
Solutions in XML Data Exchange

Mikołaj Bojańczyk
University of Warsaw

bojan@mimuw.edu.pl

Leszek A. Kołodziejczyk
University of Warsaw

lak@mimuw.edu.pl

Filip Murlak
University of Warsaw

fmurlak@mimuw.edu.pl

ABSTRACT
The task of XML data exchange is to restructure a document
conforming to a source schema under a target schema ac-
cording to certain mapping rules. The rules are typically ex-
pressed as source-to-target dependencies using various kinds
of patterns, involving horizontal and vertical navigation, as
well as data comparisons. The target schema imposes com-
plex conditions on the structure of solutions, possibly incon-
sistent with the mapping rules. In consequence, for some
source documents there may be no solutions.

We investigate three problems: deciding if all documents
of the source schema can be mapped to a document of the
target schema (absolute consistency), deciding if a given
document of the source schema can be mapped (solution
existence), and constructing a solution for a given source
document (solution building).

We show that the complexity of absolute consistency is
rather high in general, but within the polynomial hierarchy
for bounded depth schemas. The combined complexity of
solution existence and solution building behaves similarly,
but the data complexity turns out to be very low.

In addition to this we show that even for much more ex-
pressive mapping rules, based on MSO definable queries,
absolute consistency is decidable and data complexity of so-
lution existence is polynomial.

Categories and Subject Descriptors
H.2.5 [Database Management]: Heterogeneous Databa-
ses—Data translation; I.7.2 [Document and Text Pro-
cessing]: Document Preparation—XML

General Terms
Theory, Algorithms, Languages

Keywords
XML data exchange, regular queries, patterns, absolute con-
sistency, solution building, solution existence

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDT 2011, March 21–23, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0529-7/11/0003 ...$10.00

1. INTRODUCTION
One of the main challenges of modern data management is

dealing with heterogeneous data. A typical scenario is that
of data exchange, where one needs to restructure data stored
in a source database under a target database schema, follow-
ing a specification. The specification is given by a so-called
schema mapping, a collection of logical formulas describ-
ing dependencies between the source schema and the target
schema. The produced instance of data is called a solution
for the source data with respect to the schema mapping.

Studies on relational data exchange and schema mappings
were initiated several years ago [11, 12], and since then have
been a major topic (see recent surveys [5, 6, 15]).

In the XML context, the target schema, a DTD or XML
Schema, imposes complex conditions on the structure of the
solution. One of the consequences is that in practice schema
mappings are often over-specified, in the sense that for some
source instances there is no solution satisfying the specifica-
tion and conforming to the target schema. One needs to be
able to check if a mapping admits a solution or not.

Nowadays, schema mapping design is usually assisted by
specialized software [16]. The ability to issue warnings that
a mapping does not admit solutions for some source doc-
uments would be a most welcome feature, especially if the
warning could also point out the source of the problem.

When a mapping is already there, one has to materialize
the appropriate solution for the given source data. This
requires checking if a solution exists, and constructing it.

We concentrate on three problems related to solutions:

• Absolute consistency. Is there a solution for every pos-
sible source document?

• Solution existence. Is there a solution for a given source
document?

• Solution building. Find a solution for a given source
document.

So far, absolute consistency was only investigated for very
simple mappings, based on so-called tree patterns using only
the child and descendant relations [1]. Solution building
was investigated for even simpler mappings allowing only a
restricted class of DTDs [3]. More practical mapping lan-
guages involve sibling order and data comparisons. For such
mappings only the consistency problem was considered, i.e.,
whether some source document has a solution [1, 3]. Consis-
tency of mappings, though interesting theoretically, seems to
have less practical importance as it gives no information on
how the mapping will perform on a given source document.

102

We work with mappings using general XML schemas, for-
malized as tree automata, DAG-shaped patterns using hori-
zontal and vertical navigation, as well as data comparisons.
We also consider a restricted case: bounded-depth mappings,
where schemas only admit trees of bounded height. As most
real-life schemas have small depth, this case is particularly
important in practice.

Our main findings for pattern-based mappings can be sum-
marized as follows:

• Absolute consistency is Π2EXP-complete1 in general,
and Π4P-complete in the bounded depth case.

• Data complexity of solution existence is in LOGSPACE,
while combined complexity is NEXP-complete in gen-
eral, and Σ3P-complete for the bounded depth case.

• Solution building can be done in EXPSPACE in gen-
eral, in PSPACE in the bounded depth case, and in P
if the mapping is fixed.

The high combined complexity of the general case is disturb-
ing, but the practically relevant bounded-depth case brings
it down to acceptable low levels of polynomial hierarchy,
and the polynomial data complexity of solution existence
and solution building gives real hope for applications.

We then go on to generalize these results even further. We
show that for mappings based on queries definable in MSO,
absolute consistency remains decidable, and data complexity
of solution existence is still polynomial.

The paper is organized as follows. After recalling the basic
notions (Sect. 2), we study the absolute consistency problem
for pattern-based mappings (Sect. 3) and its restriction to
mappings of bounded depth (Sect. 4). We finish the first
part of the paper with the examination of solution building
and solution existence (Sect. 5). The second part starts with
a definition of regular queries and then develops a represen-
tation designed to facilitate deciding absolute consistency
and solution existence of mappings using regular queries in-
stead of patterns (Sect. 6). Next, we give the decision proce-
dures (Sect. 7), and finish with some suggestions for future
work (Sect. 8).

Due to space limitations some proofs are omitted.

2. PRELIMINARIES

Data trees, DTDs, automata. The abstraction of XML
documents we use is data trees: unranked labelled trees
storing in each node a natural number called data value.
Formally, a data tree over a finite labelling alphabet Γ is a
structure 〈T, ↓, ↓∗,→,→∗, `T , ρT 〉, where

• the set T is an unranked tree domain, i.e., a prefix-
closed subset of N∗ such that n · i ∈ T implies n · j ∈ T
for all j < i;

• the binary relations ↓ and → are the child relation
(n ↓ n·i) and the next-sibling relation (n·i→ n·(i+1));

• ↓∗ and →∗ are transitive closures of ↓ and →;

• the function `T is a labelling from T to Γ;

• ρT is a function from T to N. We say that a node
s ∈ T stores the value v when ρT (s) = v.

1Π2EXP is the second level of the exponential hierarchy.

Most often, when the interpretations of ↓,→, `T , and ρT are
understood, we write just T to refer to a data tree. We use
the terms“tree”and“data tree” interchangeably. 2 We write
|T | to denote the number of nodes of T .

The principal schema language we use are tree automata,
abstracting Relax NG [17, 18].

A nondeterministic word automaton can be presented as
a tuple B = 〈Γ, Q, qI , δ, F 〉, where Γ is a finite input alpha-
bet, Q is a finite set of states, qI ∈ Q is the initial state,
F ⊂ Q is the set of final states, and δ ⊆ Q × Γ × Q is the
transition relation. A run on a word σ1σ2 · · ·σn ∈ Γ∗ is a
sequence q1q2 · · · qn+1 ∈ Q∗ where q1 is the initial state qI ,
and (qi, σi, qi+1) ∈ δ for i = 1, 2, . . . , n. A run is accepting
if it ends in a final state, qn+1 ∈ F . A word is accepted if
there is an accepting run for it. The set of accepted words
is denoted by L(B).

A nondeterministic tree automaton can be presented as a
tuple A = 〈Γ, Q, δ, F 〉 where Γ is the input alphabet, Q is a
finite set of states, F ⊆ Q is the set of final states, and δ is a
function Q×Γ→ 2Q

∗
such that δ(p, σ) is a regular language

over Q for every p ∈ Q, σ ∈ Γ. A run of A on a data tree
T is a labelling λ : T → Q such that for every v ∈ T with n
children,

λ(v0)λ(v1) · · ·λ(v(n− 1)) ∈ δ(λ(v), `T (v)) .

If v is a leaf, the condition reduces to ε ∈ δ(λ(v), `T (v)),
which explains the lack of initial states in A. A run λ is
accepting, if the root is labelled with a final state, λ(ε) ∈ F .
A data tree T is accepted by A if there is an accepting run
for it. The set of trees accepted by A is denoted by L(A).

Throughout the paper we assume that all states are reach-
able, i.e., for each state p ∈ Q there is a tree which evaluates
to p. This can be guaranteed by polynomial preprocessing.

In the decision problems involving tree automata we as-
sume that the regular languages δ(p, σ) are given by nonde-
terministic word automata Bp,σ, and write ||A|| for the size
of A including the automata Bp,σ.

In this case, an extended run of A on T is a run λ together
with a labelling κ of T such that whenever `T (v) = σ and
λ(v) = p, and v’s children are v1, v2, . . . , vk, it holds that
qp,σI , κ(v1), κ(v2), . . . , κ(vk) is an accepting run of Bp,σ on
λ(v1), λ(v2), . . . , λ(vk). The κ-label of the root is irrelevant,
it can be any state of any Bp,σ.

A simpler schema language is provided by DTDs. A doc-
ument type definition (DTD) over a labelling alphabet Γ is
a pair D = 〈r, PD〉, where

• r ∈ Γ is a distinguished root symbol;

• PD is a function assigning regular expressions over
Γ− {r} to the elements of Γ, usually written as σ → e,
if PD(σ) = e.

A data tree T conforms to a DTDD, denoted T |= D, if its
root is labelled with r and for each node s ∈ T the sequence
of labels of children of s is in the language of PD(`T (s)).
The set of data trees conforming to D is denoted L(D).

Both DTDs and tree automata define languages of data
trees. A DTD D = 〈r, PD〉 over Γ can be viewed as a tree
automaton AD = 〈Γ,Γ, δ, {r}〉, with δ(σ, σ) = PD(σ) and
δ(σ, τ) = ∅ for σ 6= τ . We can think of DTDs as restricted
tree automata.
2A different abstraction allows several attributes in each
node, each attribute storing one data value [1, 3]. Attributes
can be easily modelled with additional children.

103

Figure 1: Typical patterns

Patterns. Patterns were originally invented as convenient
syntax for conjunctive queries on trees [7, 8, 13]. While most
schema mapping research has concentrated on tree-shaped
patterns, definable with an XPath-like syntax [1, 3], the full
expressive power of conjunctive queries is only guaranteed by
DAG-shaped patterns [7, 8]. Indeed, a tree shaped pattern
cannot express “there is a path from a to b via c and d”, but
a DAG-shaped pattern or a conjunctive query can (see the
middle pattern in Fig. 1). We base our mappings on DAG-
shaped patterns, extending the setting used previously.

A pattern π over Γ can be presented as

π = 〈V,Ec, Ed, En, Ef , `π, ξπ〉

where 〈V,Ec∪Ed∪En∪Ef 〉 is a finite DAG whose edges are
split into child edges Ec, descendant edges Ed, next sibling
edges En, and following sibling edges Ef , `π is a partial
function from V to Γ, and ξπ is a partial function from V to
the set of variables. The range of ξπ, denoted Rg ξπ, is the
set of variables used by π. By ||π|| we mean the size of the
underlying DAG.

A data tree 〈T, ↓, ↓∗,→,→∗, `T , ρT 〉 satisfies a pattern π =
〈V,Ec, Ed, En, Ef , `π, ξπ〉 under a valuation θ : Rg ξπ → N,
denoted T |= πθ, if there exists a homomorphism

h : 〈V,Ec, Ed, En, Ef , `π, ξπ ◦ θ〉 → 〈T, ↓, ↓∗,→,→∗, `T , ρT 〉 ,

i.e., a function h : V → T such that

• h : 〈V,Ec, Ed, En, Ef 〉 → 〈T, ↓, ↓∗,→,→∗〉 is a homo-
morphism of relational structures;

• `T (h(v)) = `π(v) for all v ∈ Dom `π; and

• ρT (h(u)) = θ(ξπ(u)) for all u ∈ Dom ξπ.

We write π(x̄) to express that Rg ξπ ⊆ x̄. For π(x̄), instead
of πθ we usually write π(ā), where ā = θ(x̄). We say that T
satisfies π, denoted T |= π, if T |= πθ for some θ.

Note that we use the usual non-injective semantics, where
different vertices of the pattern can be witnessed by the same
tree node, as opposed to injective semantics, where each
vertex is mapped to a different tree node [10]. Under the
adopted semantics patterns are closed under conjunction:
π1 ∧π2 can be expressed by the disjoint union of π1 and π2.

Without loss of generality we assume throughout the pa-
per that siblings have a common parent, i.e., whenever two
vertices of a pattern are connected by a next-sibling or a
following sibling edge, there is a vertex connected to both of
them by a child edge.

Examples of patterns are given in Fig. 1. Solid and dashed
arrows represent Ec and Ed respectively. Figure 2 shows
examples of homomorphisms witnessing that the left pattern
is satisfied for x = y = z = 1 and the right one is satisfied
for x = 3, y = 4, z = 0. Note that in the left pattern, x and
y always take the same value.

Figure 2: Homomorphisms witness satisfaction

Pattern-based mappings. A (pattern-based) schema map-
ping M = 〈Ss,St,Σ〉 consists of a source schema Ss, a tar-
get schema St, and a set Σ of source-to-target dependencies
(stds) that relate source and target instances. The source
and target schemas are given as tree automata or as DTDs.
Stds are expressions of the form:

π(x̄), η(x̄) −→ π′(x̄, ȳ), η′(x̄, ȳ), (1)

where π, π′ are patterns, and η, η′ are conjunctions of equal-
ities and inequalities among x̄ and x̄, ȳ respectively. We
assume the usual safety condition: each variable used in η
is also used in π.

A pair of trees (T, T ′) satisfies the std (1) if whenever T |=
π(ā) and η(ā) holds, there is b̄ such that T ′ |= π′(ā, b̄) and
η′(ā, b̄) holds. Given a source T ∈ L(Ss), a target T ′ ∈ L(St)
is called a solution for T under M if (T, T ′) satisfies all the
stds in Σ. We letM(T) stand for the set of all solutions for
T .

Suppose that the source schema is given as a DTD r →
a∗b∗, and the target schema is r → a b∗. A mapping might
be given, e.g, by a single std

where solid and dashed arrows represent En and Ef , respec-
tively. Observe that for this mapping every source tree has
a solution. On the other hand, if we replace the source DTD
with r → (a+ b)∗, some source trees will have no solutions.

In the complexity analysis of computational problems we
use various restrictions on mappings. These include impos-
ing tree-structure on patterns (instead of DAG structure),
forbidding some axes in patterns, forbidding equality or in-
equality in stds, and restricting schemas to DTDs.

Evaluation and satisfiability. The evaluation problem is:
given a pattern π(x̄), a tuple ā, and a tree T , decide if
T |= π(ā). The complexity of this problem is folklore.

Proposition 2.1. Data complexity of evaluating patterns
is in LOGSPACE and combined complexity is in P .

Proof. A pattern is an FO query using relations→∗, ↓∗,
which can be computed in LOGSPACE (for ↓∗ move against
the arrows). In consequence, a fixed pattern can be evalu-
ated in LOGSPACE. Dynamic programming gives an algo-
rithm with polynomial combined complexity.

A pattern π is satisfiable with respect to an automaton
A if there is a tree T ∈ L(A) such that T |= π. The sat-
isfiability problem is: given a pattern π and an automaton

104

A, decide if π is satisfiable with respect to A. This problem
was shown to be NP-complete for many variants of patterns
[2, 4, 8, 14]. As we need the details of the NP-algorithm in
some arguments, we sketch it here briefly.

Let h be a homomorphism from π to T . The support of h,
denoted supph, is the subtree of T obtained by removing all
nodes that cannot be reached from Rg h by going up, left,
and right.

Lemma 2.2. For each pattern π satisfiable wrt an automa-
ton A, there exists T ∈ L(A) and a homomorphism h : π →
T with |supph| ≤ 12||π|| · ||A||2.

Proof. Take a tree T ∈ L(A) satisfying π and let h be
a homomorphism from π to T . Divide the nodes of supph
into four categories: the nodes from the image of h are red,
the nodes that are not red and have more than one child
that is an ancestor of a red node (or is red itself) are green,
the others are yellow if they are ancestors of red nodes, and
blue otherwise. Let Nred, Ngreen, Nyellow, and Nblue be the
numbers of red, green, yellow, and blue nodes.

By definition, Nred ≤ ||π||. Also Ngreen ≤ ||π||: when going
bottom-up, each green node decreases the number of sub-
trees containing a red node by at least one, and since in
the root we arrive with one subtree containing a red node,
Ngreen ≤ Nred. By a pumping argument we may assume
that all yellow ↓-paths and all blue →-paths in supph are
not longer than ||A||, The number of (maximal) yellow ↓-
paths is at most Nred + Ngreen. Hence there are at most
2||π|| · ||A|| yellow nodes. Since all blue nodes are siblings of
nodes of other colours, the number of (maximal) blue →-
paths is at most 2(Nred +Ngreen +Nyellow) ≤ 4||π|| · (||A||+1)
and so Nblue ≤ 4||π|| · (||A|| + 1)||A||. Altogether we have at
most 2||π||(||A||+ 1)(2||A||+ 1) ≤ 12||π|| · ||A||2 nodes.

Proposition 2.3. The satisfiability of patterns is in NP.

Proof. By Lemma 2.2, we can guess a homomorphism
into a polynomial tree T together with an “almost” run on
T : in every leaf we additionally guess a sequence of states to
which the missing subtrees should evaluate (by the pumping
lemma, the sequence can be linear in the size of the automa-
ton). Since all states are reachable, T can be extended to
a tree accepted by the automaton. Checking correctness of
the “almost” run, and of the homomorphism is polynomial
in the size of the pattern and the tree T , hence it is polyno-
mial.

3. ABSOLUTE CONSISTENCY FOR
PATTERN-BASED MAPPINGS

As we have mentioned, a schema mappingM = 〈Ss,St,Σ〉
is called absolutely consistent if every source tree has a solu-
tion, i.e., M(T) 6= ∅ for every T ∈ L(Ss). We are interested
in the following decision problem.

Problem: AbCons
Input: Mapping M = 〈As,At,Σ〉

Question: Is M absolutely consistent?

Assume for a while that the mappingM contains a single
dependency π(x̄) → π′(x̄, ȳ). The logical structure of the
condition we need to check is: for every source tree T there
exists a target tree T ′ such that for every ā satisfying T |=
π(ā) there exists b̄ satisfying T ′ |= π′(ā, b̄). To turn this into

an algorithm we would need to show a bound on the size of
trees that need to be considered.

Instead, we will try to change the order of quantifiers to
the following: “for every T and every ā, there exists T ′ and
some witnessing b̄”. The modified condition can be checked
easily in Π2P . Indeed, what really matters is the equality
type of ā and b̄, so it is enough to chose their entries from
a fixed set of linear size. Furthermore, one does not need
to guess T and T ′ explicitly, it is enough to witness their
existence. By Lemma 2.2, there exists a polynomial witness.

To justify the reordering of the quantifiers, we would need
to show that for every two target trees T1 and T2 there
is a π′-union tree T , such that whenever T1 |= π′(ā, b̄) or
T2 |= π′(ā, b̄), then T |= π′(ā, b̄). Without a target schema
a π′-union can be obtained by combining T1 and T2 under a
fresh root node. In the presence of a target schema, however,
a π′-union need not exist. For instance, consider the schema
r → a b∗, two trees r[a(1), b(1), b(2)] and r[a(2), b(3), b(4)],
and π′(x1, x2) saying “there is an a-node storing x1 with a
following sibling storing x2”. The first tree satisfies π′(1, 2),
and the second satisfies π′(2, 4), but clearly no tree conform-
ing to the schema can satisfy both π′(1, 2) and π′(2, 4).

We resolve this difficulty by showing that one can split ev-
ery schema-defined language of data trees into subsets which
are closed under π′-union, and have a description exponen-
tial in the size of the schema and π′. Those descriptions will
be called kinds. In the example above, let Ld consist of all
trees conforming to the schema r → a b∗, which store d in
the unique a-node. It is easy to see that each Ld is closed
under π′-union: the union tree simply needs to include all
the b-nodes of T1 and T2.

A single kind usually cannot provide solutions to all source
trees. For instance, in the example from the previous section
the source schema is r → a∗b∗ and π(x1, x2) says“there is an
a-node storing x1 whose next sibling is a b-node, and some
following sibling stores x2”. Clearly, a tree from Ld can only
be solution to source trees that store d in the last a-node.
Thus source documents have to be split into subsets admit-
ting solutions of a single kind. It turns out that the latter
is guaranteed by closure under pattern unions, which means
that we can also use kinds to split the source documents.

Based on this we reformulate absolute consistency condi-
tion as “for every source kind K there exists a target kind
K′ such that for every T of kind K and every ā, there exists
T ′ of kind K′ and witnessing b̄”, which ultimately leads to
a Π2EXP-algorithm.

Kinds. Recall the schema r → ab∗. As we have noticed,
the a-node is the critical area of every tree conforming to
this schema. One can easily collect b-nodes from two trees
in one tree, but there is always only one a-node. The main
idea behind kinds is to distinguish the critical and the non-
critical areas of trees. A kind will specify the critical areas
entirely, including data values. The non-critical areas will
be represented as “holes” in the tree, associated with the
corresponding parts of the schema.

We find it most convenient to incorporate into each kind
an extended run of the automaton representing the original
schema. The run will have holes, just like the underlying
tree. Each hole will be associated with a strongly connected
component of the automaton, reflecting the intuition that
the non-critical areas cover those parts of trees that can be
repeated.

105

With a tree automaton A = 〈Γ, Q, δ, F 〉 we associate a
graph GA = (Q,E), where (p, p′) ∈ E iff Q∗pQ∗∩δ(p′, σ) is
nonempty for some σ ∈ Γ. We speak of strongly connected
components (SCCs) of A meaning SCCs of GA. We say that
an SCC is non-trivial if it contains an edge (it might have
only one vertex though). A non-trivial SCC X is branch-
ing if there exist p, p1, p2 ∈ X such Q∗p1Q

∗p2Q
∗ ∩ δ(p, σ)

is nonempty for some σ. If this is not the case, X is non-
branching. We also work with SCCs of word automata, de-
fined in the natural way.

Let A = 〈Γ, Q, δ, F 〉 and let the automaton recognizing
δ(p, σ) be Bp,σ = 〈QA, Qp,σ, qp,σI , δp,σ, F p,σ〉 for p ∈ Q, σ ∈
Γ. Let Cp,σ and D be the sets of nontrivial SCCs of Bp,σ
and A, respectively. An A-kind is a tree K labelled with
elements of

D ∪
[
p,σ

Cp,σ ∪

Q× Γ× N×

[
p,σ

Qp,σ
!

according to certain rules. The rules simply say that the par-
tial run information is consistent. For technical convenience
we also demand that D-labelled nodes have no siblings, and
SCC-labelled nodes are leaves, unless their label is a non-
branching SCC of A. The formal rules are as follows:

1. the root is labelled with (p, σ, a, q) such that p ∈ F
(the state q is irrelevant);

2. each internal node v is either labelled with (p, σ, a, q)
and has a single child, labelled with an SCC X ∈ D
containing p, or its sequence of children is labelled with

`1, `2, . . . , `k ∈ Cp,σ ∪ (Q× Γ× N×Qp,σ)

for some p and σ where

(a) v is labelled with (p, σ, a, q) for some a, q or with
a non-branching X ∈ D such that p ∈ X and
`i = (pi, σi, ai, qi) with pi ∈ X for some 1 ≤ i ≤ k,

(b) `1 = (p1, σ1, a1, q1) and (qp,σI , p1, q1) ∈ δp,σ,

(c) for 1 ≤ i < k either `i = (pi, σi, ai, qi), `i+1 =
(pi+1, σi+1, ai+1, qi+1) and (qi, pi+1, qi+1) ∈ δp,σ,
or one of `i, `i+1 is X ∈ Cp,σ and the other is
(p′, σ′, a′, q′) with q′ ∈ X,

(d) `k = (pk, σk, ak, qk) and qk is accepting;

3. each leaf is labelled with a branching SCC from D,
an element of

S
p,σ Cp,σ, or (p, σ, a, q) such that Bp,σ

accepts the empty word.

To gain better understanding of this notion, let us examine
a special case of DTDs admitting only trees of height 1.
Recall that we can view DTDs as automata, whose state
space is equal to the labelling alphabet Γ, the only final state
is the root label, r, and only δ(σ, σ) are nonempty. If only
trees of height 1 are admitted, for each σ 6= r, δ(σ, σ) = {ε}.
The only interesting transition is δ(r, r) = L(e), where r → e
is the production for the root symbol in the DTD. Since no
internal node can have label r, the tree automaton has only
trivial SCCs. In consequence, each kind is a tree of height 1,
whose root is labelled with (r, r, d, p) for some meaningless
p, and some d ∈ N. The sequence of labels of root’s children
in K is of the form

α0X1α1X2α2X3α3 . . . Xnαn ,

where Xi are SCCs of a word automaton B recognizing
δ(r, r), αi are essentially data words decorated with runs of
B starting in Xi (or the initial state if i = 0) and finishing
in Xi+1 (or a final state if i = n).

The purpose of kinds is to define languages of data trees.
A data tree T agrees with K if there exists an extended run
λ, κ of A on T and a surjection f : T → K such that

• T ’s root is mapped to K’s root

• if v → v′, then f(v)→ f(v′) or f(v) = f(v′) = w and
w is labelled with an element of D ∪

S
p,σ Cp,σ, and

analogously for v ↓ v′,
• f(v) is labelled with (λ(v), `T (v), ρT (v), κ(v)), or with

an element of D ∪
S
p,σ Cp,σ.

This definition formalizes the intuition of filling the holes:
for v labelled with an SCC X, f−1(v) is the area of the tree
T filling the hole represented by v in K. If X is a branching
SCC of A or an SCC of Bp,σ, this area is a subforest of T
consisting of a set of subtrees rooted at subsequent children
of the same node (the inverse image of the parent of v). If
X is a non-branching SCC of A, then f−1(v) is a subforest
like above, minus the subforest formed by the inverse image
of v’s descendants.

Let L(K) denote the set of trees agreeing with K. From
the definition above and the consistency conditions satisfied
by the labelling of each kind it follows that L(K) ⊆ L(A).

Recall once again the example discussed in the previous
subsection. The languages Ld cannot be expressed by kinds,
but a similar effect can be obtained by taking kinds Kd1,d2,d3

with the root labelled with (r, r, d1, qI) and the root’s chil-
dren labelled with

(a, a, d2, q){q}(b, b, d3, q) ,

where qI , q are the states of the two-state automaton recog-
nizing a b∗ (transitions are qI , a → q and q, b → q, the only
final state is q).

The language L(Kd1,d2,d3) consists of trees that store d1

in the root, d2 in the a-node, d3 in the rightmost b-node,
and have at least two b-nodes (something has to be mapped
to the node labelled with {q} in Kd1,d2,d3). In order to
cover all trees conforming to r → a b∗, we need to add kinds
whose root’s children are labelled with (a, a, d2, q)(b, b, d3, q)
or (a, a, d2, q).

The outline of the algorithm presented at the end of the
previous subsection suggests that we should be able to pro-
vide a small object witnessing that a pattern is satisfied in a
tree agreeing with a kind. An argument similar to the proof
of Lemma 2.2 and Proposition 2.3 leads to the following
bound.

Lemma 3.1. For a kind K, a pattern π, and a tuple ā,
satisfiability of π(ā) in a tree agreeing with K can be wit-
nessed by an object polynomial in the size of π, the height of
K, and the branching of K.

Recall that our aim is to show that each regular lan-
guage can be covered by exponential kinds, each defining
a language closed under π′-unions. Obviously, the choice of
kinds has to take π′ into account. For instance, in our run-
ning example the kinds with the root’s children labelled with
(a, a, d2, q){q}(b, b, d3, q), (a, a, d2, q)(b, b, d3, q) or (a, a, d2, q)
are closed under union for π′(x1, x2) saying “there is an a-
node storing x1 with a following sibling storing x2”, but not

106

for π′′(x1, x2) saying “there is an a-node storing x1 whose
next sibling stores x2”. For π′′ one should use kinds given
by

(a, a, d2, q)(b, b, d3, q){q}(b, b, d4, q) ,

(a, a, d2, q)(b, b, d3, q)(b, b, d4, q) ,

(a, a, d2, q)(b, b, d3, q) , and (a, a, d2, q) ,

where d2, d3, d4 range over N. Intuitively, to ensure closure
under π′-union, we need to specify large enough areas of the
tree around the holes. This is formalized by the following
notion.

For m ∈ N, we say that K has horizontal margins of size
M if whenever a node v is labelled with X ∈ Cp,σ, there is a
sequence of siblings v−M , v−M+1, . . . , vM with v0 = v such
that for all 0 < |j| ≤ M , vj is labelled with (pj , σj , aj , qj)
such that qj ∈ X.

Similarly, K has vertical margins of size M if

• whenever v is labelled with a non-branching SCC X,
there is a ↓-path v−M , v−M+1, . . . , vM with v0 = v
such that for all 0 < |j| ≤ M , vj is labelled with
(pj , σj , aj , qj) where qj ∈ X,

• whenever v is labelled with a branching SCC X, there
is a ↓-path v−M , v−M+1, . . . , v0 with v0 = v such that
for all −M ≤ j < 0, vj is labelled with (pj , σj , aj , qj)
where qj ∈ X,

Note that margins of size 1 are enforced already by the def-
inition of kinds.

Lemma 3.2. For all A, T ∈ L(A) and m,n ∈ N there
is an A-kind K with vertical margins of size m, horizontal
margins of size n, height at most (2m+ 1)||A||, branching at
most (2n+ 1)||A||, such that T ∈ L(K).

Proof. Fix an extended accepting run λ, κ of A on T .
Let T̃ be a tree obtained from T by labelling each node
v with (λ(v), `T (v), ρT (v), κ(v)). Prune T̃ putting SCC la-
belled nodes as stubs according to the following rules.

First process the SCCs of Bp,σ. Each X in which the run
stays for at least 2n + 1 steps becomes a Cp,σ-node, and
the first and last n steps of the run spent in X become the
horizontal margins around this node. The subtrees rooted
at the margin nodes are kept, but the subtrees rooted at the
remaining nodes in the middle are lost together with their
roots.

Next, deal with the SCCs of A. Each maximal path P on
which the automaton stays in a branching SCC X is cut off
at depth m+ 1; under the freshly obtained leaf put a single
child labelled with X.

For non-branching X only consider paths of length at least
2m + 1. Cut off at depth m + 1, add a fresh X node, and
under it put all subtrees originally rooted at the children of
the (m+ 1)st node of the path, counting from the bottom.

Let K be the resulting tree. By construction T ∈ L(K).
The bounds on the height and branching of K follow from
the observation that no SCC occurs more than once in a
sequence of children, or a branch.

The purpose of margins is to isolate the regions of the tree
filling the holes from each other, and from the fixed part be-
yond the margins. In this way realizations of patterns touch-
ing the filling regions can be rearranged according to our
needs. We use this in the lemma below, which constitutes
the technical core of the upper bounds for pattern-based
mappings.

Lemma 3.3. Let π(x̄) be a pattern, and let K be an A-
kind with horizontal and vertical margins of length ||π||. For
all T1, T2, . . . , Tn ∈ L(K) there is T ∈ L(K) such that T |=
π(ā) whenever Ti |= π(ā) for some i ∈ {1, 2, . . . , n}.

The proof of this lemma can be found in the on-line ver-
sion of the paper [9]. To have a sample of the techniques
used, let us consider a simple word example. Fix a word au-
tomatonA with the state spaceQ. We work with data words
consistently decorated with states of A. Abusing notation,
we write α ∈ L(K) and α |= π(ā) for α ∈ (Γ×N×Q)∗, when
in fact those relations hold for the underlying data words.

Let K be an A-kind with margins of length ||π||, and just
one occurrence of an SCC, say X. Hence, K = αβXβ′α′

where β, β′ ∈ (Γ × N ×X)||π||. Take γ1, γ2 ∈ (Γ × N × Q)∗

such that γ1, γ2 ∈ L(K). Then γi = αβδiβ
′α′ for some

δi ∈ (Γ×N×X)∗. It is easy to find η ∈ (Γ×N×X)∗ such

that γ = αβδ1β
′ηβ̃δ2β

′α′ is in L(K), where β̃ is β with the
first letter chopped off.

Assume that γi |= π(ā) and let h be a witnessing ho-
momorphism from π(ā) to γi. If h(π) is disjoint from δi,
partition the vertices of π into those mapped to αβ and
those mapped to β′α′. Observe that only Ef edges can
exist between those two parts of π. It follows easily that
γ |= π(ā). Suppose that h(π) is not disjoint from δi. Since
|β| = |β′| = ||π||, by the pigeonhole principle there exist posi-
tions j, j′ of the words β, β′ which are not in h(π). Partition
the vertices of π into those mapped to the left of j, between j
and j′, and to the right of j′. Again, only Ef edges can con-
nect different parts. It follows that γ |= π(ā). For example,
for i = 1 a witnessing homomorphism is obtained by com-
posing h with the injection g : αβγ1β

′α′ → αβγ1β
′ηγ2β

′α′

which maps αβγ1β
′
≤j′ to the prefix αβγ1β

′
≤j′ and β′>j′α

′ to

the suffix β′>j′α
′, where β′≤j′ is the prefix of β′ of length j′

and β′>j′ is the remaining suffix.

Algorithm. We start with a simple observation that lets us
concentrate on mappings with a single std.

Lemma 3.4. Let M = 〈Ss,St, {πi, ηi −→ π′i, η
′
i | i =

1, 2, . . . , n}〉 such that each std uses different variables. For
I ⊆ {1, 2, . . . , n}, let

MI =
D
Ss,St,

n^
i∈I

πi,
^
i∈I

ηi −→
^
i∈I

π′i,
^
i∈I

η′i

oE
.

For all T, T ′ it holds that T ′ ∈M(T) iff T ′ ∈MI(T) for all
I ⊆ {1, 2, . . . , n}.

Theorem 3.5. AbCons is in Π2EXP.

Proof. We present the algorithm as a two-round game
between two players, ∀ and ∃. In each round, ∀ moves first.
Moves are made by the choice of an object of size exponential
in ||M|| during the first round, and polynomial in ||M|| during
the second round. The winning condition, a polynomial time
property of the moves, is defined so that ∃ wins exactly if
M is absolutely consistent. In the first round, ∀ states what
kind of tree (in the sense defined above) is a counterexample
to absolute consistency, while ∃ chooses the kind of tree that
gives solutions to the purported counterexamples. In the
second round, ∀ picks a tree of the declared kind and a tuple
witnessing that the solutions fail, and ∃ tries to respond with
a tree and a tuple that would prove ∀ wrong.

107

By Lemma 3.4 we can assume thatM has a single std: ∀
can chooseMI as a part of the first move. Let an instance of
AbCons beM =

˙
As,At,

˘
π(x̄), η(x̄)→ π′(x̄, ȳ), η′(x̄, ȳ)

¯¸
,

where As = 〈Γ, Qs, δs, F s〉 is the source automaton and
At = 〈Γ, Qt, δt, F t〉 is the target automaton.

In the first round ∀ plays an As-kind K∀ with horizontal
and vertical margins ||π||, height at most (2||π||+1)||As||, and
branching at most (2||π||+ 1)||As||. The data values used in
K are to represent an equality type, so it is enough to choose
them from {1, 2, . . . , |K∀|}.

The response K∃ of ∃ is similar except that As is replaced
by At, π is replaced by π′, and some of the nodes can store
nulls taken from a fixed set {⊥1,⊥2, . . . ,⊥|K∃|}. Each null
can appear more than once in K∃. It is intended to rep-
resent “data distinct from whatever appears in the source
tree”. (Formally, we partition N into two infinite sets, Ns
containing data values that are allowed in the source and Nt
containing the data values allowed only on the target side.)

In the second round, ∀ chooses a data tuple ā (without
nulls) such that η(ā) holds, together with a polynomial ob-
ject witnessing that π(ā) can be realized in a tree agreeing
with K∀ (Lemma 3.1)
∃ then responds with a tuple b̄ (possibly including nulls)

such that η′(ā, b̄) holds, and a polynomial witness that π′(ā, b̄)
can be realized in a tree agreeing with K∃.

A player loses if he fails to make a move complying with
the rules. If all moves are made, ∃ wins.

It remains to show that ∃ has a winning strategy if and
only if M is absolutely consistent.

If M is not absolutely consistent, ∀’s strategy in the first
round is to choose a data tree T for which no solution exists
and play K∀ such that T ∈ L(K∀) (see Lemma 3.2).

If |M| is absolutely consistent, ∃’s strategy in the first
round is to choose K∃ so that for every tree agreeing with K∀
there exists a solution agreeing with K∃. If such a K∃ can-
not be produced, then there exists a tree agreeing with K∀
for which there is no solution at all, contradicting absolute
consistency. To see this, reason as follows. For each possible
response K to K∀, let TK be a tree agreeing with K∀ for
which there is no solution agreeing with K. By Lemma 3.3
there is a tree T ∈ L(K∀) that satisfies π(ā) whenever one of
the TK ’s satisfies π(ā). Since every T ′ ∈ L(At) agrees with
one of K’s (Lemma 3.2), there is no solution for T .

In the second round, if M is not absolutely consistent,
there is some T agreeing with K∀ for which there is no solu-
tion. ∀’s strategy now is to choose a tuple ā such that such
that T |= π(ā), η(ā), but π′(ā, ȳ), η′(ā, ȳ) cannot be realized
in a tree agreeing with K∃. Some suitable ā exists, as oth-
erwise a solution for T could be obtained by an argument
similar to the one above.

If |M| is absolutely consistent, then whatever ā was played,
π′(ā, b̄), η′(ā, b̄) can be realized in a tree from L(K∃). ∃’s
strategy is simply to choose suitable b̄ and a witness.

Hardness. Consider the following problem:

Problem: 2n-universality
Input: nondeterministic Turing machine M ,

number n in unary
Question: Does M accept every word of length 2n

in at most 2n steps?

The problem is obviously in Π2EXP. It can be also shown
that it is hard for this class.

Lemma 3.6. 2n-universality is Π2EXP-complete.

Proof. Take a Π2EXP language L. There is a nondeter-
ministic machine M and k ≤ l such that x ∈ L iff for all y

such that |y| ≤ 2|x|
k

, M accepts 〈x, y〉 (M always stops after

at most 2|x|
l

steps). Let Mx,k write x on the tape, mark the

first 2|x|
k

positions of the input as relevant, and simulate M
on x and the relevant part of the input. Since k ≤ l, the

machine stops after at most 2C|x|
l

steps for some C inde-

pendent of x. Hence, x ∈ L iff 〈Mx,k, 1
C|x|l〉 is a positive

instance of 2n-universality.

We give a reduction from 2n-universality to AbCons
for a restricted class of mappings, based on tree-shaped pat-
terns using only vertical navigation. For such patterns we
use the following syntax [3]:

π ::= σ(x)[λ] | σ[λ] patterns
λ ::= ε | π | //π | λ, λ lists

(2)

where σ ∈ Γ∪{ }. That is, a tree pattern is given by its root
node and a listing of its subtrees. A subtree can be rooted
at a child of the root (corresponding to π in the definition of
λ), or its descendant (corresponding to //π). The wildcard
symbol is used to denote a vertex without a label. We also
write σ for σ[], σ/π for σ[π], σ//π for σ[//π], σ[λ,

Vk
i=1 πi, λ

′]
for σ[λ, π1, π2, . . . , πk, λ

′], and similarly for σ(x).

Theorem 3.7. AbCons is Π2EXP-hard, even if schemas
are non-recursive DTDs, and the only relations available are
child and equality on the target side.

Proof. Let an instance of 2n-universality be n, and a
Turing machine M with states q0, q1, . . . , qf . W.l.o.g. we as-
sume that qf is the only final accepting state. For simplicity
we assume that the tape alphabet is 0, 1, [.

The idea of the reduction is to encode the input word in
the source tree, and the run in the target tree. The run
will be encoded as a sequence of 2n configurations of length
2n. Additionally, in the source tree we store a linear order
of length 2n, which will be used to address configurations
and their cells, and in the target tree we store a specially
preprocessed transition relation of M .

The source DTD is given as

r → ord q0 q1 . . . qf ⊥ zero one blank ,

ord→ a1 b1 ,

ai, bi → ai+1 bi+1 ,

an, bn → c ,

c→ zero | one

with i = 1, 2, . . . , n− 1 and the target DTD given as

r → a1 b1 (tr)d ,

tr→ st1 sym1 st2 sym2 · · · st6 sym6,

ai, bi → ai+1 bi+1 ,

a2n, b2n → confnum cellnum st sym ,

where i = 1, 2, . . . , 2n−1, and d will be defined shortly. Un-
der a2n and b2n nodes we store a configuration number, a
cell number, a state, and a tape symbol. The tr nodes store

108

δ̂, the extended transition relation of M , describing possible
transitions in a window of three consecutive tape cells. For-
mally, δ̂ ⊆ ({q0, q1, . . . , qf ,⊥} × {0, 1, [})6, where ⊥ means

“the head is elsewhere”, and (p1, σ1, p2, σ2, . . . , p6, σ6)∈ δ̂ iff
at most one of p1, p2, p3 is not equal to ⊥, and p4σ4p5σ5p6σ6

is obtained from p1σ1p2σ2p3σ3 by performing a transition of
M . In particular, if p1 = p2 = p3 = ⊥, it is possible that
p4 6= ⊥ or p6 6= ⊥. Note that δ̂ can be computed in P. The
constant d used in the target DTD is equal to |δ̂|.

Assume for a while that we only need to handle source
trees in which all data values are distinct. The c-nodes en-
code a linear order of length 2n, and their leaves labelled
with zero or one encode the input word (the data values
they store are ignored). The children of the root, qi, ⊥,
zero, one, and blank, store data values encoding the states
and tape symbols of M . To ensure that the extended tran-
sition relation is stored properly on the target side, for each
(q1, σ1, q2, σ2, . . . , p6, σ6) ∈ δ̂ add an std

r[q1(x1),σ̂1(y1), q2(x2), σ̂2(y2), . . . , q6(x6), σ̂6(y6)] −→

−→ r/tr

"
6̂

i=1

sti(xi),

6̂

i=1

symi(yi)

#

where 0̂ = zero, 1̂ = one, and [̂ = blank. Note that d
different stds are introduced, so all tr-nodes in the target
tree are filled according to δ̂.

Now we need to ensure that the target tree encodes an
accepting run of M . In the stds we use auxiliary patterns
Begin(x), Beginσ(x), End(x), Succ(x, y), and Succ3(x, y, z),
which we define after describing the stds, as well as

Cell(x, y, u, v) = [confnum(x), cellnum(y), st(u), sym(v)] .

We use // as abbreviation only. Each use can be replaced
with a sequence of and / operators of suitable length.

To build the first configuration we copy the input word
with the head in state q0 over the first cell,

r[Beginσ(x), q0(u), σ(v)] −→ r//Cell(x, x, u, v) ,

r[Begin(x), //c(y)/σ,⊥(u), σ(v)] −→ r//Cell(x, y, u, v) ,

with σ ∈ {zero, one}. Transition correctness is ensured by

r[Succ(x0, x1), Succ3(y1, y2, y3)] −→

−→ r

"^
i,j

//Cell(xi, yj , u3i+j , v3i+j), tr

"
6̂

i=1

sti(ui),

6̂

i=1

symi(vi)

##
.

Finally, the last configuration needs to be accepting (w.l.o.g.
we assume that the accepting state is looping),

r[End(x), qf (u)] −→ r//Cell(x, y, u, v) .

It remains to define the auxiliary patterns. With every c-
node v we associate the sequence of a’s and b’s on the path
leading from the root to v. This sequence is interpreted as a
binary number (a read as 0, b read as 1), which is the position
of v in the order. The first three patterns are defined easily:

Begin(x) = ord/a1/a2/ · · · /an/c(x) ,

Beginσ(x) = ord/a1/a2/ · · · /an/c(x)/σ ,

End(x) = ord/b1/b2/ · · · /bn/c(x) .

The remaining two cannot be defined as single patterns, but
can be expressed as disjunctions of patterns. As we only use

the auxiliary patterns on the source side of stds, disjunction
can be easily eliminated at the cost of multiplying stds.

Succ(x, y) =

n_
i=1

//
ˆ
ai/bi+1/bi+2/ · · · /bn/c(x),

bi/ai+1/ai+2/ · · · /an/c(y)
˜
,

Succ3(x, y, z) =

n−1_
i=1

//
h
ai/bi+1/bi+2/ · · · /bn−1

ˆ
an/c(x), bn/c(y)

˜
,

bi/ai+1/ai+2/ · · · /an/c(z)
i
∨

∨
n−1_
i=1

//
h
ai/bi+1/bi+2/ · · · /an/c(x),

bi/ai+1/ai+2/ · · · /an−1

ˆ
an/c(y), bn/c(z)

˜i
.

We claim that the mapping we have just defined is abso-
lutely consistent iff the answer to n-universality is “yes”.
Assume that the mapping is absolutely consistent. Every
input word w can be encoded in a source tree using distinct
data values. An inductive argument shows that a solution to
such a tree encodes an accepting run of M on w. Conversely,
if the answer is “yes”, for each source tree S using distinct
data values, a solution is obtained from the run of M on
the word encoded in the sequence of zero and one leaves of
S. What if S uses some data values more than once? For
a function h : N → N and a tree U , let h(U) be the tree
obtained from U by replacing each data value a with h(a).
Now, let S′ be a tree with the structure identical as S, but
using distinct data values, and let h be a function on data
values such that h(S′) = S. By the previously considered
case, there is a solution T ′ for S′. Since our mapping does
not use inequality on the target side, nor equality on the
source side, h(T ′) is a solution for h(S′) = S.

Remark. In the reduction above we can remove disjunc-
tion from the DTDs at a cost of relaxing restrictions on
patterns. We only need to modify the encoding of the 0s
and 1s of the input word. One way is to set c → c1 c2, and
replace c/zero with c[c1(z), c2(z′)], z 6= z′ and c/one with
c[c1(z), c2(z)]. Another way is to set c → c1 c

∗
2 c3 and use

next-sibling to distinguish between c1c2 and c1c
+
2 c3.

4. BOUNDED DEPTH MAPPINGS
We have seen that absolute consistency is highly untrac-

table even for tree-shaped patterns using only vertical axes
and non-recursive DTDs with very simple productions. In
this section we show that the complexity can be lowered
substantially if the height of trees is bounded by a constant.
We say that a mappingM has depth at most d if the source
and target schema only admit trees of height at most d.

Theorem 4.1. AbCons for mappings of bounded depth
is in Π4P.

Proof. We claim that the general algorithm presented
in Theorem 3.5 has the desired complexity for mappings of
bounded depth.

Assume that some A only accepts trees of height at most
d and let K be an A-kind. Obviously K has height at most
d. (In fact, K contains no nodes labelled with SCCs of A,
as otherwise arbitrarily high trees would agree with K.)

109

In consequence, the kinds played in the first round have
polynomial branching, and bounded depth, hence are poly-
nomial. In the second round, polynomial objects are played.
As the correctness of the moves is polynomial, this gives a
Π4P-algorithm.

Remark. A small modification of our techniques makes it
possible to prove Theorem 4.1 for a more general definition of
boundedness: M has depth at most d if every pattern it uses
can only be realized within the initial d levels of every tree
conforming to the schema. This includes mappings using
patterns starting at the root, that do not use descendant,
nor Ec paths of length greater than d.

We now show that the absolute consistency is Π4P-hard
even for word schema mappings, which can be viewed as
depth 1 tree mappings. In the word case schemas are regu-
lar expressions (or word automata), and stds only use word
patterns, i.e., patterns with Ec = Ed = ∅. In fact, we
only need patterns that are disjoint unions of En-paths. We
write them as sequences of data words with variables, e.g.,
a(x)b(y), a(x) is a pattern consisting of two En-paths.

Theorem 4.2. AbCons is Π4P-hard for bounded-depth
mappings, even if depth is 1, and the only relations available
are next sibling, and equality on the target side.

Proof. We provide a reduction from Tautology for Π4

quantified propositional formulas. Let

ϕ = ∀x1, x2, . . . , xn∃y1, y2, . . . , yn

∀u1, u2, . . . , un∃v1, v2, . . . , vn

m̂

i=1

Xi ∨ Yi ∨ Zi

with Xi, Yi, Zi ∈ {xj , yj , uj , vj , x̄j , ȳj , ūj , v̄j
˛̨
j = 1, . . . , n}.

Let the source and target schemas be

Ss = (a1|a′1)(a2|a′2) . . . (an|a′n)ee ,

St = eeea1a1a2a2 . . . ananb1b1b2b2 . . . bnbn(#ggg)7 .

The source word encodes a valuation of x1, x2, . . . , xn, ai
means that xi is true, a′i means it is false. In e-positions we
store values representing true and false. On the target side,
we want to keep a copy of the valuation of xi’s and a guessed
valuation of yi’s, except this time we use a different coding.
The first position labelled with ai stores the value of xi,
true or false, and the following position stores the value of
the negation of xi. Similarly, bi’s store values of yi. We also
want in the target word two copies of true and a copy of false
arranged so as to enable nondeterministic choice between a
pair (true, false) or (false, true), as well as all triples with at
least one entry true, which will help us to check that each
clause of ϕ is satisfied.

Let us now describe the stds. First we make sure that
values representing true and false are copied properly,

e(x)e(y) −→ e(x)e(y)e(x) ,

for each i translate the ai/a
′
i coding of values of xi into

true/false coding,

ai, e(t)e(f) −→ ai(t)ai(f) ,

a′i, e(t)e(f) −→ ai(f)ai(t) ,

and enforce in the target word all triples with at least one
entry true,

e(t)e(f) −→ #g(f)g(f)g(t)#g(f)g(t)g(f)# . . .#g(t)g(t)g(t) .

Next, we guess a value of yi for each i,

e(t)e(f) −→ bi(t), bi(f) ,

and ensure that it makes the internal Πp
2 part of ϕ true for

x1, x2, . . . , xn encoded in the source word:

e(u1), e(u2), . . . , e(un), e(t)e(f) −→

e(u1)e(ū1), e(u2)e(ū2), . . . , e(un)e(ūn),

e(v1)e(v̄1), e(v2)e(v̄2), . . . , e(vn)e(v̄n),

a1(x1)a1(x̄1)a2(x2)a2(x̄2) . . . an(xn)an(x̄n),

b1(y1)b1(ȳ1)b2(y2)b2(ȳ2) . . . bn(yn)bn(ȳn),

g(X1)g(Y1)g(Z1), g(X2)g(Y2)g(Z2), . . . , g(Xm)g(Ym)g(Zm)

(the literals Xj , Yj , Zj are taken from ϕ).
The obtained mapping is absolutely consistent iff ϕ is a

tautology. Indeed, if the mapping is absolutely consistent, in
particular it has a solution for each source word that uses two
different data values in e-positions. By construction, such
words have solutions iff ϕ is a tautology. If the data values
in e-positions are equal, the stds are satisfied trivially.

Remark. Disjunction can be eliminated from the source
schema at a cost of allowing data comparisons on the source
side. To achieve this, replace (ai|a′i) with aiai, and encode
the truth value as (in)equality of the two data values.

5. BUILDING SOLUTIONS
In previous sections we examined existence of solutions for

all source trees. The task of this section is to build a solution
for a given tree. Techniques used in previous sections give us
a procedure with polynomial data complexity; the combined
complexity is higher.

Theorem 5.1. For a mapping M and a source tree T
one can build a solution (or determine that it does not exist)
in EXPSPACE in general, in PSPACE if the mapping has
bounded depth, and in P if the mapping is fixed.

Proof. As a first step we remove stds whose source sides
are not satisfied in T . (Checking if π is satisfied in T can be
done in NP, and for fixed π in P.) The remaining stds can
be merged into one just like in Lemma 3.4.

By Lemma 3.2, if there is a solution to T , it agrees with
one of the possible kinds which ∃ can play in the first round
of the game described in the proof of Theorem 3.5. Note
that the size of those kinds only depends on M (single ex-
ponential and polynomial for bounded depth), and so can
be viewed as fixed. The kinds only use data values from T
and nulls from a set independent of T (single exponential in
||M||, polynomial for bounded depth). Therefore, the num-
ber of possible kinds is polynomial in |T | and the problem
amounts to finding a solution agreeing with a given kind K.

First, for each tuple ā such that η(ā) holds and T |= π(ā),
we need to find a tuple b̄ satisfying η′(ā, b̄), whose entries are
data values used in T or K, or nulls from {⊥′1,⊥′2, . . . ,⊥′|ȳ|},
and a tree Tā agreeing with K such that Tā |= π′(ā, b̄).
Clearly, the size of Tā does not depend on T . (A pumping
argument similar to the one in Lemma 2.2 shows that each
part of Tā that gets mapped into a node of K labelled with
an SCC can have size single exponential in ||M||, and poly-
nomial for bounded depth.) In consequence, we can find b̄
and Tā by exhaustive search. If for some ā the search fails,
there is no solution to T agreeing with K.

110

The last step is to merge Tā’s into a single solution sat-
isfying all π′(ā, b̄). By the proof of Lemma 3.3, this can be
done in time polynomial in the total size of the trees and
the kind K.

As we have seen in the proof, the solution is at most poly-
nomial in the size of the source tree and exponential in the
size of the mapping. Those bounds are tight: the small-
est tree conforming to the target DTD (or accepted by the
target automaton) might need to be exponential, and a sim-
ple copying rule r// (x) −→ r// (x) makes the solution at
least as large as the source tree. This however does not give
matching complexity lower bounds for solution building.

To give more precise bounds let us consider solution exis-
tence, a decision version of solution building:

Problem: SolEx
Input: mapping M, source tree T

Question: Is M(T) nonempty?

We also examine data complexity of solution existence,
i.e., the complexity of the following problem:

Problem: SolEx(M)
Input: source tree T

Question: Is M(T) nonempty?

Theorem 5.2. SolEx is NEXP-complete in general, and
Σ3P-complete for mappings of bounded depth. SolEx(M)
is in LOGSPACE.

Proof. To get the upper bounds for SolEx proceed just
like in the proof of Theorem 5.1, only instead of examining
every possible kind played by ∃, choose it nondeterministi-
cally. For Σ3P multiple stds are eliminated during the game:
∃ guesses the stds with source sides satisfied, merges them,
and plays a kind for the new mapping; ∀ either displays an
std omitted by ∃ and wins immediately, or continues with
the new mapping according the old rules.

The NEXP lower bound can be obtained by a modification
of the reduction described in the proof of Theorem 3.7. The
problem we reduce from is: given a nondeterministic Turing
machine M and n ∈ N, does M accept 02n

in at most 2n

steps. We keep the same mapping, and for the source tree
we take a tree whose all c-nodes have a zero-child, and whose
data values are distinct.

Similarly, modifying the reduction from the proof of The-
orem 4.2, we get Σ3P-hardness for word mappings.

Let us move to SolEx(M). Since M has constant size,
by Lemma 3.4 we can assume that M is has a single std,
M = 〈As,At, {π(x̄), η(x̄) → π′(x̄, ȳ), η′(x̄, ȳ)}〉. The kind
played by ∃ is constant size and takes data values from a
set A of linear size. In consequence, it can be stored in
logarithmic space. Instead of guessing it, we can iterate
over all possibilities. It remains to check in LOGSPACE if
there is a solution of a given kind K.

By Lemma 3.3 it is enough to check if for each ā such
that η(ā) holds and T |= π(ā) there is a tuple b̄ and a tree
T ′ of the kind K such that η′(ā, b̄) holds and T ′ |= π′(ā, b̄).
Again, we can iterate over all ā and b̄ with entries from A.
For fixed ā, b̄, T |= π(ā) can be checked in LOGSPACE by
Proposition 2.1. The remaining tests can be carried out in
constant time, modulo suitable encoding of data values in
K, ā, b̄, which can be prepared in LOGSPACE.

6. MSO QUERIES
In this section we extend the language of schema map-

pings, by replacing patterns with formulas of monadic second-
order logic (MSO). We prove that for this richer language,
all the problems are still decidable. We do not establish the
precise complexities.3

The general setup is similar to the one in the previous
sections. A single source-to-target dependency is also an
implication of the form

π(x̄), η(x̄) −→ π′(x̄, ȳ), η′(x̄, ȳ).

The formulas are η and η′ are boolean combinations of equal-
ity constraints on their arguments (this is slightly more gen-
eral than before, since previously we had conjunctions of
equalities and inequalities). The main generalization con-
cerns π and π′. Previously, the tuples of data values selected
by π and π′ came from patterns. In this section, we allow a
richer syntax for π and π′, where formulas of MSO are used.

To avoid confusion, we will explicitly distinguish here be-
tween queries that select tuples of nodes of a data tree (which
we call node-selecting queries) and queries that select tuples
of data values (which we call data-selecting queries). We
use letters α, β for node-selecting queries and π for data-
selecting queries. Every boolean combination η of equali-
ties and inequalities on data values can be seen as a data-
selecting query. There is also a natural transformation from
node-selecting queries to data-selecting queries, defined as
follows. When α(x1, . . . , xk) is a node-selecting query, then
πα(x1, . . . , xk) is a data-selecting query that selects a k-tuple
of data values d1, . . . , dk in a data tree if the query α selects
some k-tuple of nodes x1, . . . , xk in the data tree such that
node xi has data value di for i = 1, . . . , k. The idea is that in
this section, we will study stds where π is not a pattern, but
of the form πα, where α is a node-selecting query of MSO
that does not talk about data values.

MSO formulas. In the previous sections, we used patterns
to describe π and π′ in the stds. There are some limitations
of patterns, however. For instance, every tuple of nodes that
matches a pattern will still match it if new nodes are added
to the tree. In some natural queries, this is no longer true.
For example, we might be interested in node pairs x, y where
y is a descendant of x and all nodes on the path from x to
y have label a:

a(x) ∧ a(y) ∧ x ↓∗ y ∧ ∀z
`
x ↓∗ z ↓∗ y ⇒ a(y)

´
.

In this section, we use MSO formulas to define node-selecting
queries. We use the following definition of MSO formulas:
they can quantify over individual nodes, they can quantify
over sets of nodes, they can use predicates to test the label of
a node, and they can use binary predicates for the ancestor
and following sibling relations. A formula of this logic with k
free individual variables defines a k-ary node-selecting query.
(We do not use free set variables.) Note that we do not
allow predicates for data values in MSO logic, and therefore
whether or not a tuple of nodes gets selected depends only
on the structure of the tree, the labels of the tree, but not

3The questions of complexity are most interesting when the
queries are given not by MSO formulas, but by automata. If
the input contains MSO formulas, then any algorithm will
be nonelementary, because satisfiability for MSO formulas
is nonelementary.

111

the data values. This restriction is very important. (If we
allow predicates for data values in MSO logic, satisfiability
becomes undecidable.) We also use the name regular queries
for node-selecting queries defined by MSO formulas.

Regular schema mappings. A regular schema mappingM
is a tuple 〈Ss,St,Σ〉, where Ss is a source schema, St is a
target schema, and Σ is a set of stds of the form

πα(x̄), η(x̄) −→ πα′(x̄, ȳ), η′(x̄, ȳ) (3)

where πα, πα′ are data-selecting queries obtained from MSO
formulas α, α′, and η, η′ are boolean combinations of equal-
ities among x̄ and x̄, ȳ respectively. (The assumption that
every variable of α is used by α′ is not restrictive, as α′ can
ignore some variables.) A pair of trees (T, T ′) satisfies the
std (3) if for every tuple of data values ā selected by both
πα and η in T , there exists a tuple of data values b̄ such that
āb̄ is selected by both πα′ and η′ in T ′. Given T ∈ L(Ss), a
tree T ′ is a solution to T iff T ′ ∈ L(St) and (T, T ′) satisfies
every std in Σ.

Once again, we would like to emphasize that the MSO
formulas α, α′ do not depend on the data values in the trees
T and T ′. The data values are only inspected by η and η′ in a
very restrictive way: by boolean combinations of equalities.

The goal of this section is to show that the decision prob-
lems studied in this paper are decidable also for regular
schema mappings.

Theorem 6.1. For regular schema mappings AbCons is
decidable, SolEx is decidable, and SolEx(M) is in P.

Lemma 6.2. Without loss of generality, we can assume
that in the regular schema mapping

M = 〈Ss,St,Σ〉,

the schemas Ss and St are trivial (select all documents) and
the set Σ contains exactly one std.

Potential. By Lemma 6.2, we assume that in the regular
schema mapping there are no source and target schemas
and that there is only a single std

πα(x̄), η(x̄) −→ πα′(x̄, ȳ), η′(x̄, ȳ).

Let us write π for the conjunction of queries πα and η, like-
wise let us write π′ for the conjunction of queries πα′ and
η′. These are both data-selecting queries. Let X be the set
of variables in the tuple x̄, and let X ′ be the set of variables
in the tuple x̄ȳ.

If X is a set of variables, we use the name X-answer set
for a (finite) set of tuples of data values indexed by variables
from X. Since we assume that our data values are natural
numbers, an X-answer set is a finite subset of NX . For a
document, we use the name source answer set for the set of
tuples selected by π in the document (this is an X-answer
set). Likewise we define the target answer set, using the
query π′ (this is an X ′-answer set). A document T ′ is a
solution to document T if and only if the target answer set
in T ′, when the tuples are restricted to coordinates from X,
includes the source answer set of T .

A potential P over a set of variables X is a family of X-
answer sets, i.e. a family of finite subsets of NX . If P is
a potential over variables X ′ and X ⊆ X ′, then we write

P|X for the potential where the tuples in the answer sets
are restricted to X. If P and Q are potentials over the same
variables, then we write P ≤ Q if every set of tuples in P is
a subset of some set of tuples in Q.

For our fixed std, define the source potential (call it P) as
the family of its source answer sets (ranging over all possible
documents), likewise define the target potential (call it Q).
The absolute consistency problem is equivalent to deciding
if

P ≤ Q|X.

The solution existence problem can also be expressed using
potentials. For a given source document T , there exists a
solution to T if and only if

PT ≤ Q|X

where PT is the potential that contains only one set, namely
the source answer set of T .

Our approach to both the absolute consistency and so-
lution existence problem is as follows. First, we develop a
language for describing potentials. We show that the ≤ re-
lation is decidable for potentials presented in the language.
Finally, we prove that the potentials P,Q,PT can all be
expressed in the language.

Potential expressions. Fix a finite set X of variables and
a finite set C of constants. A potential expression with vari-
ables X and constants C is an expression of the form

e = µ1|µ2| . . . |µn ,

where each µi is a boolean combination of equalities over
variables and constants. We assume that each variable and
each constant is used at least once. An example of a poten-
tial expression over variables {x, y, z} and constants {c} is

x = c ∧ y = z|(x = y = z)

A potential expression e defines a potential Pe over vari-
ables X as follows. This potential contains an answer set
A ⊆ NX if and only if there is some µi ∈ {µ1, . . . , µn}, some
finite set D ⊆ N of data values, and some constant valua-
tion C → D such that A contains exactly the tuples in DX

that satisfy µi. The potential defined by expression in the
example contains exactly the answer sets of the form

AD,c = {(c, d, d) : d ∈ D}
BD = {(d, d, d) : d ∈ D}

where D is a finite set of data values and c ∈ D.
Our proof of Theorem 6.1 uses two lemmas. The first

lemma says that the order ≤ is decidable on potentials given
by expressions. The proof is similar to the one of Theo-
rem 3.5.

Lemma 6.3. The following problem is decidable (in Π4P):
Given e, f , is Pe ≤ Pf?

The second lemma says that potential expressions can be
computed for the potentials that appear when solving the
absolute consistency and solution existence problems.

Lemma 6.4. Let πα(x̄) be a data-selecting query obtained
from an MSO query α, and let η(x̄) be a boolean combina-
tion of equalities on data values. Let P be the potential of
the conjunction of πα and η. One can compute a potential
expression e such that Pe ≡ P.

112

The proof of Lemma 6.4 is long and included in the ap-
pendix available online [9]. Actually, our proof can be ex-
tended to show a more general result. Namely, for every po-
tential P there exists a potential expression e with Pe ≡ P
if and only if P is a potential such that for any answer set
A ∈ P and any permutation of data values ρ : N → N, the
potential P contains also the answer set

ρA = {ρ ◦ v : v ∈ A}.

However, we do not need the more general result. On the
other hand, we need to be able to compute the pattern ex-
pression (and not just know that it exists), and for this we
use the assumptions of Proposition 6.4.

From the above two lemmas we get an algorithm for de-
ciding the absolute consistency problem. First, we compute
a potential expression e that represents the source potential.
Then, we compute a potential expression that represents the
target potential. Finally, we test the order. For the solu-
tion existence problem, the approach is the same. However,
instead of computing the source potential, we only use the
subset of the source potential that contains a single answer
set, namely the source answer set in the given document.
Any potential that contains a single answer set is easily seen
to be described by a potential expression, e.g. by using con-
stants for all data values in the answer set. Finally, once the
schema mapping is fixed, the solution existence problem is
in P thanks to the following lemma.

Lemma 6.5. Fix a potential expression e with variables
X. The following problem is in P: for an X-answer set A,
decide if there exists an X-answer set B ∈ Pe with A ⊆ B.

7. FUTURE WORK
A summary of complexity results is shown in Fig. 3. No-

tably lacking are lower bounds for regular mappings. As we
have mentioned, more specialized techniques are likely to
bring algorithms with better complexity.

An open direction of more theoretical interest is to explore
the limits of decidability. Which kinds of logic in stds guar-
antee decidability of absolute consistency? Or even more
generally, which kinds of dependencies? We believe that our
notion of potential can be helpful.

A fundamental concept in data exchange is a universal so-
lution, i.e., a solution that can be mapped homomorphically
into every other solution. Universal variants of the problems
we have considered are worth exploring. On the other hand,
homomorphisms of ordered trees are injective, which makes
a universal solution a rare bird. Developing relaxed versions
of universal solutions seems an interesting research topic.

Acknowledgments. The authors thank Leonid Libkin for
inspiring discussions, and Alin Deutsch and the anonymous
referees for helpful comments.

The first author was supported by the Future and Emerg-
ing Technologies (FET) programme within the Seventh
Framework Programme for Research of the European Com-
mission, under the FET-Open grant agreement FOX, num-
ber FP7-ICT-233599.

The second and the third author were supported by the
Querying and Managing Navigational Databases project re-
alized within the Homing Plus programme of the Foundation
for Polish Science, cofinanced by the European Union from

Mappings AbCons SolEx SolEx(M)

bounded-depth Π4P Σ3P in LOGSPACE
pattern-based Π2EXP NEXP in LOGSPACE
regular decidable decidable in P

Mappings Solution building

fixed in P
bounded-depth in PSPACE
pattern-based in EXPSPACE

Figure 3: Summary of complexity results

the Regional Development Fund within the Operational Pro-
gramme Innovative Economy (“Grants for Innovation”).

The second author was also supported by Polish Ministry
of Science and Higher Education grant no. N N201 382234.

8. REFERENCES
[1] S. Amano, L. Libkin, and F. Murlak. XML schema

mappings. In PODS 2009, pages 33–42.
[2] S. Amer-Yahia, S. Cho, L. Lakshmanan, D. Srivastava.

Tree pattern query minimization. VLDB J. 11 (2002),
315–331.

[3] M. Arenas and L. Libkin. XML data exchange:
consistency and query answering. JACM, 55(2):7:1–72,
2008.

[4] M. Benedikt, W. Fan, F. Geerts. XPath satisfiability
in the presence of DTDs. J. ACM 55(2): (2008).

[5] P. Barceló. Logical foundations of relational data
exchange. SIGMOD Record, 38(1):49–58, 2009.

[6] P. A. Bernstein and S. Melnik. Model management
2.0: manipulating richer mappings. In SIGMOD, 2007.

[7] H. Björklund, W. Martens, T. Schwentick.
Conjunctive query containment over trees. DBPL’07,
pages 66–80.

[8] H. Björklund, W. Martens, T. Schwentick. Optimizing
conjunctive queries over trees using schema
information. MFCS’08, pages 132–143.

[9] M. Bojańczyk, L. Ko lodziejczyk, F. Murlak. Solutions
for XML Data Exchange. Available at
www.mimuw.edu.pl/∼fmurlak/papers/bkm10.pdf.

[10] C. David. Complexity of data tree patterns over XML
documents. In MFCS’08, pages 278–289.

[11] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa.
Date exchange: semantics and query answering. TCS,
336:89–124, 2005.

[12] R. Fagin, P. G. Kolaitis, L. Popa, and W.-C. Tan.
Composing schema mappings: second-order
dependencies to the rescue. ACM TODS,
30(4):994–1055, 2005.

[13] G. Gottlob, C. Koch, K. Schulz. Conjunctive queries
over trees. J.ACM 53(2):238–272 (2006).

[14] J. Hidders. Satisfiability of XPath expressions. In
DBPL’03, pages 21–36.

[15] P. G. Kolaitis. Schema mappings, data exchange, and
metadata management. In PODS 2005, pages 61–75.

[16] R. Miller, M. Hernandez, L. Haas, L. Yan, C. Ho,
R. Fagin, and L. Popa. The Clio project: managing
heterogeneity. SIGMOD Record, 30:78–83, 2001.

[17] M. Murata, D. Lee, M. Mani, and K. Kawaguchi.
Taxonomy of XML schema languages using formal
language theory. ACM Transactions on Internet
Technology, 5(4):1-45, 2005.

[18] F. Neven. Automata Theory for XML Researchers.
SIGMOD Record 31(3): 39-46 (2002).

113

