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ABSTRACT
User data stored in personal information systems is grow-
ing massively. Simultaneously, this data is increasingly dis-
tributed across multiple organizational domains such as
email, music databases, and photo albums, some of which
are structured automatically by applications. Powerful
search tools are needed to help users locate data in these ex-
panding yet fragmented data sets. In this paper, we present
a novel fuzzy search approach that considers approximate
matches to structure and content query conditions. Our
framework uses unified data and query processing models
so that structure conditions can be approximately matched
by content and vice versa. Our models also unify exter-
nal structure (e.g., directories) with internal structure (e.g.,
XML structure), supporting integrated queries matched to
a single data domain. We propose indexes and algorithms
for efficient query processing. We evaluate our approach us-
ing a real data set, showing that it can leverage structure
information to significantly improve search accuracy, yet is
robust to mistakes in query conditions.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information filtering, Search process

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Personal information search, structure and content search,
query processing, query path matching

1. INTRODUCTION
The amount of data stored in Personal Information Man-

agement systems (PIMs) is rapidly increasing, following the
relentless growth in capacity and dropping price of storage.
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This data explosion is driving a critical need for search tools
to retrieve heterogeneous data in a simple and efficient man-
ner. Such tools should provide both high-quality scoring
mechanisms and efficient query processing capabilities.

Numerous search tools have been developed for file sys-
tems, including the commercial tools Google Desktop
Search [15] and Spotlight [20]. However, most of these tools
index text content, allowing for some ranking on the tex-
tual part of the query—similar to what has been done in
the Information Retrieval (IR) community—but only con-
sider structure (e.g., file directory) as a filtering condition.
Recently, the research community has turned its focus on
search to Personal Information and Dataspaces [7, 11, 13],
which consist of heterogeneous data collections. Similar to
the commercial search tools, these works focus on IR-style
keyword queries and use other system information only to
guide the keyword-based search.

Keyword-only searches do not exploit the rich structural
information typically available in PIMs. Unlike searches over
digital libraries and the Web, users searching their personal
files frequently have some recall of file locations (directory
structure) and the structure of content inside files such as
title and abstract (internal structure) [5, 10]. However, this
recall is typically imperfect because structure information is
large and complex, evolves over time, and may be program-
matically organized (e.g., photo management software).

Thus, it is too rigid to use this information only as fil-
tering conditions since any mistake in the query will lead
to relevant files being missed. A flexible approach allowing
for some error in the structure conditions is desirable, as
illustrated by the following example.

Example 1. A user John wants to retrieve photos of a
Halloween party held at his home where someone was wear-
ing a witch costume from his personal file system.

Ideally, the directory structure would have been created
and maintained consistently and all photos properly tagged.
In practice, this is rarely the case: users change their file
organizations over time, inconsistently annotate their data,
use applications that (re)arrange their data on disk, and
gather data from different sources. In our example, John has
changed the way he organizes his photos over time and do not
always tag his pictures. As a result, pictures from different
Halloween parties match very different directory structures
and do not necessarily have matching tags, as illustrated in
Figure 1. In addition, some relevant pictures are in his email
folder because they were sent to him by friends.

This structural heterogeneity complicates the search for
specific pictures. A content-only search for “Halloween, home,
witch” is likely to result in many matches. None of the pic-
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Figure 1: A partial example user personal information file system.

tures, pic1728.gif, party42.jpg, and IMG 1391.gif, in the ex-
ample data set contains all three keywords. pic1728.gif and
party42.jpg contain two of the keywords; their relative rank-
ings would depend on the underlying content scoring func-
tion. IMG 1391.gif is however arguably the best match as its
directory structure contains the third missing keyword.

Fortunately, John vaguely remembers that the photo he is
looking for is in his home directory and was annotated with
a caption containing the term “Halloween”. Based on this
information, John can write the query:
//home[.//caption/"Halloween" and .//"witch"]

Current search tools would probably return IMG 1391.gif as
an exact match to the query but would likely miss approxi-
mate but relevant matches for several reasons:

• Using the structure part //home//caption as a filter-
ing condition would eliminate files that do not match it
exactly. For example, party42.jpg, which contains the
keywords “witch” and “home” but does not have a cap-
tion tag with value “Halloween” would not be returned.

• Since the external (directory structure) and the inter-
nal (structure and content) are strictly separated, an-
swers that do not adhere to this strict separation would
be missed. For example, pic1728.gif would not be re-
turned since “Halloween” is expected to be a content
term and not part of the structure hierarchy.

Because of the structural and data heterogeneity present
in PIMs, we believe it is critical to support approximate
matches on both the content and structural components of
queries and to allow for query conditions to be evaluated
across file boundaries. For this purpose, we use a data model
that unifies external structure, internal structure, and con-
tent into a large XML tree, in the spirit of [11], to represent
user data. We propose a query model that supports approx-
imation in both the structure and content components of
queries, and allows for structure components to be approx-
imately matched by content terms and vice versa. In addi-
tion, we propose a unified scoring framework that simulta-
neously considers relaxed query conditions on structure and
content to provide a unified score.

We make the following contributions:

• We propose unified data and query models that allow
fuzzy matching of each query condition against both
structure and content. Furthermore, matches in the
unified data model may span multiple directories and
files, giving users a rich query model for specifying
contextual information in searches (Section 2).

• We develop a TF·IDF-based unified scoring framework
to rank relevant search results (Section 3).

• We present query processing techniques to efficiently
score answers. These techniques include indexes and
a novel algorithm that extends the popular PathStack
algorithm [6] to handle matching of component per-
mutations in queries (Section 4).

• We evaluate our models and query processing tech-
niques and show that our unified approach is more ac-
curate than filtering approaches and more robust than
multi-dimensional approaches that consider structure
and content separately (Section 5).

2. DATA AND QUERY MODEL

2.1 Unified Data Model
We model the entire file system as a rooted, labeled, un-

ordered tree that contains internal structure nodes and leaf
content nodes. Each structure node has a label that is used
to record the name of the structure item (e.g., directory
name) or its type within some structural schematic (e.g.,
section in a LaTeX document). Each content node contains
a label that is used to record the content term the node
represents. In the rest of the paper we refer to this data
representation as the unified data tree T.

Figure 1 shows a partial unified data tree for an example
user personal file system. Each node is shown by its label.
The external structure (directories) and internal structure
(e.g., the “from” field in an email or “title” of an ebook)
of files are both represented as internal structure nodes in
the unified data tree.1 Content is stored in the leaves. Ab-
stractly, each leaf node only contains one term although in
the implementation, sibling content nodes are combined to-
gether to save space. (The dotted line representing the file
boundary is given in the figure for illustration purpose only.)

To simplify the discussion, we leave out file system meta-
data information such as file size and modification time in
this paper. Metadata can easily be included in the unified
data tree, with both internal structure nodes (e.g., “Last
Modified”) and leaf value nodes (e.g., “10/31/09”). Exter-
nal tags (e.g., Spotlight comments) can be similarly han-
dled. Tags used for organization (e.g, Gmail “folders”) can
be treated just like directories although we would currently
have to (re)index a file for each tag to maintain a tree struc-
ture.

1We could have separated the two types of structures. However,
we don’t think it is profitable to do so because it would require
users to understand the structural representation of data, which is
unrealistic since this representation is increasingly being managed
by applications.
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2.2 Flexible Query Model
Our model allows users to query both the content of files,

using a standard keyword-based model, as well as their struc-
ture, internal and/or external. A query over our unified
data model is a combination of structural patterns and con-
tent terms that can be represented as a twig, in the spirit
of XQuery [24]. However, as previously mentioned, struc-
tural query conditions are likely incomplete and may con-
tain mistakes. Thus, our query model allows for approxi-
mate data matches for both structure and content conditions
(Section 3) to avoid discarding relevant information because
of (possibly minor) mistakes in the query.

To represent this flexibility in our query model, we intro-
duce the following notations for queries:

A root node, noted root, is a node in the twig query
(query node) that is matched by the root of the unified data
tree T. root may only appear at the beginning of a query.

A structure node, noted N, is a query node that can be
matched by any internal structure node with label N in T.

A content node, noted “N”, is a query node that can be
matched by any leaf node with label N in T.

A generalized node, noted {N}, is a query node that
can be matched by either a structure or content node with
label N in T.

An extended node, noted N//*, is a query node that
can be matched by any subtree rooted at a match to N
in T. Content, structure, and generalized nodes can all be
extended, but an extended content node is equivalent to the
original node since content nodes only match leaf nodes.

A path segment PS is a partial path where each node
is either a structure, content, generalized, or extended node
and each edge is either a parent-child edge (/ ) or an ancestor-
descendant edge (// ). PS can be matched by any path P
in T where each node in PS is matched by a unique node in
P and the matching nodes in P preserves the edge structure
of PS.

A node group (similar to that introduced in [19]) is used
to represent possible permutations of query nodes. Specifi-
cally, a node group, noted (PS), is a path segment PS, where
all nodes are structure or generalized nodes, and all edges in
the path are ancestor-descendant edges. Each node group
may contain at most one generalized node since generalized
nodes can be matched by content nodes and each path con-
tains at most one content node. The placement of the gener-
alized node is fixed at the end of the path segment although
the node labels may permute. Root nodes, content nodes,
and extended nodes are not allowed in a node group as they
can only occur at the beginning or the end of a query path.
A node group (PS) can be matched by any path in T that
matches a valid permutation of PS.

For example (home//Halloween//{witch}) is a node group
that corresponds to the permutation set containing
home//Halloween//{witch}, home//witch//{Halloween},
Halloween//home//{witch}, Halloween//witch//{home},
witch//home//{Halloween}, and witch//Halloween//{home}.

Extending a node group is the same as extending each
path segment in its permutation set.

Our model considers twig queries over the unified data
tree T. A twig query is a tree that starts with a root node
root and may contain multiple branches. Branches may end
with any node type defined above. Generalized, content,

and extended nodes can only be positioned as the last node
of a branch.

Note that keyword-only queries can be easily specified in
our model. For example, a query with keywords k1 and k2
would be specified as //[.//“k1” and .//“k2”]. The returned
results, however, may be (slightly) different than in a typical
content-only search. As shall be seen, the keywords may
match external structure terms because of query relaxations
and our scoring functions are not strictly the same as those
used in traditional TF ·IDF content-only search approaches.
Experimentally, however, we observe very little differences
between our system and a typical content-only search tool
for keyword-only queries.

In this paper, we focus on a simplification of the query
model that decomposes a twig query into a set of path
queries for scoring, since it is complicated to allow flexibil-
ity such as component permutations (Section 3.1) for twig
queries. We plan to lift this constraint and support flexible
non-decomposed twig queries in the future. In our simpli-
fied model, a path query is created for each root to leaf
path in the twig query. We use path queries as the scoring
units and compute the score of a twig query as a function of
the scores of the path queries resulting from the twig query
decomposition (Section 3.2).

A path query PQ can be matched by any path
PM in a data tree T where each node in PQ is matched
by a unique node in PM, and the matching nodes in PM
preserves the edge structure of PQ.

A potential answer to a path query is any path in our
unified data tree that matches some relaxed form of the path
query. Similar to many popular search approaches, we focus
on a ranked query model where only the k best matches are
returned to the user. The score of a match depends on the
“closeness” of the match, as defined by a scoring function
(Section 3). While our model supports all possible granu-
larity of query result (file, group of files, subtree within a
file), for simplicity our current implementation only consid-
ers individual files as potential answers.

We call the lowest matching node in a path that matches a
path query a match point ; each matching path has a unique
match point. A file is an answer if its structure (including
its full pathname and internal structure) and content contain
one or more match points.

3. SCORING FRAMEWORK
We now present our unified scoring framework. As already

mentioned, our framework allows for approximation in both
the structure and content dimensions, as well as across the
two dimensions. We score individual paths of a given query
twig in a TF ·IDF -based fashion; individual path scores are
then combined together to produce a unified score.

3.1 Query Relaxations
Our strategy is to compute scores for answers based on

how close they match the original query conditions. For con-
tent, closeness is defined based on the number of keywords
from the query condition is contained in the answer (and
their frequency). For structure, we use query relaxations,
i.e., structural transformations that make queries more gen-
eral. A match to a relaxed version of a structure query
condition is then an approximate match, with the degree of
approximation depending on the number of relaxation steps.

We extend prior work [3, 19] on structural query relax-
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ations to our unified query model. We use several types
of structural relaxations, some of which were not consid-
ered in [3], to handle the specific needs of user searches in
a file system. In addition, we augment the relaxations de-
fined in [19] with relaxations that mix content and structure
conditions and take into consideration the structure within
a file to handle unified structure and content queries. As
in [3, 19], we require that answers to a path query P be con-
tained in the set of answers to any relaxation of P to ensure
monotonicity of IDF scores (since IDF scores depend on the
number of files that are answers to the path query).

We consider the following structural relaxation operations:

Edge Generalization is used to relax a parent-child re-
lationship to an ancestor-descendant relationship. For ex-
ample, applying edge generalization to the path segment
home/Halloween changes it to home//Halloween.

Path Extension is used to extend a path query PQ to
PQ//* so that any path in T containing PQ becomes a
match. For example, applying path extension to
/home//Halloween changes it to /home//Halloween//*.

Node Generalization is used to relax a structure node
at the end of the path query or a content node to a gener-
alized node. This relaxation allows structure conditions to
be approximately matched by content and vice versa. For
example, applying node generalization on /home/Halloween
changes it to /home/{Halloween}, which means the term
“Halloween” in the query can match the name of a directory,
the tag of an internal structure item, or file content.

This novel relaxation can be critically important in our
search context since content terms may often be used as
structure (e.g., directory names), especially when data is
programmatically organized. For example, iTunes organizes
users’ music in directories named after artists and albums.

Node Inversion is used to permute nodes within a path
query PQ. Except for the root, non-generalized leaf, and *
nodes, inversion can be applied to any pair of adjacent nodes
or node groups if all the surrounding edges of the nodes
or node groups are ancestor-descendant edges. An inver-
sion combines adjacent nodes, or node groups, into a single
node group while preserving the placement of the generalized
node, if any. For example, applying node inversion to Hal-
loween and witch in /home//Halloween//witch changes it
to /home//(Halloween//witch). Applying the same node in-
version on /home//Halloween//{witch} changes it to
/home//(Halloween//{witch}), which allows for
/home//witch//{Halloween} in addition to the original
query condition.

Allowing for approximations in the node ordering can be
critically important in our search context since, as already
mentioned, users often misremember, or do not have com-
plete information over, the directory or internal file struc-
ture, yet users often know some pertinent structural infor-
mation that can help guide the search.

Node Deletion is used to drop a node from a path query.
Node deletion can be applied to any node or node group
other than root and * as long as their surrounding edges
are ancestor-descendant edges.

To delete a node n in a path query PQ :

• If n is a leaf node, n is dropped from PQ and PQ–n
is extended with //*. This is to ensure containment
of the answers to PQ in the set of answers to the new,
more relaxed path query PQ’.

• If n is an internal node, n is dropped from PQ, and
the nodes before and after n are connected in PQ with
//.

For example, deleting Halloween from
/home/Halloween/witch changes it to /home//witch.

To delete a node n inside a node group (PS) in a path
query PQ, the following two steps are required to ensure
answer containment. (1) n and one of its adjacent edge in
PS are dropped from PS. If only one node m is left in PS,
(PS) is replaced by m in PQ. (2) If (PS) is a leaf node group,
the resulting query is extended so that permutations of the
original node group (PS) that contain n as a leaf node are
still contained in the resulting relaxed node group.

For example, deleting Halloween from
//(home//Halloween//{witch}) changes it to
//(home//{witch})//*. The path query
//(home//Halloween//{witch}) contains 6 different permu-
tations, including //home//Halloween//{witch},
//witch//Halloween//{home}, and
//home//witch//{Halloween}; after deleting Halloween, the
permutations become //home//{witch}, //witch//{home},
and //home//witch//*. //(home//{witch})//* is the only
most specific path query that contains all of the necessary
permutations to ensure containment.

Our relaxation operations can be composed to provide
increasingly relaxed versions of the original path query. For
any path query P the most general relaxation is //*, which
matches all files in the unified data tree.

Note that while the above relaxations could be used to tol-
erate mistakes like misspelled terms, they are not designed
for that. In a production search tool, they would be com-
bined with other complementary IR techniques. For exam-
ple, one can envision each term in a query condition matched
against a set of terms to account for misspelling, stemming,
and/or even semantic equivalency.

3.2 Scoring Methodology
Our scoring methodology is based on TF·IDF measures,

as introduced in [2, 19]. Unlike these previous works, which
compute separate scores for the content and structure di-
mensions before aggregating them into a single score, our
approach scores content and structure together and our scor-
ing framework allows for approximation within and across
both dimensions. Our scoring functions are as follows.

Definition 1 (IDF Score of a Path Query). Given
a unified data tree T and a path query PQ, we define

scoreidf (PQ) =
log( N

NPQ
)

log(N)
, NPQ = |matches(T, PQ)|

where matches(T, PQ) is the set of all files in T that match
PQ, and N is the total number of files in T.

Our IDF scoring formula guarantees that files matching
more relaxed forms of a query will receive lower scores since
more relaxed forms always match the same number or more
files based on the containment property of relaxations.

Definition 2 (TF Score of a File for a Query).
Given a path query PQ and a file F, we define

scoretf(PQ,F ) = f

(
F

(struct)
PQ

|F (struct)|

)
+ f

(
F

(cont)
PQ

|F (cont)|

)
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where |F (struct)| and |F (cont)| are the numbers of structure

and content nodes in F, respectively, F
(struct)
PQ and F

(cont)
PQ

are the numbers of structure and content match points in
F, respectively, that match PQ, and f(x) is a function that
affects the distribution of the score values, and so controls
the relative impact of TF on the overall score.

By definition, the more match points contained in an an-
swer, the higher the TF score of the answer. (We can po-
tentially aggregate the two scores in different ways. In fact,
we tried aggregating using multiplication and found experi-
mentally that it made little difference.)

In Definition 2, function f is selected from a class of func-
tions (e.g., those widely used for TF in the IR community).
In a real system, function f is selected once and then fixed
for all queries and answers to compute TF scores. Different
choices of f change the distribution of score values, affect-
ing the relative impact of TF vs. IDF on the unified scores.
We experiment with different variants of f to find the best
scoring formula for our data set in Section 5.2. (We could
potentially use different functions for content and structure;
currently, we use the same function for simplicity.)

Definition 3 (Score of a File for a Query). Gi-
ven a unified data tree T, a path query PQ, and a file F,
we define

score(PQ,F ) =
∑

PQ′∈R(PQ)

scoretf(PQ′, F ) · scoreidf (PQ′)

where R(PQ) is the set of all possible relaxations of PQ.

Note that the overall score of a file is a summation across
all possible relaxations of the query. Abstractly, it is impor-
tant to consider all relaxed forms of the query because it is
difficult to determine the single best matching relaxed form
for a given file. As the query becomes more relaxed, the IDF
score is guaranteed to decrease. However, TF may increase
significantly because a more relaxed query may have many
more match points in the file. Thus, the TF ·IDF score of a
file may be higher for a more relaxed form of the query. The
summation provides an overall picture of how closely a file
matches a given query by counting matching contributions
across all possible relaxed forms of the query.

Unfortunately, it could be very expensive to compute
score(PQ,F ) as defined in Definition 3 because the number
of relaxed forms of a query grows exponentially with query
size. Thus, our implementation instead approximates the
definition using a lexicographical ordering given by
(scoreidf (LRQPQ

F ), scoretf(LRQPQ
F , F )), where LRQPQ

F is
the least relaxed query, i.e., the relaxed query with the high-
est IDF score, that a file F matches. We empirically show
the tightness of this approximation for the data and query
sets used in our evaluation (Section 5.2). The algorithms
and data structures described in the following section are
based on this approximate scoring to speed up query pro-
cessing.

Finally, we compute the score of a file for a twig query TQ
by computing the summation of scores of the file for each
unique path query PQ derivable from TQ.

4. QUERY EVALUATION
We now describe our query evaluation techniques, based

on a top-k or ranked query processing model, which returns
the best k answers for each query.

4.1 Index Structures
We index our unified data tree using an inverted index

similar to those used in the XML community. In addi-
tion, because the possible query relaxations (Section 3.1)
are query dependent, we need to build indexing structures
to evaluate relaxations at runtime.

Indexing Data: We use an inverted index to enable fast ac-
cess to the (potentially very large) unified data tree at query
processing time. We assign a tuple of attributes (FileId,
PreCode, PostCode, Depth) to each node of the unified data
tree, where FileId is a unique identifier of the file containing
N if N is part of a file, or 0 if N is a directory, PreCode
and PostCode are values generated by a preorder and pos-
torder traversal of the tree respectively, and Depth is the
distance from root to N. The PreCode, PostCode, and Depth
information are used to quickly determine the structural re-
lationships (ancestor-descendant and parent-child) and are
widely used in XML query processing [16]. The FileId is
used to quickly identify answers (files) that match a par-
ticular query. The inverted index then maintains mappings
from node labels to the nodes’ attribute tuples. Note that
this index subsumes the typical full-text inverted index used
for content search because each content term is a label of a
leaf node (Section 2).

Indexing Query Relaxations: We represent (abstractly)
all possible relaxations of a query, along with the correspond-
ing IDF scores for (files that match) each relaxation, using
a DAG structure, as was proposed in [2, 19]. This DAG is
created by incrementally applying query relaxations to the
original query condition. By design, children of a DAG node
are more relaxed versions of the query and therefore match
at least as many answers as their parent (containment). The
most relaxed version of any query condition is the node //*,
which matches all files and so gives a 0 IDF score.

The above DAG is built lazily during query processing;
that is, we only build and evaluate parts of the DAG as re-
quired by the top-k query processing algorithm (Section 4.3).
IDF scores for relaxed queries and TF scores for matching
files are only computed when nodes are materialized. Pre-
vious work have detailed efficient algorithms for this lazy
construction [2, 19, 22]. We adapt these algorithms to han-
dle the full set of relaxations described in Section 3.1.

4.2 Query Matching
Given a query, we need algorithms to efficiently use the in-

dexing structures just described to identify and score match-
ing answers. Several efficient algorithms have been proposed
for XML pattern matching, one of the most popular being
the PathStack algorithm [6]. PathStack views the XML data
tree as a stream of nodes produced by a preorder traversal.
The algorithm associates a stack SN with each query node
N, keeping the stack in the same order as the query nodes.
It then pushes matching data nodes from the stream onto
the stacks. Whenever a node is pushed onto the last stack,
each unique sequence of nodes across all the stacks, one per
stack, that satisfies the structural relationships in the query
is an answer to the query. Nodes are popped from the stacks
when processing moves to a different tree branch.

The inverted data index is used to avoid traversal of the
data tree. Specifically, each query node is associated with
the inverted list keyed by the node’s label. Preorder traver-
sal is then simulated by considering the nodes from the

205



Algorithm 1 NIPathStack(NG)

1. Tail⇐ nil
2. while ¬end(NG) do
3. Nmin ⇐ getMinSource(NG)
4. while Tail 6= nil ∧ postCode(Tail) < nextPre(TNmin

) do
5. pop(STail) {STail is the stack containing node Tail.}
6. Tail⇐ prevDataPathNode(Tail)
7. moveNodeToStack(TNmin

, SNmin
, pointer to Tail))

8. Tail⇐ top(SNmin
)

9. if containSolution(NG) then
10. NIShowSolutions(Tail, NG)

11. function end(NG)
12. begin
13. return ∀Ni ∈ NG : eof(TNi

)

14. function containSolution(NG)
15. begin
16. return ∀Ni ∈ NG : |SNi

| ≥ 1

17. function getMinSource(NG)
18. begin
19. return Ni ∈ NG such that nextPre(TNi

) is minimal

20. function moveNodeToStack(TN , SN , p)
21. begin
22. push(SN , (next(TN ), p))
23. advance(TN )

matching lists in sorted order according to their PreCode.
We cannot use PathStack directly because our query model

includes node permutations in the form of node groups (Sec-
tion 2.2). However, we have adapted PathStack as follows.

First, for each node group NG in a query PQ we use a new
NIPathStack algorithm to find all matching path segments
in the unified data tree. These matches are returned in in-
creasing lexigraphical ordering given by the pair (PreCodet,
PreCodeh), where PreCodet and PreCodeh are the
PreCodes of the deepest (tail) and highest (head) nodes,
respectively, of the matching path segment.

Second, we apply PathStack on PQ with a small variation:
each node group NG is given an individual stack, and its
matches are populated by the results of running NIPathStack
on that node group. Other nodes are given a stack each as
in the original PathStack algorithm.

Like PathStack, NIPathStack uses a set of stacks, one per
query node in a given node group, to find matches in our
data tree and views the data tree as a stream of nodes pro-
duced by a preorder traversal. The inverted data index is
again used to simulate the preorder traversal without actu-
ally traversing the data tree. As nodes are pushed onto the
stacks, NIPathStack maintain pointers between these nodes
to represent ancestor-descendant relationships in the data.
As each new node is pushed onto one of the stack, the algo-
rithm checks for solutions. At least one solution exists if all
stacks are populated since node groups allow for any order-
ing of nodes within answers. When the traversal passes the
leaf data node of a branch, nodes that cannot be involved
in any new matches are popped from the stacks and the
traversal moves to the next branch in the unified data tree.

Algorithm 1 details the NIPathStack algorithm. NIPath-
Stack takes as input the node group being evaluated, noted
NG. It keeps a pointer Tail to track the deepest node of
the data path encoded in the stacks. Line 3 identifies the
next node to be processed to simulate the preorder traver-
sal, i.e., the inverted list which contains the node with the
minimum PreCode. Lines 4-6 pop stack nodes when the al-

Algorithm 2 NIShowSolutions(Tail, NG)

1. P ⇐ (Tail) {partial answer with one node}
2. showSolution(prevDataPathNode(Tail), P,NG)

3. function showSolution(n, P,NG)
4. begin
5. if P does not contain a node with same label as n then
6. P ⇐ (P, n)
7. if |P | = |NG| then
8. output(P )
9. else

10. showSolution(prevDataPathNode(n), P,NG)
11. P ⇐ P − n
12. if Sn has at least one node below n then
13. showSolution(prevDataPathNode(n), P,NG)
14. else
15. if |P | < |NG| ∧ prevDataPathNode(n) 6= nil then
16. showSolution(prevDataPathNode(n), P,NG)

gorithm moves to the next branch of the unified data tree.
The function prevDataPathNode is used to return the pre-
vious node in the data path encoded in stacks. Lines 7-8
augment the data path with the new data node and assign
the new deepest node of the data path. If at least one so-
lution exists (function containSolution checks if all stacks
are populated), line 10 invokes a sub-algorithm NIShowSo-
lutions (Algorithm 2) to find and return all solutions.

NIShowSolutions composes answers recursively in leaf-to-
root order. Line 1 creates a partial answer P that only
contains Tail. Line 2 calls function showSolution recursively
to output complete answers. Each time when showSolution
is invoked with an input node n, it tries to output answers
containing n (line 10) and answers not containing n (lines
13 and 16) sequentially.

B1
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C2

B2

A1

(a) Data

⌢
A

B

C
⌣

(b) Node group

A2 B2 C2

A1 B1 C1

SA SB SC

Tail

(c) Stack encoding

C2 B2 A1

C1 B2 A1

B1 C2 A1

B1 C1 A1

(d) Path matches

Figure 2: Example data path and answer encoding in stacks.

Figure 2c shows the stack encoding of the data path seg-
ment B1/C1/C2/B2/A1 (Figure 2a) for the node group
(A//B//C) (Figure 2b). In this example, all data nodes
are part of the same path and are therefore linked together.
NISHowSolutions outputs answers in a leaf-to-root order,
starting with the deepest node (A1), with all answers ending
with this node produced recursively (B1/C1/A1, B1/C2/A1.
C1/B2/A1, and C2/B2/A1). Because the node group se-
mantic allows for any ordering of nodes in data paths, the
algorithm is guaranteed to return at least one path match if
each stack contains at least one data node.

4.3 Top-k query Processing
As previously mentioned, we decompose a twig query into

its component path queries. Given an answer, we compute
a score for the answer for each component path query. We
then combine these individual scores into an overall score
representing the answer’s relevance to the twig query. This
computation can be viewed as a multidimensional scoring
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problem, with each component path query representing a
distinct scoring dimension.

We adapt the existing and popular Threshold Algorithm
(TA) [12] to efficiently solve our multidimensional scoring
problem. TA takes as input several sorted lists, each con-
taining the system’s objects (files in our scenario) sorted
in descending order according to their relevance scores for
a particular attribute, and dynamically accesses the sorted
lists until the threshold condition is met to find the k best
answers without considering all objects.

In our adaptation, each sorted list contains answers for one
component path query. We generate each list by travers-
ing the relaxation DAG of the corresponding path query
and finding matches to increasingly relaxed versions of the
path query. The monotonicity of scores given by our scor-
ing methodology (lexicographical ordering based on (idf, tf))
guarantees that this traversal will produce answers sorted
in decreasing order of their scores. As already mentioned,
we adapt (slightly) existing algorithms for lazily building
and traversing the DAG, including an optimization to avoid
scoring unnecessary nodes (i.e., nodes that do not contribute
new answers) [22].

As TA considers the next answer from a sorted list, it
needs to compute the overall score for the answer; i.e., the
combine score across all attributes. This means that we also
need to compute the score for an arbitrary answer to a path
query. One possible approach is to expand the DAG until we
locate the LRQ that matches the answer to be scored. This
can be expensive, however, as it may require expanding deep
into the DAG. Thus, we adapt an optimization from [22] that
allows us to leverage the inverted data index to quickly jump
to the LRQ or a close by ancestor.

5. EXPERIMENTAL EVALUATION
We now experimentally study and evaluate our unified

search approach. Specifically, we first consider several exam-
ple search scenarios, where a user is looking for a particular
file within a personal data set in each scenario. We formulate
a number of queries for each scenario and compare the ranks
of the target file returned by our approach against those re-
turned by Lucene [4], a state-of-the-art desktop search tool.
We choose Lucene because it is open-source, allowing us to
adapt it to a range of approaches for using content and struc-
ture terms. Next, we consider a much larger set of search
scenarios using automatically generated queries. We also
use (part of) this larger query set to compare our approach
with Google Desktop Search (GDS) and TopX [21], a re-
lated approach that was designed for XML search. Finally,
we report the query processing performance of and indexing
space required by our unified search approach.

5.1 Experimental Setup
Relevance comparison. We use the Lucene text search
engine [4] as a comparison basis. Specifically, we compare
our approach against three different approaches: content-
only and two variations of content and directory path terms.
For content-only, we use the standard Lucene content in-
dexing and search. For the first variation of content and
directory path terms (content:dir), we create two Lucene
indexes, one of content terms and one of terms from the di-
rectory pathnames; effectively, the latter treats each direc-
tory pathname as a file with the terms (components) in the

pathname being its content. Then, each query can contain
two conditions, one for content and one for directory path
terms. Each query condition is scored individually against
the appropriate index using Lucene. The scores are then
combined using a vector projection approach as described
in [19]. For the second variation (content+dir), we create
a combined index that contains all content terms as well as
directory path terms; terms in the pathname of each file is
added to its content. Queries then contain terms that may
match content or directory path terms. Queries are executed
as searches against the combined index using Lucene.

We compare our unified approach to content:dir and con-
tent+dir because the latter two are plausible approaches
that use some structure information (i.e., terms extracted
from directory pathnames and internal structure) but are
simpler to implement. Collectively, we refer to these Lucene-
based approaches as“bag-of-terms”because they do not con-
sider structural relationships. We do not compare unified
search against filtering approaches because the work in [19]
has already shown that a flexible approach can find and rank
relevant files that are missed entirely when filtering.

Data set. We use a subset of files and directories from the
working environment of one of the authors because there
is a lack of synthetic data sets and benchmarks to evalu-
ate PIMs search (as noted in [11]). This data set contains
95,172 files in 7,788 directories; 6% of the files are media
(e.g., music and pictures)2, 59% documents (e.g., LaTeX,
pdf, and MS Office), 34% emails3, and 1% miscellaneous
(e.g., scripts and source code). The average directory depth
is 6.3 with the longest being 12. Indexing leads to ∼700K
unique stemmed content terms and ∼3K unique directory
path terms. The unified data tree contains ∼57M nodes, of
which ∼49M (86%) are leaf content nodes.

Query set. We manually construct 28 queries for 3 search
scenarios for our first case study of unified search.

We also automatically generate queries for a larger set
(80) of search scenarios to provide a more comprehensive
evaluation. These scenarios comprise four sets of 20 scenar-
ios each, targeting files from four different data categories,
including email, document (ebooks, academic papers, etc.),
music, and picture. Queries are constructed to contain vary-
ing numbers of query conditions, as well as different combi-
nations of structure and content terms.

More specifically, each query targets a specific file f . Each
query comprises n terms, where n is randomly chosen from
{4, 5, 6}. The n terms are randomly selected from terms in
f ’s directory pathname (external structure), structure terms
inside f (internal structure), and f ’s content. To ensure rea-
sonable selectiveness of terms, we exclude content terms that
appear in more than 5,000 files. The term selection process
is designed to select approximately n/2 external structure
terms, n/4 internal structure terms, and n/4 content terms.
Because some target files do not contain any internal struc-
ture, this process leads to an average of 4.9 terms in each
query, with 2.3 external structure terms, 1 internal structure
term, and 1.6 content terms.4

2ID3 and IPTC tag names (structure) and values (content) are
extracted from music and pictures, respectively.
3Each email message is stored in a separate file in directories that
match the user’s mail folder hierarchy.
4We also studied additional query sets that emphasize content
more heavily. The results for these query sets show similar trends.
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Figure 3: CDFs of ranks of target files when using Defini-
tion 3 with five different TF formulas (f(x) ∈ {log(1+x)}∪
{x

1
n |n = 2, 5, 10, 20}) and when using the lexicographical

approximation (idf, tf ).

We then construct specific queries for the different search
techniques as follows:

Unified: Each query is a twig with all n terms arranged
according to their original positions in the unified structure.
For example, if a and c were chosen from the target file
f ’s directory pathname /a/b/c/f and “foo” from its content,
then the resulting query would be //a//c//“foo”.

Content-only: Each query contains the subset of terms
selected from f ’s content.

Content+Dir: Each query contains all n terms.
Content:Dir: Each query contains all n terms but the

terms are separated into two query conditions. The first
contains terms selected from inside f , including both inter-
nal structure and content terms, while the second contains
terms selected from f ’s directory pathname.

Platform. We have implemented a prototype unified search
tool in Java, using the Oracle Berkeley DB to persistently
store all indexes. Experiments are run on a PC with a 2.8
GHz Intel Xeon processor, 2 GB of memory, and a 10K RPM
SCSI disk, running the Linux 2.6.16 kernel and Sun’s 1.5.0
JVM. Reported query processing times are averages of 40
runs, after 40 warm-up runs to avoid measuring JIT effects.

5.2 Approximate Unified Ranking
To compute unified scores for our experiments, we must

first choose a specific function f for TF (Definition 2). Fig-
ure 3 plots the cumulative distribution functions (CDFs)
of the ranks of target files for the automatically generated
query set described in Section 5.1, where each data point
on a curve corresponds to the percentage of queries (Y-axis)
with the corresponding target files positioned at or higher
than a particular rank (X-axis). We study five different for-

mulas, f(x) ∈ {log(1 + x)} ∪ {x
1
n |n = 2, 5, 10, 20}, which

are common alternatives for TF from the IR community
(e.g., [4, 18]), when using the full scoring formula defined
in Definition 3. (We compute the scores by brute-force full
expansion of the query DAGs.) We also study the approxi-
mate scoring function based on the lexicographical ordering
(idf, tf ) computed against the least relaxed query that a file
matches, as described in Section 3.2.

We observe that the log function gives the worst result.
When using the n-th root functions, the results are relatively
insensitive to n (variations of less than 5% for n between 2
and 20) although n=10 does give the highest accuracy. All
results reported in the rest of this section are obtained using

the function f(x) = x
1
10 to compute TF scores.

To study the impact of TF vs. IDF, we show the relative
standard deviation (100% x standard deviation / mean) for
the two score components for different TF formulas in Ta-

Table 1: Relative standard deviations of IDF and TF scores
for the five different TF functions.

Relative Standard Deviation (%)
All Files Top 100 Answers

Function IDF TF IDF TF
log 60.95 68.06 37.75 53.56

n = 2 60.95 45.33 36.63 40.76
n = 5 60.95 27.27 35.87 28.14
n = 10 60.95 20.20 35.75 23.80
n = 20 60.95 16.90 35.71 21.80

ble 1. We study the relative standard deviation because the
scoring formula in Definition 3 multiplies TF and IDF. The
larger the relative standard deviation, the greater the impact
of the measure in differentiating between answers. Table 1
shows that the logarithm formula seems to overweight TF,
especially when considering only the top 100 matches.

For comparison, we also computed the relative standard
deviations of TF and IDF scores for Lucene. Interestingly,
the results show that the impact of TF is greater than IDF
when the whole document set is considered. However, the
impact of TF is smaller than IDF when considering the top
100 documents, which is similar to the n-th root functions
for our scoring definition with n ≥ 5.

Figure 3 also shows that the lexicographical (idf, tf ) order-
ing based on the least relaxed query that an answer matches
is a tight approximation to the full scoring formula. For any
ranking position, the difference between the CDF curves for

(idf, tf ) and the full scoring function with f(x) = x
1
10 is

less than 3%. The rest of this section uses the lexographical
approximation (idf, tf ) for computing the unified scores.

5.3 Case Study
Table 2 shows queries constructed for three different search

scenarios and the rankings of the target files returned by the
four different search techniques. The target files are high-
lighted in Figure 1 to give an idea of how they are placed
within the data set. (Note that the actual pathnames given
in Table 2 are somewhat longer because Figure 1 has been
condensed to save space.) The queries are meant to be
representative of realistic queries composed by real users.
A number of the queries contain inaccuracies representing
when users mistakenly identify structure terms as content
and vice versa.

We make the following observations.
A small amount of structure information can sig-

nificantly improve search accuracy. In the absence of
errors, U always ranks the target files higher than C. C:D
also outperforms C for scenarios 1 and 2. For example, U
and C:D rank the target file for Q1 and Q6 1st compared
to C’s 20th ranking for Q4. In scenario 3, C (Q22) is bet-
ter than C:D (Q24) because the structure terms email and
subject do not add much differentiating power.

It is important to distinguish between structure and
content. In the absence of errors, C+D is always worse than
U and C:D, implying that differentiating between content
and structure conditions is important. When we combine
the index as in C+D, terms that may have great differenti-
ating power in the structure dimension may become diluted
because they occur frequently in files’ content. For example,
in our data set the directory term home occurs frequently
inside files. U and C:D separate the two term spaces and
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Q. # Q. Type Query Conditions Comment Rank

Search Scenario 1: The user searches for a picture of Alice wearing a witch costume taken at home on Halloween.
Target file: /Desktop/Pictures/Disk 3/2008/Home/20081101/IMG 1391.gif (tagged with “witch” and “halloween”)

Q1 U //home[.//“witch” and .//“halloween”] Accurate query conditions 1
Q2 U //home/alice[.//“witch” and .//“halloween”] Extraneous structure condition 1
Q3 U //halloween/witch/“home” Structure and content terms switched 1
Q4 C {witch, halloween} Accurate query conditions 20
Q5 C {home, witch, halloween} Structure term used as content 31
Q6 C:D {witch, halloween} : {home} Accurate query conditions 1
Q7 C:D {witch, home} : {halloween} Structure and content terms switched 245-252
Q8 C+D {home, witch, halloween} Accurate query conditions 20

Search Scenario 2: The user searches for the chapter “Of the Travelling of the Utopians” in the electronic book “Utopia”.
Target file: /Laptop/eBooks/Non-Fiction/Philosophy/Utopia/OPS/main6.xml

Q9 U //philosophy[.//“utopia” and .//“travel”] Accurate query conditions 1
Q10 U //philosophy[.//“utopia” and .//chapter/“travel”] Extraneous structure condition 1
Q11 U //title[.//philosophy/“utopia” and .//“travel”] Out-of-order structure conditions 1
Q12 U //utopia/travel/“philosophy” Structure and content terms switched 2
Q13 C {utopia, travel} Accurate query conditions 18
Q14 C {philosophy, utopia, travel} Structure term used as content 9
Q15 C:D {utopia, travel} : {philosophy} Accurate query conditions 4
Q16 C:D {philosophy, utopia} : {travel} Structure and content terms switched 291
Q17 C+D {philosophy, utopia, travel} Accurate query conditions 24

Search Scenario 3: The user searches for an email with the subject “Spring 2006 Tuition Payment ...”.
Target file: /Laptop/email/local/Backup/2005 Mail Backup/Inbox/324.xml
Q18 U //email[.//subject/“spring” and .//“bill”] Accurate query conditions 3
Q19 U //email/department[.//subject/“spring” and .//“bill”] Extraneous structure condition 3
Q20 U //email[.//subject/“bill” and .//“spring”] Out-of-order structure conditions 19
Q21 U //email[.//spring/“subject” and .//“bill”] Structure and content terms switched 3
Q22 C {spring, bill} Accurate query conditions 36
Q23 C {email, spring, bill} Structure term used as content 340
Q24 C:D {spring, bill} : {email} Accurate query conditions 70
Q25 C:D {subject, spring, bill} : {email} Accurate query conditions 142
Q26 C:D {bill} : {email, spring} Structure and content terms switched 596-635
Q27 C+D {spring, bill, email} Accurate query conditions 75
Q28 C+D {subject, spring, bill, email} Accurate query conditions 153

Table 2: The rank of target files computed by unified search and the three bag-of-terms approaches. U denotes unified queries,
C content-only queries, C:D content:dir queries, and C+D content+dir queries. A range of values for Rank means that a
number of files, including the target file, received the same relevance score. We use Potter stemming so that the terms “travel”,
“travelling”, and “traveling” are equivalent for search scenario 2.

so are able to achieve a rank of 1 for queries Q1 and Q6
compared to a rank of 20 achieved by C+D for query Q8.

Structural relationships provide additional differen-
tiating power for improving search accuracy. In sce-
nario 2, U uses the relationship in the subject/“spring” part
of the query condition to achieve a ranking of 3 for the target
file (Q18), whereas the inclusion of email and subject actu-
ally causes C:D to perform worse than C. email did not add
much differentiating power while subject was only effective
when considered together with the term “spring”.

It is important to be able to relax query conditions
across the content and structure dimensions. While it
is important to differentiate between content and structure,
it is also important to be able to relax across the two di-
mensions. This is because users may not always remember
correctly which are content and which are structure terms.
When they are forced to explicitly identify content vs. direc-
tory terms, a mistake can drastically affect the search results
if cross-dimension relaxation is not supported. For example,
switching a content and structure term drops the rank of the
target file from 1 (Q6) to 245-252 (Q7) and from 4 (Q15) to
291 (Q16). On the other hand, U’s processing of queries Q3
and Q12, which contain the same errors, rank the target file
1 and 2, respectively.

5.4 Automatically Generated Queries
Figures 4a-b plot the CDFs of the ranks of target files for

all 80 automatically generated queries (Section 5.1). When
there are ties, we use the median value of the range as the
rank of the target file; e.g., 5 files, including the target file,
achieve the same highest score would lead to a rank of 3
for the target file. Figures 4a-b present CDFs for two dif-
ferent variations, one where content terms in the queries
are selected to be close to selected internal structure terms
(e.g., contained in a child content node of a selected internal
structure node), and one where content and internal struc-
ture terms are selected independently.

These results reinforce the first two observations made in
the previous section: (1) A small amount of structure infor-
mation can significant improve search accuracy; and (2) It
is important to distinguish between structure and content;
Specifically, in Figure 4a, U and C:D always outperform C;
e.g., 80% of U queries and 71% of C:D queries rank the tar-
get files 10 or higher, while only 39% of C queries rank the
target files within 10 or higher. Computing the correspond-
ing Mean Reciprocal Rank Values (MRR) at 10 gives 0.484
for U, 0.161 for C, 0.379 for C:D, and 0.239 for C+D. (U
outperforms all techniques with a statistical significance at p
< 0.05 using the Wilcoxon one-tailed test). Further, U and
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Figure 4: CDFs of ranks of target files (a-b), when queries contain inaccuracies (c-f). In (a) content and internal structure
terms are selected “close” together, while in (b) they are selected independently. In (c-f), for U, U-no-NI, and C:D, 50 or 100
percent of the queries contain errors. Each erroneous query switches one or two randomly chosen pairs of directory path and
content terms. C+D is shown as a baseline. U-no-NI refers to the use of U without the node inversion relaxation.

C:D queries are always better than C+D queries; e.g., only
51% of C+D queries ranked the target files 10 or higher.

Figures 4a-b also reinforce the third observation above:
structural relationships provide additional differentiating
power for improving search accuracy. In particular, the fig-
ures show that U outperforms C:D when internal structure
and content terms are chosen close together so that relation-
ships embedded in the query conditions are meaningful. On
the other hand, their performance gets closer when content
terms and internal structure terms are chosen independently,
effectively having less relationships between structure and
content available for U to improve its ranking accuracy.

Finally, we consider what happens if queries contain in-
accuracies, where external structure and content terms are
mistakenly interchanged. We choose this type of errors be-
cause it may be easy for users to confuse structure and con-
tent terms, particularly when parts of the namespaces are
programmatically organized. We consider inaccuracies along
two dimensions, the percentage of queries (chosen randomly)
containing inaccurate query conditions, and the level of in-
accuracy, expressed as the number of switches between pairs
of external structure terms and terms from inside the tar-
get file. Figures 4c-f plot CDFs of the ranks of target files
when inaccuracies are introduced into the queries. These
graphs include results when U is used without the node in-
version relaxation (U-no-NI) to evaluate the importance of
node inversion to our search approach.

The results shown in Figures 4c-f reinforce our final ob-
servation in Section 5.3: it is important to be able to re-
lax conditions across the content and structure dimensions.
Both U’s and C:D’s ranking performance degraded as the
number of inaccurate queries and/or the number of inaccu-
racies in each inaccurate query increase. However, U queries
are much less sensitive to the inaccuracies than C:D queries.
This is reflected in the corresponding MRR: when the per-
centage of query errors increases to 50% of all queries (2
swaps per erroneous query), the MRR for U decreases by
only 8% (from 0.484 to 0.443) while the MRR for C:D de-

creases by 33% (from 0.379 to 0.253); as a result, U’s MRR
outperforms other approaches by at least 75% (p < 0.01).
In fact, Figures 4e-f show that C:D can become significantly
worse than C+D. Meanwhile, even if 100% U queries have
two pairs of directory path and content terms switched, U
still outperforms C+D by a wide margin.

Further, these results show that node inversion is critically
important to U’s accuracy when queries contain ordering
mistakes. U always outperforms U-no-NI, with the differ-
ence in accuracy increasing significantly as queries contain
more inaccuracies. In fact, when queries contain 2 swap
mistakes, U-no-NI performs worse than C+D. This is be-
cause U-no-NI has to rely on node deletion to eliminate
mis-ordered terms, thereby loosing the terms’ differentiation
power for ranking answers.

Thus, we conclude that our unified structure and content
search approach has the potential to significantly improve
search accuracy over existing “bag-of-terms” methods, even
if the latter were extended to explicitly consider terms ex-
tracted from structure information. It is also robust against
labeling inaccuracies (i.e., structure terms identified as con-
tent and vice versa) in query conditions.

5.5 Comparing with Existing Search Tools
We have also compared our approach with GDS and

TopX [21]. We choose GDS because of its popularity and
the fact that it ranks returned results. Many other exist-
ing search tools do not; for example, Spotlight only returns
a single ranked result (the top ranked), organizing the re-
maining results using attributes such as dates and file types.
We choose TopX because it implements a related search ap-
proach, although it was designed for XML retrieval.

GDS matches keywords against both pathnames and con-
tent. Thus, we use the set of queries constructed for C+D
from Section 5.1. The results for GDS Windows version
5.9 are similar to C+D in Figure 4 for ranks 1-6, degrading
significantly after.
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Figure 5: The CDFs of ranks of target files for 30 email and
ebook queries.

Table 3: Average precision for k = 5, 10.

Search Method Precision, k=5 Precision, k=10
U 0.52 0.32

U-no-D 0.52 0.32
TopX 0.44 0.28
GDS 0.32 0.18

C 0.28 0.14

TopX treats each document as a tree of nodes, each with
a tag and some content. Each internal node’s content is the
concatenation of the contents of its children. TopX adapts
the Okapi BM25 scoring model to score content. It tran-
sitively expands all structural dependencies and counts the
number of conditions matched by a file to score structure. It
combines the two scores using summation with an emphasis
on the importance of structure query conditions.

We use the open source TopX package with default set-
tings. We limit our comparison to the 30 email and ebook
queries from the query set used in Figure 4a since TopX
only supports XML and text files (emails and ebooks are
stored in XML format). Directory terms are dropped from
the queries since TopX only considers internal structure.

Figure 5 plots the CDFs of ranks of target files for the
query set. We observe that TopX outperforms content-only
search (C). However, our unified approach (U) outperforms
TopX, even if we do not use directory information (U-no-
D). Further, while not shown here, TopX’s accuracy drops
rapidly in the presence of ordering errors because it is much
less flexible than U in dealing with them. For example, TopX
does not allow structural parts of queries to be matched with
content and vice versa.

To compare using a more conventional IR metric, Table 3
shows the average precision for a subset of five randomly se-
lected queries. We manually examined the top k ranked files
returned for each query and marked them relevant or not.
(We cannot measure recall because this requires evaluating
the relevance of all files against all queries.) Our approach
again outperforms content-only search, GDS, and TopX.

5.6 Query Processing Performance
Figure 6 plots CDFs of query processing times for the

query set considered in Section 5.4 for different values of k.
(Processing times for the additional query sets mentioned in
Section 5.4 and queries in Section 5.3 are similar.) These
results show that structure-heavy queries—recall that these
queries on average contain 3.3 structure terms vs. 1.6 content
terms—can increase query processing times. However, for
k=10, approximately 70% of the queries still complete in
less than 4 seconds, with the longest requiring 17 seconds.
Further, query processing scales well with k, degrading only
slightly with increasing k.
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Figure 6: CDFs of query processing times to find and rank
the top k relevant files for queries considered in Section 5.4.

There are several possible performance optimizations. First,
U is heavily penalized when processing high frequency terms
such as subject because of its path matching algorithm. This
penalty largely arises from our naive use of the Berkeley
DB and can be significantly reduced with some coding ef-
fort. Second, there are opportunities for skipping unneces-
sary computation that we have not implemented.

5.7 Storage Cost
Our indexes require 1.9 GB of persistent storage, which

is 11% of the data set size (16.6 GB). Lucene requires 676
MB of storage to index the same data set. While this is
almost a three-fold increase, the total required storage is
still quite reasonable. Further, it makes sense to trade-off a
small amount of disk space to improve search accuracy.

6. RELATED WORK
Several works have focused on the user perspective of per-

sonal information management [7, 17]. These works allow
users to organize personal data semantically by creating as-
sociations between files or data entities and then leveraging
these associations to enhance search.

Other works [11, 25] address information management by
proposing generic data models for heterogeneous and evolv-
ing information. These works are aimed at providing users
with generic and flexible data models to accessing and stor-
ing information beyond what is supported in traditional files
system. Instead, we focus on querying information that is
already present in the file system. Our data model can be
viewed as an XML data tree.

A number of efforts have explored structure and content
search for XML [1, 2, 3, 8, 14]. However, these approaches
have either ignored content [1], considered content nodes as
atomic values that could be part of the structural relaxation
but whose terms could not be searched individually [2], or
considered content and structure separately [3, 8, 14]. The
latter works [3, 8, 14] propose techniques that use struc-
ture conditions as templates on which to apply the content
searches; the quality of content matches is penalized when
the structural match is not perfect. Furthermore, [8, 14]
compute indexes around a subset of predefined XPath frag-
ments (structure). In contrast, our framework unifies scor-
ing for structure and content, allowing it to be robust to
mistakes resulting from users mistakenly believing content
terms are in the structure and vice versa. Our framework
also handles arbitrary DAG structures and unifies external
structure and internal structure, removing the need for users
to know the underlying physical organization of data (which
can be application-dependent) when composing queries.

Our previous work [19] only considers external structure
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(e.g., directories) and scores structure and content sepa-
rately, applying a combining function to assign a final score
to data matches. In contrast, the current work unifies the
matching and scoring of external structure, internal struc-
ture, and content, bringing the advantages already men-
tioned above. In addition, the current work views the entire
file system as a unified data tree, allowing searches that
cross file boundaries in a directory-based file system. We
compared the two systems using the query sets from Sec-
tion 5.4. We do not show the results, however, because our
previous system performs similar to C:D (slightly better) for
this data set, given that the namespace is not large and so
using structural relationships only gives a slight advantage
over using terms from directory names.

A further difference between our work and the previous
works in XML mentioned above is the use of node inversion.
This relaxation was introduced in [19] but was only applied
to the structure query conditions. The current work allows
for node inversion between structure and content query con-
ditions, which is the key to tolerating mistakes that inter-
change the two. However, allowing node inversion means
that we cannot apply common query processing techniques
(mostly derived from [6]) that rely on the query having a
rigid tree structure; our query structure may contain node
groups representing possible permutations. Consequently,
Algorithms 1 and 2 are non-trivial extensions of PathStack [6]
that had to be developed.

Partial path queries [23] also extended PathStack, allowing
fuzziness in the query conditions by keeping some structural
relationships between query nodes undefined. Our work sup-
ports more complex path queries containing term permuta-
tions introduced by node inversion.

Ranking techniques based on learning and query selective-
ness are proposed in [9]. Their ranking formula uses a linear
function to aggregate weights for various file features such
as name, size, and creation date.

7. CONCLUSIONS AND FUTURE WORK
We have presented a unified framework for flexible query

processing over both content and structure in personal infor-
mation systems. We proposed query processing and query
matching algorithms to efficiently evaluate ranked search
queries over our unified framework. Our experimental eval-
uation shows that our unified approach improves search ac-
curacy over existing content-based methods by leveraging
information from both structure and content as well as re-
lationships between the terms. Our work shows the im-
portance of allowing for structural query approximation in
personal information queries and opens important research
directions for efficient and high-quality search tools.

In this paper, we have focused on files as the result unit.
In the future, we will relax this restriction to allow for logical
units of data to be returned. For example, a set of photos
taken at the same time and location or an email thread
could constitute and be returned as a single logical entity.
Alternatively, a search might return just a section in a file.
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