . Hiding the

provenance information M ; M
′′

represents lost utility for

the public pair (M,M
′′

). Broadly speaking, our goal is to
study the question of how to hide private structural infor-
mation while maximizing utility, or minimizing lost utility.

We can formalize the structural privacy problem as fol-
lows. Given an execution G(V,E), along with a collection
P ⊆ V × V of ordered pairs of vertices, create a new exe-

cution G′(V ′, E′) that hides reachability for all pairs in P

but preserves the reachability information for a maximum

number of node pairs in Q
def
= (V × V ) \ P . Here, P and

Q respectively denote the sets of private and public mod-
ule pairs. In general, the transformation from G to G′ may
create a u ; v path in G′ for some public pair (u, v) ∈ Q

for which u 6; v in G, or may show that u 6; v in G′ when
u ; v in G. In either case, we lose utility for the pair (u, v)
in the transformation. We may view the goal of preserving
reachability for pairs in Q as a completeness property, and
the goal of preserving non-reachability for pairs in Q as a
soundness property. Then the utility lost by a solution G′

can be measured in terms of the number of pairs in Q for
which the completeness or soundness properties are violated.

There are two natural approaches to create a structural-
privacy preserving graph G′. The first approach, mentioned
earlier, is to simply delete a subset of edges and vertices in
G′ so as to ensure that no pair in P satisfies reachability in
G′. Clearly, this approach is guaranteed to generate sound
solutions since G′ is always a subgraph (projection) of G.
A second approach is to cluster modules so that for any
pair (u, v) in P , u and v belong to a new composite mod-
ule whose expansion is disallowed in any access view, and
thus reachability between u and v is no longer externally
visible. In contrast to deletion, clustering tends to preserve
completeness at the expense of violating soundness. A com-
posite module that also preserves soundness (and thus has
high utility) is called a sound module.

As a concrete example, consider an execution of the work-
flow W 3 in Figure 1, and let P = {(M13, M11)}. If we
use deletion, then the only possible solution is to delete the
edge (M13, M11) from W 3. This solution, however, also
deletes the M12 ; M11 path, thus losing utility for the
pair (M12,M11). In contrast, the clustering solution merges
modules M13 and M11 into a single composite module, say,
M16, whereby all edges in G coming to M13 or M11 now
enter the module M ′, while all edges leaving M13 or M11
now leave from the module M16. This solution preserves
reachability for all non-private pairs, but violates soundness
by creating some new paths. For instance, we now have a
M10 ; M14 path that did not exist in the original work-
flow, thus losing the utility for the pair (M10,M14).

We studied the problem of creating a set of complete and
sound composite modules in a workflow in a related but dif-
ferent setting [8, 38]. For instance, in [8], we consider the
problem of creating composite modules that preserve pair-
wise reachability for a given subset of relevantmodules. Here
the completeness and soundness are hard constraints, and
the utility is measured in terms of the reduction achieved in
the size of the workflow. This is different from our setting,
where the privacy requirements may necessitate some vio-
lation in completeness and soundness, and the focus is on
containing the extent of these violations.

Structural Privacy in Hierarchical Workflows. Clus-
tering modules within the same subworkflow will introduce
new nodes in the expansion hierarchy for a workflow. For
example, clustering M11 and M13 into a composite mod-
ule M16, whose expansion is a new subworkflow W 5, would
place W 5 as a child of W 3 in the expansion hierarchy in Fig-
ure 3. While the expansion of M16 would be disabled, the
fact that it containsM11 andM13 would be known, perhaps
by allowing M16 to “inherit” the keywords/title/description
of the contained modules. Clustering should respect the hi-
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erarchy: nodes in different subworkflows (such as M2 and
M10, or M3 and M6) should not be placed in the same
cluster. When modules from two different sub-workflows
are chosen to be clustered, then the parent of the least com-
mon ancestor of the two sub-workflows would be disabled
for expansion (involving a significant loss of utility).

3.4 Related Work
Access control is heavily used in relational databases, see,

for example, a discussion in [34] (Chapter 21). More re-
cently, data privacy has been considered in hierarchical data
models such as XML [6, 12, 19]. There, an access control pol-
icy is typically specified, assigning access levels to users, or
groups of users, with respect to XML elements or attribute
values [12]. Such a policy may then be used to compute
a security view over an XML document [19]. We plan to
evaluate the applicability of these techniques in our setting.

Workflow privacy has been considered in [11, 21, 22].
In [11], the authors discuss a framework to output a par-
tial view of a workflow that conforms to a given set of access
permissions on the connections between modules and data
on input/output ports. The problem of ensuring the lawful
use of data according to specified privacy policies has been
considered in [21, 22]. The focus of the work is a policy lan-
guage for specifying relationships among data and module
sets, and their properties relevant to privacy. Although all
these papers address workflow privacy, the privacy notions
are somewhat informal and no guarantees on the quality of
the solution are provided in terms of privacy and utility.

Secure provenance for workflows has been studied in [10,
23, 27]. The goal is to ensure that provenance information
has not been forged or corrupted, and a variety of crypto-
graphic and trusted computing techniques are proposed. In
contrast, we assume that provenance information has not
been corrupted, and focus on ensuring module privacy.

In [29], the authors study information disclosure in data
exchange, where, given a set of public views, the goal is to
decide if they reveal any information about a private view.
This does not directly apply to our problem, where the pri-
vate elements are the (x,m(x)) relations. For example, if all
x values are shown without showing any of the m(x) values
for a module m, then information is revealed in their setting
but not in our setting.5

Privacy-preserving data mining has received considerable
attention (see surveys [1, 41]). The goal is to hide individ-
ual data attributes while retaining the suitability of data for
mining patterns. For example, the technique of anonymiz-
ing data makes each record indistinguishable from a large
enough set of other records in certain identifying attributes [2,
28, 39]. Privacy preserving approaches were studied for so-
cial networks [4, 35], auditing queries [31], and in other con-
texts. Our notion of standalone module privacy is close to
that of ℓ-diversity [28], in which the values of non-sensitive
attributes are generalized so that, for every such general-
ization, there are at least ℓ different values of sensitive at-
tributes. We extend this work in two ways: First, we place
modules (relations) in a network of modules, which signif-
icantly complicates the problem; Second, we analyze the
complexity of attaining standalone as well as workflow pri-
vacy of modules.

5In contrast, it can be shown that showing all m(x) values
while hiding the x’s, may reveal information in our setting.

Another widely used technique is that of data perturba-
tion, where some noise, usually random, is added to the the
output of a query or to the underlying database. This tech-
nique is often used in statistical databases, where a query
computes some aggregate function over the dataset [16], and
the goal is to preserve the privacy of data elements. In con-
trast, in our setting the private elements are (x,m(x)) pairs
for a private module m, while queries are select-project-join
style queries over the provenance relation, rather than ag-
gregate queries.

Privacy in statistical databases is typically quantified using
differential privacy, which requires that the output distribu-
tion is almost invariant to the inclusion of any particular
record (see surveys [17, 18] and the references therein). It
is an interesting future direction to see if this notion can be
adapted to the domain of workflow provenance.

4. INTEGRATING PRIVACY WITH SEARCH

AND QUERY
As discussed earlier, users will access WP repositories using

either keyword search or structured queries. When answer-
ing these queries, we must guarantee that the data, mod-
ule and structural privacy requirements are respected while
maximizing the amount of information provided in response
to queries. We start by describing initial work on searching
and querying workflow specifications, discuss how search and
query over provenance interact with privacy concerns, and
finally contrast this with related work.

4.1 Search and Query
We have developed a technique for keyword search on

workflow specifications [26]. A keyword search consists of
a set of comma-separated search terms which can match
the name, keywords, or description associated with mod-
ules; the search result is a list of simple workflows. Each
simple workflow in the result represents a minimal view of
some specification in the repository that contains distinct
matches to all search terms. By the definition of a view (see
Section 2), such a result captures the dataflow among search
term matches.

For example, suppose a user issues the search “database,
disorder risk” on a repository of workflows that contains the
sample workflow in Figure 1. Note that “database” matches
bothM4 andM5, and that“disorder risk”matchesM2. The
sample workflow contains a match to each term in the key-
word search, and the question is what should be returned.
One option would be to return the entire hierarchy shown
in Figure 1, but this could be overwhelming for the user. A
simpler option would be to return a portion of the workflow
in which the τ expansion for M2 is hidden, showing only
W 1, W 2 and W 4. The more concise result would be the
simple workflow shown in Figure 5, which is the view ob-
tained from the prefix {W 1, W 2, W 4}. In this view, the
dataflow between keywords is easily seen.

This technique can be naturally extended to workflow exe-
cutions. In addition to matching terms with module names,
keywords and descriptions, terms could match the names
or values of data flowing over the edges in an execution.
If a term matches an edge, the connecting modules would
be treated as matches.6 The result would be a view of the
execution using the minimal view for the match.

6Recall that data can only be written once.
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Users may also wish to ask structural queries over the
repository of specifications and executions (see [5, 24] for
provenance query languages which could be extended to our
setting). Examples of queries that would match our sample
workflow specification include: “ Workflow specifications in
which Expand SNP is performed before Query PubMed” and
“Workflow specifications in which there is a parallel execu-
tion of modules that match query.” Examples of queries over
executions include “Executions in which data items d1 or d2
are used at some point before executing module M , and that
produce data item d19 at some point after executing M”, or
the more typical provenance-style queries: “Data items that
were used to produce data item d10” and “Data items that
depend on data item d2”.

While structural queries share with keyword search the
need to match terms (e.g., Expand SNP, Query PubMed,
d10, query), the format of the result is typically specified
in a return clause. Both matching and the result format
therefore have interesting interactions with access views.

4.2 Preserving Privacy through Access Views
To preserve privacy while searching and querying, the

user’s access view (see Section 3) must be used for both
matching and formatting the result. In particular, search
results can be defined as the minimal view that “subsumes”
the access view and maximally contains the search keywords.
For example, if the user’s access view is {W 1, W 2, W 4} for
our sample search “database, disorder risk”, then the search
matches our sample specification and the result is the view
corresponding to the prefix {W 1, W 2, W 4} (shown in Fig-
ure 5). If the user’s access view is {W 1, W 2, W 3}, then
“database” would now match only M4, while “disorder risk”
would still match M2. The search result would then be the
view corresponding to the prefix {W 1, W 2}. Finally, if the
user’s access view is {W 1} or {W 1, W 3}, then the speci-
fication would not be returned since there is no match for
“database”.

Similarly, the structural query “Workflows in which Ex-
pand SNP is performed before Query PubMed”would match
our sample workflow for the access view {W 1, W 2, W 4}
but not for {W 1} or {W 1, W 2}. Note that both the match
and the result to be returned would be evaluated within the
context of the access view.

The result returned by the provenance query “What data
was used to produce data item d10?” would also depend on
the user’s access view. For example, for the access view
{W 1} in Figure 2 the result would be {d0, d1}, whereas for
the access view {W 1, W 2, W 4} in Figure 4 the result would
be {d0, d1, d5, d6, d7, d8, d9}.

4.3 Related Work
Keyword search has been extensively studied, however,

existing approaches are not appropriate for searching work-
flow repositories. For example, keyword search for graph-
structured data (e.g., [3]) and tree-structured data (e.g.,
[25]) typically return results as smallest trees that contain
matches to query keywords. A natural question to ask is
whether we can use these approaches by treating a workflow
specification as a graph. However, there are two problems
with this. First, users expect to see workflows rather than
portions of workflows that contain the keywords. Second,
workflow specifications involve both dataflow and expansion
(τ ) edges, and ignoring the difference between these may

yield search results that do not capture the dataflow among
keyword matches. In contrast, our approach yields search
results that are minimal views of matching workflows, and
that indicate the connections between the keyword matches.

Keyword search is supported in Kepler [9], Triana [40],
and Taverna/myGrid [33]. These approaches allow users to
search for modules using keywords, but are not extended to
workflows. myExperiment [32] allows users to issue a key-
word search, and the result is a set of hierarchical workflow
specifications, each containing all the keywords. However,
the search result is not minimized. Extending this simple
approach to executions of workflows, which are even larger
than specifications due to repeated executions of modules
through parallel execution (map operations) and looping,
would be overwhelming to users. Furthermore, the result
does not explicitly show connections between the keyword
matches.

None of existing work addresses keyword search on work-
flows in the presence of privacy requirements.

5. CONCLUSIONS
In this paper, we discuss how to integrate privacy guaran-

tees in the design of provenance management systems for sci-
entific workflows. We start by identifying privacy concerns
– data, module, and structural privacy – and frame several
natural questions: (i) Can we formally analyze data, mod-
ule, and structural privacy, giving provable privacy guaran-
tees for an unlimited/bounded number of provenance queries?
(ii) How can we answer search and structural queries over
repositories of workflow specifications and their executions,
providing as much information as possible to the user while
still guaranteeing privacy?

There are many directions for future work. Our initial re-
sults for module privacy in general workflows show that the
the interaction between private and public modules makes
the problem much harder. For example, a one-to-one public
function (e.g., a data reformatting module) can reveal data
that was kept hidden as the input or output of a private mod-
ule. In addition to privatization (discussed in Section 3), we
will explore a variety of ideas, such as using the topology
of the network or identifying natural restrictions on the be-
havior of public modules. We would also like to consider
giving imprecise values for data, rather than simply hiding
data, and explore connections with differential privacy [17,
18]. Although we have sketched initial ideas on structural
privacy, a formal characterization and study remains to be
done. Finally, the issue of collusion between users should be
studied in our context.

There are also many challenges to efficiently implement-
ing search and querying in light of privacy guarantees. For
example, to achieve data and module privacy we need to
be able to efficiently identify the data that a user is able
to access, which is typically achieved using inverted indices.
Since users may have different privileges, we must now man-
age an inverted index with different user views. We also need
to generate search results with respect to user access views.
One approach would be to first find the result, oblivious to
the privacy requirement. If the result would reveal sensitive
information, we gradually “zoom-out” the view by hiding de-
tails of composite modules until privacy is achieved. How-
ever, this can be expensive as each zoom-out may involve a
disk access. Techniques must be developed to efficiently find
user-specific results.
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