
(Approximate) Uncertain Skylines∗

Peyman Afshani
Faculty of Computer Science

Dalhousie University

Pankaj K. Agarwal
Department of Computer

Science
Duke University

Lars Arge
MADALGO & Department of

Computer Science
Aarhus University

Kasper Green Larsen
MADALGO & Department of

Computer Science
Aarhus Univesity

Jeff M. Phillips
School of Computer
University of Utah

ABSTRACT
Given a set of points with uncertain locations, we consider the prob-
lem of computing the probability of each point lying on the skyline,
that is, the probability that it is not dominated by any other input
point. If each point’s uncertainty is described as a probability distri-
bution over a discrete set of locations, we improve the best known
exact solution. We also suggest why we believe our solution might
be optimal. Next, we describe simple, near-linear time approxima-
tion algorithms for computing the probability of each point lying
on the skyline. In addition, some of our methods can be adapted
to construct data structures that can efficiently determine the prob-
ability of a query point lying on the skyline.

Categories and Subject Descriptors
H.2 [Database Management]: Database Applications; E.2 [Data]:
Data Storage RepresentationsComposite Structures

General Terms
Databases, Theory

Keywords
Skylines, Uncertainty, Approximation

∗P.K.A. is supported by NSF under grants CNS-05-40347, CCF-
06 -35000, IIS-07-13498, and CCF-09-40671, by ARO grants
W911NF-07-1-0376 and W911NF-08-1-0452, by an NIH grant
1P50-GM-08183-01, and by a grant from the U.S.–Israel Bina-
tional Science Foundation. J.M.P. is supported by subaward CIF-
32 from NSF grant 0937060 to CRA and subaward CIF-A-32 from
NSF grant 1019343 to CRA. L.A. and K.G.L. are supported by
MADALGO - Center for Massive Data Algorithmics - a Center of
the Danish National Research Foundation. K.G.L is also supported
in part by a Google Europe Fellowship in Search and Information
Retrieval. P.A. is supported by Natural Sciences and Engineer-
ing Research Council of Canada through a post-doctoral fellowship
program.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDT 2011, March 21–23, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0529-7/11/0003 ...$10.00

1. INTRODUCTION
In many applications, data uncertainty is an inherent consequence

of data collection methods; for instance, data coming from a sensor
network might contain duplicate readings of some data point. Al-
ternatively, the output of noisy robotic sensors may be interpreted
under several models, effectively replicating each data point sev-
eral times. Or several simulation runs obtain different performance
characteristics. In other situations, several similar data points are
clustered to represent samples from one event, for example, all
presidential candidates’ performance over the past several elections.
As a result of all of these situations, a recent focus in data manage-
ment is on how to handle these uncertainties. This has generated
much recent research in databases [7, 11, 29, 9, 10, 26, 8, 19, 2]
and other areas [22, 21] on various types of systems, data struc-
tures, and optimization problems for such uncertain data.

Given a set P of points in Rd, a point p ∈ P is on the skyline of P
if for every other point q ∈ P, at least one coordinate of p is larger
than that of q. Computing the skyline of a set of points is useful in
many applications, such as multi-criteria decision making, and has
been extensively studied.

profit margin

high−end

novel
best−selling

 laptop

p
o
p
u
la

ri
ty

Figure 1. Example of skyline of products by attributes “profit-
margin” and “popularity.” Both a best-selling book and a high-end
laptop may be on the skyline.

As motivation, consider an online store (like Amazon) that has
a large number of different products, and it wishes to highlight the
most important ones on its front page to boost its sales. Each prod-
uct may have more than one attribute, for example, profit margin
and potential popularity. A high-end laptop may have the largest
profit margin but might be projected to sell little, while a sequel to
a novel with a small profit margin might be expected to be a best-
seller (see Figure 1). Thus, it is clear that when multiple attributes
are present, it is highly non-trivial to have direct comparisons of the

186

products. Similar problems arise in many applications, since mean-
ingfully combining all the attributes of a data point in a single value
is difficult. The notion of a skyline enables us to circumvent this
difficulty [5, 18]. For instance, in the previous example, if there is
another laptop that has a bigger profit margin and is expected to be
more popular (i.e., when the high-end laptop is not on the skyline),
then the high-end laptop can be removed from the front page, if no
such product exists, then the decision is not so easy.

po
pu

la
ri

ty

profit margin

author’s novels

laptops

Figure 2. An example of uncertain point set. Uncertain points
{r,6, ♦} appear on 0.8-skyline.

In many applications, it is hard to specify the precise value of
each attribute of an input point. For example, in the case of the on-
line store, the exact measurement of potential popularity is almost
impossible; the new laptop might do surprisingly well or the sequel
to a novel might fail to reach the expectation of the fans. In our
model, such possibilities are captured by having multiple values
for potential popularity with a probability assigned to each value,
see Figure 2. In general, in this richer model, there are k different
values of an attribute, for a fixed k, with a probability assigned to
each value.

Problem statement. Let p = (p1, p2, . . . , pd) be a point in Rd. For
two points p and q in Rd, p dominates q, denoted by p � q, if
p j ≥ q j for all 1 ≤ j ≤ d and at least one of the inequalities is strict;
a point does not dominate itself. For a set P of points in Rd, a point
p ∈ P is on the skyline of P if no other point in P dominates p.

Defining the skyline of an uncertain data set is more difficult. Let
P = {P1, . . . , Pn} be a set of n uncertain points in Rd. We assume
that each uncertain point Pi is described by a discrete probability
distribution, defined over k discrete points (for an input parameter
k). Namely, Pi = {pi,1, pi,2, . . . , pi,k} ⊂ R

d, and the probability of P
being at location pi, j is 0 < wi, j ≤ 1;

∑k
j=1 wi, j = 1. Note that we

assume each pi, j to have nonzero probability of being the location
of Pi. If wi, j = 0 for some point pi, j, we can remove that point.
We also assume that the distributions of Pi’s are independent. We
remark that the assumption |Pi| = k is for ease of exposition, and
is not specifically required for any analysis. Set S =

⋃n
i=1 Pi and

|S | = m = nk; the latter is called the total size of the input. We
assume that no two points share x- or y-coordinates. Since all the
algorithms described in this paper have running time Ω(m log m),
they can be adapted to relax this assumption in a straightforward
manner.

Let p be a point in Rd (not necessarily in S). The probability that
a point Pi ∈ P dominates p, denoted by σi(p), is

σi(p) =
∑

pi, j∈Pi |pi, j�p

wi, j,

and the probability that p is on the skyline of P, also called the

skyline probability of p, is

PSP(p) =

n∏
i=1

(1 − σi(p)).

The probability of a point Pi ∈ P being on the skyline of P, denoted
by PSP(Pi), is

PSP(Pi) =

k∑
j=1

wi, jPSP,i (pi, j),

where P,i = P \ {Pi} is all uncertain points except Pi. For a param-
eter 0 ≤ ε < 1, we call a value ρi an ε-approximate skyline prob-
ability of p ∈ R2 if |PSP(p) − ρ̂i| ≤ ε and denote it by ε-PSP(p).
Similarly we define ε-PSP(Pi) for a point Pi ∈ P.

For 0 < ρ ≤ 1, a ρ-skyline of P [26] consists of all uncertain data
points Pi ∈ P such that PSP(Pi) ≥ ρ. A subset Q ⊆ P is called an
ε-approximate ρ-skyline of P if for all Pi ∈ Q, PSP(Pi) ≥ ρ−ε and
for all P j ∈ P \ Q, PSP(P j) ≤ ρ + ε. In this paper, we study the
problems of computing skyline probabilities, computing exact and
approximate ρ-skylines, and preprocessing P into a data structure
for quickly returning an approximate skyline probability of a query
point. We remark that aiming for simple, efficient approximation
algorithms for computing ρ-skylines approximately that can guar-
antee error at a level no larger than what already exists in the input
is quite natural.

Previous results. Kung et.al. [18] (see also [27, 4.1.3]) presented
an algorithm for computing the skyline of a set of n (certain) points
in Rd whose running time was O(n · (log n + logd−2 n)). Koltun and
Papadimitriou [16] considered the problem of computing an ap-
proximate skyline of a point set P, which they defined as follows:
A subset Q ⊆ P is called an ε-approximate skyline of S if the set
Qε = {(1 + ε)q | q ∈ Q} (where (1 + ε)q scales each coordinate
of q by 1 + ε) is the skyline of P ∪ Qε. They showed that there
exists an ε-approximate skyline of size O(((1/ε) log ∆)d), where
∆ is the ratio of the largest and the smallest coordinate values of
points in P. They also gave an O(n log n) algorithm to construct an
ε-approximate skyline of the aforementioned size in R2, and they
showed that it is NP-hard to attain an ε-approximate skyline of that
size for d > 3. We refer to [5, 28, 17, 25, 13] and references therein
for other work on skyline computation of certain point sets.

Constructing a skyline over a set P of uncertain points efficiently
is more difficult. The straightforward method to compute σi(p) and
PSP(p) for a point p ∈ R2 takes O(k) and O(m) time, respectively.
Thus, a ρ-skyline can be computed in O(m2) time. Atallah and
Qi [3] improve the running time to O(m5/3 polylog(n)) in R2. Their
algorithm extends to higher dimensions and yields a subquadratic
algorithm in any fixed dimension. Pei et al. [26] devise several
heuristics for efficiently computing ρ-skylines. See [20] and [31]
for other variants of this problem.

Our contributions. Let P be a set of n uncertain points in R2 as
defined above, and let m be the total input size. In this paper we
present a simpler and faster algorithm for computing a ρ-skyline
of P, whose running time is O(m3/2). The algorithm extends to
higher dimensions and yields an O(m2−1/d) algorithm in Rd. We
also present a construction of an uncertain point set which suggests
that the above bound might be optimal. We then show how the
running time can be further improved for the natural case when
k � n. More specifically, we describe an O(mk log m) algorithm
for computing the skyline probabilities of all points in P.1

1We remark that the running times mentioned above bound the
number of arithmetic operations performed by the algorithms and
not the bit complexity.

187

Next, we show how to compute, in O(m(log m + (1/ε) log(1/ε)))
time, ε-PSP(Pi) for all 1 ≤ i ≤ n. In fact, we build, in O(m(log m +

1/ε)) time, a data structure of size O(n/ε2) that can determine an
ε-approximate skyline probability of a query point in O(log(n/ε))
time. Notice that the size and the query time of the data structure
are independent of k, the number of possible locations of each un-
certain point, providing a concise representation when k � 1/ε2.

Finally, we present a Monte Carlo algorithm for computing ε-
approximate skyline probabilities. For a given parameter 0 < δ < 1,
we compute in O(m + (1/ε2)n log m log(n/δ)) time a value ρi for
each Pi ∈ P such that ‖ρi − PSP(Pi)| ≤ ε for all 1 ≤ i ≤ n with
probability at least 1 − δ. The algorithm is extremely simple and
extends to higher dimensions in a straightforward manner, at the
cost of increasing the running time to O(m + (1/ε2)n · (logd−2 n +

log k) log(n/δ)). Furthermore, this approach can handle dependent
and continuous distributions on the uncertain data points.

2. COMPUTING UNCERTAIN SKYLINES
Let P denote a set of n uncertain points in R2, and let m be the

total input size. We present an algorithm for computing PSP(Pi)
for all 1 ≤ i ≤ n. Section 2.1 describes an algorithm with running
time O(m3/2). The algorithm extends to Rd at the cost of increas-
ing the running time to O(m2−1/d). Next, Section 2.2 presents an
algorithm with running time O(mk log m), thereby improving upon
the previous algorithm for k = o(n/ log2 n). For k > n, we can
use a similar approach to compute PSP(Pi) for all points in time
O(mn log m). Combining the two algorithms, we obtain an algo-
rithm with running time O(min{n, k}m log m). Finally, we make a
conjecture about evaluating arithmetic operations in Section 2.3,
which if true would prove an Ω(min{n, k}m) lower bound on the
problem of computing PSP(Pi) for all points in P, matching our
algorithms (up to the logarithmic factor).

2.1 An O(m3/2) Time Algorithm
Recall that S =

⋃
i Pi. At a high level the algorithm constructs

a kd-tree T over all points in S [4]. Each leaf z of T is associated
with one point pz ∈ S . The algorithm computes PSP(pz), as well
as PSP,i (pz) assuming pz ∈ Pi, for each leaf z. The special struc-
ture of T allows for an efficient computation of these values, re-
using previously computed values whenever possible. We first give
a brief review of the kd-tree structure along with a small modifica-
tion we will adopt, and then we describe in detail how to compute
PSP,i (pi, j) for all pi, j ∈ S in a total of O(m3/2) time. This trivially
allows us to compute PSP(Pi) for all i in additional time O(m).

Modified kd-tree. We construct a kd-tree T , which is a binary tree,
on S as follows. Each node v of T is associated with a rectangle
Rv ⊆ R

2 and the subset S v = S ∩ Rv. For the root node u, Ru = R2

and S u = S . If |S v| = 1, then v is leaf of T , otherwise it is an interior
node. The rectangles associated with the two children of v partition
Rv into two rectangles. If v is at an odd (resp. even) level of T ,
then Rv is partitioned along the horizontal (resp. vertical) line so
that each of the two sub-rectangles contains at most d|S v|/2e points.
We make a small change to the standard kd-tree definition at each
leaf z: we set Rz to the degenerate rectangle consisting of the only
point pz of S z.

For a node v, we say that a point p dominates v if p dominates
all of Rv (not only the points in S ∩ Rv), see Figure 3(a). Similarly,
we say that p intersects v if it dominates some part of Rv, but not
all it; see Figure 3(b). Finally, we say that p is disjoint from v if it
does not dominate any part of Rv; see Figure 3(c). Note that with
our modified definition of a kd-tree, a point cannot intersect a leaf
node. With this terminology, we state the following key property

(a) (b) (c) (d)(a) (b) (c)

Figure 3. Classification of a point p: (a) p dominates v; (b) p
intersects v; (c) p disjoint from v.

of T , which follows from well-known results [4, 14].

L 2.1. Any point in R2 intersects O(
√

m) nodes of T .

For a node v, let Dv ⊆ S be the subset of points that dominate v,
let Iv ⊆ S be the subset of points that intersect v, and let Jv ⊆ S be
the set of points that are disjoint from v.

Algorithm. We first construct in O(m log m) time the kd-tree T on
S as described above. We then perform a pre-order traversal of
T . During the traversal of a node v, the algorithm maintains the
following information at v:

(i) the set Iv.

(ii) For each i, the value

σi(v) =
∑

pi, j∈Pi∩Dv

wi, j;

let Σ(v) = 〈σi(v) | 1 ≤ i ≤ n〉.

(iii) π(v) =
∏

i∈[1:n]|σi(v),1

(1 − σi(v)).

(iv) χ(v) = |{i | σi(v) = 1}|.

We maintain π(v) and χ(v) instead of PSP(v) =
∏n

i=1(1−σi(v)) be-
cause the latter quantity may be 0, in which case it will be difficult
to update the quantity during the traversal; see below. For a leaf v
with S v = {pi, j},

PSP(pi, j) =

{
π(v) if χ(v) = 0,
0 if χ(v) > 0. (1)

Using the fact that wi, j > 0, i.e., σi(pi, j) < 1 for all pi, j ∈ S , we
obtain

PSP,i (pi, j) =
PSP(pi, j)
(1 − σi(v))

. (2)

We now describe how we maintain (i)–(iv) during the traversal.
For the root node u, Iu = S since Ru = R2, which also implies that
σi(u) = 0 for all i and χ(u) = 0, π(u) = 1. Thus the initial setup
for the traversal can easily be established. Suppose the traversal
procedure reaches a node v. By induction, the above information
is available at the parent p(v) of v. We compute the sets Iv and
∆v = Dv \ Dp(v) in O(|Ip(v)|) time by scanning the set Ip(v). Note that
for any i,

σi(v) = σi(p(v)) +
∑

pi, j∈Pi∩∆v

wi, j. (3)

We thus construct Σ(v) from Σ(p(v)) in O(|∆v|) = O(|Ip(v)|) time.
Next, we compute π(v) and χ(v) from π(p(v)), χ(p(v)) as follows:
We initially set χ(v) = χ(p(v)) and π(v) = π(p(v)). Let i be an
index such that σi(v) , σi(p(v)). By (3), σi(v) ≥ σi(p(v)). If σi(v)
becomes 1, we simply increment χ(v). Otherwise, we set

π(v) = π(v)
1 − σi(v)

1 − σi(p(v))
.

188

We repeat this step for all i’s for which σi(v) , σi(p(v)).2 The time
spent in updating this information is O(|Ip(v)|). Hence, the node v
can be processed in O(|Ip(v)|) time. If v is leaf containing a point
pi, j, then we report PSP(p) and PSP,i (p) using (1) and (2), other-
wise we recursively visit the two children of v. When the algorithm
finishes traversing the subtree rooted at v (i.e., just before returning
to p(v)), we undo the changes we made at v to restore Ip(v), Σ(p(v)),
χ(p(v)), and π(p(v)). This step also takes O(|Ip(v)|) time. Summing
over all nodes of T and using Lemma 2.1, the total time spent by
the algorithm is

∑
v∈T O(|Iv|) = O(m3/2). Hence, we obtain the fol-

lowing.

T 2.1. Let P = {P1, . . . , Pn} be a set of n uncertain points
in R2, and let m be the total input size. Then PSP(Pi) for all i can
be computed in O(m3/2) time.

The algorithm presented above easily extends to Rd for d > 2
by constructing a modified kd-tree on points in Rd. A point now
intersects O(m1−1/d) nodes of the tree [4, 14]. Following the same
analysis as above, we now obtain the following.

T 2.2. Let P = {P1, . . . , Pn} be a set of n uncertain points
in Rd, and let m be the total input size. Then PSP(Pi), for all i, can
be computed in O(m2−1/d) time.

C 2.1. Let P = {P1, . . . , Pn} be a set of n uncertain
points in Rd, and let m be the total input size. For any 0 ≤ ρ ≤ 1,
the ρ-skyline of P can be computed in O(m2−1/d) time.

2.2 A Refined Algorithm
We now describe an O(mk log m) time algorithm for computing

PSP(Pi) for all points Pi ∈ P. Roughly speaking, we reduce the
problem to the so-called rectangle-stabbing problem, which in turn
reduces to range searching under the group model. We first discuss
the rectangle-stabbing problem and then describe how the problem
of computing PSP(Pi) is reduced to it.

Rectangle-stabbing problem. Let (X,⊕) be a commutative group,
let R = {R1, . . . ,Rs} be a set of rectangles in R2, and let ω : R→ X
be a weight function. The rectangle-stabbing problem asks for pre-
processing R into a data structure so that for a query point q ∈ R2,
Ω(q,R) =

⊕
q∈R∈R ω(R), the (group) sum of the weights of rectan-

gles of R containing q, can be computed quickly. There is a simple
reduction from rectangle stabbing to orthogonal range searching in
the group model: replace each rectangle R with its four vertices.
The weights of the lower left and upper right vertices of R is set to
ω(R), and the weights of the other two vertices is set to −ω(R) (i.e.,
the inverse of ω(R)). Let R∗ denote the resulting set of 4s points in
R2, and let ω : R∗ → X be their weights. For a point q ∈ R2, let
Θq be the quadrant with q as its upper-right vertex, i.e., the set of
points dominated by q. Then for any point q ∈ R2,

Ω(q,R) =
⊕

ξ∈R∗∩Θq

ω(ξ).

See Figure 4.
Using a data structure by Willard [30], R∗ can be preprocessed

in O(s log s) time into a data structure of size O(s log s) so that a
range query can be answered in O(log s) time. Hence, a rectangle-
stabbing query under the group model can also be answered within
the same time bound.

Reduction to rectangle stabbing. We construct O(k2) rectangles
for each uncertain point Pi using the following procedure. For each
2The above step is the reason why we maintain π(v), χ(v) instead
of PSP(v).

1

2

3

4

1

1

2

2

3

3

4

4

−1

−3

−4

−2
−4

−1

−3

(b)(a)

Figure 4. Reduction of rectangle stabbing to range searching: (a)
an instance of rectangle stabbing; number inside each rectangle is
its weight. (b) The corresponding instance of range searching; that
shaded region is Θq.

point pi, j ∈ Pi, we shoot two rays from pi, j: one in (−y)-direction
and another in (−x)-direction; we draw a quadrant Θi, j from pi, j.
See Figure 5(b). Let Ξi be planar decomposition (arrangement [1])
induced by these rays (quadrants). Then we construct a trapezoidal
decomposition Ξ∇i of Ξi by shooting a ray upward from each point
pi, j until it intersects an edge of Ξi; see Figure 5(c).

(a) (b) (c)
Ci

Figure 5. (a) A point set Pi. (b) The arrangement Ξi formed by
shooting two rays from each point in Pi. (c) The trapezoidal de-
composition Ξ∇i of Ξi. Shaded region is Ci.

Each cell of Ξ∇i is a rectangle, and there are O(k2) rectangles.
For technical reasons we regard each rectangle R semi-open – its
top and right edges belong to the rectangle but its left and bottom
edges do not belong to R. This ensures that each point inR2 belongs
to exactly one rectangle, and that σi(q) is the same for all points in
R except possible for its top right vertex if it is one of the points
of Pi. Let σi(R) denote this value, and we set ω(R) = 1 − σi(R).
Let Ci =

⋂k
j=1 Θi, j denote the quadrant among these rectangles that

contains the point (−∞,−∞), and let Ri be the remaining set of
rectangles. Then ω(Ci) = 0 (for any q ∈ Ci and pi, j ∈ Pi, q ≺ pi, j)
and ω(R) > 0 for all R ∈ Ri (there is a point pi, j such that q ⊀ pi, j

for all q ∈ R).

L 2.2. Given a set Pi of k weighted points, we can com-
pute Ri and Ci as well as their weights in time O(k2).

P. Each ray intersects at most k other rays, thus there are at
most k2 intersections, and as many distinct rectangles. After sorting
all points by x-coordinates (in O(k log k) time), we can construct
the rectangles using a line sweep from large x-coordinates (right)
to small x-coordinates (left). Given a sweep value h, we maintain
all points with x-coordinate greater than h in sorted order according
to their y-coordinates. It takes O(log k) time to identify the location
of a new point pi, j, and O(k) time to create the rectangle above pi, j

and the O(k) rectangles below pi, j. As we construct each rectangle
R, we also compute σi(R). The right most rectangle has σi(R) = 0.
Then as we build O(k) new rectangles by adding a point pi, j, σi(R)
for the rectangle R above pi, j is the same as that of the rectangle
just to the right of pi, j. For a rectangle R below pi, j, let R+ be
the rectangle immediately to its right. Then σi(R) = σi(R+) + wi, j.
Thus all rectangles and their weights can be computed in O(k log k+

k(log k + k)) = O(k2) time.

189

Set R =
⋃n

i=1 Ri and C = {Ci | 1 ≤ i ≤ n}. We choose the
group (R+, ·), i.e., positive real numbers with multiplication and 1
as the zero-element of the group. Let C̃ be the union of quadrants
in C, i.e., any point lying in C̃ lies in at least one quadrant of C. C̃

is a staircase polygon with O(n) vertices and can be computed in
O(n log n) time. We preprocess R into a data structure for answer-
ing rectangle-stabbing queries as described above and preprocess
C̃ for point-location queries. For any point q ∈ R2, if q ∈ C̃, then
PSP(q) = 0, as σi(q) = 1 for at least one i. Otherwise,

Ω(q,R) =

n∏
i=1

∏
q∈R∈Ri

ω(R)

=

n∏
i=1

(1 − σi(p)) = PSP(q).

Hence, we obtain the following:

L 2.3. Let P = {P1, . . . , Pn} be a set of n uncertain points
in R2, and let m be the total input size. P can be preprocessed in
O(mk log m) time into a data structure of size O(mk log m) so that
for a query point q ∈ R2, PSP(q) can be computed in O(log m)
time.

To compute PSP(Pi) for all i, we first compute PSP,i(pi, j) for
all points pi, j ∈ S . Notice that each pi, j is a vertex of a rectangle
in Ξ∇i , so we have already computed σi(pi, j) for each pi, j ∈ S . As
mentioned earlier, σi(pi, j) < 1, therefore

PSP,i(pi, j) =
PSP(pi, j)

(1 − σi(pi, j))
.

We now obtain the main result of this subsection.

T 2.3. Let P = {P1, . . . , Pn} be a set of n uncertain points
in R2, and let m be the total input size. PSP(Pi) for all Pi can be
computed in time O(mk log m).

Remark. (i) The above algorithm does not seem to generalize
well to higher dimensions. The main issue is that the complexity of
Ξi increases to kd in Rd. Extending this technique thus only gives
an algorithm with running time Õ(nkd) in Rd.

A similar approach, whose details are omitted from here, can
be used to compute skyline probabilities of all points of P in time
O(mn log m). By combining this with the above theorem, we con-
clude the following:

T 2.4. Let P = {P1, . . . , Pn} be a set of n uncertain points
in R2, and let m be the total input size. PSP(Pi) for all Pi can be
computed in time O(min{k, n}m log m).

2.3 Optimality
In this section we discuss the optimality of our algorithms for

computing the skyline probabilities of all points in R2. While we do
not have a formal proof of optimality, we provide evidence that our
algorithms might be optimal. We first make a conjecture about the
hardness of evaluating certain arithmetic formulas, and then con-
struct a specific set P∗ of n uncertain points in R2 with k possible
locations each. Under our conjecture, any algorithm that computes
skyline probabilities of all points using a sequence of simple arith-
metic operations (addition, subtraction, multiplication, division) on
the weights of the input points and a set of predefined constants,
where the sequence depends only on the positions of the points and
not their weights, needs Ω(min{nk2, n2k}) time in the worst case,
which is Ω(m3/2) in the worst case. We call such an algorithm a

truthful arithmetic algorithm. All the known algorithms for com-
puting skyline probabilities presented are truthful arithmetic algo-
rithms. Apart from providing evidence of the hardness of comput-
ing all skyline probabilities, one can use the results in this section
in two ways: (1) prove our conjecture and obtain an unconditional
lower bound, or (2) use our specific input point set and conjecture
to guide the search for faster algorithms.

Let X1, . . . , Xm be variables taking positive real values. We say
that a formula C = 1−Xi1 −Xi2 − · · · −Xi j is an arithmetic clause if
all variables Xi j take values in the range (0, 1] and that Xi1 + Xi2 +

· · ·+Xi j ≤ 1. Furthermore, we say that a formula F = C1 ·C2 ·· · ··Ck

is in arithmetic normal form if each C` is an arithmetic clause. We
make the following conjecture:

C 2.1. Let X1, . . . , Xm be variables taking positive real
values, and let F be a set of formulas over X1, . . . , Xm such that
each formula is in arithmetic normal form. Let µ denote the total
number of unique arithmetic clauses appearing in the formulas in
F. Any truthful arithmetic algorithm for evaluating all formulas in
F needs to perform Ω(µ) operations.

Intuitively this conjecture says that a truthful algorithm spend
at least one arithmetic operation to evaluate each unique clause in
order to evaluate all formulas of F.

We are now ready to describe the specific input set P∗. We regard
the weight of each point pi, j as a variable taking positive real values,
and show that any truthful arithmetic algorithm for computing all
skyline probabilities on P∗ is also an algorithm for evaluating all
formulas in a set F∗ of formulas in arithmetic normal form, where
the number of unique arithmetic clauses in F∗ is Ω(mk).

In the following we assume n ≥ k, and afterwards briefly argue
what happens in the opposite case. Our uncertain point set P∗ con-
sists of n/k smaller uncertain point sets M1, . . . ,Mn/k placed on a
diagonal (if k > n, then just one point set). We first describe the
smaller uncertain point sets Mi, and then show how these are trans-
lated onto a diagonal. Each uncertain point set Mi is a translation
of the same uncertain point set M. M contains k uncertain points
P1, . . . , Pk, each with k possible locations. The possible locations
of uncertain point P j are

{(− j,−1), (− j + 1,−2), . . . , (−1,− j))}∪
{(0, k − j − 1), (1, k − j − 2), . . . , (k − j − 1, 0)}.

That is, the possible locations of each uncertain point constitutes
two diagonals, see Figure 6(a). Now each small point set Mi in
P∗ is obtained by taking a copy of M and translating each point
therein by (ik,−ik). This places each Mi on a common diagonal,
see Figure 6(b).

(b)(a)

Figure 6. (a) The point set M with k = 5, where possible locations
of uncertain point P2 are drawn in gray. (b) The point set P∗ with
n = 15.

Now consider point set M, and let p ∈ M be a point on the jth
diagonal in the positive quadrant, counting from longest to shortest
diagonal (outer most to inner most). The expression PSM(p) con-
tains precisely j arithmetic clauses (one for each diagonal 1, . . . , j),

190

and none of these clauses appear in PSM(q) for any other point
q ∈ M lying in the positive quadrant. Since PSM(p) does not
change by translating M into Mi, and since other point sets M j

where i , j can only add new clauses to PSM(p) and not alter
previous clauses, we get that there are at least

n/k ·
k∑

j=1

(j · (k − j)) = Ω(nk2)

unique arithmetic clauses in the set of formulas
⋃

p∈P∗ PSP∗ (p).
If n < k, we construct only one point set M1. It is still constructed

by taking a copy of M, but only using the points corresponding to
uncertain points P1, . . . , Pn. In this setting, the number of unique
arithmetic clauses become

∑n
j=1(j · (k − j)) = Ω(n2k). We thus

conclude

T 2.5. If Conjecture 2.1 is true, then any truthful arith-
metic algorithm must spend Ω(min{nk2, n2k}) time in the worst case
to compute all uncertain skyline probabilities for P∗. This is maxi-
mized for n = k, yielding Ω(m3/2).

3. APPROXIMATE UNCERTAIN SKYLINES
Let P be a set of uncertain points in R2 as above. In this section,

we present a deterministic algorithm (Sections 3.1 and 3.2) and a
Monte Carlo algorithm (Section 3.3) for computing ε-PSP(Pi) for
all Pi ∈ P. The deterministic algorithm uses the notion of ρ-chains,
which is, roughly speaking, a level-set at height ρ of the function
PSP. Using ε-approximations of ρ-chains, we show that P can be
preprocessed in time O(m log m + m/ε) into a data structure of size
O(n/ε2) so that for any point q ∈ R2, ε-PSP(q) can be computed
in O(log(n/ε)) time; see Section 3.1. Building on this data struc-
ture, we show that ε-PSP(Pi), for all 1 ≤ i ≤ n, can be computed
in a total of O(m(log m + (1/ε) log(1/ε))) time. The Monte Carlo
algorithm, described in Section 3.3, basically computes skylines on
fixed instantiations of P O((1/ε2) log(n/δ)) times, and counts how
many times each Pi’s instantiation appears on the skyline.

3.1 ρ-Chain and Its Approximation
ρ-chain. For a paramater 0 < ρ ≤ 1, let X>ρ = {x ∈ R2 | PSP(x) >
ρ}. The ρ-chain of P, denoted by Γρ, is the (lower) boundary of
X>ρ, i.e., Γρ separates points x with PSP(x) > ρ from those with
PSP(x) ≤ ρ. If we vary a point ξ, the value of PSP(ξ) changes
only when its x- or y-coordinate becomes that of a point in S , and
the value does not decrease if ξ moves in (+x)- or (+y)-direction.
Therefore Γρ is a staircase polygonal chain; see Figure 8. For 0 <
ρ1 < ρ2 ≤ 1, Γρ1 and Γρ2 may overlap (see Figure 7), but Γρ1 never
appears above Γρ2 , i.e., no ray in (+y)-direction crosses Γρ2 before
crossing Γρ1 .

Approximate ρ-chain. Let 0 < ε < 1 be a parameter. A staircase
polygonal chain Γ is called an ε-approximate ρ-chain if PSP(q) <
ρ + ε for all points q lying below Γ and PSP(q) > ρ − ε for all
points q lying above Γ. Note that Γ lies below Γρ+ε. However, Γ

may appear above Γρ−ε if there are points with skyline probability
ρ − ε (see Figure 7) but it always lies above Γρ−ε−δ for any δ > 0.
A natural question is whether there is always an ε-approximate ρ-
chain of small size. We prove this in affirmative by describing an
algorithm that constructs an ε-approximate ρ-chain of size O(n/ε).

Computing approximate ρ-chain. Let 0 < ρ, ε < 1 be two param-
eters. We construct an ε-approximate ρ-chain Γ of P by performing
two sweeps simultaneously: (i) x-sweep, a vertical line sweeps the
plane from left to right, and (ii) y-sweep, a horizontal line sweeps

y

x

y

x

0.75

0.75

0.5

0.25

0.5

0.25

Figure 7. Example of ρ-chains for ρ = 0.25, 0.5, 0.75 (top),
and ε-approximate ρ-chains for ε = 0.25 (bottom) on uncertain
data. Each of n = 8 uncertain data points (denoted by different
shapes) has k = 4 possible instantiations. The 0.5-chain and 0.25-
approximate 0.5-chain have been made bold for easier comparison.

the plane from top to bottom. We alternate between the two sweeps:
intuitively, the x-sweep discovers the horizontal edges of Γ, and the
y-sweep discovers the vertical edges of Γ. The algorithm traces a
point ξ on Γ during the two sweeps and maintains the following
invariant:

(?) PSP(q) > ρ− ε for every point q � ξ and PSP(q) < ρ+ ε for
every point q ≺ ξ.

Note that we do not make any claim for PSP(ξ). In order to main-
tain this invariant, we define a point ξ↘ and monitor PSP(ξ↘) dur-
ing the sweeps; see Lemma 3.1.

Initially we set x(ξ) = −∞ and compute the initial y-coordinate
of ξ (at x = −∞) as follows. Let ` be a vertical line to the left
of the leftmost point of S . Let q1, . . . , qm be the points on ` with
the y-coordinates of points in S in increasing order; set q0 be the
point on ` at −∞ and qm+1 the point on ` at +∞. Then the following
properties follow immediately from the definition of PSP:

(i) PSP(q) remains the same for all points q in the (open) inter-
val (qi, qi+1) for 0 ≤ i ≤ m.

(ii) PSP(q) = 0 for q ∈ (q0, q1) and PSP(q) = 1 for q ∈ (qm, qm+1).

(iii) If q ∈ (qi, qi+1) and q′ ∈ (qi+1, qi+2), then PSP(q) ≤ PSP(q′).

If we know the values σ j(q) for all j, |{ j | σ j(q) = 1}|,
∏

σ j(q),1(1 −
σ j(q)), and PSP(q) for any point in the interval (qi−1, qi), then these
values for the points in the interval (qi, qi+1) can be updated in O(1)
time. Therefore we can compute the values of PSP in all inter-
vals (qi, qi+1) in O(m) time. Let qi be the unique point such that
PSP(q) > ρ for q ∈ (qi, qi+1) and PSP(q) ≤ ρ for q ∈ (qi−1, qi). We
set the initial y-coordinate of ξ to y(qi).

191

The algorithm maintains the following two auxiliary pieces of
information during the sweeps:

I. For a point q ∈ R2, let S �(q) = {p ∈ S | p � q}. The
algorithm maintains S �(ξ↘).

II. The algorithm maintains

Σ(ξ↘) = 〈σ1(ξ↘), . . . , σn(ξ↘)〉,
χ(ξ↘) = |{i ∈ [1 : n] | σi(ξ↘) = 1}|,

π(ξ↘) =
∏

i∈[1:n]|σi(ξ↘),1

(1 − σi(ξ↘)).

Each of the two sweeps pauses whenever the corresponding sweep
line crosses a point of S , called an event point, and updates the
coordinates of ξ as well as the above auxiliary information about
ξ↘. After processing an event, the algorithm either continues with
the current sweep or switches to the other sweep. The point ξ
traces a horizontal (resp. vertical) line with its y-coordinate (resp.
x-coordinate) aligned with that of a point in S during the x-sweep
(resp. y-sweep).

ξ1

ξ2

ξ�2

ξ�1

pi,j

pk,l

Figure 8. Small disks represent points in S . Thick solid line repre-
sents the path of ξ. ξ1 and ξ2 represent the positions of ξ at which
x- and y-sweep pauses, respectively. The points in the gray area
dominate both ξ2 and ξ↘2 , but not ξ1 or ξ↘1 .

The algorithms begins with the x-sweep starting at x = −∞. Sup-
pose the sweep line reaches a point pi, j ∈ S . By our assumption,
a sweep line never crosses two points of S at the same time. If
pi, j < S �(ξ↘), no processing is required at pi, j, and the x-sweep
continues. If pi, j ∈ S �(ξ↘), the algorithm recomputes σi(ξ↘) and
PSP(ξ↘). By definition, S �(ξ↘) = S �(ξ↘) \ {pi, j}, so we delete pi, j

from S �(ξ↘), and update σi(ξ↘), π(ξ↘), and χ(ξ↘) in O(1) time. If
PSP(ξ↘) remains less than ρ + ε (i.e., PSP(q) < ρ + ε for q ≺ ξ),
we continue with the x-sweep. If it becomes larger than ρ + ε, we
interrupt the x-sweep, add (x(pi, j), y(ξ)) as a vertex to Γ, and begin
the y-sweep starting from the y-coordinate of ξ; ξ now traces the
vertical line x = x(pi, j). Suppose the y-sweep line reaches a point
pk,l. If x(pk,l) ≤ x(ξ), no action is taken since pk,l cannot be added
to S �(ξ↘) and we continue with the y-sweep. If x(pk,l) > x(ξ), we
add pk,l to S �(ξ↘) and update σk(ξ↘), π(ξ↘), χ(ξ↘). If PSP(ξ↘)
remains larger than ρ − ε (i.e., PSP(q) > ρ − ε for q � ξ), we
continue with the y-sweep; otherwise, we interrupt the y-sweep,
output (x(ξ), y(pk,l)) as a vertex of Γ and resume the x-sweep at pi, j;
ξ now starts tracing the horizontal line y = y(pk,l). The algorithm
terminates when the y-sweep has processed the bottom-most point
of S .

We spend O(m log m) to sort the points of S along x- and y-
coordinates. After the sorting, the algorithm spends O(1) time at
each event point, and each of x- and y-sweep visits a point of S at
most once. Hence, the total time spent by the two sweeps is O(m).
We first prove the correctness of the algorithm.

L 3.1. The algorithm always maintains the invariant (?).

P. It suffices to check whether the invariant is maintained
in a sufficiently small neighborhood of ξ and whether it holds at
all event points since the skyline probability changes only at x- or
y-coordinates of a point in S . Let ξ+ be the point traced by the
algorithm as it moves forward from ξ by an infinitesimal amount.
More precisely, let δ be a suffiently small parameter, as defined
above. If the algorithm performs the x-sweep beyond ξ, then ξ+ =

ξ + (δ, 0); otherwise δ+ = δ + (0,−δ).
Suppose, on the contrary, (?) is violated for the first time at a

point p ∈ S ; let ξ be the point on Γ at that event. First consider
the case when this event was encountered by the x-sweep. Since
PSP(ξ) is not decreasing during the x-sweep, (?) can be violated
at p only because PSP(q) > ρ + ε for some point q ≺ ξ+. If Γ

bends at ξ, then p � ξ+, and we can infer that maxq+∈ξ+ PSP(q+) =

maxq−∈ξ− PSP(q−)ρ+εwhere ξ− the point ξ immediately before the
x-sweep reached p, and therefore the invariant is not violated at p.
So assume that Γ does not bend at ξ, and the algorithms continues
the x-sweep beyond p. Consider the point

ξ+ + (0,−δ) = ξ + (δ,−δ) = ξ↘.

It can be checked that maxq≺ξ+ PSP(q) = PSP(ξ↘). If (?) does
not hold at ξ+, then PSP(ξ↘) > ρ + ε. However, the algorithm did
not interrupt the x-sweep at p, implying that PSP(ξ↘) ≤ ρ + ε, a
contradiction.

Next, suppose that the above event was encountered during the
y-sweep. Since PSP(ξ) is not increasing during the y-sweep, (?) is
violated because PSP(q) < ρ−ε for some q � ξ+. If Γ bends at this
event, then again we can argue, as above, that (?) is not violated at
p. If Γ does not bend, i.e., the y-sweep continues beyond p, then
consider the point

ξ+ + (δ, 0) = ξ + (δ,−δ) = ξ↘;

It can be checked that minq�ξ+ PSP(q) = PSP(ξ↘). If (?) is vio-
lated at ξ+, then this quantity is less than ρ − ε. On the other hand,
since the y-sweep was not interrupted at p, PSP(ξ↘) ≥ ρ− ε, again
a contradiction. Hence, we conclude that (?) is always maintained
by the algorithm.

The above lemma immediately implies that PSP(q) ≤ ρ+ε for any
point q lying below Γ and PSP(q) ≥ ρ − ε, thereby implying that Γ

is an ε-approximate ρ-chain. The following lemma bounds the size
of Γ.

L 3.2. The chain constructed by the algorithm has O(n/ε)
vertices.

P. Consider an execution of the x-sweep. Let ξ1 be the po-
sition of ξ when one of the x-sweep pauses, i.e., the vertex reported
when the x-sweep paused. Note that x(ξ1) = x(p1) for some p1 ∈ S .
Let ξ2 be the position of ξ when the next y-sweep pauses, i.e., the
other endpoint of the vertical edge adjacent to ξ1. By construction,
PSP(ξ↘1) > ρ + ε and PSP(ξ↘2) < ρ − ε. Let PSP(ξ↘1) =

∏n
i=1 Xi,

in which Xi = 1−σi(ξ
↘

1) and assume PSP(ξ↘2) =
∏n

i=1(Xi − αi), in
which Xi −αi = 1−σi(ξ

↘

2), αi ≥ 0, and Xi −αi ≤ 1. Notice that for
a parameter t ≤ 1, we have (Xi − αi)t ≥ Xit − αi and thus

PSP(ξ↘2) ≥
(n∏

i=1

Xi

)
−

(n∑
i=1

αi

)
= PSP(ξ↘1) −

(n∑
i=1

αi

)
,

which implies
∑n

i=1 αi ≥ 2ε. By definition, αi =
∑

wi, j where the
sum is taken over all points pi, j ∈ Pi ∩ (S �(ξ↘2) \ S �(ξ↘1)). Hence,

n∑
i=1

αi =
∑

pi, j∈S�(ξ↘2)\S�(ξ↘1)

wi, j.

192

Since each point of S is deleted from the set S �(ξ↘) at most once
and

∑
pi, j∈S wi, j = n, Γ has O(n/ε) vertical edges.

Computing ε-PSP. The next step is to build several ε-approximate
ρ-chains so that ε-PSP(q), for any point q ∈ R2, can be computed
quickly. With this goal, we set u = b2/εc. For 1 ≤ r ≤ u, let
ρr = rε/2. We construct an (ε/6)-approximate ρr chain Γr using
the above algorithm. Γr lies between (2r − 1)ε/4- and (2r + 1)ε/4-
chains, therefore Γr and Γr+1 may overlap but Γr never appears
above Γr+1. See Figure 9.

(b)

q

(a)

Figure 9. (a) ρr chains (in solid lines) and (2i − 1)ε/4 lines for
1 ≤ r ≤ u. (b) Γ1, . . . ,Γu and the “border” chains.

For a query point q ∈ R2, let q↑ be the (closed) ray emanating
from q in (+y)-direction. We define ϕ(q) as follows: if q↑ does not
intersect any Γr, we set ϕ(q) = 1, otherwise ϕ(q) = ρr if r is the
smallest index such that q↑ intersects Γr. In other words, if q lies on
one or more Γr’s, then ϕ(q) is set to the value corresponding to the
smallest index chain that contains q, otherwise it is set to the value
corresponding to the chain that lies immediately above q. It can be
verified that |ϕ(q) − PSP(q)| ≤ ε. Hence, the it suffices to return
ϕ(q) as ε-PSP(q) for the query point q.

Let Ξ be the planar subdivision induced by Γ1, . . . ,Γu. We label
each edge e of Ξ with the lowest index of the chain that contains
e. Since Γ1, . . .Γu partition the edges of Ξ into x-monotone chains,
using the algorithm by Edelsbrunner et al. [15], Ξ can be prepro-
cessed in O(n/ε2) time into a data structure of size O(n/ε2) so that
ϕ(q) can be computed in O(log(n/ε)) time. We thus obtain the fol-
lowing.

T 3.1. Let P = {P1, . . . , Pn} be a set of n uncertain points
in R2, and let m be the total input size. P can be preprocessed in
O(m(log m + 1/ε)) time into a data structure of size O(n/ε2) so that
for a query point q ∈ R2, ε-PSP(q) can be computed in O(log(n/ε))
time.

3.2 Approximate Skyline Probabilities
The above data structure is useful for a point q < P, but to cal-

culate PSP(Pi) for an uncertain point Pi ∈ P the main subroutine
we need is to calculate PSP,i (pi, j) for each pi, j ∈ Pi. However,
computing a data structure as above for each P,i is not efficient. To
overcome this challenge, we realize that

PSP,i (q) = PSP(q)/(1 − σi(q)).

However, another problem remains. If we invoke Theorem 3.1 to
produce an estimate ρ̂(pi, j) that is an ε-PSP(pi, j), we cannot guar-
antee that ρ̂i, j = ρ̂(pi, j)/(1 − σi(pi, j)) has the required approxima-
tion guarantee |ρ̂i, j − PSP,i (pi, j)| ≤ ε. Error reported in each of
these chains, or between two such chains, is multiplied by 1/(1 −
σi(pi, j)) ≥ 1.

We overcome this problem in three ways. First, we adjust the
computation of the chains so as to omit the smallest (1 − σi(q)) in

the calculation of π(ξ↘). Let this term be (1 − σ∗); then we can
multiply our modified estimate π∗(pi, j) by (1 − σ∗)/(1 − σi(pi, j))
which is at most 1 (note that σi(pi, j) < 1 by definition). Second,
we build O((1/ε) log(1/ε)) chains instead of O(1/ε) to deal with in-
creased error for smaller ρ-values. Third, we build the computation
of each ε-PSP,i (pi, j) into the construction of all chains. Then, as
we process the chain which is directly above each pi, j we have σ∗

maintained.

Modified approximate ρ-chains.. We construct a modified chain
similar to ε-approximate ρ-chains through alternating x-sweeps and
y-sweep. We maintaining the following information corresponding
to a point ξ on the chain:

I. The set of dominating points S �(ξ↘).

II. The auxiliary information:

Σ(ξ↘) = 〈σ1(ξ↘), . . . , σn(ξ↘)〉,
χ(ξ↘) = |{i ∈ [1 : n] | σi(ξ↘) = 1}|,

i∗ = arg max
i
σi(ξ↘),

π∗(ξ↘) =
∏

i∈[1:n]|σi(ξ↘),1,i,i∗

(1 − σi(ξ↘)).

Ties are broken arbitrarily for i∗. Then we can evaluate

PS∗P(p) =

{
π∗(p) if χ(p) = 0
0 if χ(p) > 0

and

PSP,i (p) =


PS∗P(p)

(1 − σi∗ (p))
(1 − σi(p))

if σi(p) , 1,

π∗(p) if σi(p) = 1, χ(p) = 1,
0 if σi(p) = 1, χ(p) > 1.

Now we can describe the modified sweeping algorithm to con-
struct each chain Γr. It is a modified α-approximate ρr-chain, a
staircase polygonal chain such that any q lying below Γr has PS∗P(q)
< ρr + α and any q lying above Γr has PS∗P(q) > ρr − α. The al-
gorithm for each chain is identical to that described in Section 3.1
except for three modifications. (1) The auxiliary information main-
tained (above) is slightly different. (2) The decision to alternate be-
tween an x-sweep and y-sweep is determined by if PS∗P(ξ↘) > ρ+α
or PS∗P(ξ↘) < ρ − α, as opposed to the similar inequalities with
PSP(ξ↘) in place of PS∗P(ξ↘). (3) To begin we say all pi, j are un-
marked; when a chain passes above each pi, j for the first time, it
will becomes marked. We handle unmarked points pi, j below chain
Γr and calculate each ε-PSP,i (pi, j) as described next.

We decompose the range [0, 1] into w + 1 = log(2/ε) + 1 layers
L1, L2, . . . , Lw, Lw+1 where ∪w+1

h=1 Lh = [0, 1]. Let Lw+1 = [0, ε/2] and
each layer Lh = (1/2h, 1/2h+1] for 1 ≤ h ≤ w. Then ρ (the levels
of our chains) takes on u = 4/ε values3 in each layer, except Lw+1

which takes no values. Specifically, in layer h for 1 ≤ r ≤ u let
ρr = (1/2h) + rε(1/2h+2). Then we construct u modified (ε/2h+4)-
approximate ρr-chains Γr in each layer h. We will construct chains
starting at layer h = w to layer h = 1, and within each layer, we
construct each Γr starting from r = 1 to r = u. Thus a point pi, j

becomes marked when processing chain Γr if it lies between chains
Γr−1 and Γr.

Note that we do not require to actually store the modified α-
approximate ρ-chains, since all computation of PSP,i (pi, j) will oc-
cur during the sweeping of the chains. However, if we did desire to
3If 1/ε is not a power of 2, we let γ be the smallest power of 2
greater than 1/ε, and use 1/γ in place of ε everywhere. This ensures
chains from different layers line up nicely.

193

construct the chains, we could do so, and each would have at most
O(n2h/ε) vertices. The proof of Lemma 3.2 can be modified to
only consider the product based on π∗(ξ↘) instead of π(ξ↘). More
importantly, the construction of each chain still requires O(m) time.

Constructing ε-PSP,i (pi, j).. Finally, we discuss how to construct
each ε-PSP,i (pi, j), denoted ϕ(pi, j). First some boundary cases.
Any point pi, j marked on the first Γ1 in layer w has

PSP,i (pi, j) ≤ PS∗P(pi, j) ≤ ε/2 + ε2/4,

so we can set ϕ(pi, j) = 0. We handle all points pi, j not marked after
the last Γu with one additional pass of a modified 0-approximate
1-skyline that goes through or above all points, and we analyze it
along with other chains in layer 1. From here on, we assume any
point pi, j in layer h is marked between two chains Γr−1 and Γr; if
a point is marked during Γ1, the first chain of layer h, then the last
chain of layer h + 1 serves as Γ0 for analysis purposes.

Each pi, j is handled when it is marked on an x-sweep such that
x(pi, j) = x(ξ) and y(pi, j) ≤ y(ξ). It will be useful to refer to this
point ξ as ξr. We can draw a vertical ray from ξr through pi, j in
the (−y)-direction, and it will intersect Γr−1 at a point ξr−1. We
observe that x(ξr−1) = x(pi, j) and y(ξr−1) < y(pi, j). Since in the
(+y)-direction PS∗P(·) is monotonically non-decreasing, then

PS∗P(ξr−1) ≤ PS∗P(pi, j) ≤ PS∗P(ξ↘r).

Hence, for r in layer h, we can approximate PS∗P(pi, j) using PS∗P(ξ↘r),
incurring at most ε/2h+1 error because

(r − 1)
ε

2h+2 −
ε

2h+4 ≤ PS∗P(ξr−1) ≤ PS∗P(ξ↘r) ≤ r
ε

2h+2 +
ε

2h+4 .

We also have the property of a point pi, j that is marked during a
chain Γr in layer h that PS∗P(pi, j) ≥ 1/2h+1.

Note that, since by definition σi(pi, j) < 1 so 1/(1 − σi(pi, j))
does not divide by 0. Also, define i∗r = arg maxl σl(ξ

↘
r) so when

pi, j is handled we have i∗r maintained. Let i∗i, j = arg maxl σl(pi, j);
we do not know i∗i, j. But we show that using i∗r is a good enough
approximation. Specifically we can generate an ε-PSP,i(pi, j), as

ϕ(pi, j) =
1 − σi∗r (pi, j)
1 − σi(pi, j)

PS∗P(ξ↘r).

In proving this result we have two basic types of inequalities
to use: (1) change in query value: σl(ξ

↘
r) ≤ σl(pi, j) ≤ σl(ξr−1);

and (2) compare to star-index: σi∗r (ξ↘r) ≥ σl(ξ
↘
r) and σi∗i, j

(pi, j) ≥
σl(pi, j). We first prove a helpful lemma involving πk,l(q) =

∏
i,k,l(1−

σi(q)).

L 3.3. If pi, j is handled during chain Γr at ξr in layer h,
then

σi∗i, j
(pi, j)−σi∗r (pi, j) ≤ σi∗i, j

(pi, j)−σi∗i, j
(ξ↘r) < ε/(2h+1πi∗i, j ,i

∗
r (ξ↘r)) ≤ ε.

P. Assume the middle inequality of the lemma is false so
σi∗i, j

(pi, j) − σi∗i, j
(ξ↘r) ≥ ε/2h+1πi∗i, j ,i

∗
r (ξ↘r). We show this implies

PS∗P(ξ↘r) − PS∗P(ξ↘r−1) ≥ ε/2h+1, a contradiction.

PS∗P(ξ↘r) − PS∗P(ξr−1)

= πi∗r ,i∗i, j
(ξ↘r)(1 − σi∗i, j

(ξ↘r)) − πi∗r−1 ,i
∗
i, j

(ξr−1)(1 − σi∗i, j
(ξr−1))

≥ πi∗r ,i∗i, j
(ξ↘r)

(
(1 − σi∗i, j

(ξ↘r)) − (1 − σi∗i, j
(ξr−1))

)
= πi∗r ,i∗i, j

(ξ↘r)
(
σi∗i, j

(ξr−1) − σi∗i, j
(ξ↘r)

)
≥ πi∗r ,i∗i, j

(ξ↘r)
(
σi∗i, j

(pi, j) − σi∗i, j
(ξ↘r)

)
≥ πi∗r ,i∗i, j

(ξ↘r)ε/(2h+1πi∗r ,i∗i, j
(ξ↘r))

= ε/2h+1.

The first inequality uses πi∗r ,i∗i, j
(ξ↘r) ≥ πi∗r−1 ,i

∗
i, j

(ξr−1) since πi∗i, j ,i
∗
k
(ξ↘k) is

monotonically non-decreasing as k increases. The second inequal-
ity follows from σl(ξr−1) ≥ σl(pi, j). The final inequality follows
from our (false) assumption.

Finally we get the left-hand-side byσi∗r (pi, j) ≥ σi∗r (ξ↘r) ≥ σi∗i, j
(ξ↘r),

and we get the right-hand-side since in layer h we have πi∗i, j ,i
∗
r (ξ↘r) ≥

PS∗P(ξ↘r) ≥ 1/2h+1.

L 3.4. ϕ(pi, j) = PS∗P(ξ↘r) · (1 − σi∗r (pi, j))/(1 − σi(pi, j)) is
an ε-PSP,i (pi, j).

P. Observe that σi∗i, j
(ξ↘r) ≤ σi∗r (ξ↘r) ≤ σi∗r (pi, j) ≤ σi∗i, j

(pi, j).

Now using our bound on PS∗P(ξ↘r)−PS∗P(pi, j) < ε/2h+1 and Lemma
3.3

1 − σi∗r (pi, j)
1 − σi(pi, j)

PS∗P(ξ↘r) −
1 − σi∗i, j

(pi, j)

1 − σi(pi, j)
PS∗P(pi, j)

<

1 − σi∗r (pi, j)
1 − σi(pi, j)

−
1 − σi∗i, j

(pi, j)

1 − σi(pi, j)

 PS∗P(pi, j) +
ε

2h+1

1 − σi∗r (pi, j)
1 − σi(pi, j)

≤
ε/2h+1

πi∗i, j ,i
∗
r (ξ↘r)

PS∗P(pi, j)
1 − σi(pi, j)

+
ε

2h+1

1 − σi∗i, j
(pi, j) + ε

1 − σi(pi, j)

≤
ε

2h+1

1 − σi∗i, j
(pi, j)

1 − σi(pi, j)
+

ε

2h+1 +
ε

2h+1 ε

≤
ε

2h−1 ≤ ε.

Once all ε-PSP,i (pi, j) have been computed we can calculate ρ̂i =∑k
j=1 wi, jϕ(pi, j). Since

∑k
j=1 wi, j = 1, their total error on the sum is

at most ε, and ρ̂i is an ε-PSP(Pi) as desired.
To bound the runtime, we need to construct O((1/ε) log(1/ε))

approximate skylines, each in time O(m). To handle each point pi, j

we need to calculate σl(pi, j) for two different values l. Each takes
time O(log k) time after preprocessing each uncertain point Pi in
O(k log k) time. Over all m points this requires O(m log k) time.

T 3.2. Consider a discrete uncertain data set P = {P1,
. . . , Pn} where each Pi = {pi,1, . . . , pi,k} so |Pi| = k and

∑n
i=1 |Pi| =

nk = m. For all uncertain points Pi we can compute a value ρ̂i such
that |ρ̂i − PSP(Pi)| ≤ ε in O(m((1/ε) log(1/ε) + log m)) total time.

Remark. This algorithm does not directly generalize to Rd. The
results on approximate (certain) skylines [16] combined with our
results in R2 indicate that there should exist ε-approximate ρ-chains
of size independent of k but exponential in d, however, for d > 3,
there may be no polynomial time algorithm. Proof of the existence
of such ε-approximate ρ-chains and possible polynomial time al-
gorithms in dimensions d ≥ 3 remains an open question.

3.3 A Monte Carlo Algorithm
In this section, we present a Monte Carlo algorithm for comput-

ing ε-PSP(Pi) for all 1 ≤ i ≤ n. We fix a parameter t to be chosen
later. The algorithm runs in t steps. In each step, we instantiatae
a specific location πi of uncertain point Pi; the location pi, j ∈ Pi

is chosen with probability wi, j. Let Π = {πi | 1 ≤ i ≤ n} ⊂ R2

be the resulting set of n points. We compute the skyline of Π. We
also maintain a vector ν = 〈ν1, . . . , νn〉, which is initially set to 0.
If πi appears on the skyline of Π, we increment the value of νi, so
νi keeps track of the number of instantiations of P in which Pi ap-
pears on the skyline. After the completion of t steps, we return the
value ρ̂i = νi/t as ε-PSP(Pi).

After preprocessing the weights {wi,1, . . . ,wi,k} in O(k) time into
a minimum-height binary tree, an instantiation πi of Pi can be done

194

in O(log k) time [23]. Thus instantiating n uncertain points takes
O(n log k) time after O(m) preprocessing. Given an instantiation Π

of P, finding the skyline of Π takes O(n log n) time [18]. Thus the
overall algorithm takes

O(tn(log n + log k) + m) = O(m + tn log m)

time. What remains is to determine the value of t that guarantees
|PSP(Pi) − ρ̂i| ≤ ε for all i with high probability.

First consider a fixed uncertain point Pi. For 1 ≤ j ≤ t, let
X j ∈ {0, 1} be a random indicator variable, which is 1 if Pi appears
on the skyline in iteration j and 0 otherwise. Clearly these variables
are independent. Set X =

∑t
j=1 X j. Furthermore, X = νi = ρ̂it

and E[X] = PSP(Pi)t. Using a simplified version of Chernoff-
Hoeffding theorem (see e.g. [23]), we obtain

Pr
[
|PSP(Pi) − ρ̂i| > ε

]
= Pr[|PSP(Pi)t − νi| > εt]
≤ Pr[|E[X] − νi| > εE[X]]

< exp(−ε2t).

If we choose

t ≥
1
ε2 ln

n
δ
,

then Pr[|PSP(Pi) − ρ̂i| > ε] < δ/n. Hence,

Pr[∃i ≤ n | |PSP(Pi) − ρ̂i| > ε] < δ,

and, we obtain the following theorem.

T 3.3. Let P = {P1, . . . , Pn} be a set of n uncertain points
in R2, and let m be the total input size of m. Let 0 < δ, ε < 1 be
two parameters. For each Pi ∈ P a value ρ̂i can be computed in
O(m + (1/ε2)n log m log(n/δ)) time such that |ρ̂i −PSP(Pi)| ≤ ε for
all 1 ≤ i ≤ n with probability at least 1 − δ.

Remarks. (i) The algorithm presented above extends to higher
dimensions: we simply use the algorithm for computing the skyline
of a set of points in Rd [18], which takes O(n logd−2 n) time. The
running thus becomes

O(m + (1/ε2)n(logd−2 n + log k) log(n/δ)).

(ii) Since all instantiations Π of uncertain points in P are chosen
together, the algorithms can be extended to operate on joint distri-
butions over the uncertainty, given that we have a model to sample
from that joint distribution.

4. DISCUSSION
This paper studies asymptotic results in computing skylines for

uncertain data. We first present two new algorithms for exactly
computing the probability that each uncertain point is on the sky-
line, and we show that under a specific realistic model, these are
optimal up to a polylogarithmic factor. Then we present two new
near-linear time algorithms for approximately computing the prob-
ability that each uncertain points is on the skyline. For both prob-
lems, one algorithm easily extends to higher dimensions, and the
other provides a data structure which allows (approximate) deter-
mination of the probability a query point will be on the skyline in
logarithmic time.

It would be interesting to construct a data structure in high di-
mensions that has size near-linear in m and polynomial in d, and
that would allow for querying the probability a point is on the sky-
line in logarithmic time.

An important direction is determining the empirical implications
of these algorithms: how well do they work in practice on real-
world data sets? Since they are based on well-studied data struc-
tures, we suspect that they can be made I/O efficient, and hence
suitable for enormous data sets.

Another important empirical direction is exploring the best (most
useful) concise representation of an approximate skyline. Return-
ing all uncertain points which have probability greater than ρ of
being on the skyline can produce both large answers, and not con-
tain entire regions of the skyline. Since a skyline is supposed to
be a concise summary, and uncertainty (and inherently approxima-
tion) is involved, we argue that returning sparse approximate sky-
lines are important, rather than all points on or near the skyline. A
consumer of this data will likely not care about two nearly iden-
tical points that occupy similar parts of the skyline. In higher di-
mensions, providing approximate levels of uncertain skylines with
guarantees remains a challenge (as with similar problems on pre-
cise data [16]). A similar argument for the importance of concise
skylines is made regarding work on k-dominant skylines [6] and
other formulations [24, 12]; the difference is that our work pro-
vides approximation guarantees in the value of the attributes and
operates on data that has defined uncertainty.

5. REFERENCES
[1] P. K. Agarwal and M. Sharir. Arrangements of surfaces in

higher dimensions. In J. Sack and J. Urrutia, editors,
Handbook of Computational Geometry, pages 49–119.
North-Holland, 2000.

[2] P. Agrawal, O. Benjelloun, A. D. Sarma, C. Hayworth,
S. Nabar, T. Sugihara, and J. Widom. Trio: A system for
data, uncertainty, and lineage. In ACM Symposium on
Principles of Database Systems, 2006.

[3] M. J. Atallah and Y. Qi. Computing all skyline probabilities
for uncertain data. In ACM Symposium on Principles of
Database Systems, pages 279–287, 2009.

[4] J. L. Bentley. Multidimensional binary search trees used for
associative searching. Communications of the ACM,
18(9):509–517, 1975.

[5] S. Börzsönyi, D. Kossman, and K. Stocker. The skyline
operator. In IEEE International Conference on Data
Engineering, 2001.

[6] C.-Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and
Z. Zhang. Finding k-dominant skylines in high dimensional
space. In ACM-SIGMOD International Conference on
Management of Data, 2006.

[7] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Evaluating
probabilitic queries over imprecise data. In ACM-SIGMOD
International Conference on Management of Data, 2003.

[8] G. Cormode, A. Deligiannakis, M. Garafalakis, and
A. McGregor. Probabilistic histograms for probabilistic data.
In International Conference on Very Large Data Bases, 2009.

[9] G. Cormode and M. Garafalakis. Histograms and wavelets of
probabilitic data. In IEEE International Conference on Data
Engineering, 2009.

[10] G. Cormode, F. Li, and K. Yi. Semantics of ranking queries
for probabilistic data and expected ranks. In IEEE
International Conference on Data Engineering, 2009.

[11] N. Dalvi and D. Suciu. Efficient query evaluation on
probabilitic databases. The VLDB Journal, 16:523–544,
2007.

[12] A. Das Sarma, A. Lall, D. Nanongkai, R. J. Lipton, and
J. Xu. Representative skylines using threshold-based

195

preference distributions. In IEEE International Conference
on Data Engineering, 2011.

[13] A. Das Sarma, A. Lall, D. Nanongkai, and J. Xu.
Randomized mutli-pass streaming skyline algorithms. In
International Conference on Very Large Data Bases, 2009.

[14] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars.
Computational Geometry Algorithms and Applications.
Springer, 2008.

[15] H. Edelsbunner, L. J. Guibas, and J. Stolfi. Optimal point
location on a monotone subdivision. SIAM Journal of
Computing, 15:317–340, 1986.

[16] V. Koltun and C. H. Papadimitriou. Approximately
dominating representatives. Theoretical Computer Science,
371:148–154, 2007.

[17] D. Kossman, F. Ramsak, and S. Rost. Shooting stars in the
sky: an optimal algorithm for skyline queries. In
International Conference on Very Large Data Bases, 2002.

[18] H. T. Kung, F. Luccio, and F. P. Preparata. On finding the
maxima of a set of vectors. Journal of ACM, 22(4):469–476,
1975.

[19] J. Li, B. Saha, and A. Deshpande. A unified approach to
ranking in probabilistic databases. In International
Conference on Very Large Data Bases, 2009.

[20] X. Lian and L. Chen. Monochromatic and bichromatic
reverse skyline search over uncertain databases. In
ACM-SIGMOD International Conference on Management of
Data, 2008.

[21] M. Löffler and J. M. Phillips. Shape fitting of point sets with
probability distributions. In European Symposium on
Algorithms, 2009.

[22] M. Löffler and J. Snoeyink. Delaunay triangulations of
imprecise points in linear time after preprocessing. In
Symposium on Computational Geometry, pages 298–304,
2008.

[23] R. Motwani and P. Raghavan. Randomized Algorithms.
Cambridge University Press, 1995.

[24] D. Nanongkai, A. Das Sarma, A. Lall, R. J. Lipton, and
J. Xu. Regret-minimizing representative databases. In
International Conference on Very Large Data Bases, 2010.

[25] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and
progressive algorithm for skyline queries. In ACM-SIGMOD
International Conference on Management of Data, 2003.

[26] J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic skylines
on uncertain data. In International Conference on Very Large
Data Bases, 2007.

[27] F. P. Preparata and M. I. Shamos. Computational Geometry
An Introduction. Springer, 1985.

[28] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient progressive
skyline computation. In International Conference on Very
Large Data Bases, 2001.

[29] Y. Tao, R. Cheng, X. Xiao, W. K. Ngai, B. Kao, and
S. Prabhakar. Indexing multi-dimensional uncertain data
with arbitrary probability density functions. In International
Conference on Very Large Data Bases, 2005.

[30] D. E. Willard. New data structures for orthogonal range
queries. SIAM Journal of Computing, 14(1):232–253, 1985.

[31] W. Zhang, X. Lin, Y. Zhang, W. Wang, and J. X. Yu.
Probabilistic skyline operator over sliding windows. In IEEE
International Conference on Data Engineering, 2009.

196

