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ABSTRACT
Trajectories representing the motion of moving objects are typi-
cally obtained via location sampling, e.g. using GPS or road-side
sensors, at discrete time-instants. In-between consecutive samples,
nothing is known about the whereabouts of a given moving object.
Various models have been proposed (e.g., sheared cylinders; space-
time prisms) to represent the uncertainty of the moving objects both
in unconstrained Euclidian space, as well as road networks. In this
paper, we focus on representing the uncertainty of the objects mov-
ing along road networks as time-dependent probability distribution
functions, assuming availability of a maximal speed on each road
segment. For these settings, we introduce a novel indexing mecha-
nism – UTH (Uncertain Trajectories Hierarchy), based upon which
efficient algorithms for processing spatio-temporal range queries
are proposed. We also present experimental results that demon-
strate the benefits of our proposed methodologies.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and GIS

General Terms
Algorithm, Performance
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1. INTRODUCTION
With the fast advances in communication and sensing/positioning

technologies, many important applications such as mobile com-
munication systems, vehicle guidance and traffic management sys-
tems, geographical information systems, etc, rely on Moving Ob-
jects Databases (MOD) [13] to efficiently retrieve data and process
queries.
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Literature in this area can be roughly classified into two cate-
gories according to the settings they considered:

• The information arrives as a stream of location samples ob-
tained, e.g., from the on-board GPS devices or roadside sen-
sors. Research work in this settings focus on improving the
efficiency of algorithms by avoiding unnecessary re-evaluation
upon certain updates [20, 10].

• The information about moving objects trajectories is avail-
able as a sequence of (location, time) values, corresponding
to the past motions – or, corresponding to the predicted fu-
ture motions, obtained via some route-planning tools [8, 19].

In some sense, our work belongs to the second kind of settings –
i.e., we assume that location-in-time samples of the moving objects
are already available in the MOD. Traditionally, when querying the
moving objects, a normal assumption is that the entire trajectories
are available. However, at the heart of the motivation for this work,
is the observation that the GPS devices and/or roadside sensors can
only provide location samples at discrete time-instants, and nothing
is known about the objects’ whereabouts in-between two consecu-
tive samples. To tackle this problem and query about the object’s
movement in-between those samples, a typical technique is to ap-
ply interpolation [19] by which means the sampled positions be-
come the end points of line segments, and the trajectories are trans-
formed into polylines in 3D (x-y-time) space. However, as pointed
out in several work [4, 18, 23], interpolation cannot reflect the ex-
act movement pattern of an object. In fact, a moving object can
be located anywhere within a given (bounded) region, for as long
as it does not violate certain constraints (e.g., maximum allowed
velocity). In the light of this observation, various data models and
query processing algorithms that incorporate uncertainty in the rep-
resentation of trajectories and semantics of queries have been pro-
posed [3, 4, 18, 23, 30, 29, 28].

While the above approaches target the moving objects in free
space, recent years have brought about many results on spatio-
temporal query processing in Spatial Network Database (SNDB)
and road networks [6, 14, 16, 21, 22, 26], since in many practi-
cal scenarios objects move in a constrained environment (roads,
railways, rivers, etc) rather than free space. Similar with the free
space, moving objects on road networks are also observed at par-
ticular time instants, which means uncertainty inherently exists in-
between those sampled positions. Consider a taxi travelling at the
speed of 50km/h, if it sends its current location to central server
every 3 minutes (which is quite normal in taxi management ap-
plications), any consecutive points of the trajectory record will be
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about 2.5km away from each other. Even the movement of taxi
is restricted on road segments, little is known about its exact lo-
cation at specific time instant since the path connecting these two
sampled locations is usually not unique given the distance is that
long. Besides, travel speed can hardly be constant in normal traffic
area. This kind of uncertainty will further increase when the sam-
pling rate is even lower, which can occur in many scenarios, such
as demand for energy and communication cost reduction [10, 33]
in low battery equipments, non-availability of GPS coverage in cer-
tain areas, etc. Motivated by these observations, in this paper we
will incorporate uncertainty into trajectories on road networks and
support continuous range queries for them. However, we cannot
apply the models and algorithms for uncertain trajectories in free
space [23, 18, 30, 29, 28], since the uncertain region is entirely dif-
ferent when the movement is constrained in road networks. In the
sequel, we use the following example to better explain the impact
of uncertainty on the range query semantics.

1.1 Motivational Example
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Figure 1: Range Query on Road Network

Assume that a given object a is moving along a road network,
as illustrated in Figure 1, and that there have been two consecutive
location-samples: p1 at t1 = 0 and p2 at t2 = 7. Each road seg-
ment has associated length and maximum speed, allowed by law or
other physical constraints (e.g., road-work, weather/visibility, etc.)
– from which its minimum travel time costs can be derived. In the
scenario of Figure 1, these numbers are indicated along the respec-
tive edges and, as shown, there are three possible routes in-between
the location samples, specifically, between the intersections A and
D : – (AC,CD) with a travel time 3 + 3 = 6 time units; – (AD)
with a travel time of 4 units; – and (AB,BD) with a travel time of
2 + 3 = 5 time units. Now, consider the following query:
QR: Retrieve all the moving objects that are within distance r from
the location q at time t = 2.

When it comes to the object a, the question becomes: should a
be returned as (part of) the answer to QR?

A straightforward idea would be to attempt to construct a deter-
ministic trajectory of a, e.g., via interpolation, and then solve the
problem in a deterministic manner. The two key assumptions be-
hind this are: (a) the object moves along a particular route, e.g.,
the optimal one in terms of travel time; and (b) the object travels
with a constant speed. With these assumptions, we can infer that
in-between the two samples, the object travelled along the route
p1ADp2 and its location at t = 2 is E, which means, the object
a is not part of the answer-set of QR. However, this solution is, in
a sense, incomplete, because it considers only one (e.g., the most
optimistic) scenario, which need not happen in real application-
scenarios. If we drop the two assumptions and re-visit the problem,
we have the following observations:

1. Although the object a has three choices at the intersectionA,

there is no way that it travelled along the route (AC,CD).
Namely, even if it moved with the maximum speed along
each segment, the earliest possible time for it to arrive at the
sampled location p2 would be t′2 = 8, which is later then the
actual sample-time.

2. Hence, we now have only two possible paths between the
intersections: AD and (AB,BD).

• If the object a travelled along AD, it has an additional
flexibility of moving a bit slower than the maximum
speed. However, in order for it to make it at p2 at
t2 = 7, it must have been located somewhere within
the segment AF at t = 2. This, in turn, implies that
it is possible for the object a to be within r from q at
t = 2.
• If the object a travelled along (AB,BD), the first ob-

servation is that it must have moved with the maximum
speed throughout each segment (otherwise, it would not
have reached p2 at t2 = 7). This, in turn, enables us
to infer that at t = 2, the object a is located at the po-
sition G, which also falls inside the disk centered at q
and with radius r.

By considering the uncertainty of the trajectory, we conclude that
a has some possibility to qualify a result to QR. Besides, by mod-
elling the uncertainty, we can also infer how likely it is for a to
qualify. In this way, we can provide more insightful information
to the users, which cannot be delivered by any traditional deter-
ministic approach. Clearly, the situation becomes even challenging
and complicated if one is interested in processing continuous range
queries.

1.2 Challenges and Contributions
The above example demonstrates the two main sources of the

uncertainty for objects moving on road networks:

1. Moving objects need not always follow the shortest travel-
time/distance path between two locations. There is a variety
of reasons, such as the driver preferring to drive near land-
marks [25], a detour due to road works, etc.

2. In reality, one cannot expect that a moving object will main-
tain a constant speed along a given road segment. Such fluc-
tuations will have to somehow be captured in the model and,
consequently, the answer to a given range query.

Hence, in order to process a spatio-temporal range query for a
collection of objects moving on a given road network, one needs
to provide a model of the uncertainty and capture its impact on the
query semantics. However, it brings challenges in many ways:

• Uncertainty Model. By eliminating the two assumptions of
the deterministic approach, the location of a moving object
becomes probabilistic. But as a complete uncertain trajec-
tory model, we have to give the probability distribution func-
tion (PDF) of its location at all time instants. This is not
an straightforward task, since the object’s motion consists of
uncountably many locations and time-instants.

• Query Syntax and Semantics. Since the locations of mov-
ing objects are probabilistic, whether an object should be re-
turned for the query is not a binary decision any more. In-
tuitively, each object should be associated with a qualifica-
tion probability to indicate how likely it is the answer of the
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query. Only the ones having probabilities above a desired
threshold should be returned. However, how to capture the
qualification probability in the query syntax and semantics is
still not clear.

• Query Processing. Real world applications often need to
handle a large number of trajectories, making it prohibitive to
individually process a given range query for each trajectory.
Hence, effective indexing structure and efficient processing
algorithms are critical for the applicability of a given solu-
tion.

In this paper, we represent the uncertain locations of objects
moving along road networks as time-dependent probability dis-
tribution functions (pdf), and then take a step towards develop-
ing techniques for efficient processing of spatio-temporal range
queries incorporating the qualification probability of the objects
belonging to the answer-set. In summary, following are our main
contributions:

• We propose an intuitive model for Uncertain Trajectory rep-
resenting the motion along a road network, and provide a
unified pdf for the possible locations of a moving object at a
given time-instant.

• We formulate both Snap-shot and Continuous Probabilis-
tic Range Query whose semantics captures our uncertainty
model.

• We design effective indexing structure as well as efficient
processing algorithms for both snap-shot and continuous range
queries.

• We conduct extensive experimental evaluation which demon-
strates the benefits of the methodology proposed in this work.

The rest of this paper is organized as follows. In Section 2 we
introduce the necessary background, and follow with proposing the
uncertain trajectory model and formally defining the probabilis-
tic range queries over the uncertain trajectories. In Section 3 we
present the query processing methodology, beginning with index-
ing structure, and following with the pruning (verification) and re-
finement algorithms. Section 4 presents our experimental observa-
tions and Section 5 positions our work with respect to the related
literature. Finally, in Section 6, we give some concluding remarks
and outline directions for future work.

2. UNCERTAIN TRAJECTORY MODEL
In this section, we focus on the terminology necessary for the

development of our main results. Firstly, we define the model of
uncertain trajectories in road network used throughout this paper.
Subsequently, we focus on how such trajectories can be constructed
and represented in a MOD and, based on this model, we formulate
the basic snap-shot probabilistic range query.

2.1 Road Networks and Uncertain Trajecto-
ries

Let R denote the set of the real number and R2 the 2D Euclid-
ian space for which we assume a chosen reference coordinate sys-
tem. Following the previous work on MOD-related modelling and
querying of moving objects on road networks (e.g., [12, 14, 15,
21, 22, 26]), we adopt graphs for representing the road networks.
Formally:

DEFINITION 1. A road network is represented by a graph G =
(V,E) embedding in R2, where V andE are the set of vertices and
edges, respectively. Each edge e is associated with an attribute vec-
tor 〈l(e), s(e)〉, corresponding to the length and maximum allowed
speed of e.

Note that Definition 1 implicitly represents the road network
as an undirected graph, however, our approach can be straightfor-
wardly extended to capture directed graphs. which has no impact
on our algorithms. Another implicit information contained in Def-
inition 1 is the value of tc(e), which is, the minimum time-cost
needed to travel through a given edge e, which can be calculated as
tc(e) = l(e)/s(e).

Ideally, a trajectory should correspond to a continuous map fT :
R+ → R2, however, in reality, the GPS (and/or roadside sensor)
based location samples can only be obtained at discrete time-instants.
Hence, we have the notion of the trajectory sample, formally de-
fined as:

DEFINITION 2. A trajectory sample of a moving object a in
road network G is a finite sequence of positions with timestamp:
TSG(a) = {(t1, p1), (t2, p2), . . . , (tn, pn)}, where, for i = 1, . . . , n,
pi is the sample position in G at ti ∈ T .

Remark. The raw trajectory samples obtained from GPS devices
are typically of the form of (timestamp, longitude, latitude).
How to align the (longitude, latitude) pair onto the digital map
of a given road network is an interesting research problem itself
and outside the scope of this paper. We assume all the sampled
locations have already been aligned on the road network by some
map-matching algorithm [1, 2, 11, 31].

Typically, to complete the definition of the trajectory as a map
from R+ to R2, we can assume that the moving objects always
follow the shortest paths and travel at a constant speed between
two consecutive trajectory samples. In this way, the position pa(t)
of the object a on a road network G at the time-instant t (t ∈
(ti, ti+1)) can be calculated as pa(t) = pa(ti) +λd(pa(ti), pa(ti+1)),
where λ = (t − ti)/(ti+1 − ti) and d(pa(ti), pa(ti+1)) denotes
the network-distance between the sample locations at ti and ti+1

along the shortest path. However, as we discussed in Section 1,
these assumptions need not hold in real-world applications, hence
the uncertainty inherently exists in the location of a moving object
between trajectory samples. Unlike the space-time prisms [18, 23]
where the 2D projection of the uncertain location correspond to an
ellipse, uncertain trajectories models on road networks are different
due to the constraints of movement [17].

Specifically, we now have two types of uncertainty.

2.1.1 Path Uncertainty
As illustrated by the Motivational Example in Section 1, when

there are multiple paths connecting two positions pi, pi+1 of mov-
ing object a, it is possible for a to move along a path, say Pj ,
which is different from the shortest path — for as long as Pj can
be travelled through within the time period [ti, ti+1]. The path un-
certainty can be more formally described by the notion of valid
possible path.

DEFINITION 3. Given two trajectory samples (ti, pi) and (ti+1, pi+1)
of a moving object a on road network, the set of possible paths
(PPi) between ti and ti+1 consists of all the paths along the routes
(sequence of edges) that connect pi and pi+1, and whose minimum
time costs are not greater than ti+1 − ti, i.e.,

PPi(a) = {Pj ∈ Paths(pi, pi+1)|tc(Pj) ≤ ti+1 − ti},

285



where Paths denotes all the paths between pi and pi+1, tc(Pj) is
the sum of all the tc(e) of e ∈ Pj .

Whenever clear from context, we also use PPi(a) to denote the
random variable indicating the path taken by a between ti and ti+1.
The probability distribution function of PPi may be application de-
pendent (e.g., uniform or weighted distribution) and does not affect
our main ideas. For example, if the pdf of selecting a particular
possible path is uniform, then:

Pri,j(a) = Pr[PPi(a) = Pj ] =
1

|PPi|
(1)

where |PPi| denotes the cardinality of the set of all the possible
paths PPi.

As another example, the probability of a particular path being
taken by an object a can be inversely proportional to time-cost of
that path, i.e.,

Pri,j(a) = Pr[PPi(a) = Pj ] =
1/tc(Pj)∑

Px∈PPi(a)
1/tc(Px)

(2)

Unless stated otherwise, in the rest of this paper we assume a
uniform pdf for the possible location of an object at a given time-
instant.

2.1.2 Location Uncertainty
For a particular Pj ∈ PPi, we still cannot know the exact lo-

cation of the moving object at a given time-instant t ∈ (ti, ti+1),
because the velocity of the object along Pj need not be constant all
the time. However, with the speed limit of each edge and, conse-
quently, its time-cost available, we can restrict the location of the
object within a segment of the path Pj .

DEFINITION 4. Given a path Pj ∈ PPi(a), the Possible Loca-
tions of a given moving object a with respect to Pj at t ∈ [ti, ti+1]
is the set of all the positions p ∈ Pj from which a can reach pi (re-
spectively, pi+1) within time period t − ti (respectively, ti+1 − t)
i.e.,

PLi,j(t) =

{
p ∈ Pj

∣∣∣∣ tcPj (pi, p) ≤ t− ti
tcPj (p, pi+1) ≤ ti+1 − t

}
(3)

Clearly, PLi,j(t) is a continuous subset of Pj . Once again, the pdf
of the object’s whereabouts alongPLi,j(t) is likely to be application-
dependent, e.g., it can be uniform across the entire PLi,j(t), or it
can vary along different (portions of the) edges comprisingPLi,j(t).
Let PLi,j(t) denote the network-length of PLi,j(t). In the case of
a uniform pdf, the probability that the object a falls inside some por-
tion [pA, pB ] ⊂ PLi,j(t), whose network-distance is d(pA, pB),
can be calculated as:

Pr[pa(t) ∈ [pA, pB ]] = Pri,j(a) · d(pA, pB)

PLi,j(t)
(4)

Intuitively, the above formula states that when calculating the prob-
ability of an object a being somewhere along the segment pA, pB
at a given time-instant t, one needs jointly consider the probability
of Pj being selected from among the possible paths.

The concepts introduced so far can be illustrated by the follow-
ing:

EXAMPLE 1. Consider the trajectory samples of moving object
a in road network as shown in Figure 2. For illustration purpose,
we use a unit grid (the side of each cell is 1) as measurement and

assume the maximum speeds of all edges are 1, hence, the travel-
time cost is also 1 for each edge. Since the minimum time costs of
both P1 and P2 are the same, the set PPi consists of both paths
with equal probability, PPi(a) = {(P1, 50%), (P2, 50%)}, re-
gardless of whether the pdf is uniform or weighted by the respective
tc’s. Suppose that we want to determine the possible locations of a
at t = 4. If a moves along P1, it can reach as far as p1 (with max-
imum speed). On the other hand, it has to arrive at least p2 when
t = 4 since otherwise it cannot reach the next sample position
when t = 7. Thus, the segment p1p2 is the probabilistic location
PLi,1(4) of a when P1 is chosen. Similarly, we can infer the prob-
abilistic location when P2 is chosen (shown as the blue segment
along P2). In accordance with the formula 4 above, the probability
that the object a will be somewhere between the point A, the mid-
point of p1, p2, and p1 in Figure 2 (darker, thicker region) can be
calculated as 0.5 · 0.5 = 0.25.

P1

P2ti =0

ti+1 =7

Pri,1(4)
p1p2

Pri,2(4)

Figure 2: Illustration of path and location uncertainty

We are now in position to formally define uncertain trajectories
on road networks.

DEFINITION 5. Given a trajectory sample TS(a) = {(t1, p1),
(t2, p2), . . . , (tn, pn)} of moving object a on road network G, the
uncertainty trajectory UT (a) : t → PLa is a mapping from
time instant t ∈ T to the probabilistic location on G, i.e, ∀i =
1, 2, . . . , n,

PLa(t) =

{
pi, t = ti
PLi(t), t ∈ (ti, ti + 1)

(5)

where PLi(t) is the union of all probabilistic locations on each
possible path, i.e., PLi(t) =

⋃
Pj∈PPi(a)

PLi,j(t).

2.2 Uncertain Trajectory Construction
While Definition 5 provides a declarative way of defining uncer-

tain trajectory based on the discrete set of a given trajectory sample,
it provides no procedural means on constructing a structure that can
be used to store uncertain trajectories in the MOD. The two basic
problems are:

1. Given the road network and the trajectory sample, how can
one obtain the set of possible paths.

2. Given that the points along the road networks, as well as the
time-instants in-between consecutive samples are uncount-
ably infinite, how can one provide a finite/discrete represen-
tation for the probabilistic locations at all time instants.

2.2.1 Generating Possible Paths
Given any two consecutive trajectory samples (ti, pi) and (ti+1, pi+1)

of moving object a, in order to generate the set PPi(a), we proceed
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as follows. Assume that we have a "virtual object" a′ which travels
from pi at maximum speed for a period of ti+1 − ti. Whenever
a vertex in the graph is encountered which has > 2 incident edges,
a′ it will try every adjacent edge except the one it comes from. Fi-
nally, all the routes passed by a′ that can successfully reach pi+1

in time will form the set of PPi.
The idea, in a sense, amounts to finding all possible paths be-

tween pi and pi+1, which are below certain cost (ti+1 − ti). To
implement this, we use a priority queue (heap) H which maintains
the explored paths along with the minimum time costs for passing
through them. In each successive round, the algorithm will retrieve
a path P from the top of H and expand P by using its adjacent
edges that have not been visited yet. There are two distinct cases to
be handled:

• If pi+1 is on e, only the partial edge needs to be appended to
P . Then we output P as a possible path if its time cost is not
greater than (ti+1 − ti).

• Otherwise, we just append e to P and insert it back to H .

This process is repeated until the time cost of the top element in
H is greater than (ti+1− ti), or the heap becomes empty. Note that
for the convenience of illustration, we assume that an moving ob-
ject travels via a simple path in between consecutive time instants.
However, the proposed method can also handle the cyclic path with
slightly modification.

v1

ti =0

pi+1

pi

v4

v3

v5v2

4

4

4

1

3

1

2

1 ti+1 =9

Figure 3: Generating possible path

EXAMPLE 2. To explain this process, consider a fraction of
road network shown in Figure 3, where the number beside each
edge is its minimal time cost. During the search for the PPs be-
tween pi and pi+1, the dynamic content of the heap H is shown in
the following table.

Iteration Content of H: 〈path, cost〉
1 〈pi → v1, 1〉
2 〈pi → v1 → v3, 4〉

〈pi → v1 → v2, 5〉
〈pi → v1 → v5, 5〉

3 〈pi → v1 → v2, 5〉
〈pi → v1 → v5, 5〉
〈pi → v1 → v3 → v4, 6〉

4 〈pi → v1 → v5 → v4, 6〉
〈pi → v1 → v3 → v4, 6〉

5 〈pi → v1 → v5 → v4 → pi+1, 7〉
〈pi → v1 → v3 → v4 → pi+1, 7〉

2.2.2 Probabilistic Location Function
After all the elements of PPi have been obtained, and for every

i in the trajectory sample, we still need to quantify the probabilis-
tic locations of a. In other words, a probabilistic location function
(PLF) is required for every time instant in-between samples. As we

mentioned, there are uncountably many of them and, to explain our
methodology, consider a particular path Pj ∈ PPi. Suppose Pj

sequentially connects the following n + 1 points: v0i,j → v1i,j →
. . . → vni,j , where v0i,j = pi, v

n
i,j = pi+1; and all the other vki,j

(k 6∈ {0, n}) are vertices of the graph from the underlying road
network. Extending Definition 5, observe that at any t ∈ [ti, ti+1],
the PLF of a can be represented by an upper and lower bound func-
tion, namely PLF+

i,j(t) and PLF−i,j(t), indicating the furthest and
nearest position that a can reach from pi along Pj .

PLFi,j(t) :

{
PLF+

i,j(t) = {p ∈ Pj |tcPj (p, pi) = t− ti}
PLF−i,j(t) = {p ∈ Pj |tcPj (p, pi+1) = ti+1 − t}

(6)
Due to the continuity of the time instants we cannot store all

such PLFs. However, we observe it suffices to store just a finite
(discrete) collection of vertex-critical time instants. To explain this,
we use tea(vki,j) and tld(vki,j) to denote the earliest arrival time and
latest departure time for a given vertex vki,j (k ∈ {0, 1, . . . , n})
along Pj . Trivially, tea(v0i,j) = ti and tld(vni,j) = ti+1. Then the
earliest arrival time and latest departure time of other vertices can
be inferred recursively as follows.

tea(vki,j) = tea(vk−1
i,j ) + tc(vk−1

i,j , vki,j) (7)

tld(vki,j) = tld(vk+1
i,j )− tc(vki,j , vk+1

i,j ) (8)

Then, for a given Pj , both PLF+
i,j and PLF−i,j are piece-wise

linear functions which can be obtained by sequentially connecting
the pairs (tea(vki,j), v

k
i,j) and (tld(vki,j), v

k
i,j) for k = 0, 1, . . . , n

respectively. The concepts of tea(v) and tld(v) are illustrated in
the following:

EXAMPLE 3. Figure 4 shows the PLF for the two Possible Paths
(derived at the last iteration) in the example from Figure 3. For
any time instant t, the bold line segments bounded by PLF− and
PLF+ represent the probabilistic locations of the moving object.
Note that in the locations pi and pi+1, the length of such segments
is 0, since those locations correspond to the actual samples.

v1pi+1 piv4 v3v5 v1 v4 pi+1

t

3

6

9

PLF+

PLF-PLF(t)

Figure 4: The probabilistic location function

2.2.3 Snap-shot Probabilistic Range Query
We now formally define the basic form of the probabilistic range

queries for uncertain trajectories on road networks, pertaining to a
particular time-instant.

DEFINITION 6. Let D denote a MOD of uncertain trajectories
on a road network G, q ∈ G denote a query-point, r ∈ R denote
a range, tq denote a (query) time-instant, and α ∈ [0, 1] denote
a probability threshold. The answer to the snap-shot probabilistic
range query SPR(q, tq , r, α, D) consists of all the objects a ∈ D
whose qualification probability (QP) of being within network dis-
tance r from q at tq , is not less than α.
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Let pdfa(x) denote the probability density function that the mov-
ing object a is at the location x at tq . For the above definition, the
qualification probability (QP) of a being within network distance
r with respect to q at a given time instant tq ∈ (ti, ti+1), can be
calculated as:

QP r
a,q(tq) = (9)∑

Pj∈PPi

Pr[PPi = Pj ] ·
∫
x∈{p′∈Pj |d(p′,q)≤r}

pdfa(x)dx

We conclude this section with a table providing a summary of
the symbols introduced so far.

Notation Definition
G graph representing the road network
v vertex of G
e edge of G
p a position on G
P a path of G
TS(a) trajectory sample of moving object a
d(p, q) network distance between p and q
dP (p, q) distance between p and q along path P
tc(p, q) minimum time cost from p to q
tcP (p, q) minimum time cost from p to q along path P
PPi possible path between the i-th and i+ 1-th samples
PLi(t) the probabilistic location at t ∈ (ti, ti+1)
PLF (t) the probabilistic location function
QP r

a,q Qualification Probability of a within distance r from q

Table 1: Summary of notations

3. PROCESSING PROBABILISTIC RANGE
QUERIES

In this section, we present our results for processing probabilistic
range queries for uncertain trajectories on road networks. Our ap-
proach follows the traditional query processing steps of filtering +
refinement. In the sequel, we first propose a novel indexing struc-
ture, Uncertain Trajectory Hierarchy, to organize the trajectories
effectively and to use it in the filtering stage. Subsequently, we fo-
cus on the details of the actual processing techniques for snapshot
range queries, followed by continuous range queries.

3.1 Indexing Structure
To index the uncertain trajectories, we borrow some ideas from

FNR-Tree [9] which is proposed to organize moving objects on
road networks. An FNR-Tree consists of a top level 2D R-Tree
whose leaf entries contain pointers to 1D R-Trees. The 2D R-Tree
is used to index the edges of the network, for each of which there
is an 1D R-Tree indexing the time interval of the objects traversing
it. However, we will not adopt this structure directly because:

• The purpose for the FNR-Tree using a 2D R-Tree in top level
is to find the edges intersected with the query window in Eu-
clidean space efficiently. But in our problem, the edge where
the query point falls can be determined by its unique identi-
fier, in which means, using R-tree in top level is inefficient in
our case.

• The FNR-Tree is developed to index the trajectories of de-
terministic moving objects, for which we know about their
precise locations at all time instants. But in this paper we are
handling uncertain trajectories, which means the exact time
interval of the objects traversing each edge is not available.
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ID:2

e2

ID:n

en

...

...Edge Hash Table

root

Movement R-tree

Trajectory List

a1

a2

...
am

t1,p1 ti,pi... ...

Pj: pi → ... → e2 → ... { ...
...

VPPi

... ...

Figure 5: Uncertain Trajectory Hierarchy

So the indexing structure should be augmented to capture this
uncertainty.

To this end, we propose a novel indexing structure, Uncertain
Trajectory Hierarchy (UTH), to index the road network, object
movement and trajectories in a hierarchical style. It consists of
three major components and its structure is demonstrated in Figure
5.

We now explain the main components of the UTH.
Edge Hash Table. Since in our problem setting, all the positions
are given in the form of edge ID and offset, there is no need to index
the edges by R-tree. To retrieve an edge by its ID effectively, we
simply adopt hash table that can fit into the main memory even for
a large road network (e.g., tens of thousands of edges).
Movement R-tree. To quickly determine if an edge contains the
candidate objects of interest, we maintain an 1D R-tree (mR) to
organize the time periods within which some objects are moving
on it. For an edge e = (vi, vj), its mR can be constructed as
follows. If e belongs to a possible path of some object a, an entry
will be inserted into mR along with [tea(vi), tld(vj)], indicating
the maximum time interval (MTI) for a being on e when following
this path. Please note that each entry corresponds to the movement
of certain possible path. So if e is contained by multiple possible
paths of the same object, more than one entries will be inserted.
Besides, a pointer to the path is also recorded in the entry to speed
up the search. Based on the size of road network and number of
trajectories, this component may be stored in memory or disk or
both.
Trajectory List. This component stores the actual trajectory data.
For each moving object a, its trajectory samples are sorted based on
timestamps. Each trajectory sample TSi(a) points to the set PPi.
For each path Pj ∈ PPi, tea and tld of all vertices it traversed
are recorded so that PLFi,j(t) can be obtained efficiently. This
part is usually stored on disk due to the high space requirement,
and retrieved on demand (usually in the refinement phase of query
processing).
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To build the UTH, we first initialize an empty movement R-tree
for each edge. Then we compute the possible paths for all the mov-
ing objects. During this process, whenever an edge e is encoun-
tered and its MTI becomes available, an entry is inserted into the
movement R-tree of edge e.

3.2 Processing Snap-shot Range Queries
The first observation for processing a given range query is that

we only need to consider the moving objects whose possible paths
is within the query range at some time between the query time in-
terval. In this light, the snap-shot range queries can be processed in
the filtering – refinement style. Specifically, it can be conducted in
the following three steps.
Range Network Expansion. Since the range r is explicitly spec-
ified in the syntax of the query, as a first step we compute all the
affected edges, which is, the ones that contain some parts with ≤ r
network distance from q. This can be done by finding the expan-
sion tree [21] of q, denoted by ET (q, r), which is a tree rooted at q
and containing all the positions along the edges ofG that are within
network distance of r from q.
Filtering. Only those moving objects that travel inside ET (q, r)
at the query time instant may belong to the final result. Based on
this, we can prune or filter most disqualifying objects with the help
of the UTH structure. Particularly, for each edge e ∈ ET (q, r), we
query the mR(e) to retrieve all the entries with tq ∈ MTI . Then
all the paths pointed by these entries form the set of the candidate
paths (CP). Typically, compared to the original data set, the size of
CP is significantly smaller, which means all the candidate paths
can be stored within the main memory for the refinement stage.
Refinement. This step calculates the exact qualification probability
for each candidate and returns all the objects that satisfy the proba-
bility threshold. First, we group the paths inCP by the objects they
belong to. Apparently, the paths in the same group belong to the
same PPi of some object a. Before calculating the exactQP r

a (tq),
we evaluate the sum of the individual probabilities of its PP ’s in
CP first. If

∑
Pj∈PPi∩CP Pr[PPi = Pj ] < α, a can be rejected

immediately since it is impossible for its QP to be greater than α.
Computing the QP by Equation (9) is likely to involve expensive

numerical integration. To avoid that, we use the affecting fraction
of a given Pj , defined as AFPj = Pj ∩ ET (q, r). An illustra-
tion is provided in Figure 6, which we plot AFPj together with the
PLi,j(t). The following Lemma provides means for calculating
the QP of a given object a via simpler algebraic operations.

LEMMA 1. The qualification probability of an object a condi-
tioned on Pj can be calculated as follows:

QP r
a,q(t) =

∑
Pj∈PPi∩CP

[QP r
a,q(t)|Pj ] · Pr[PPi = Pj ] (10)

QP r
a,q(t)|Pj =

|PLi,j(t) ∩AFPj |
|PLi,j(t)|

(11)

3.3 Continuous Probabilistic Range Queries
We now focus on the continuous variant of the probabilistic range

queries. Depending on the dimension to be extended (time or lo-
cation), we distinguish between temporal-continuous and spatio-
continuous counterparts. In theory, a continuous query can always
be answered by repeatedly issuing a series of static queries. How-
ever, this approach can either be very inefficient (when the gran-
ularity is too fine), or may distort the (changes of the) answer as
the continuous dimension evolves. In the sequel, we propose ef-
ficient algorithms for both continuous queries, which use as few

ti ti+1

P

AF

ti

ti+1

q

... P

t

PLF∩AF

Figure 6: Evaluation of qualification probability

static queries as possible and reduce the computation overhead in
refinement step by utilizing the relationship between the QP and
query time/location.

3.3.1 Temporal-Continuous Range Query
First, the Temporal-Continuous Range Query is defined as fol-

lows:

DEFINITION 7. Let D denote a MOD of uncertain trajectories
on a road network G, q ∈ G denote a query-point, r ∈ R denote
a range. Also, let Tq = [tqs, tqe] denote a (query) time-interval,
and α ∈ [0, 1] denote a probability threshold. The answer to the
Temporal-Continuous Probabilistic Range Query TCPR(q, Tq , r,
α, D) consists of all the tuples of the form (a, Ta), where a ∈ D
and Ta ⊆ Tq is an interval (called valid period) during which a is
in the answer-set of SPR(q, tq , r, α, D) for every tq ∈ Ta.

To answer the TCPR query, we can still adopt the expansion-
filtering-refinement framework. Since the first step (expansion) is
exactly the same as explained before, we now elaborate the last two
steps of the processing.
Filtering. In this step, we search for the candidate objects that
possibly travel in the expansion tree during the query time-interval
Tq . Hence, we use [tqs, tqe] as a window for querying the mR
for each edge e ∈ ET (q, r), thus retrieving all the entries with
MTI

⋂
[tqs, tqe] 6= ∅. All the paths pointed by these entries are

added into a candidate path set (CP) and passed to the refinement
step.
Refinement. A naive refinement method is to first divide the query
time interval into a finite set of time instants (granularity depending
on precision requirement), and calculate the QP for each candidate
object at each t ∈ [tqs, tqe]. Assuming some "light" continuity
requirements, this method will work, however, it may be very inef-
ficient for practical purposes because it may require a large number
of QP calculation.

To improve the refinement performance, we propose a plane-
sweep approach. It is based on the observation that, instead of
sweeping through all the (uncountably many) time-instants within
query time interval, it suffices to process a few critical time instants
by taking advantage of the monotonicity of the QP function. For
presentation convenience, and without loss of generality, in the se-
quel we focus on presenting our algorithm on a given path P ∈ CP
(cf. Figure 6), for which we assume its entire time period to fall in-
side [tqs, tqe].

Suppose the qualification fraction of P intersects with the PLF
at a set of time instants, denoted by T1. Let the set T2 consist of
all the tea and tld of each vertex along P . Then, the set of critical
time instants (CTI) of the given TCPR is defined to be the union of
T1 and a subset of T2, defined as:

CTI = T1

⋃
{t ∈ T2|minT1 ≤ t ≤ maxT1}
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By sorting CTI in ascending order, {ti,1 ≤ ti,2 ≤ . . . ≤ ti,k},
the QP function for any t ∈ [ti,j , ti,j+1] can be expressed in the
form of (a · t+ b)/(c · t+d) where a, b, c, d are constants. This, in
turn, ensures that the QP function is of a fixed monotonicity (either
increasing or decreasing) during consecutive time-instants of CTI.
In the light of this observation, an envelop function that consists of
upper and lower bounds of QP can be derived as:

QP+(t) = max{QP (ti,j), QP (ti,j+1)}, t ∈ [ti,j , ti,j+1]

QP−(t) = min{QP (ti,j), QP (ti,j+1)}, t ∈ [ti,j , ti,j+1]

The plane-sweep algorithm will process the member of CTI se-
quentially. Whenever the plane "encounters" the next ti,j , the ac-
tual QP for that time-instant is calculated. Together withQP (ti,j−1),
the envelop function during [ti,j−1, ti,j ] can be obtained. Then the
envelop of QP is compared with α. If QP+ < α (or QP− > α),
[ti,j−1, ti,j ] can be rejected (or accepted) as a qualifying time in-
terval without knowing the exact QP. Otherwise, there must be a
t in this period that QP (t) = α, which can be obtained t using
numerical methods.

The envelope function is exemplified in Figure 7. Only when α
is between the lower and upper bounds of QP should we calculate
the exact probabilities by numerical analysis, which considerably
reduces the refinement cost of TCPR.

t

QP(t)

α

QP+

QP-

Figure 7: Envelop of qualification probability

Complexity: Finally, we give a complexity analysis on the refine-
ment phase for the TCPR query processing, which is equivalent
to estimating the average number of critical time instants that our
plane-sweep algorithm will encounter. Let m and |PP |avg denote
the average time span and number of possible paths between two
samples, tcavg denote the average time cost of an edge. Then the
number of samples covered by query time interval Tq is |Tq|/m.
Together with the average number of edges in each possible path,
i.e., m/tcavg, we have the overall refinement complexity for each
candidate is O(

|Tq|
m
· |PP |avg · m

tcavg
) = O(|Tq| · |PP |avg/tcavg).

3.3.2 Spatio-Continuous Range Query
The second kind of continuity for the answer(s) to a range query

is formalized by:

DEFINITION 8. Let D denote a MOD of uncertain trajectories
on a road network G, r ∈ R denote a range and tq denote a query
time-instant. Also, let Pq ∈ G denote a query path, and α ∈ [0, 1]
denote a probability threshold. The answer to a spatio-continuous
probabilistic range query SCPR(Pq , tq , r, α, D) consists of all the
tuples (a, Ia), where Ia ⊆ Pq is called a valid path-interval over
which (∀q ∈ Ia)QP r

a,q(tq) ≥ α.

A straightforward approach to process SCPR query is to divide
the entire query path into a finite set of discrete locations that satisfy
some application-dependent precision requirement. Then, a static
PR query is issued for each location on the query path to find the
qualifying objects. Finally the locations with the same qualifying
objects are merged to form the valid interval. However, this is not

an efficient approach since it usually requires a large number of
evaluations of static queries, increasing with the length of Pq .

As with any scalable algorithm, we want to avoid re-issuing the
static query as much as possible. In the sequel, we explain our algo-
rithm for a single edge e ∈ Pq . Without loss of generality, we also
assume r ≥ l(e)/2 since otherwise we can always (recursively)
split e until it satisfies this condition.

We now proceed with explaining in detail all the steps of pro-
cessing SCPR queries.
Network Expansion. Unlike the static PR query, we need to com-
pute the expansion trees for all the locations in e, i.e., ET (e, r) =
{ET (q, r)|q ∈ e}. However, independently computing all the ex-
pansion trees for each location is prohibitive. To avoid this, we
observe it is equivalent to an expansion tree from ce with range
r+ l(e)/2, where ce is the center of e – a property formalized with
the following:

LEMMA 2. The two expansion trees are equivalent, i.e.,ET (e, r)
⇔ ET (ce, r + l(e)/2)

PROOF. It suffices to prove that ∀p ∈ ET (e, r), p ∈ ET (ce, r+
l(e)/2) and vice versa.

• ∀p ∈ ET (e, r), there must exists a point q ∈ e such that p ∈
ET (q, r). Since ce is the center of e, d(ce, p) ≤ l(e)/2. So
d(ce, p) ≤ r+ l(e)/2 which means p belongs toET (ce, r+
l(e)/2).

• ∀p ∈ ET (ce, r+l(e)/2), if p ∈ e, then d(ce, p) ≤ l(e)/2 ≤
r; otherwise there must be one end vertex ve of e such that
d(p, ve) ≤ r. In either case, p ∈ ET (e, r).

Filtering. This step is exactly the same as the static PR query pro-
cessing, except the ET (q, r) is replaced by ET (e, r). Apparently,
only the objects returned in this step have a chance to satisfy the
query-threshold for some q ∈ e.
Refinement. This phase finally determines the respective valid in-
tervals for all the candidate objects. Consequently, reducing any
computational overhead of this step is of interest for improving the
overall performance of the SCPR query processing.

To illustrate the intuition behind our refinement procedure, con-
sider a candidate object a whose probabilistic locations at tq on the
road-network graph are represented as bold lines in Figure 8a. In
addition, the expansion trees from the end-vertices of e, v1 and v2,
shown as grey region and dashed region, respectively. We denote
the part of ET (v1, r) with and without edge e as ETe(v1, r) and
ET6e(v1, r) – and similarly, we use ETe(v2, r) and ET6e(v1, r).
Imagine a query point q moving from v1 towards v2, during which
the length of ET6e(v1, r) is shrinking and ET6e(v2, r) is expanded
(in synchronized manner). By defining

(i)IPe = ET6e(v1, r)− ETe(v2, r)

(ii)V Pe = ET6e(v2, r)− ETe(v1, r)

we get two path-collections on which the locations of a will gradu-
ally become: (i) invalid; and (ii) valid, as q moves from v1 towards
v2. As for the rest of ET (e, r) − (IPe ∪ V Pe), we observe that
it is always covered by the expansion tree of q. Consequently, the
locations of a in this part are always valid (e.g., PLi,2).

What we need now is to somehow capture the variations ofQPa,q(tq)
when q moves from v1 towards v2. Suppose that the intersection
of PLi,j and IPe (or V Pe) has been changed (either shrank or ex-
panded) by some distance x. From Equation (10), we obtain the
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change of the QP to be ∆(x) = x · Pri,j(a)/PLi,j(tq). We note
that all the intersections can be represented via such variation func-
tions, where x-axis represents the offset of the q’s motion, while
y-axis represents the variation of the corresponding QP.

For a given intersection-segment I that is located along a path
P : p1 → p2 ∈ IPe(V Pe), if the both ends of I have x1 and
x2 distance to p1, the corresponding variation function of I is a
line segment with x-coordinate ranging from x1 to x2 and slope of
−(+)Pri,j(a)/PLi,j(tq). As an illustration, the corresponding
variation function of I1 and I2 from Figure 8a are shown in Figure
8b. As illustrated, when qmoves from v1 towards (v1, x1/l(e), v2),
the QP of a is decreasing with the rate of Pri,j(a)/PLi,j(tq).
When q moves from (v1, x2/l(e), v2) towards v2, the QP of a is
increasing with the same rate. Note that when q moves between
(v1, x1/l(e), v2) and (v1, x2/l(e), v2), the two variation functions
overlap. In this case, their effects can be combined, resulting a new
function with the slope equal to the sum of the ones for the varia-
tions functions of I1 and I2. In our example, the slope is zero which
means the QP of a does not change in the overlapping segment.

Given the variation functions, we proceed by sorting the start
and end x-coordinates of all the line segments and process them
sequentially. For each query location qxi , we combine all the vari-
ation functions overlapping at this point. By using current QP and
the overall variation slope, the QP with respect to q ∈ [qxi , qxi+1 ]
can be derived straightforwardly, which enables us to determine the
valid interval of a for q ∈ e. Finally, to obtain the entire Ia, we just
repeat the above process for each e ∈ Pq .

e

pi
pi+1

P1

P2

PL

v1 v2

ET(v1,r)
ET(v2,r)

I1 I2

(a)

0
l(e)I1

I2

Δ(x)

x1
x2

(b)

Figure 8: SCPR refinement

Complexity: Again we estimate the average number of static queries
issued in the refinement step of SCPR query processing. Let lavg

denote the average length of an edge. Then the average number of
edges covered by the query path Pq is |Pq|/lavg. For each of them,
the number of variation functions, as well as the QPs that we need
to be evaluated is at most equal to the number of possible paths in
PPi. Therefore, the time complexity of the refinement stage for
each candidate is O(|Pq| · |PP |avg/lavg).

4. EXPERIMENTAL OBSERVATIONS
We report the results of the empirical study of the benefits of

our proposed models and methodologies. All experiments are im-
plemented in Java on a Pentium IV 2.4 GHz, 1GB memory and
Windows XP platform.

4.1 Experiment Setup
We use the following five real road-network data sets for our

experiments: City of Oldenburg Road Network (OL) (6,104 nodes
and 7,034 edges), City of San Joaquin County Road Network (TG)
(18,262 nodes and 23,873 edges), California Road Network (CAL)
(21,047 nodes and 21,692 edges), San Francisco Road Network
(SF) (174,955 nodes and 223,000 edges), and North America Road

Network (NA) (175,812 nodes and 179,178 edges). The length of
each edge is the Euclidean distance between its end nodes, and the
speed limit is set to be s(e) = l(e)/5 (proportional with the edge
length).

The moving objects trajectories are generated as follows. For
each trajectory, two vertices of the road network are selected ran-
domly as its source and destination. Then we compute the top
K shortest paths between them, one of which is selected as the
"ground truth". The motivation behind this is that moving objects
need not necessarily follow the shortest path strictly. After that, we
simulate a moving object to travel along this path at the speed vary-
ing within [s/2, s], and we allow the speed to change only when the
object switches edges. Its trajectory sample is obtained by record-
ing the location every m time-instants. As an illustration, Table 2
shows an instance of the parameter-space used in the experiments.

Parameter Default value
Road network OL
Cardinality ratio 1
Sampling rate m 50
Query range r 0.01 of data universe side length
Probability threshold α 0.5
Query time span 500
Query path length 200

Table 2: Parameter settings

4.2 Snap-shot Range Queries
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Figure 9: Performance of range queries

In this set of experiments, we compare the I/O performance in
the filtering phase of the UTH based approach (UBA) against an
R-tree based approach (RBA). RBA adopts a single 3D R-tree (X-
Y-time) to index the sample locations of the trajectories. For a range
query with time instant tq and range r, we use [tq −m, tq +m] as
the time window and r+m ·Smax as the working radius to search
the R-tree for candidates, where Smax = max{s(e)|e ∈ EG} is
the global maximum speed of the road network. It is guaranteed
that RBA will return all the candidates without introducing false
negatives, since any object having no sample position inside this
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range cannot be within network distance r to q at tq even it travels
at the maximum possible speed (note here we utilize the property
that the Euclidean distance lower bounds the network distance).

From Figure 9a we can see that the UBA constantly outperforms
the RBA in all road networks. Observe that both approaches in-
crease the number of I/O accesses as the networks grow larger. For
RBA, this is simply because the R-tree grows bigger as there are
more trajectories. For UBA, this is due to the fact that, with the
increasing number of edges in the road network, more movement
R-trees cannot reside in the memory. Figure 9b plots the I/O per-
formance of the two methods as a function of |D|/|E|. As the
trajectory density increases, more objects may become candidates,
which explains the fact that more page accesses are issued. On the
other hand, the gap of two algorithms increases with the ratio since
the R-tree based approach retrieves more false hits (i.e., objects in
the Euclidean, but not in the network range), which results in more
R-tree node accesses. Figure 9c shows the respective costs of the
approaches as the sampling rate decreases. Since, in this case, the
movement uncertainty increases, more objects will be included as
candidates for a fixed query range, resulting in more page accesses
for UBA. For the RBA, increasing m means a wider time window
and larger search range, both of which will cause I/O cost boost
quickly. Lastly, we tested the performance of both approaches for
different query-ranges. As shown in Figure 9d, I/O cost increases
as the query range expands, since UBA needs to search more edges
as well as their associated R-trees, whereas RBA needs to access
more R-tree nodes too, and at a much higher rate than UBS.

4.3 Continuous Range Queries
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Figure 10: Performance of TCPR queries

In this subsection, we compare the performance of our proposed
refinement strategy, termed Optimized, with the Basic method which
breaks the query interval (time or path) into a set of snapshot-
instances and evaluates the qualification probability individually.
To eliminate the effects of candidate size, we measure the average
processing time for each candidate. As the performance improve-
ments of TCPR and SCPR queries exhibit similar behaviors, we
combine the discussion of the respective results in the sequel.

As illustrated in Figure 10a and Figure 11a, Optimized consis-
tently outperforms Basic at all sampling rates. Observe that the
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Figure 11: Performance of SCPR queries

running time of each method increases, although not drastically,
with m. For the Basic method, this can be caused by the more pos-
sible paths, which makes the probability evaluation more expen-
sive. For the Optimized scheme, this can be explained by the fact
that the probabilistic location function becomes more complicated,
resulting in more re-evaluations at the respective change points.

Figure 10b and Figure 11b show the comparison of the process-
ing time of both strategies as functions of query range. While Basic
method is almost immune to this parameter, the performance of Op-
timized method improves for larger ranges. This is because more
candidates are having their uncertain locations (almost) totally cov-
ered by the query range, and their qualification probability can be
evaluated quickly due to the fewer change points.

From Figure 10c and Figure 11c, we observe that the Optimized
method runs faster at higher probability thresholds, since more can-
didates are easier to disqualify by checking their probability upper
bounds. As expected, the Basic method exhibits constant perfor-
mance since it always evaluates the qualification probability for the
entire interval, regardless of α.

Finally, we compare the processing time by varying the length
of query interval (time or path). As shown in Figure 10d and Fig-
ure 11d, although both methods consume more CPU time when the
query interval is longer, their performance gap increases remark-
ably.

5. RELATED WORK
Since the problem investigated in our paper is a marriage be-

tween uncertain moving objects and querying processing on road
networks, we will review the related work in these two categories
respectively in this section.

5.1 Managing Uncertainty of Moving Objects
Uncertainty issues in moving object databases have been ad-

dressed in several literatures before. Wolfson et al. [33][32] ad-
dressed the update problem in moving objects by proposing an in-
formation cost model that captures uncertainty, deviation and com-
munication. The authors analysed dead-reckoning policies that up-
date the database location whenever the distance between the actual
location and the database location exceeds a given threshold. Be-
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sides, they also considered the problem of range queries and pro-
posed a probabilistic approach to solve it. Pfoser and Jensen [23]
presented a formal quantitative approach to the aspect of uncer-
tainty in modeling moving objects. They demonstrated that, un-
der constraint maximum velocity, the spatial zone of the object’s
whereabouts during two consecutive sampling positions is an el-
lipse. But the authors limited the uncertainty to the past of the
moving objects and the error may become very large as time ap-
proaches now. Uncertainty of moving objects was also treated by
Sistla et al. [24], who introduced a data model, called MOST, to
represent moving objects with uncertain positions, and proposed
Future Temporal Logic (FTL) as the query language for the MOST
model. By considering the measurement error when capturing the
object movement, Trajcevski et al. propose the concept of uncer-
tain trajectory in which the uncertainty of a trajectory is modelled
by a three-dimensional sheared cylinder. Then based on this model,
the authors introduced a set of spatio-temporal operators and pro-
posed efficient algorithms for continuous range queries [29] and
nearest neighbor queries [28]. A different model was proposed by
Cheng et al. [5], in which the location uncertainties are updated at
every time instant and range queries are issued at current time point
also. However, their method is not efficient for continuous queries
as a query must be re-evaluated at each time instant, resulting in
high query costs. Recently, Zhang et al. [34] devised an efficient
inference method for predicating future locations and integrated it
into indexing structures designed for uncertain moving objects. But
their assumption that the distribution of current locations and veloc-
ities of moving objects is known at any time may not be practical
in real applications.

However, all the above work target Euclidean space where the
distance between objects and queries is defined as a function of
their coordinates. Hence their methods are not applicable to our
problem settings, where the distance function depends on the con-
nectivity and weights of the underlying road networks.

5.2 Query Processing on Road Networks
To process spatial queries on road networks, several algorithms

have been developed using the network distance. Shahabi et al.
[26] propose an embedding technique to transform a road network
into a higher dimensional space in order to utilize computationally
simple metrics. The main disadvantage of this method is that it
provides only an approximation of the actual distance. Jensen et
al. [14] formalize the problem of kNN search in road networks
and present a system prototype for such queries. They use algo-
rithms similar to Dijkstra’s algorithm in order to perform online
calculations of the shortest distance from a query point to an object.
Shekhar et al. [27] present four alternative techniques for finding
the first nearest neighbor to a moving query object on a given path.
Papadias et al. [22] describe a framework that integrates network
and Euclidean information, and answers kNN, range, closest pairs
and e-distance join queries. They index the data objects with an R-
tree and utilize connectivity and location information to guide the
search. Kolahdouzan et al. [16] propose a solution-based approach
to retrieve the kNNs based on pre-computed network Voronoi cells.

Efficient processing of continuous queries in road networks has
also been studied recently. Kolahdouzan et al. [15] and Cho et
al. [6] develop different techniques, UBA and UNICONS, to re-
duce the number of kNN evaluations by allowing the kNN result to
be valid for a time interval. However, they are designed to handle
queries over static data objects. Mouratidis et al. [21] address the
issue of continuous monitoring kNNs over moving objects and pro-
pose an incremental monitoring algorithm to re-evaluate the query
when updates occur.

The uncertainty issue in network-constraint moving objects is
also considered in [7]. But it is different with our work in two
folds. First, they assume the route between consecutive sampling
positions is deterministic. Second, the main focus of their work
is to define the algebra (i.e., data type, operator) to support un-
certainty. More recently, [17] have adopted the space-time prism
in the road-network context, however, no query processing aspects
have been addressed. To the best of our knowledge, our work is
the foremost one in comprehensive addressing of the probabilistic
uncertainty model, its impact on the syntax of continuous queries,
and the corresponding processing methods for range queries over
uncertain objects on road networks.

6. CONCLUSION AND FUTURE WORK
We addressed the problem of efficient processing spatio-temporal

range queries over uncertain trajectories in road networks. The
main motivation of this work is that in many realistic settings, the
positions of moving objects are sampled only at discrete time in-
stants, and little can be known about their whereabouts in-between
consecutive samples. Most of the work that have incorporated this
uncertainty into the trajectory models have targeted the motion in
Euclidean space, where there are no constraint on the movement
of objects. Although [7, 17] have considered the problem of un-
certainty in road-network settings, the impact of the model on the
processing of spatio-temporal queries has not been addressed.

By considering the maximum speed on each road segment as the
only restricting parameter, we quantitatively model the uncertain
location of a moving object as a time-dependent probability dis-
tribution function. With this, we are able to formally define the
static and continuous range queries whose syntax captures the im-
pact of the uncertainty of the moving objects on road networks.
To facilitate the efficient query processing, we proposed a novel
indexing structure that incorporates the uncertainty of the spatial
whereabouts. In addition, we developed effective filtering strate-
gies and efficient algorithms for the refinement stage of the (con-
tinuous) range queries processing. As demonstrated by our exper-
iments, our methods can significantly reduce both the I/O cost and
CPU time.

An immediate future work is to address the Continuous Prob-
abilistic Nearest Neighbor queries based on our model. Similar
to the continuous range queries, one of the main challenges is to
identify some critical changing points, in-between which certain
important properties of the objects with respect to the query pa-
rameters are ensured. Another possible extension is to study the
efficient processing of aggregate queries, e.g., estimate the number
of moving objects inside some region within a given time inter-
val, which have many applications in real transportation systems.
Of course the major challenge still comes from the high evaluation
cost given that the locations of moving objects are all probabilistic,
for which approximate techniques may be a promising direction to
pursue. Finally, we also plan to investigate the space-efficiency of
the UTH index structure in our future work.
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